
Cholesky factorisation of linear systems coming
from finite difference approximations of
singularly perturbed problems

Thái Anh Nhan and Niall Madden

Abstract We consider the solution of large linear systems of equations that arise
when two-dimensional singularly perturbed reaction-diffusion equations are dis-
cretized. Standard methods for these problems, such as central finite differences,
lead to system matrices that are positive definite. The direct solvers of choice for
such systems are based on Cholesky factorisation. However, as observed in [6], these
solvers may exhibit poor performance for singularly perturbed problems. We pro-
vide an analysis of the distribution of entries in the factors based on their magnitude
that explains this phenomenon, and give bounds on the ranges of the perturbation
and discretization parameters where poor performance is to be expected.

1 Introduction

We consider the singularly perturbed two dimensional reaction-diffusion problem:

−ε
2
∆u+b(x,y)u = f (x,y), in Ω = (0,1)2; u|∂Ω = g(x,y), (1)

where the “perturbation parameter”, ε , is small and positive, and the functions g, b
and f are given, with b(x,y)≥ β 2 > 0.

We are interested in the numerical solution of (1) by the following standard finite
difference technique. Denote the mesh points of an arbitrary rectangular mesh as
(xi,y j) for i, j ∈ {0,1, . . . ,N}, write the local mesh widths as hi = xi − xi−1 and
k j = y j − y j−1, and let h̄i = (xi+1− xi−1)/2, and k̄ j = (y j+1− y j−1)/2. Then the
linear system for the finite difference method can be written as

AUN = f N , where A =
(
−ε

2
∆

N + h̄ik̄ jb(xi,y j)
)
, (2a)

Thái Anh Nhan and Niall Madden
National University of Ireland Galway, Ireland,
e-mail: a.nhan1@nuigalway.ie, Niall.Madden@nuigalway.ie

1

2 Thái Anh Nhan and Niall Madden

and ∆ N is the symmetrised 5-point second order central difference operator

∆
N :=

h̄i

k j+1
k̄ j

hi
−
(

k̄ j

(
1
hi

+
1

hi+1

)
+ h̄i

(
1
k j

+
1

k j+1

))
k̄ j

hi+1
h̄i

k j

 . (2b)

It is known that the scheme (2) applied to (1) on a boundary layer-adapted mesh
with N intervals in each direction yields a parameter robust approximation, see, e.g.,
[2, 5]. Since A in (2a) is banded, symmetric and positive definite, the direct solvers
of choice are variants on Cholesky factorisation. This is based on the idea that there
exists a unique lower-triangular matrix L (the “Cholesky factor”) such that A = LLT

(see, e.g., [4, Thm. 4.25]). Conventional wisdom is that the computational complex-
ity of these methods depends exclusively on N and the structure of the matrix (i.e.,
its sparsity pattern). However, MacLachlan and Madden [6, §4.1] observe that stan-
dard implementations of Cholesky factorisation applied to (2a) perform poorly when
ε in (1) is small. Their explanation is that the Cholesky factor, L, contains many
small entries that fall into the range of subnormal floating-point numbers. These
are numbers that have magnitude (in exact arithmetic) between 2−1074 ≈ 5×10−324

and 2−1022 ≈ 2× 10−308 (called realmin in MATLAB). Numbers greater than
2.2× 10−308 are represented faithfully in IEEE standard double precision, while
numbers less than 2−1074 are flushed to zero (we’ll call such numbers “underflow-
zeros”). Floats between these values do not have full precision, but allow for “grad-
ual underflow”, which (ostensibly) leads to more reliable computing (see, e.g., [7,
Chap. 7]). Unlike standard floating-point numbers, most CPUs do not support op-
erations on subnormals directly, but rely on microcode implementations, which are
far less efficient. Thus it is to be expected that it is more time-consuming to fac-
torise A in (2a) when ε is small. As an example of this, consider (2) where N = 128
and the mesh is uniform. The nonzero entries of the associated Cholesky factor are
located on the diagonals that are at most a distance N from main diagonal. Taking
b ≡ 1 in (2), in 1, we plot the absolute value of largest entry of a given diagonal
of L, as a function of its distance from the main diagonal. On the left of 1, where
ε = 1, we observe that the magnitude of the largest entry gradually decays away
from the location of the nonzero entries of A. In contrast, when ε = 10−6 (on the
right), magnitude of the largest entry decays exponentially.

