Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting number system

Conclusions

Möbius number systems

Alexandr Kazda (with thanks to Petr Kůrka)

Charles University, Prague

NSAC Novi Sad August 17–21, 2009

Outline

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Möbius number systems

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

1 Möbius transformations

2 Convergence

3 Möbius number systems

4 Examples

5 Subshifts admitting a number system

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

- Our goal: To use sequences of Möbius transformations to represent points on R
 = R ∪ {∞}.
- A Möbius transformation (MT) is any nonconstant function M : C ∪ {∞} → C ∪ {∞} of the form

$$M(z) = \frac{az+b}{cz+d}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

- We will consider MTs that preserve the upper half-plane.
- These are precisely the MTs with *a*, *b*, *c*, *d* real and ad bc = 1.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

- Our goal: To use sequences of Möbius transformations to represent points on $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$.
- A Möbius transformation (MT) is any nonconstant function M : C ∪ {∞} → C ∪ {∞} of the form

$$M(z) = \frac{az+b}{cz+d}$$

- We will consider MTs that preserve the upper half-plane.
- These are precisely the MTs with *a*, *b*, *c*, *d* real and ad bc = 1.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

- Our goal: To use sequences of Möbius transformations to represent points on $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$.
- A Möbius transformation (MT) is any nonconstant function M : C ∪ {∞} → C ∪ {∞} of the form

$$M(z) = \frac{az+b}{cz+d}$$

- We will consider MTs that preserve the upper half-plane.
- These are precisely the MTs with *a*, *b*, *c*, *d* real and ad bc = 1.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

- Our goal: To use sequences of Möbius transformations to represent points on $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$.
- A Möbius transformation (MT) is any nonconstant function M : C ∪ {∞} → C ∪ {∞} of the form

$$M(z) = \frac{az+b}{cz+d}$$

- We will consider MTs that preserve the upper half-plane.
- These are precisely the MTs with *a*, *b*, *c*, *d* real and ad bc = 1.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Classifying Möbius transformations

$$M_0(x) = x/2$$

• Hyperbolic, two fixed points.

$$M_1(x) = x + 1$$

• Parabolic, one fixed point.

$$M_2(x) = -\frac{1}{x+1}$$

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Classifying Möbius transformations

$$M_0(x) = x/2$$

• Hyperbolic, two fixed points.

$$M_1(x) = x + 1$$

• Parabolic, one fixed point.

$$M_2(x) = -\frac{1}{x+1}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Classifying Möbius transformations

$$M_0(x) = x/2$$

• Hyperbolic, two fixed points.

$$M_1(x) = x + 1$$

• Parabolic, one fixed point.

$$M_2(x) = -\frac{1}{x+1}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Classifying Möbius transformations

$$M_0(x) = x/2$$

• Hyperbolic, two fixed points.

$$M_1(x) = x + 1$$

• Parabolic, one fixed point.

$$M_2(x) = -\frac{1}{x+1}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Classifying Möbius transformations

$$M_0(x) = x/2$$

• Hyperbolic, two fixed points.

$$M_1(x) = x + 1$$

• Parabolic, one fixed point.

$$M_2(x) = -\frac{1}{x+1}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Classifying Möbius transformations

$$M_0(x) = x/2$$

• Hyperbolic, two fixed points.

$$M_1(x) = x + 1$$

• Parabolic, one fixed point.

$$M_2(x) = -\frac{1}{x+1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Classifying Möbius transformations

$$M_0(x) = x/2$$

• Hyperbolic, two fixed points.

$$M_1(x) = x + 1$$

• Parabolic, one fixed point.

$$M_2(x) = -\frac{1}{x+1}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Elliptic, no fixed points in \mathbb{R} .

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Classifying Möbius transformations

$$M_0(x) = x/2$$

• Hyperbolic, two fixed points.

$$M_1(x) = x + 1$$

• Parabolic, one fixed point.

$$M_2(x) = -\frac{1}{x+1}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• Elliptic, no fixed points in \mathbb{R} .

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Classifying Möbius transformations

$$M_0(x) = x/2$$

• Hyperbolic, two fixed points.

$$M_1(x) = x + 1$$

• Parabolic, one fixed point.

$$M_2(x) = -\frac{1}{x+1}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

- Convergence
- Möbius number systems
- Examples
- Subshifts admitting a number system
- Conclusions

• A sequence M_1, M_2, \ldots represents the number x if $M_n(i) \rightarrow x$ for $n \rightarrow \infty$.

