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Abstract A two-point boundary value problem whose highest-order term is a

Riemann-Liouville fractional derivative of order δ ∈ (1,2) is considered on the in-

terval [0,1]. It is shown that the solution u of the problem lies in C[0,1] but not

in C1[0,1] because u′(x) blows up at x → 0 for each fixed value of δ . Furthermore,

u′(1) blows up as δ → 1+ if and only if the constant convection coefficient b satisfies

b ≥ 1.

1 Introduction

Let δ ∈ (1,2). Let g ∈C1(0,1] with g′ ∈ L1[0,1]. The Riemann-Liouville fractional

derivative Dδ
RL of order δ associated with the point x = 0 is defined by

Dδ
RLg(x) =

d2

dx2

[

1

Γ (2−δ )

∫ x

t=0
(x− t)1−δ g(t)dt

]

for 0 < x ≤ 1;

see [6].

In this paper we shall consider the two-point boundary value problem

−Dδ
RLu(x)+bu′(x) = f for x ∈ (0,1), (1a)

u(0) = 0, u(1)+α1u′(1) = γ1, (1b)
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where b, f ,α1,γ1 are given constants. We assume that α1 ≥ 0, as in 2nd-order el-

liptic problems. Remark 1 below explains the necessity of imposing the Dirichlet

condition u(0) = 0 at x = 0.

Existence and uniqueness of solution to (1) is discussed in [4]. Assume that f and

γ1 are not both zero as otherwise the solution to (1) is u ≡ 0 in the set of functions

u∈C[0,1], with u′ and Dδ−1
RL u absolutely continuous on [0,1] (see [4, Theorem 2.8]).

Problem (1) is used to model anomalous diffusion processes; for example, we

refer to [3] for a motivation of this model.

In [8] we considered a related problem where the Riemann-Liouville derivative

of (1a) is replaced by a Caputo fractional derivative, and discussed under what cir-

cumstances one would observe a boundary layer in its solution at x = 1 as δ → 1+

(with the other data of the problem fixed). Our main aim in the present paper is

similar: to determine when u′(1) blows up as δ → 1+.

In Section 2 we solve (1) exactly using Laplace transforms. We shall see easily

that in general |u′(x)|→∞ as x→ 0 for each fixed value of δ ∈ (1,2), so u /∈C1[0,1].
A more demanding investigation in Section 3 exploits properties of Mittag-Leffler

functions to show that u′(1) blows up as δ → 1+ when b ≥ 1 but no such singular

behaviour is present when b < 1.

Notation. We use the “big O” notation in its sharp form. Thus when we write for

example g = O(1/(δ −1)) as δ → 1+, we mean that limδ→1+ [(δ −1)g] exists and

is non-zero. Throughout the paper C denotes a generic constant that is independent

of δ but may depend on b, f ,α1 and γ1. Set ‖u‖∞ = maxx∈[0,1] |u(x)|.

2 Solution via Laplace transform

We compute the solution of the problem (1) by using the Laplace transform. Our

analysis makes heavy use of the two-parameter Mittag-Leffler function (see, for

example, [1, 6])

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
for α,β ,z ∈ R with α > 0 , (2)

which is an entire function if, furthermore, β > 0.

The Laplace transform L of the Riemann-Liouville fractional derivative is [6,

(2.248)]

L {Dδ
RLu}= sδ

L {u}−C1 − sC2,

with C1 =
[

Dδ−1
RL u

]

(0) and C2 =
[

Dδ−2
RL u

]

(0). Thus, taking the Laplace transform

of (1a), one obtains

f

s
=−[sδ

L {u}−C1−sC2]+b[sL {u}−u(0)] =−[sδ
L {u}−C1−sC2]+bsL {u}

and therefore
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L {u}=
C1

s(sδ−1 −b)
+

C2

sδ−1 −b
−

f

s2(sδ−1 −b)
. (3)

Now the Laplace transform of the Mittag-Leffler function is [6, (1.80)]

L

{

xβ−1Eα ,β (±λxα)
}

=
sα−β

sα ∓λ
.

Hence one can deduce from (3) that the solution of (1) is

u(x) =C1xδ−1Eδ−1,δ (bxδ−1)+C2xδ−2Eδ−1,δ−1(bxδ−1)− f xδ Eδ−1,δ+1(bxδ−1).
(4)

In this formula the constants C1 and C2 must be chosen to satisfy the boundary

conditions (1b). The boundary condition u(0) = 0 forces C2 = 0.

Remark 1. Recall that 1 < δ < 2. From (4) one sees that to obtain a solution u that

lies in C[0,1], the formulation of the problem (1) must include the homogenous

Dirichet boundary condition u(0) = 0 in order to eliminate the singular component

xδ−2Eδ−1,δ−1(bxδ−1).