To demonstrate the effect of this on computational efficiency, in 1 we show the
time, in seconds, taken to compute the factorisation of A in (2a) with a uniform
mesh, N = 512, and b ≡ 1, on a single core of AMD Opteron 2427, 2200 MHz
processor, using CHOLMOD [1] with “natural order” (i.e., without a fill reducing
ordering). Observe that the time-to-factorisation increases from 52 seconds when ε

is large, to nearly 500 seconds when ε = 10−3, when over 1% of the entries are in
the subnormal range. When ε is smaller again, the number of nonzero entries in L
is further reduced, and so the execution time decreases as well.

Cholesky factorisation for singularly perturbed problems 3

0 20 40 60 80 100 120

10
−4

10
−3

10
−2

10
−1

10
0

Diagonals

M
a

g
n
it
u

d
e
s

ε = 1

0 20 40 60 80 100 120

10
−300

10
−200

10
−100

10
0

Diagonals

M
a

g
n

it
u

d
e

s

ε = 10
−6

2
−1022

Fig. 1 Semi-log plot of maximal entries on diagonals of L with N = 128, and ε = 1 (left) and
ε = 10−6 (right).

ε 10−1 10−2 10−3 10−4 10−5 10−6

Time (s) 52.587 52.633 496.887 175.783 74.547 45.773
Nonzeros in L 133,433,341 133,433,341 128,986,606 56,259,631 33,346,351 23,632,381

Subnormals in L 0 0 1,873,840 2,399,040 1,360,170 948,600
Underflow zeros 0 0 4,446,735 77,173,710 100,086,990 109,800,960

Table 1 Time taken (in seconds) to compute the Cholesky factor, L, of A in (2) on a uniform mesh
with N = 512. The number of nonzeros, subnormals, and underflow-zeros in L are also shown.

Our goal is to give an analysis that fully explains the observations of 1 and 1,
and that can also be exploited in other solver strategies. We derive expressions, in
terms of N and ε , for the magnitude of entries of L as determined by their location.
Ultimately, we are interested in the analysis of systems that arise from the numer-
ical solution of (1) on appropriate boundary layer-adapted meshes. Away from the
boundary such meshes are usually uniform. Therefore, we begin in Section 2.1 with
studying a uniform mesh discretisation, in the setting of exact arithmetic, which
provides mathematical justification for observations in 1. In Section 2.2, this anal-
ysis is used to quantify to number of entries in the Cholesky factors of a given
magnitude. As an application of this, we show how to determine the number of sub-
normal numbers that will occur in L in a floating-point setting, and also determine
an lower bound for ε for which the factors are free of subnormal numbers. Finally,
the Cholesky factorisation on a boundary layer-adapted mesh is discussed in Section
2.3, and our conclusions are summarised in Section 3.

2 Cholesky factorisation on a uniform mesh

2.1 The magnitude of the fill-in entries

We consider the discretisation (2b) of the model problem (1) on a uniform mesh with
N intervals on each direction. The equally spaced stepsize is denoted by h = N−1.

4 Thái Anh Nhan and Niall Madden

When ε � h, which is typical in a singularly perturbed regime, the system matrix
in (2a) can be written as the following 5-point stencil

A =

 −ε2

−ε2 4ε2 +h2b(xi,y j) −ε2

−ε2

=

 −ε2

−ε2 O(h2) −ε2

−ε2

 , (3)

since (4ε2 +h2b(xi,y j)) =O(h2), where we write f (·) =O(g(·)) if there exist pos-
itive constants C0 and C1, independent of N and ε , such that C0|g(·)| ≤ f (·) ≤
C1|g(·)|.

Algorithm 1 presents a version of Cholesky factorisation adapted from [4, page
143]. It computes a lower triangular matrix L such that A = LLT where A is an
n×n real symmetric positive definite matrix. We will follow MATLAB notation by
denoting A = [a(i, j)] and L = [l(i, j)].

