Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Möbius number systems

Alexandr Kazda (with thanks to Petr Kůrka)

Charles University, Prague

NSAC Novi Sad August 17–21, 2009

KOD KARD KED KED E YORA

Outline

KOD KARD KED KED E YORA

Möbius number [systems](#page-0-0)

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius. number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

1 Möbius transformations

2 [Convergence](#page-15-0)

3 Möbius number systems

4 [Examples](#page-27-0)

5 [Subshifts admitting a number system](#page-39-0)

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

- Our goal: To use sequences of Möbius transformations to represent points on $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}.$
- A Möbius transformation (MT) is any nonconstant function $M : \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ of the form

$$
M(z) = \frac{az+b}{cz+d}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 Ω

- We will consider MTs that preserve the upper half-plane.
- These are precisely the MTs with a, b, c, d real and $ad - bc = 1$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

- Our goal: To use sequences of Möbius transformations to represent points on $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}.$
- \bullet A Möbius transformation (MT) is any nonconstant function $M: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ of the form

$$
M(z) = \frac{az+b}{cz+d}
$$

KORK STRAIN A BAR SHOP

- We will consider MTs that preserve the upper half-plane.
- These are precisely the MTs with a, b, c, d real and $ad - bc = 1$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

- Our goal: To use sequences of Möbius transformations to represent points on $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}.$
- \bullet A Möbius transformation (MT) is any nonconstant function $M: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ of the form

$$
M(z)=\frac{az+b}{cz+d}
$$

- We will consider MTs that preserve the upper half-plane.
- These are precisely the MTs with a, b, c, d real and $ad - bc = 1$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

- Our goal: To use sequences of Möbius transformations to represent points on $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}.$
- \bullet A Möbius transformation (MT) is any nonconstant function $M: \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$ of the form

$$
M(z)=\frac{az+b}{cz+d}
$$

- We will consider MTs that preserve the upper half-plane.
- These are precisely the MTs with a, b, c, d real and $ad - bc = 1$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Classifying Möbius transformations

$$
M_0(x)=x/2
$$

• Hyperbolic, two fixed points.

$$
M_1(x) = x + 1
$$

• Parabolic, one fixed point.

$$
M_2(x) = -\frac{1}{x+1}
$$

 $\mathbf{A} \equiv \mathbf{A} + \math$

 2990

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Classifying Möbius transformations

$$
M_0(x)=x/2
$$

• Hyperbolic, two fixed points.

$$
M_1(x)=x+1
$$

• Parabolic, one fixed point.

$$
M_2(x) = -\frac{1}{x+1}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Classifying Möbius transformations

$$
M_0(x)=x/2
$$

• Hyperbolic, two fixed points.

 $M_1(x) = x + 1$

• Parabolic, one fixed point.

$$
M_2(x) = -\frac{1}{x+1}
$$

 2990

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Classifying Möbius transformations

$$
M_0(x)=x/2
$$

• Hyperbolic, two fixed points.

$$
M_1(x)=x+1
$$

• Parabolic, one fixed point.

$$
M_2(x) = -\frac{1}{x+1}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Classifying Möbius transformations

$$
M_0(x)=x/2
$$

• Hyperbolic, two fixed points.

$$
M_1(x)=x+1
$$

• Parabolic, one fixed point.

$$
M_2(x) = -\frac{1}{x+1}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Classifying Möbius transformations

$$
M_0(x)=x/2
$$

• Hyperbolic, two fixed points.

$$
M_1(x)=x+1
$$

• Parabolic, one fixed point.

$$
M_2(x) = -\frac{1}{x+1}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Classifying Möbius transformations

$$
M_0(x)=x/2
$$

• Hyperbolic, two fixed points.

$$
M_1(x)=x+1
$$

• Parabolic, one fixed point.

$$
M_2(x)=-\frac{1}{x+1}
$$

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 2990

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Classifying Möbius transformations

$$
M_0(x)=x/2
$$

• Hyperbolic, two fixed points.

$$
M_1(x)=x+1
$$

• Parabolic, one fixed point.

$$
M_2(x)=-\frac{1}{x+1}
$$

 $2Q$

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Classifying Möbius transformations

$$
M_0(x)=x/2
$$

• Hyperbolic, two fixed points.

$$
M_1(x)=x+1
$$

• Parabolic, one fixed point.

$$
M_2(x)=-\frac{1}{x+1}
$$

KOD KARD KED KED E VOOR

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

• A sequence M_1, M_2, \ldots represents the number x if $M_n(i) \to x$ for $n \to \infty$.