The value of C1 in (4) will be deduced from the boundary condition (1b) at x = 1.

By [6, (1.82)] one has

D
γ
RL

(

xβ−1Eα ,β (λxα)
)

= xβ−γ−1Eα ,β−γ(λxα), (5)

for constant α,β ,γ and λ . When γ = 1 one has D
γ
RL = d/dx [1, p.27]; hence (4)

yields

u′(x) =C1xδ−2Eδ−1,δ−1(bxδ−1)− f xδ−1Eδ−1,δ (bxδ−1). (6)

Thus, by (1b) one has

γ1 = u(1)+α1u′(1)

=C1

[

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)
]

− f
[

Eδ−1,δ+1(b)+α1Eδ−1,δ (b)
]

and consequently

C1 =
γ1 + f

[

Eδ−1,δ+1(b)+α1Eδ−1,δ (b)
]

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)
. (7)

Substituting (7) into (4) and (6) yields closed-form representations of the solution

u(x) = γ1xδ−1 Eδ−1,δ (bxδ−1)

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)

+ f

[

xδ−1 Eδ−1,δ+1(b)+α1Eδ−1,δ (b)

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)
Eδ−1,δ (bxδ−1)− xδ Eδ−1,δ+1(bxδ−1)

]

(8)
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and its first-order derivative

u′(x) = γ1xδ−2 Eδ−1,δ−1(bxδ−1)

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)

+ f

[

xδ−2 Eδ−1,δ+1(b)+α1Eδ−1,δ (b)

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)
Eδ−1,δ−1(bxδ−1)− xδ−1Eδ−1,δ (bxδ−1)

]

.

(9)

Using the elementary identity

Eδ−1,i(z) = zEδ−1,δ−1+i(z)+
1

Γ (i)
for i = 0,1,2 (10)

in (8) and (9), we get

u(x) = γ1

Eδ−1,1(bxδ−1)−1

Eδ−1,1(b)−1+α1Eδ−1,0(b)

+
f

b

{

x−
Eδ−1,2(b)−1+α1[Eδ−1,1(b)−1]

Eδ−1,1(b)−1+α1Eδ−1,0(b)

}

+
f

b

{

Eδ−1,2(b)−1+α1[Eδ−1,1(b)−1]

Eδ−1,1(b)−1+α1Eδ−1,0(b)
Eδ−1,1(bxδ−1)− xEδ−1,2(bxδ−1)

}

(11)

and

u′(x) = γ1x−1 Eδ−1,0(bxδ−1)

Eδ−1,1(b)−1+α1Eδ−1,0(b)
+

f

b

+
f

b
x−1

{

Eδ−1,2(b)−1+α1[Eδ−1,1(b)−1]

Eδ−1,1(b)−1+α1Eδ−1,0(b)
Eδ−1,0(bxδ−1)− xEδ−1,1(bxδ−1)

}

.

(12)

Lemma 1. For j = 1,2 the function

φ(x) = xδ− jEδ−1,δ− j+1(bxδ−1), with x > 0, (13)

is a solution of

−Dδ
RLφ +bφ ′ = 0.

Proof. It follows from [6, (1.82)] that
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−Dδ
RLφ +bφ ′ =−x− jEδ−1,− j+1(bxδ−1)+bxδ− j−1Eδ−1,δ− j(bxδ−1)

= x− j

[

−
∞

∑
k=0

(bxδ−1)k

Γ ((δ −1)k− j+1)
+

∞

∑
k=0

(bxδ−1)k+1

Γ ((δ −1)k+δ − j)

]

= x− j

[

−
∞

∑
k=1

(bxδ−1)k

Γ ((δ −1)k− j+1)
+

∞

∑
k=1

(bxδ−1)k

Γ ((δ −1)k− j+1)

]

= 0,

where in the first series we have used Γ (−1) = Γ (0) = ∞.

Lemma 2. The function

ψ(x) = xδ Eδ−1,δ+1(bxδ−1), with x > 0, (14)

is a solution of

−Dδ
RLψ +bψ ′ =−1.

Proof. It follows from [6, (1.82)] that

−Dδ
RLψ +bψ ′ =−Eδ−1,1(bxδ−1)+bxδ−1Eδ−1,δ (bxδ−1)

=−
∞

∑
k=0

(bxδ−1)k

Γ ((δ −1)k+1)
+

∞

∑
k=0

(bxδ−1)k+1

Γ ((δ −1)k+δ )

=−
∞

∑
k=0

(bxδ−1)k

Γ ((δ −1)k+1)
+

∞

∑
k=1

(bxδ−1)k

Γ ((δ −1)k+1)

=−1.