Algorithm 1 Cholesky factorisation:
for j = 1 : n

if j = 1
for i = j : n

l(i, j) =
a(i, j)√
a(j, j)

end
elseif (j > 1)

for i = j : n

l(i, j) =
a(i, j)−∑

j−1
k=1 l(i,k)l(j,k)√
a(j, j)

end
end

end

We set m = N−1, so A is a sparse, banded m2×m2 matrix, with a bandwidth of
m, and has no more than five nonzero entries per row. Its factor, L, is far less sparse:
although it has the same bandwidth as A, it has O(m) nonzeros per row (see, e.g.,
[3, Prop. 2.4]). The set of non-zero entries in L that are zero in the corresponding
location in A is called the fill-in. We want to find a recursive way to express the
magnitude of these fill-in entries, in terms of ε and h.

To analyse the magnitude of the fill-in entries, we borrow notation from [8, Sec.
10.3.3], and form distinct sets denoted L[0], L[1], . . . ,L[m] where all entries of L of the
same magnitude (in a sense explained carefully below) belong to the same set. We
denote by l[k] the magnitude of entries in L[k], i.e., l(i, j) ∈ L[k] if and only if l(i, j) is
O(l[k]). We shall see that these sets are quite distinct, meaning that l[k]� l[k+1] for
k ≥ 1. L[0] is used to denote the set of nonzero entries in A, and entries of L that are
zero (in exact arithmetic) are defined to belong to L[∞].

In Algorithm 1, all the entries of L are initialised as zero, and so belong to L[∞].
Suppose that pi, j is such that l(i, j) ∈ L[pi, j], so, initially, each pi, j = ∞. At each

Cholesky factorisation for singularly perturbed problems 5

sweep through the algorithm, a new value of l(i, j) is computed, and so pi, j is mod-
ified. From line 8 in Algorithm 1, we can see that the pi, j is updated by

pi, j =

{
0 a(i, j) 6= 0,
min{pi,1 + p j,1 +1, pi,2 + p j,2 +1, . . . , pi, j−1 + p j, j−1 +1} otherwise.

Then, as we shall explain in detail below, it can be determined that L has a block
structure shown in (4a)–(4c), where, for brevity, the entries belonging to L[k] are
denoted by [k], except for the entries in L[0], which correspond to the nonzero entries
of original matrix, and are written in terms of their magnitude:

L =

M
P Q

P Q
. . .

. . .
P Q

 , where M =

O(h)

O(ε2/h) O(h)
O(ε2/h) O(h)

. . .
. . .

O(ε2/h) O(h)

 , (4a)

P =

O(ε2/h) [1] [2] [3] . . . [m−2] [m−1]
O(ε2/h) [1] [2] . . . [m−3] [m−2]

. . .
. . .

. . .
...

...
O(ε2/h) [1] [2] [3]

O(ε2/h) [1] [2]
O(ε2/h) [1]

O(ε2/h)

, (4b)

Q =

O(h)
O(ε2/h) O(h)

[3] O(ε2/h) O(h)
[4] [3] O(ε2/h) O(h)
...

...
. . .

. . .
. . .

[m−1] [m−2] . . . [3] O(ε2/h) O(h)
[m] [m−1] . . . [4] [3] O(ε2/h) O(h)

. (4c)

We now explain why the entries of L, which are computed by column, have the
structure shown in (4). According to Algorithm 1, the first column of L is com-
puted by l(i,1) = a(i,1)/

√
a(1,1), which shows that there is no fill-in entry in this

column. For the second column, the only fill-in entry is

l(m+1,2) =
a(m+1,2)− l(m+1,1)l(2,1)√

a(2,2)
=

0−O(ε2/h)O(ε2/h)
O(h)

=O(ε4/h3),

where l(m+1,1) and l(2,1) belong to L[0], so l(m+1,2) is in L[1]. Similarly, there
are two fill-ins in third column: l(m+1,3) and l(m+2,3). The entry l(m+1,3) is
computed as

l(m+1,3) =
a(m+1,3)−∑

2
k=1 l(m+1,k)l(3,k)√
a(3,3)

