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Boolean Constraint Satisfaction Problem

A finite set of variables V . . .

. . . to which we want to assign values 0 or 1. . .

. . . so that a set C of constraints is satisfied.

Examples: Graph 2-coloring, linear equations over Z2, 3-SAT,finding
a perfect matching in a graph, . . .
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Perfect matchings

Given a set of edges V and a set of vertices C
Goal: Find f : V → {0, 1} that is a perfect matching:

∀C ∈ C we have

Poly-time algorithm by Jack Edmonds (1965).

Strategy: Start with an empty matching and keep improving it.
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Boolean edge CSP

Boolean CSP where each variable appears in exactly two constraints.

Constraints = vertices, variables = edges:

C

C =

{ }
, , ,
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∆-matroids

T. Feder, 2001: Edge CSP is only interesting when all constraint
relations are ∆-matroids (if we have constants).

A (nonempty) relation M ⊂ {0, 1}n is a ∆-matroid if it satisfies a
certain exchange axiom.

Previous algorithms for special classes of ∆-matroids: co-independent
(Feder, 2001), compact (Istrate, 1997), local (Dalmau and Ford,
2003), binary (Geelen, Iwata and Murota, 2003; Dalmau and Ford,
2003).

Our algorithm will work for the natural class of even ∆-matroids.
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Even ∆-matroids

M is an even ∆-matroid if M ⊂ {0, 1}n, all members of M have same
parity and M satisfies this exchange axiom:

The result of switching the two positions in the second tuple needs to
stay within M.

Example: M = {(1000), (0100), (0010), (0001)}.
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Solving edge CSP for even ∆-matroids

Similar to perfect matchings in graphs, but much more delicate.

Label variables with 0s and 1s, some variables inconsistent.

Exchange axiom ⇒ we can walk.

Want: Augmenting walk from one inconsistent variable to another.

Unlike in matchings, we can visit a constraint multiple times.
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Example

Explore the instance starting from inconsistent variables.

If we don’t reach any variable from both directions, everything is easy.

C

C = { }
, , ,
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Contracting blossoms

If we can reach a variable from both sides, we have a blossom.

If that happens we contract the blossom and recursively solve a
“smaller” edge CSP instance.

Example:

Proving correctness requires work (eg. keeping track of the order in
which we visited variables).
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Planar Boolean CSP

Z. Dvǒrák and M. Kupec: On Planar Boolean CSP, 2015.

Boolean CSP instances having planar drawings.

Dvǒrák and Kupec: All interesting cases of planar CSP can be
reduced to edge CSP with even ∆-matroid constraints.

Our algorithm ⇒ Dichotomy for planar Boolean CSP.
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Open problems

How to find a solution of minimal cost?

We can handle effectively coverable ∆-matroids ⊇ previously known
tractable classes.

Algorithm for general ∆-matroids?

Generalization to value sets larger than 2?

Where is the algebraic approach hiding?!
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Thank you for your attention.
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