Observe that the functions φ(x) and ψ(x) in Lemmas 13 and 14 are infinitely

differentiable for x > 0.

Using Lemmas 1 and 2 it is straightforward to verify that the function u defined

in (8) satisfies (1). In addition, from (9) we have |u′(x)| → ∞ as x → 0+ for each

fixed value of δ ∈ (1,2).

3 Boundary layers in the solution

We now discuss the behaviour of ‖u‖∞ and u′(1) when δ → 1+.

Note immediately that (9) and the hypothesis 1 < δ < 2 imply that u′(x) blows

up as x → 0+. This is a singularity in u, not a boundary layer (in the typical usage

of this terminology in singularly perturbed differential equations), and we do not

discuss it further.

Thus we investigate the other endpoint x = 1. This will involve different cases

depending on the value of the convective term b; cf. [8].

Let β > α > 0 and y ∈ R. We begin with the useful Mittag-Leffler identity
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Eα ,β (y) =
1

α Γ (β −α)

∫ 1

t=0

(

1− t1/α
)β−α−1

Eα ,α(ty)dt (15)

of [5, Lemma 2], which is easily proved by expanding Eα ,α(ty) as an infinite series

in powers of ty and then integrating term by term. In [5] this identity is used to

prove that Eα ,β (−y) is completely monotonic for 0 < α ≤ 1, β ≥ α and y ≥ 0.

Hence in particular

Eα ,β (y)≥ 0 and (d/dy)Eα ,β (y)≥ 0 for 0 < α ≤ 1, β ≥ α, y ≤ 0. (16)

Of course one has trivially Eα ,β (y) > 0 for y ≥ 0 (and any α ≥ 0, β > 0) from the

definition (2). One can sharpen (16) to

Eα ,β (y)> 0 for 0 < α ≤ 1, β > α, y ≤ 0 (17)

because in (15) the integrand is continuous and non-negative with Eα ,α(0) =
1/Γ (α)> 0.

Furthermore, the identity (15) and the properties Eα ,α(0)= 1/Γ (α) and Eα ,α(s)≥
0 for all s ∈ R imply that for i = 0,1 one has

0 < Eδ−1,δ+1+i(y)< Eδ−1,δ+i(y) for all y ∈ R. (18)

Thus for the quotients appearing in (8) and (9) it follows that

0 <
Eδ−1,δ+1(b)+α1Eδ−1,δ (b)

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)
≤

Eδ−1,δ+1(b)

Eδ−1,δ (b)
+α1 < 1+α1 . (19)

3.1 Case b ≤ 0

In this subsection assume that b ≤ 0. By (16) and (18), for 0 ≤ x ≤ 1 and i = 0,1
one has

0 < Eδ−1,δ+i(bxδ−1)≤ Eδ−1,δ+i(0)≤ 1/θ ,

where θ :=min{Γ (x) : 1≤ x≤ 2}≈ 0.8856. Invoking this inequality and (19) in (8)

yields ‖u‖∞ ≤C (for some constant C) for 1 < δ < 2.

Similarly, (16) implies that Eδ−1,δ−1(bxδ−1)≤ Eδ−1,δ−1(0)≤ 1; combining this

inequality and (19) with (9) yields |u′(1)| ≤C (for some constant C) for 1 < δ < 2,

so there is no boundary layer at x = 1 as δ → 1+ when b ≤ 0.

3.2 Case 0 < b < 1

In this subsection assume that 0 < b < 1.
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The definition (2) yields 0≤Eδ−1,i(bxδ−1)≤Eδ−1,i(b) for i= 1,2 and 0≤ x≤ 1.

The analysis in [8, Subsection 2.2.3] shows that

1

4(1−b)
≤ Eδ−1,2(b)≤

1

1−b
, (20)

1−b1+⌊1/(δ−1)⌋

1−b
≤ Eδ−1,1(b)≤

1

θ(1−b)
, (21)

where θ ≈ 0.8856 was defined earlier and ⌊n⌋ denotes the greatest integer satisfying

⌊n⌋ ≤ n. Similarly one has

0 ≤ Eδ−1,0(bxδ−1)≤ Eδ−1,0(b) =
∞

∑
k=1

bk

Γ (k(δ −1))
≤

1

θ

∞

∑
k=1

bk =
b

θ(1−b)
. (22)

It follows from (11) and (20)–(22) that

‖u‖∞ ≤C

for some constant C whose value depends on b but is independent of δ .

By (12) and (20)–(22) we get |u′(x)| ≤ C (where C depends on b but not on δ )

for x > c > 0 where c ∈ (0,1) is any fixed constant. It follows that u does not have

a boundary layer at x = 1 as δ → 1+ when 0 < b < 1.