- Isn't it a bit arbitrary?
- No. This definition is quite natural.
- For example, if M_1, M_2, \ldots represents x then $M_n(K) \to \{x\}$ for any K compact lying above the real line.

Defining convergence

KORK STRAIN A BAR SHOP

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Defining convergence

KORK STRAIN A BAR SHOP

- A sequence M_1, M_2, \ldots represents the number x if $M_n(i) \to x$ for $n \to \infty$.
- Isn't it a bit arbitrary?
- No. This definition is quite natural.
- For example, if M_1, M_2, \ldots represents x then $M_n(K) \to \{x\}$ for any K compact lying above the real line.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

• A sequence M_1, M_2, \ldots represents the number x if $M_n(i) \to x$ for $n \to \infty$.

- Isn't it a bit arbitrary?
- No. This definition is quite natural.
- For example, if M_1, M_2, \ldots represents x then $M_n(K) \to \{x\}$ for any K compact lying above the real line.

Defining convergence

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

• A sequence M_1, M_2, \ldots represents the number x if $M_n(i) \to x$ for $n \to \infty$.

- Isn't it a bit arbitrary?
- No. This definition is quite natural.
- For example, if M_1, M_2, \ldots represents x then $M_n(K) \to \{x\}$ for any K compact lying above the real line.

Defining convergence

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Preliminaries from Symbolic dynamics

- Let A be finite alphabet. Let A^* denote the set of all finite words over A, A^{ω} the set of all one-sided infinite words.
- \bullet A^* with the operation of concatenation is a monoid.
- \bullet Let w: denote the *i*-th letter of the word w.
- A set $\Sigma \subset A^\omega$ is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \ldots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \cdots \circ F_{v_n}$.

KORK STRAIN A BAR SHOP

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Preliminaries from Symbolic dynamics

- Let A be finite alphabet. Let A^* denote the set of all finite words over A, A^{ω} the set of all one-sided infinite words.
- \bullet A^* with the operation of concatenation is a monoid.
- \bullet Let w: denote the *i*-th letter of the word w.
- A set $\Sigma \subset A^\omega$ is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \ldots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \cdots \circ F_{v_n}$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Preliminaries from Symbolic dynamics

- Let A be finite alphabet. Let A^* denote the set of all finite words over A, A^{ω} the set of all one-sided infinite words.
- \bullet A^* with the operation of concatenation is a monoid.
- Let w_i denote the *i*-th letter of the word w .
- A set $\Sigma \subset A^\omega$ is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \ldots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \cdots \circ F_{v_n}$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Preliminaries from Symbolic dynamics

- Let A be finite alphabet. Let A^* denote the set of all finite words over A, A^{ω} the set of all one-sided infinite words.
- \bullet A^* with the operation of concatenation is a monoid.
- Let w_i denote the *i*-th letter of the word w .
- A set $\Sigma \subset A^\omega$ is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \ldots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \cdots \circ F_{v_n}$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Preliminaries from Symbolic dynamics

- Let A be finite alphabet. Let A^* denote the set of all finite words over A, A^{ω} the set of all one-sided infinite words.
- \bullet A^* with the operation of concatenation is a monoid.
- Let w_i denote the *i*-th letter of the word w .
- A set $\Sigma \subset A^\omega$ is a subshift if Σ can be defined by a set of forbidden (finite) factors.
- For $v = v_1 \ldots v_n$ a word, denote by F_v the transformation $F_{v_1} \circ \cdots \circ F_{v_n}$.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

What is a Möbius number system?

Let us have a system of MTs $\{F_{\bm a}: {\bm a}\in A\}$. A subshift ${\bm \Sigma}\subset A^\omega$ is a Möbius number system if:

- For every $w \in \Sigma$, the sequence $\{F_{w_1...w_n}\}_{n=1}^{\infty}$ represents some point $\Phi(w) \in \overline{\mathbb{R}}$.
- The function $\Phi : \Sigma \to \overline{\mathbb{R}}$ is continuous and surjective.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

What is a Möbius number system?