- Isn't it a bit arbitrary?
- No. This definition is quite natural.
- For example, if M_1, M_2, \ldots represents x then $M_n(K) \rightarrow \{x\}$ for any K compact lying above the real line.

Defining convergence

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

- Convergence
- Möbius number systems
- Examples
- Subshifts admitting a number system
- Conclusions

Defining convergence

- A sequence M_1, M_2, \ldots represents the number x if $M_n(i) \rightarrow x$ for $n \rightarrow \infty$.
- Isn't it a bit arbitrary?
- No. This definition is quite natural.
- For example, if M_1, M_2, \ldots represents x then $M_n(K) \rightarrow \{x\}$ for any K compact lying above the real line.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

• A sequence M_1, M_2, \ldots represents the number x if $M_n(i) \rightarrow x$ for $n \rightarrow \infty$.

- Isn't it a bit arbitrary?
- No. This definition is quite natural.
- For example, if M_1, M_2, \ldots represents x then $M_n(K) \rightarrow \{x\}$ for any K compact lying above the real line.

Defining convergence

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

• A sequence M_1, M_2, \ldots represents the number x if $M_n(i) \rightarrow x$ for $n \rightarrow \infty$.

- Isn't it a bit arbitrary?
- No. This definition is quite natural.
- For example, if M_1, M_2, \ldots represents x then $M_n(K) \rightarrow \{x\}$ for any K compact lying above the real line.

Defining convergence

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Preliminaries from Symbolic dynamics

 Let A be finite alphabet. Let A* denote the set of all finite words over A, A^ω the set of all one-sided infinite words.

• A* with the operation of concatenation is a monoid.

- Let w_i denote the *i*-th letter of the word w.
- A set Σ ⊂ A^ω is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \dots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \dots \circ F_{v_n}$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Preliminaries from Symbolic dynamics

- Let A be finite alphabet. Let A* denote the set of all finite words over A, A^ω the set of all one-sided infinite words.
- A^{\star} with the operation of concatenation is a monoid.
- Let w_i denote the *i*-th letter of the word w.
- A set Σ ⊂ A^ω is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \dots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \dots \circ F_{v_n}$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Preliminaries from Symbolic dynamics

- Let A be finite alphabet. Let A* denote the set of all finite words over A, A^ω the set of all one-sided infinite words.
- A^{\star} with the operation of concatenation is a monoid.
- Let w_i denote the *i*-th letter of the word w.
- A set Σ ⊂ A^ω is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \dots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \dots \circ F_{v_n}$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Preliminaries from Symbolic dynamics

- Let A be finite alphabet. Let A* denote the set of all finite words over A, A^ω the set of all one-sided infinite words.
- A^{\star} with the operation of concatenation is a monoid.
- Let w_i denote the *i*-th letter of the word w.
- A set Σ ⊂ A^ω is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \dots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \dots \circ F_{v_n}$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Preliminaries from Symbolic dynamics

- Let A be finite alphabet. Let A* denote the set of all finite words over A, A^ω the set of all one-sided infinite words.
- A^{\star} with the operation of concatenation is a monoid.
- Let w_i denote the *i*-th letter of the word w.
- A set Σ ⊂ A^ω is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \dots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \dots \circ F_{v_n}$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

What is a Möbius number system?

Let us have a system of MTs $\{F_a : a \in A\}$. A subshift $\Sigma \subset A^{\omega}$ is a Möbius number system if:

- For every $w \in \Sigma$, the sequence $\{F_{w_1...w_n}\}_{n=1}^{\infty}$ represents some point $\Phi(w) \in \overline{\mathbb{R}}$.
- The function $\Phi:\Sigma\to\overline{\mathbb{R}}$ is continuous and surjective.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

What is a Möbius number system?

Let us have a system of MTs $\{F_a : a \in A\}$. A subshift $\Sigma \subset A^{\omega}$ is a Möbius number system if:

- For every $w \in \Sigma$, the sequence $\{F_{w_1...w_n}\}_{n=1}^{\infty}$ represents some point $\Phi(w) \in \overline{\mathbb{R}}$.
- The function $\Phi:\Sigma\to\overline{\mathbb{R}}$ is continuous and surjective.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

What is a Möbius number system?

