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History

Our world: CSP({0, 1}, Γ) where Γ contains constants {0} and {1}.
We limit the instance shape – each variable appears at most k times.
For which Γs do we get easier CSP?

T. Feder: Fanout limitations on constraint systems, 2001.

V. Dalmau, D. Ford: Generalized satisfiability with k occurences per
variable: A study through delta-matroid parity, 2003.

Only interesting case: k = 2.
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Edge CSP

Wlog each variable appears in exactly two constrains.

We can draw instances of this CSP as graphs with variables = edges.

Some people call this binary CSP, we prefer edge CSP.

Feder: The only new case is when all relations in Γ are ∆-matroids.
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∆-matroids

AKA “generalized matroids”

R 6= ∅ is an even ∆-matroid if all tuples in R have the same parity
and for all α, β ∈ R and for all u variables such that α(u) 6= β(u)
there exists v 6= u such that α(v) 6= β(v) and α⊕ u ⊕ v ∈ R:

∆-matroids: No parity restriction, enought to have α⊕ u ∈ R instead
of α⊕ u ⊕ v ∈ R.
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Good and bad news about ∆-matroids

Intersection of two even ∆-matroids need not be a ∆-matroid:
(0 0 0 0)
(1 1 0 0)
(0 0 1 1)
(1 1 1 1)

 ∩


(0 0 0 0)
(1 0 1 0)
(0 1 0 1)
(1 1 1 1)

 =

{
(0 0 0 0)
(1 1 1 1)

}

If there is any way to use polymorphisms here, we did not find it.

However, (even) ∆-matroids are closed under primitive positive
definitions where each bound variable appears exactly twice and each
free variable exactly once.
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Edge CSPs generalize perfect matchings

Perfect matchings in graphs: Given G , assign 0 or 1 to each edge so
that each vertex of G is incident to exactly one edge labelled by 1.

Known to be polynomial (J. Edmonds, 1965).

Perfect matchings correspond to edge CSP with constraints of the
form

{(1 0 0 . . . 0)
(0 1 0 . . . 0)
(0 0 1 . . . 0)

. . .

(0 0 0 . . . 1)}

These are even ∆-matroids!
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Planar CSPs

Z. Dvǒrák and M. Kupec: On Planar Boolean CSP, 2015.

CSP({0, 1}, Γ) with incidence graphs of instances planar.

Constraints – faces of a planar graph, variables – vertices.

Dvǒrák and Kupec show that all interesting cases of planar CSP can
be reduced to edge CSP with ∆-matroid constraints.

If there is a polynomial algorithm for edge CSP with even ∆-matroid
constraints, we have a dichotomy for planar CSP.
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Our strategy

We generalize Edmond’s blossom algorithm for perfect matchings.

Edge labeling f assigns 0 or 1 to each half-edge: Pair {v ,C} where v
lies in constraint C so that all constraints are satisfied.

Variable is consistent in f if both half edges corresponding to v have
the same labels.

Edge labeling with all variables consistent = a solution of the
instance.

We want to augment a given labeling f : Find g labeling with fewer
inconsistencies.

If f is an edge labeling that can be improved, there is an augmenting
f -walk p from one inconsistent variable to another.
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Example

1 1
(1 1 1 1)
(1 1 0 0)
(0 0 1 1)
(0 0 0 0)

(1 0)
(0 1)

1 1

1 1

0 0

0 000

u u′

C

D E
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Sketch of the algorithm

Take f , search from all inconsistent variables, building a forest of
visited variables and constraints.

If we can find f -walks u . . .Cv and u′ . . .Dv for u, u′ inconsistent, we
can augment and make u, u′ consistent.

If we find f -walks u . . .Cv and u . . .Dv , we have found a blossom.
This we contract and re-run the algorithm on a smaller instance.

If we don’t find any of the above, then f can not be augmented.
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Consequences and future work

We have finished the classification started by Dvǒrák and Kupec.

To get dichotomy for edge CSPs, all that is needed is to generalize
our argument from even ∆-matroids to all ∆-matroids.

We can go beyond even ∆-matroids and cover many previously
known polynomial classes, but there still remains a large gap.

We are now begining to look at valued version of edge CSP for even
∆-matroids.

Generalization to value sets larger than 2 is going to be hard.
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Thank you for your attention.
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