Let us have a system of MTs $\{F_{\bm a}: {\bm a}\in A\}$. A subshift ${\bm \Sigma}\subset A^\omega$ is a Möbius number system if:

- For every $w \in \Sigma$, the sequence $\{F_{w_1...w_n}\}_{n=1}^{\infty}$ represents some point $\Phi(w) \in \overline{\mathbb{R}}$.
- The function $\Phi : \Sigma \to \overline{\mathbb{R}}$ is continuous and surjective.

KORK STRAIN A BAR SHOP

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

What is a Möbius number system?

Let us have a system of MTs $\{F_{\bm a}: {\bm a}\in A\}$. A subshift ${\bm \Sigma}\subset A^\omega$ is a Möbius number system if:

- For every $w \in \Sigma$, the sequence $\{F_{w_1...w_n}\}_{n=1}^{\infty}$ represents some point $\Phi(w) \in \overline{\mathbb{R}}$.
- The function $\Phi : \Sigma \to \overline{\mathbb{R}}$ is continuous and surjective.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Getting the idea: Binary system

• Take transformations $F_0(x) = x/2$ and $F_1(x) = (x + 1)/2$.

• Take the full shift $\Sigma = \{0,1\}^{\omega}$.

- The function Φ maps Σ to an interval on $\mathbb R$ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; $\Phi(w)$ corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective. . .

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 Ω

• ... we will fix that soon.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x + 1)/2$.
- Take the full shift $\Sigma = \{0,1\}^{\omega}$.
- The function Φ maps Σ to an interval on $\mathbb R$ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; $\Phi(w)$ corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective. . .

KORK STRAIN A BAR SHOP

• ... we will fix that soon.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x + 1)/2$.
- Take the full shift $\Sigma = \{0,1\}^{\omega}$.
- The function Φ maps Σ to an interval on $\overline{\mathbb{R}}$ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; $\Phi(w)$ corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective. . .

KORK STRAIN A BAR SHOP

• we will fix that soon

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x + 1)/2$.
- Take the full shift $\Sigma = \{0,1\}^{\omega}$.
- The function Φ maps Σ to an interval on $\overline{\mathbb{R}}$ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; $\Phi(w)$ corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective. . .

KORK ERKER ADAM ADA

• we will fix that soon

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x + 1)/2$.
- Take the full shift $\Sigma = \{0,1\}^{\omega}$.
- The function Φ maps Σ to an interval on $\overline{\mathbb{R}}$ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; $\Phi(w)$ corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective. . .

KORK ERKER ADAM ADA

 \bullet we will fix that soon.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Getting the idea: Binary system

- Take transformations $F_0(x) = x/2$ and $F_1(x) = (x + 1)/2$.
- Take the full shift $\Sigma = \{0,1\}^{\omega}$.
- The function Φ maps Σ to an interval on $\overline{\mathbb{R}}$ corresponding to [0, 1].
- Essentially, it is the ordinary binary system; $\Phi(w)$ corresponds to 0.w.
- Note that this is not a Möbius number system yet, as it is not surjective. . .

KORK ERKER ADAM ADA

 \bullet we will fix that soon.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

Binary signed system $A = \{\overline{1}, 0, 1, 2\}$

$$
F_{\overline{1}}(x) = (x - 1)/2
$$

\n
$$
F_0(x) = x/2
$$

\n
$$
F_1(x) = (x + 1)/2
$$

\n
$$
F_2(x) = 2x
$$

Forbidden words: $20, 02, 12, \overline{1}2, 1\overline{1}, \overline{1}1$

 299

 4 ロ) 4 \overline{r}) 4 \overline{z}) 4 \overline{z})

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

• We forbid words to get rid of troublesome combinations.

Why forbid words?

KORK STRAIN A BAR SHOP

- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and $\overline{1}2$ keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((11)^\infty)$ are not defined.
- We shall see that unregulated concatenation can break any Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

- Möbius transformations
- **[Convergence](#page-15-0)**
- Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

- Subshifts [admitting a](#page-39-0) number system
- [Conclusions](#page-47-0)

Why forbid words?