=
−l(m+1,2)l(3,2)√

a(3,3)
,

6 Thái Anh Nhan and Niall Madden

which is O(ε6/h5); moreover, since l(m+ 1,2) ∈ L[1], and l(3,2) ∈ L[0], so l(m+
1,3) ∈ L[2]. Similarly, it is easy to see that l(m+2,3) ∈ L[1]. We may now proceed
by induction to show that l(m+ 1, j+ 1) = O(ε2(j+1)/h(2 j+1)) belongs to L[j], for
1≤ j ≤ m−2. Suppose l(m+1, j) = O(ε(2 j)/h(2 j−1)) ∈ L[j−1]. Then

l(m+1, j+1) =
a(m+1, j+1)−∑

j
k=1 l(m+1,k)l(j+1,k)√
a(j, j)

=
−l(m+1, j)l(j+1, j)√

a(j, j)
(since l(j+1,k) = 0, ∀k ≤ j−1)

=
O(ε(2 j)/h(2 j−1))O(ε2/h)

O(h)
= O(ε(2 j+2)/h(2 j+1)).

And, because l(j+1, j)∈ L[0], we can deduce that l(m+1, j+1)∈ L[j]. The process
is repeated from column 1 to column m, yielding the pattern for P shown in (4b).

A similar process is used to show that Q is as given in (4c). Its first fill-in entry is
l(m+3,m+1). Note that a(m+3,m+1) = l(m+1,1) = l(m+1,2) = 0, that the
magnitude of the entry in L[j] is O(ε2(j+1)/h(2 j+1)), and that the sum of two entries
of the different magnitude has the same magnitude as the larger one. Then

l(m+3,m+1) =
−∑

m
k=3 l(m+3,k)l(m+1,k)√

a(m+1,m+1)

=

[
O

(
ε2

h

)
O

(
ε6

h5

)
+O

(
ε4

h3

)
O

(
ε8

h7

)
+ . . .

+O

(
ε2(m−2)

h(2(m−3)+1)

)
O

(
ε2(m)

h(2(m−1)+1)

)]
1

O(h)

=

[
O

(
ε2

h

)
O

(
ε6

h5

)]
1

O(h)
= O

(
ε8

h7

)
,

and so l(m+ 3,m+ 1) belongs to L[3]. Proceeding inductively, as was done for P,
shows that Q has the form given in (4c). Furthermore, the same process applies to
each block of L in (4a). Summarizing, we have established the following result.

Theorem 1. The fill-in entries of the Cholesky factor L of the matrix A defined in (3)
are as given in (4). Moreover, setting δ = ε/h, the magnitude l[k] is

l[k] = O
(

ε
2(k+1)/h(2k+1)

)
= O

(
δ

2(k+1)h
)

for k = 1,2, . . . ,m. (5)

2.2 Distribution of fill-in entries in a floating-point setting

In practice, Cholesky factorisation is computed in a floating-point setting. As dis-
cussed in Section 1, the time taken to compute these factorisations increases greatly

Cholesky factorisation for singularly perturbed problems 7

if there are many subnormal numbers present. Moreover, even the underflow-zeros
in the factors can be expensive to compute, since they typically arise from interme-
diate calculations involving subnormal numbers. Therefore, in this section we use
the analysis of Section 2.1, to estimate, in terms of ε and N, the number of entries
in L that are of a given magnitude. From this, one can easily predict the number of
subnormals and underflow-zeros in L.

Lemma 1. Let A be the m2×m2 matrix in (2) where the mesh is uniform. Then the
number of nonzero entries in the Cholesky factor L (i.e., A = LLT) computed using
exact arithmetic is

Lnz = m3 +m−1. (6)

Proof. Since A has bandwidth m, so too does L ([3, Prop. 2.3]). By the Algorithm 1,
the fill-in entries only occur from row (m+1). So, from row (m+1), any row of L
has (m+1) nonzero entries and there are m(m−1) such rows, plus 2m−1 nonzero
entries from top-left block M in (4a). Summing these values, we obtain (6).

Let |L[k]| be the number of fill-in entries which belong to L[k]. To estimate |L[k]|, it
is sufficient to evaluate the fill-in entries in the submatrices P and Q shown in (4). 2
describes the number of fill-in entries associated with their magnitude.

L[k] |L[k]| in P |L[k]| in Q |L[k]| in [P,Q]

L[1] m−1 0 m−1
L[2] m−2 0 m−2
L[3] m−3 m−2 2m−5

...
...

