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Möbius trans-
formations

Convergence
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• Our goal: To use sequences of Möbius transformations to
represent points on R = R ∪ {∞}.

• A Möbius transformation (MT) is any nonconstant
function M : C ∪ {∞} → C ∪ {∞} of the form

M(z) =
az + b

cz + d

• We will consider MTs that preserve the upper half-plane.

• These are precisely the MTs with a, b, c , d real and
ad − bc = 1.
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Classifying Möbius transformations

M0(x) = x/2

• Hyperbolic, two fixed points.

M1(x) = x + 1

• Parabolic, one fixed point.

M2(x) = − 1

x + 1

• Elliptic, no fixed points in R.
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Möbius
number
systems

Alexandr
Kazda

(with thanks
to Petr Kůrka)
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Defining convergence

• A sequence M1,M2, . . . represents the number x if
Mn(i)→ x for n→∞.

• Isn’t it a bit arbitrary?

• No. This definition is quite natural.

• For example, if M1,M2, . . . represents x then
Mn(K )→ {x} for any K compact lying above the real line.
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Preliminaries from Symbolic
dynamics

• Let A be finite alphabet. Let A? denote the set of all finite
words over A, Aω the set of all one-sided infinite words.

• A? with the operation of concatenation is a monoid.

• Let wi denote the i-th letter of the word w .

• A set Σ ⊂ Aω is a subshift if Σ can be defined by a set of
forbidden (finite) factors.

• For v = v1 . . . vn a word, denote by Fv the transformation
Fv1 ◦ · · · ◦ Fvn .
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What is a Möbius number system?

Let us have a system of MTs {Fa : a ∈ A}. A subshift Σ ⊂ Aω

is a Möbius number system if:

• For every w ∈ Σ, the sequence {Fw1...wn}∞n=1 represents
some point Φ(w) ∈ R.

• The function Φ : Σ→ R is continuous and surjective.



Möbius
number
systems

Alexandr
Kazda

(with thanks
to Petr Kůrka)
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Getting the idea: Binary system

• Take transformations F0(x) = x/2 and F1(x) = (x + 1)/2.

• Take the full shift Σ = {0, 1}ω.

• The function Φ maps Σ to an interval on R corresponding
to [0, 1].

• Essentially, it is the ordinary binary system; Φ(w)
corresponds to 0.w .

• Note that this is not a Möbius number system yet, as it is
not surjective. . .

• . . . we will fix that soon.
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Möbius
number
systems

Examples

Subshifts
admitting a
number
system

Conclusions

Getting the idea: Binary system

• Take transformations F0(x) = x/2 and F1(x) = (x + 1)/2.

• Take the full shift Σ = {0, 1}ω.

• The function Φ maps Σ to an interval on R corresponding
to [0, 1].

• Essentially, it is the ordinary binary system; Φ(w)
corresponds to 0.w .
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Binary signed system
A = {1, 0, 1, 2}
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 F1(x) = (x − 1)/2

F0(x) = x/2

F1(x) = (x + 1)/2

F2(x) = 2x

Forbidden words:
20, 02, 12, 12, 11, 11
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Why forbid words?

• We forbid words to get rid of troublesome combinations.

• In the binary signed system F0 and F2 are inverse to each
other, so F02 = F20 = id.

• Forbidding 12 and 12 keeps twos at the beginning of every
word.

• Finally, 11 and 11 are forbidden because Φ((11)∞) and
Φ((11)∞) are not defined.

• We shall see that unregulated concatenation can break
any Möbius number system.
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any Möbius number system.
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Forbidding words is necessary

A non-erasing substitution is monoid homomorphism
ρ : A∗ → B∗ such that ρ(v) is the empty word only for v empty.

Theorem
If Σ is a Möbius number system then Σ 6= ρ(Aω) for all
alphabets A and all non-erasing substitutions ρ.

In particular, for ρ identity we obtain that Σ is never the full
shift Aω.
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Möbius
number
systems

Alexandr
Kazda

(with thanks
to Petr Kůrka)
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Sketch of a proof

• To simplify notation, we consider only the case ρ(v) = v .

• We first prove that for every w ∈ Aω and every x ∈ R it is
true that limn→∞ Fw1w2...wn(x) = Φ(w).

• This is highly suspicious. . .

• The only way we can obtain such pointwise convergence is
when Fv is parabolic (like x 7→ x + 1) for every v
nonempty finite word.

• But a simple case consideration shows that then all the Fv

have the same fixed point and Φ is a constant map.
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Conclusions

• Sequences of MTs can represent numbers.

• Möbius number systems can emulate more usual means of
number representation.

• We can state (and sometimes prove) nontrivial existence
conditions such as the one presented . . .

• . . . however, there is a lot of room for improvements.
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Möbius trans-
formations

Convergence
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Möbius
number
systems

Examples

Subshifts
admitting a
number
system

Conclusions

Thanks for your attention.


	Möbius transformations
	Convergence
	Möbius number systems
	Examples
	Subshifts admitting a number system
	Conclusions