- We forbid words to get rid of troublesome combinations.
- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and 12 keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((11)^\infty)$ are not defined.
- We shall see that unregulated concatenation can break any Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

- Möbius transformations
- **[Convergence](#page-15-0)**
- Möbius [systems](#page-19-0)

[Examples](#page-27-0)

- Subshifts [admitting a](#page-39-0) number system
- [Conclusions](#page-47-0)

Why forbid words?

- We forbid words to get rid of troublesome combinations.
- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and $\overline{1}2$ keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((11)^\infty)$ are not defined.
- We shall see that unregulated concatenation can break any Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

- Möbius transformations
- **[Convergence](#page-15-0)**
- Möbius [systems](#page-19-0)

[Examples](#page-27-0)

- Subshifts [admitting a](#page-39-0) number system
- [Conclusions](#page-47-0)

Why forbid words?

- We forbid words to get rid of troublesome combinations.
- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and $\overline{1}2$ keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((\overline{1}1)^\infty)$ are not defined.
- We shall see that unregulated concatenation can break any Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Why forbid words?

- We forbid words to get rid of troublesome combinations.
- In the binary signed system F_0 and F_2 are inverse to each other, so $F_{02} = F_{20} = id$.
- Forbidding 12 and $\overline{1}2$ keeps twos at the beginning of every word.
- Finally, $1\overline{1}$ and $\overline{1}1$ are forbidden because $\Phi((1\overline{1})^{\infty})$ and $\Phi((\overline{1}1)^\infty)$ are not defined.
- We shall see that unregulated concatenation can break any Möbius number system.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Forbidding words is necessary

A non-erasing substitution is monoid homomorphism $\rho: \mathsf{A}^{*} \to \mathsf{B}^{*}$ such that $\rho(\mathsf{v})$ is the empty word only for v empty.

If Σ is a Möbius number system then $\Sigma \neq \rho(A^{\omega})$ for all alphabets A and all non-erasing substitutions ρ .

In particular, for ρ identity we obtain that Σ is never the full shift A^{ω} .

KORK STRAIN A BAR SHOP

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Forbidding words is necessary

A non-erasing substitution is monoid homomorphism $\rho: \mathsf{A}^{*} \to \mathsf{B}^{*}$ such that $\rho(\mathsf{v})$ is the empty word only for v empty.

Theorem

If Σ is a Möbius number system then $\Sigma \neq \rho(A^{\omega})$ for all alphabets A and all non-erasing substitutions ρ .

In particular, for ρ identity we obtain that Σ is never the full shift A^{ω} .

KORK STRAIN A BAR SHOP

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius trans-

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Forbidding words is necessary

A non-erasing substitution is monoid homomorphism $\rho: \mathsf{A}^{*} \to \mathsf{B}^{*}$ such that $\rho(\mathsf{v})$ is the empty word only for v empty.

Theorem

If Σ is a Möbius number system then $\Sigma \neq \rho(A^{\omega})$ for all alphabets A and all non-erasing substitutions ρ .

In particular, for ρ identity we obtain that Σ is never the full shift A^{ω} .

KORK STRAIN A BAR SHOP

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number [systems](#page-0-0)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

• To simplify notation, we consider only the case $\rho(v) = v$.

- We first prove that for every $w \in A^\omega$ and every $x \in \overline{\mathbb{R}}$ it is true that $\lim_{n\to\infty} F_{w_1w_2...w_n}(x) = \Phi(w)$.
- This is highly suspicious...
- The only way we can obtain such pointwise convergence is when F_v is parabolic (like $x \mapsto x + 1$) for every v nonempty finite word.
- But a simple case consideration shows that then all the F_v have the same fixed point and Φ is a constant map.

KORK STRAIN A BAR SHOP

- To simplify notation, we consider only the case $\rho(v) = v$.
	- We first prove that for every $w \in A^\omega$ and every $x \in \overline{\mathbb{R}}$ it is true that $\lim_{n\to\infty} F_{w_1w_2...w_n}(x) = \Phi(w)$.
	- This is highly suspicious...
	- The only way we can obtain such pointwise convergence is when F_v is parabolic (like $x \mapsto x + 1$) for every v nonempty finite word.
	- But a simple case consideration shows that then all the F_v have the same fixed point and Φ is a constant map.