...
...

L[k] m− k m− k+1 2m−2k+1
...

...
...

...
L[m−2] 2 3 5
L[m−1] 1 2 3
L[m] 0 1 1

Table 2 Number of fill-in entries in P and Q associated with their magnitude.

Note that there are (m− 1) blocks like [P,Q] in L. Then, since l[k]� l[k−1], and
the smallest (exact) nonzero entries belong to L[m] we can use 2 to determine the
number of entries that are at most O(l[p]), for some given p as:

m

∑
k=p
|L[k]|=

(m−1)(2m−3)+(m−1)(m−2)2 = (m−1)3 p = 1,
(m−1)(m−2)+(m−1)(m−2)2 = (m−2)(m−1)2 p = 2,
(m−1)(m− p+1)2 p≥ 3.

These equations can be combined and summarised as follows.

Theorem 2. Let A be the matrix of the form (3). Then, the number of fill-in entries
in L that are of magnitude at most O(l[p]) satisfies

8 Thái Anh Nhan and Niall Madden

m

∑
k=p
|L[k]| ≤ (m−1)(m− p+1)2, p≥ 1. (7)

Combining Theorems 1 and 2 enables us to accurately predict the total number
and location of subnormal and underflow-zero entries in L, for given N and ε . For
example, recall 1 where we took ε = 10−6 and N = 128. To determine, using 1, the
diagonals where entries are subnormal, we solve

(εN)2(k+1) ≈ 2−1022N, (8)

for N = 128 and ε = 10−6, which yields k≈ 38. It clearly agrees with the observation
in 1; i.e., the maximal value of the entries on diagonals 38 and N−38 = 90 are less
than realmin. Similarly, all entries on diagonals between 40 and 88 are flushed to
zero.

As a further example, letting N = 512 and ε = 10−6, by (7), the total number of
underflow-zero and subnormal entries in L are, respectively,

511

∑
k=48
|L[k]|= 109,800,960, and

47

∑
k=46
|L[k]|=

511

∑
k=46
|L[k]|−

511

∑
k=48
|L[k]|= 948,600.

This is exactly what is observed in Table 1. Moreover, the total number of entries
with magnitude less than realmin is 110,749,560 which is over 80% of the exact
nonzero entries (cf. Lemma 1) in L: 133,433,341. Such a predictable appearance
of subnormals and underflows is important in the sense of choosing suitable linear
solvers, i.e., direct or iterative ones.

More generally, we can use (8) to investigate ranges of N and ε for which
subnormal entries occur (assuming ε ≤ N−1). Since the largest possible value of
k is m, a Cholesky factor will have subnormal entries if ε and N are such that
(εN)2N . 2−1022N. Rearranging, this gives that

ε .
1
N

(
2−1022N

)1/(2N)
= 2−511/NN(1/(2N)−1) =: g(N). (9)

The function g defined in (9) is informative because it gives the largest value of ε

for a discretisation with given N leading to a Cholesky factor with entries less than
2−1022. For example, 2 (on the left) shows g(N) for N ∈ [200,500]. It demonstrates
that, for ε ≤ 1.05×10−3 (determined numerically), subnormal entries are to be ex-
pected for some values of N (cf. 1). The line ε = 10−3 intersects g at approximately
N = 263 and N = 484, meaning that a discretisation with 263 ≤ N ≤ 484 yields
entries with the magnitude less than 2−1022 in L for ε = 10−3. On the right of 2 we
show that, for large N, g(N) decays like N−1. Since we are interested in the regime
where ε ≤ N−1, this shows that, for small ε , subnormals are to be expected for all
but the smallest values of N.

Cholesky factorisation for singularly perturbed problems 9

200 250 300 350 400 450 500
8.5

9

9.5

10

10.5

x 10
−4

N

e
p

s
ilo

n

ε = g(N)

ε = 1e−3

ε = 1.05e−3

1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

x 10
−3

N

e
p

s
ilo

n

ε = g(N)

1/N

Fig. 2 The function g(N) defined in (9) with N ∈ [200,500] (left) and N ∈ [1,5000] (right).

