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@ Our world: CSP({0,1},I) where I' contains constants {0} and {1}.

@ We limit the instance shape — each variable appears at most k times.
For which I's do we get easier CSP?

o T. Feder: Fanout limitations on constraint systems, 2001.

e V. Dalmau, D. Ford: Generalized satisfiability with k occurences per
variable: A study through delta-matroid parity, 2003.

@ Only interesting case: k = 2.
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Edge CSP

@ Wilog each variable appears in exactly two constrains.
@ We can draw instances of this CSP as graphs with variables = edges.
@ Some people call this binary CSP, we prefer edge CSP.

@ Feder: The only new case is when all relations in I are A-matroids.
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A-matroids

o AKA “generalized matroids”
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o AKA “generalized matroids”

@ R # () is an even A-matroid if all tuples in R have the same parity
and for all o, 8 € R and for all u variables such that a(u) # S(u)
there exists v # u such that a(v) # f(v) and a®ud v € R:
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o AKA “generalized matroids”

@ R # () is an even A-matroid if all tuples in R have the same parity
and for all o, 8 € R and for all u variables such that a(u) # S(u)
there exists v # u such that a(v) # f(v) and a®ud v € R:
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o AKA “generalized matroids”

@ R # () is an even A-matroid if all tuples in R have the same parity
and for all o, 8 € R and for all u variables such that a(u) # S(u)
there exists v # u such that a(v) # f(v) and a®ud v € R:

« = 00011
154 = 11101
a®udv =11 01 1

@ A-matroids: No parity restriction, enought to have a & u € R instead
ofaudveR.
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Good and bad news about A-matroids
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Good and bad news about A-matroids

@ Intersection of two even A-matroids need not be a A-matroid:
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Good and bad news about A-matroids

@ Intersection of two even A-matroids need not be a A-matroid:

© 0 0 0) © 0 0 0)
(110 0 (1010l (0000
(0011)ﬂ(01o1)_{(1111)}
1111 1111

o If there is any way to use polymorphisms here, we did not find it.

@ However, (even) A-matroids are closed under primitive positive
definitions where each bound variable appears exactly twice and each
free variable exactly once.
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Edge CSPs generalize perfect matchings

@ Perfect matchings in graphs: Given G, assign 0 or 1 to each edge so
that each vertex of G is incident to exactly one edge labelled by 1.
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Edge CSPs generalize perfect matchings

@ Perfect matchings in graphs: Given G, assign 0 or 1 to each edge so
that each vertex of G is incident to exactly one edge labelled by 1.

@ Known to be polynomial (J. Edmonds, 1965).

@ Perfect matchings correspond to edge CSP with constraints of the

form
{1 0 0 ... 0
(0 1.0 ... 0)
(0 01 ... 0
(0 00 1}

@ These are even A-matroids!
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Planar CSPs

Z. Dvotak and M. Kupec: On Planar Boolean CSP, 2015.
CSP({0,1},T") with incidence graphs of instances planar.

Constraints — faces of a planar graph, variables — vertices.

Dvo¥ak and Kupec show that all interesting cases of planar CSP can
be reduced to edge CSP with A-matroid constraints.
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Planar CSPs

Z. Dvotak and M. Kupec: On Planar Boolean CSP, 2015.
CSP({0,1},T") with incidence graphs of instances planar.

Constraints — faces of a planar graph, variables — vertices.

Dvo¥ak and Kupec show that all interesting cases of planar CSP can
be reduced to edge CSP with A-matroid constraints.

If there is a polynomial algorithm for edge CSP with even A-matroid
constraints, we have a dichotomy for planar CSP.
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Our strategy
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@ We generalize Edmond’s blossom algorithm for perfect matchings.
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@ We generalize Edmond’s blossom algorithm for perfect matchings.

o Edge labeling f assigns 0 or 1 to each half-edge: Pair {v, C} where v
lies in constraint C so that all constraints are satisfied.
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@ We generalize Edmond’s blossom algorithm for perfect matchings.

o Edge labeling f assigns 0 or 1 to each half-edge: Pair {v, C} where v
lies in constraint C so that all constraints are satisfied.

@ Variable is consistent in f if both half edges corresponding to v have
the same labels.

o Edge labeling with all variables consistent = a solution of the
instance.

@ We want to augment a given labeling f: Find g labeling with fewer
inconsistencies.

o If f is an edge labeling that can be improved, there is an augmenting
f-walk p from one inconsistent variable to another.
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o Take f, search from all inconsistent variables, building a forest of
visited variables and constraints.
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can augment and make u, v’ consistent.
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Sketch of the algorithm

o Take f, search from all inconsistent variables, building a forest of
visited variables and constraints.

o If we can find f-walks u...Cv and v’ ... Dv for u, v’ inconsistent, we
can augment and make u, v’ consistent.

o If we find f-walks u...Cv and u...Dv, we have found a blossom.
This we contract and re-run the algorithm on a smaller instance.

o If we don’t find any of the above, then f can not be augmented.
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Consequences and future work

@ We have finished the classification started by Dvorak and Kupec.

@ To get dichotomy for edge CSPs, all that is needed is to generalize
our argument from even A-matroids to all A-matroids.

@ We can go beyond even A-matroids and cover many previously
known polynomial classes, but there still remains a large gap.

@ We are now begining to look at valued version of edge CSP for even
A-matroids.

@ Generalization to value sets larger than 2 is going to be hard.
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Thank you for your attention.
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