Möbius number [systems](#page-0-0)

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

KORK STRAIN A BAR SHOP

- To simplify notation, we consider only the case $\rho(v) = v$.
- We first prove that for every $w \in A^\omega$ and every $x \in \overline{\mathbb{R}}$ it is true that $\lim_{n\to\infty} F_{w_1w_2...w_n}(x) = \Phi(w)$.
- This is highly suspicious...
- The only way we can obtain such pointwise convergence is when F_v is parabolic (like $x \mapsto x + 1$) for every v nonempty finite word.
- But a simple case consideration shows that then all the F_v have the same fixed point and Φ is a constant map.

Möbius number [systems](#page-0-0)

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

KORK ERKER ADAM ADA

- To simplify notation, we consider only the case $\rho(v) = v$.
- We first prove that for every $w \in A^\omega$ and every $x \in \overline{\mathbb{R}}$ it is true that $\lim_{n\to\infty} F_{w_1w_2...w_n}(x) = \Phi(w)$.
- This is highly suspicious...
- The only way we can obtain such pointwise convergence is when F_v is parabolic (like $x \mapsto x + 1$) for every v nonempty finite word.
- But a simple case consideration shows that then all the F_v have the same fixed point and Φ is a constant map.

Möbius number [systems](#page-0-0)

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

KORK ERKER ADAM ADA

- To simplify notation, we consider only the case $\rho(v) = v$.
- We first prove that for every $w \in A^\omega$ and every $x \in \overline{\mathbb{R}}$ it is true that $\lim_{n\to\infty} F_{w_1w_2...w_n}(x) = \Phi(w)$.
- This is highly suspicious...
- The only way we can obtain such pointwise convergence is when F_v is parabolic (like $x \mapsto x + 1$) for every v nonempty finite word.
- But a simple case consideration shows that then all the F_v have the same fixed point and Φ is a constant map.

Möbius number [systems](#page-0-0)

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A$

 $2Q$

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number [systems](#page-0-0)

- Möbius transformations
- **[Convergence](#page-15-0)**
- Möbius [systems](#page-19-0)
- [Examples](#page-27-0)
- Subshifts [admitting a](#page-39-0) number system
- [Conclusions](#page-47-0)

• Sequences of MTs can represent numbers.

- Möbius number systems can emulate more usual means of number representation.
- We can state (and sometimes prove) nontrivial existence conditions such as the one presented . . .
- ... however, there is a lot of room for improvements.

KOD KARD KED KED E YORA

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number [systems](#page-0-0)

- Möbius transformations
- **[Convergence](#page-15-0)**
- Möbius [systems](#page-19-0)
- [Examples](#page-27-0)
- Subshifts [admitting a](#page-39-0) number system
- [Conclusions](#page-47-0)
- Sequences of MTs can represent numbers.
- Möbius number systems can emulate more usual means of number representation.
- We can state (and sometimes prove) nontrivial existence conditions such as the one presented . . .
- ... however, there is a lot of room for improvements.

KOD KARD KED KED E YORA

[systems](#page-0-0) Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number

Möbius transformations

- **[Convergence](#page-15-0)**
- Möbius [systems](#page-19-0)
- **[Examples](#page-27-0)**
- Subshifts [admitting a](#page-39-0) number system
- [Conclusions](#page-47-0)
- Sequences of MTs can represent numbers.
- Möbius number systems can emulate more usual means of number representation.
- We can state (and sometimes prove) nontrivial existence conditions such as the one presented . . .

• ... however, there is a lot of room for improvements.

KOD KARD KED KED E VOOR

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius number [systems](#page-0-0)

- Möbius transformations
- **[Convergence](#page-15-0)**
- Möbius [systems](#page-19-0)
- **[Examples](#page-27-0)**
- Subshifts [admitting a](#page-39-0) number system
- [Conclusions](#page-47-0)
- Sequences of MTs can represent numbers.
- Möbius number systems can emulate more usual means of number representation.
- We can state (and sometimes prove) nontrivial existence conditions such as the one presented . . .
- ... however, there is a lot of room for improvements.

Alexandr Kazda (with thanks to Petr Kůrka)

Möbius transformations

[Convergence](#page-15-0)

Möbius number [systems](#page-19-0)

[Examples](#page-27-0)

Subshifts [admitting a](#page-39-0) number system

[Conclusions](#page-47-0)

Thanks for your attention.

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X 1 9 Q Q ^