2.3 Boundary layer-adapted meshes

Our analysis so far has been for computations on uniform meshes. However, a
scheme such as (2) for (1) is usually applied on a layer-adapted mesh, such as a
Shishkin mesh. For these meshes, in the neighbourhood of the boundaries, and es-
pecially near corner layers, the local mesh width is O(εN−1) in each direction, and
so the entries of the system matrix are of the same order, and no issue with subnor-
mal numbers is likely to arise. However, away from layers, these fitted meshes are
usually uniform, with a local mesh width of O(N−1), and so the analysis outlined
above applies directly. Since roughly one quarter (depending on mesh construction)
of all mesh points are located in this region, the influence on the computation is
likely to be substantial.

The main complication in extending our analysis to, say, a Shishkin mesh, is
in considering the “edge layers”, where the mesh width may be O(εN−1) in one
coordinate direction, and O(N−1) in another. Although we have not analysed this
situation carefully, in practise it seems that the factorisation behaves more like a
uniform mesh. This is demonstrated in 3 below. Comparing with 1, we see, for
small ε , the number of entries flushed to zero is roughly three-quarters that of the
uniform mesh case.

ε 10−1 10−2 10−3 10−4 10−5 10−6

Time (s) 52.580 58.213 447.533 179.540 101.507 73.250
Nonzeros in L 133,433,341 133,240,632 127,533,193 78,091,189 62,082,599 54,497,790

Subnormals in L 0 28,282 2,648,308 1,669,345 1,079,992 814,291
Underflow zeros 0 192,709 5,900,148 55,342,152 71,350,742 78,935,551

Table 3 Time taken (in seconds) to compute the Cholesky factor, L, of A in (2) on a Shishkin mesh
with N = 512. The number of nonzeros, subnormals, and underflow-zeros in L are also shown.

10 Thái Anh Nhan and Niall Madden

3 Conclusions

The paper addresses, in a comprehensive way, issues raised in [6] by showing how to
predict the number and location of subnormal and underflow entries in the Cholesky
factors of A in (2a) for given ε and N.

Further developments on this work are possible. In particular, the analysis shows
that, away from the existing diagonals, the magnitude of fill-in entries decay expo-
nentially, as seen in (5), a fact that could be exploited in the design of precondi-
tioners of iterative solvers. For example, as shown in 1, the Cholesky factor of A,
in exact arithmetic, has O(N3) nonzero entries. However, Theorem 2 shows that,
in practice (i.e., in a float-point setting), there are only O(N2) entries in L when ε

is small and N is large. This suggests that, for a singularly perturbed problem, an
incomplete Cholesky factorisation may be a very good approximation for L. This is
a topic of ongoing work.

In this paper we have restricted our study to Cholesky factorisation of the coeffi-
cient matrix arising from a finite-difference discretisation of the model problem (1)
on uniform and boundary layer-adapted meshes. However, the same phenomenon
is also observed in more general settings, including LU-factorisations of coefficient
matrices coming from both finite difference and finite element methods applied to
singularly perturbed reaction-diffusion and convection-diffusion problems, though
further investigation is required to establish the details.

References

1. Y. Chen, T.A. Davis, W.W. Hager, and S. Rajamanickam, Algorithm 887: CHOLMOD, su-
pernodal sparse cholesky factorization and update/downdate, ACM Trans. Math. Softw., 35
(2008), pp. 22:1–22:14.

2. C. Clavero, J.L. Gracia, and E. O’Riordan. A parameter robust numerical method for a two
dimensional reaction-diffusion problem. Math. Comput., 74(252):1743–1758, 2005.

3. James W. Demmel. Applied numerical linear algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA (1997).

4. Gene H. Golub and Charles F. Van Loan. Matrix computations. Johns Hopkins Studies in the
Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third edition (1996).

5. Torsten Linß. Layer-adapted meshes for reaction-convection-diffusion problems, volume
1985 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2010.

6. S. MacLachlan and N. Madden, Robust solution of singularly perturbed problems using multi-
grid methods, SIAM J. Sci. Comput., 35 (2013), pp. A2225-A2254.

7. Michael L. Overton. Numerical computing with IEEE floating point arithmetic. Society for
Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

8. Saad, Y. Iterative methods for sparse linear systems, Society for Industrial and Applied Math-
ematics, Philadelphia, PA, second edition (2003).