Let us have a system of MTs $\{F_a : a \in A\}$. A subshift $\Sigma \subset A^{\omega}$ is a Möbius number system if:

- For every $w \in \Sigma$, the sequence $\{F_{w_1...w_n}\}_{n=1}^{\infty}$ represents some point $\Phi(w) \in \overline{\mathbb{R}}$.
- The function $\Phi:\Sigma\to\overline{\mathbb{R}}$ is continuous and surjective.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Getting the idea: Binary system

• Take transformations $F_0(x) = x/2$ and $F_1(x) = (x+1)/2$.

• Take the full shift $\Sigma = \{0, 1\}^{\omega}$.

- The function Φ maps Σ to an interval on ℝ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; Φ(w) corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective...

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x+1)/2$.
- Take the full shift $\Sigma = \{0, 1\}^{\omega}$.
- The function Φ maps Σ to an interval on ℝ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; Φ(w) corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective. . .

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x+1)/2$.
- Take the full shift $\Sigma = \{0,1\}^{\omega}$.
- The function Φ maps Σ to an interval on $\overline{\mathbb{R}}$ corresponding to [0,1].
- Essentially, it is the ordinary binary system; Φ(w) corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective. . .

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x+1)/2$.
- Take the full shift $\Sigma = \{0,1\}^{\omega}$.
- The function Φ maps Σ to an interval on ℝ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; Φ(w) corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective...

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x+1)/2$.
- Take the full shift $\Sigma = \{0,1\}^{\omega}$.
- The function Φ maps Σ to an interval on ℝ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; Φ(w) corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective...

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x+1)/2$.
- Take the full shift $\Sigma = \{0,1\}^{\omega}$.
- The function Φ maps Σ to an interval on \mathbb{R} corresponding to [0, 1].
- Essentially, it is the ordinary binary system; Φ(w) corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective...

Alexandr Kazda (with thanks to Petr Kůrka)

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Binary signed system $A = \{\overline{1}, 0, 1, 2\}$

 $F_{\overline{1}}(x) = (x-1)/2$ $F_{0}(x) = x/2$ $F_{1}(x) = (x+1)/2$ $F_{2}(x) = 2x$

Forbidden words: $20, 02, 12, \overline{1}2, 1\overline{1}, \overline{1}1$

・ロト ・ 理ト ・ ヨト ・ ヨト

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Why forbid words?

▲□▼▲□▼▲□▼▲□▼ □ ● ●

- We forbid words to get rid of troublesome combinations.
- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and 12 keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((\overline{1}1)^{\infty})$ are not defined.
- We shall see that unregulated concatenation can break *any* Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

- Möbius transformations
- Convergence
- Möbius number systems

Examples

- Subshifts admitting a number system
- Conclusions

Why forbid words?

- We forbid words to get rid of troublesome combinations.
- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and 12 keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((\overline{1}1)^{\infty})$ are not defined.
- We shall see that unregulated concatenation can break *any* Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

- Möbius transformations
- Convergence
- Möbius number systems

Examples

- Subshifts admitting a number system
- Conclusions

Why forbid words?

- We forbid words to get rid of troublesome combinations.
- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and $\overline{1}2$ keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((\overline{1}1)^{\infty})$ are not defined.
- We shall see that unregulated concatenation can break *any* Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Why forbid words?

- We forbid words to get rid of troublesome combinations.
- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and $\overline{1}2$ keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((\overline{1}1)^{\infty})$ are not defined.
- We shall see that unregulated concatenation can break *any* Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Why forbid words?

▲□▼▲□▼▲□▼▲□▼ □ ● ●

- We forbid words to get rid of troublesome combinations.
- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and $\overline{1}2$ keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((\overline{1}1)^{\infty})$ are not defined.
- We shall see that unregulated concatenation can break *any* Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Forbidding words is necessary

A non-erasing substitution is monoid homomorphism $\rho: A^* \to B^*$ such that $\rho(v)$ is the empty word only for v empty.

heorem

If Σ is a Möbius number system then $\Sigma \neq \rho(A^{\omega})$ for all alphabets A and all non-erasing substitutions ρ .

In particular, for ρ identity we obtain that Σ is never the full shift $A^{\omega}.$

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Forbidding words is necessary

A non-erasing substitution is monoid homomorphism $\rho: A^* \to B^*$ such that $\rho(v)$ is the empty word only for v empty.

Theorem

If Σ is a Möbius number system then $\Sigma \neq \rho(A^{\omega})$ for all alphabets A and all non-erasing substitutions ρ .

