Algebraic Approach to Promise Constraint Satisfaction

Alexandr Kazda

Department of Algebra Charles University

Noon Seminar

Alexandr Kazda (Dept of Algebra)

Algebraic Approach to PCSP

Noon Seminar 1 / 11

- The results presented are not mine
- CS pioneers of algebraic PCSP: Per Austrin, Joshua Brakensiek, Venkatesan Guruswami, and Johan Håstad
- Coming soon: Jakub Bulín, Jakub Opršal. *Algebraic Approach to Promise Constraint Satisfaction*
- Any errors, typos etc. in the presentation belong to me

- \mathbb{A}, \mathbb{B} are relational structures, $\mathbb{A} \to \mathbb{B}$ (wlog $\mathbb{A} \subseteq \mathbb{B}$)
- $\mathsf{PCSP}(\mathbb{A}, \mathbb{B})$: Input relational structure \mathbb{C}
 - \bullet Output "Yes" if $\mathbb{C} \to \mathbb{A}$
 - Output "No" if $\mathbb{C}\not\to\mathbb{B}$
- Example: $PCSP(\mathbb{K}_3, \mathbb{K}_4)$.
- $\mathsf{PCSP}(\mathbb{K}_3,\mathbb{K}_4)$ is NP-hard because all of its polymorphisms are "almost projections"

- $\mathsf{Pol}(\mathbb{A},\mathbb{B})$ are all polymorphisms from \mathbb{A} to \mathbb{B}
- Polymorphism $f: \mathbb{A}^n \to \mathbb{B}$ sends $R^{\mathbb{A}}$ into $R^{\mathbb{B}}$
- $\mathsf{Pol}(\mathbb{A},\mathbb{B})$ determines complexity of $\mathsf{PCSP}(\mathbb{A},\mathbb{B})$ up to logspace reductions
- Can't compose, but can take minors:

 $f(x_1, x_2, x_3, x_4, x_5) \in \mathsf{Pol}(\mathbb{A}, \mathbb{B}) \Rightarrow f(x_2, x_2, x_{16}, x_4, x_5) \in \mathsf{Pol}(\mathbb{A}, \mathbb{B})$

• If $\mathbb{A} \subseteq \mathbb{B}$ then $\mathsf{Pol}(\mathbb{A}, \mathbb{B})$ contains all projections

$$\pi_i(x_1,\ldots,x_n)=x_i$$

- A minor closed set clonoid minion C on sets A, B is a nonempty family of operations from A to B closed under taking minors
- Taking minors: $\sigma \colon [n] \to [m]$ sends *n*-ary *f* to *m*-ary f^{σ} where

$$f^{\sigma}(x_1,\ldots,x_m)=f(x_{\sigma(1)},\ldots,x_{\sigma(n)})$$

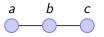
• Each $Pol(\mathbb{A}, \mathbb{B})$ is a minion

- $\phi \colon \mathcal{C} \to \mathcal{D}$ preserves arity and commutes with taking minors
- \bullet Another view: homomorphism sends identities of ${\mathcal C}$ to identities of ${\mathcal D}$
- Example:

$$f(x,x,y) \approx g(x,y,y,z) \Rightarrow \phi(f)(x,x,y) \approx \phi(g)(x,y,y,z)$$

 Jakub Bulín, Jakub Opršal: For A, B, A', B' finite relational structures Pol(A, B) → Pol(A', B') gives a poly-time reduction from PCSP(A', B') to PCSP(A, B)

- Have: $\mathsf{Pol}(\mathbb{A}, \mathbb{B}) \to \mathsf{Pol}(\mathbb{A}', \mathbb{B}')$
- Want: $\mathsf{PCSP}(\mathbb{A}', \mathbb{B}')$ reduces to $\mathsf{PCSP}(\mathbb{A}, \mathbb{B})$
- PCSP(A, B) is equivalent to a different promise problem involving "functional equations" (Maltsev conditions).
- Example reduction: $\mathsf{PCSP}(\mathbb{K}_3,\mathbb{K}_4)$ and input graph



- Watch the blackboard!
- $\bullet~\mathbb{G} \to \mathbb{K}_3 \Rightarrow$ solution by projections
- $\mathbb{G} \not\rightarrow \mathbb{K}_4 \Rightarrow$ no solution in $\mathsf{Pol}(\mathbb{K}_3, \mathbb{K}_4)$

The reduction II

- Have: $h: \operatorname{Pol}(\mathbb{A}, \mathbb{B}) \to \operatorname{Pol}(\mathbb{A}', \mathbb{B}')$
- Want: $PCSP(\mathbb{A}', \mathbb{B}')$ reduces to $PCSP(\mathbb{A}, \mathbb{B})$
- Input "functional equation" system

$$t(x_0,x_0,x_1,x_2)\approx s(x_0,x_3)$$

:

- Given a system of functional equations, answer yes if the system has a solution by projections and no if it has no solution in Pol(A, B)
- This problem is equivalent to PCSP(A, B) (takes work)
- Existence of $h \Rightarrow$ if no solution in $Pol(\mathbb{A}', \mathbb{B}')$ then no solution in $Pol(\mathbb{A}, \mathbb{B})$

- Identities in minions determine PCSP complexity
- $\mathsf{Pol}(\mathbb{K}_3, \mathbb{K}_4) \to \mathsf{Pol}(\mathbb{K}_3, \mathbb{K}_3)$ (nontrivial) so $\mathsf{PCSP}(\mathbb{K}_3, \mathbb{K}_4)$ is NP-hard.
- If $\mathsf{Pol}(\mathbb{A},\mathbb{B})$ maps to a minion of operations of bounded arity then $\mathsf{PCSP}(\mathbb{A},\mathbb{B})$ is NP-hard
- More on the way...

- $\mathsf{Pol}(\mathbb{A},\mathbb{B}) \to \mathsf{bounded}$ arity minion $\Rightarrow \mathsf{PCSP}(\mathbb{A},\mathbb{B})$ is NP-hard
- Libor Barto, Jakub Bulín, Andrei Krokhin, Jakub Opršal: NP-hard PCSP whose polymorphisms don't map into a bounded arity minion
- Our best source of hardness: Reduction from GapLabelCover (variant of PCP) to PCSP.
- I weakened homomorphisms to ϵ -homomorphisms and tinkered with them, but it did not work out.
- TODO: Make sense of PCSP complexity.

Thank you for your attention.