In particular, for ho identity we obtain that Σ is never the full shift $A^{\omega}.$

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Forbidding words is necessary

A non-erasing substitution is monoid homomorphism $\rho: A^* \to B^*$ such that $\rho(v)$ is the empty word only for v empty.

Theorem

If Σ is a Möbius number system then $\Sigma \neq \rho(A^{\omega})$ for all alphabets A and all non-erasing substitutions ρ .

In particular, for ρ identity we obtain that Σ is never the full shift A^{ω} .

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number

systems

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

- To simplify notation, we consider only the case $\rho(v) = v$.
- We first prove that for every w ∈ A^ω and every x ∈ ℝ it is true that lim_{n→∞} F_{w1w2...wn}(x) = Φ(w).
- This is highly suspicious...
- The only way we can obtain such pointwise convergence is when F_v is parabolic (like x → x + 1) for every v nonempty finite word.
- But a simple case consideration shows that then all the F_{ν} have the same fixed point and Φ is a constant map.

- To simplify notation, we consider only the case $\rho(v) = v$.
 - We first prove that for every w ∈ A^ω and every x ∈ ℝ it is true that lim_{n→∞} F_{w1w2...wn}(x) = Φ(w).
 - This is highly suspicious...
 - The only way we can obtain such pointwise convergence is when F_v is parabolic (like x → x + 1) for every v nonempty finite word.
 - But a simple case consideration shows that then all the F_ν have the same fixed point and Φ is a constant map.

Möbius number systems

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

- To simplify notation, we consider only the case $\rho(v) = v$.
- We first prove that for every w ∈ A^ω and every x ∈ ℝ it is true that lim_{n→∞} F_{w1w2...wn}(x) = Φ(w).
- This is highly suspicious...
- The only way we can obtain such pointwise convergence is when F_v is parabolic (like x → x + 1) for every v nonempty finite word.
- But a simple case consideration shows that then all the F_ν have the same fixed point and Φ is a constant map.

Möbius number systems

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

- To simplify notation, we consider only the case $\rho(v) = v$.
- We first prove that for every w ∈ A^ω and every x ∈ ℝ it is true that lim_{n→∞} F_{w1w2...wn}(x) = Φ(w).
- This is highly suspicious...
- The only way we can obtain such pointwise convergence is when F_v is parabolic (like x → x + 1) for every v nonempty finite word.
- But a simple case consideration shows that then all the F_ν have the same fixed point and Φ is a constant map.

Möbius number systems

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

- To simplify notation, we consider only the case $\rho(v) = v$.
- We first prove that for every w ∈ A^ω and every x ∈ ℝ it is true that lim_{n→∞} F_{w1w2...wn}(x) = Φ(w).
- This is highly suspicious...
- The only way we can obtain such pointwise convergence is when F_v is parabolic (like x → x + 1) for every v nonempty finite word.
- But a simple case consideration shows that then all the F_ν have the same fixed point and Φ is a constant map.

Möbius number systems

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number

systems

- Möbius transformations
- Convergence
- Möbius number systems
- Examples
- Subshifts admitting a number system
- Conclusions

• Sequences of MTs can represent numbers.

- Möbius number systems can emulate more usual means of number representation.
- We can state (and sometimes prove) nontrivial existence conditions such as the one presented ...
- ... however, there is a lot of room for improvements.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number

systems

- Möbius transformations
- Convergence
- Möbius number systems
- Examples
- Subshifts admitting a number system
- Conclusions

- Sequences of MTs can represent numbers.
- Möbius number systems can emulate more usual means of number representation.
- We can state (and sometimes prove) nontrivial existence conditions such as the one presented . . .
- ... however, there is a lot of room for improvements.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number

systems

- Möbius transformations
- Convergence
- Möbius number systems
- Examples
- Subshifts admitting a number system
- Conclusions

- Sequences of MTs can represent numbers.
- Möbius number systems can emulate more usual means of number representation.
- We can state (and sometimes prove) nontrivial existence conditions such as the one presented

• ... however, there is a lot of room for improvements.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number

systems

- Möbius transformations
- Convergence
- Möbius number systems
- Examples
- Subshifts admitting a number system
- Conclusions

- Sequences of MTs can represent numbers.
- Möbius number systems can emulate more usual means of number representation.
- We can state (and sometimes prove) nontrivial existence conditions such as the one presented ...
- ... however, there is a lot of room for improvements.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans formations

Convergence

Möbius number systems

Examples

Subshifts admitting a number system

Conclusions

Thanks for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