3.3 Case b = 1

In this subsection assume that b = 1.

For any constant r ≥ 0 we have

∫ ∞

x=r

dx

Γ (x)
=

∫ ∞

x=0

dx

Γ (x+ r)
=

∞

∑
k=0

∫ (k+1)(δ−1)

x=k(δ−1)

dx

Γ (x+ r)

= lim
δ→1+

∞

∑
k=0

δ −1

Γ (k(δ −1)+ r)

= lim
δ→1+

(δ −1)Eδ−1,r(1),

where the penultimate equality holds true by the theory of Riemann sums in inte-

gration. Now Table VI of [2] gives the numerical values

∫ ∞

x=0

dx

Γ (x)
≈ 2.808,

∫ 1

x=0

dx

Γ (x)
≈ 0.541,

∫ 2

x=1

dx

Γ (x)
≈ 1.085,

so
∫ ∞

x=1

dx

Γ (x)
≈ 2.267,

∫ ∞

x=2

dx

Γ (x)
≈ 1.182.
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Thus

lim
δ→1+

(δ −1)Eδ−1,i(1)≈











2.808 if i = 0,

2.267 if i = 1,

1.181 if i = 2.

(23)

We first deduce bounds for ‖u‖∞. Observe that the first two terms in (11), viz.,

γ1

Eδ−1,1(bxδ−1)−1

Eδ−1,1(b)−1+α1Eδ−1,0(b)
,

f

b

{

x−
Eδ−1,2(b)−1+α1[Eδ−1,1(b)−1]

Eδ−1,1(b)−1+α1Eδ−1,0(b)

}

are bounded by some constant C, so we analyse the third term ( f/b){. . .} with

b = 1. Invoking (23) we obtain

lim
δ→1+

Eδ−1,2(1)−1+α1[Eδ−1,1(1)−1]

Eδ−1,1(1)−1+α1Eδ−1,0(1)
≈

1.181+2.267α1

2.267+2.808α1
≥

1.181

2.808
> 0.42.

(24)

If δ is sufficiently close to 1 and 0 < x < 0.42, by (24) and the trivial inequality

Eδ−1,1(x
δ−1)≥ Eδ−1,2(x

δ−1) we have

Eδ−1,2(1)−1+α1[Eδ−1,1(1)−1]

Eδ−1,1(1)−1+α1Eδ−1,0(1)
Eδ−1,1(x

δ−1)− xEδ−1,2(x
δ−1)

≥ (0.42− x)Eδ−1,2(x
δ−1)

≥ (0.42− x)
⌊1/(δ−1)⌋

∑
k=0

(xδ−1)k

Γ (3)

= (0.42− x)
1− (xδ−1)1+⌊1/(δ−1)⌋

2(1− xδ−1)

> (0.42− x)
1− x

2(1− xδ−1)

because (xδ−1)1+⌊1/(δ−1)⌋ < (xδ−1)1/(δ−1) = x. But (1−x)/(1−xδ−1)→ ∞ as δ →
1+ since x > 0. Consequently limδ→1+ ‖u‖∞ = ∞.

We now show that u′(1) blows up as δ → 1+. Set x = 1 in (12), multiply by δ −1

then take the limit as δ → 1+, and appeal to (23): this yields

lim
δ→1+

(δ −1)u′(1)≈

[

2.808(1.181+2.267α1)

2.267+2.808α1
−2.267

]

f .

That is, |u′(1)|= O(1/(δ −1)) as δ → 1+. Thus, the derivative of u at x = 1 blows

up as δ tends to 1+ when b = 1 and f 6= 0.

Figure 1 displays the exact solution for two values of δ when b = 1 and δ equals

1.01 and 1.0001. Note that the scales on the vertical axes in the two plots are dif-

ferent and a typical boundary layer is not observed at x = 1 although u′(1) is large.

In [7] a related problem (where the Riemann-Liouville derivative is replaced by a

Caputo derivative) is analysed in detail.
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Fig. 1 Exact solution of (1) for b = 1, f = 1,α1 = 0,γ1 = 0 and δ = 1.01 (left figure) and δ =
1.0001 (right figure).

3.4 Case b > 1

In this subsection assume that b > 1. We begin with a technical lemma. Recall the

asymptotic relation

Eδ−1,n(b) =
1

δ −1
b(1−n)/(δ−1) exp

(

b1/(δ−1)
)

+O

(

1

(δ −1)2

)

as δ → 1+ (25)

of [8, (2.19)]; in this formula the index n must be fixed independently of δ .

Lemma 3.

Eδ−1,δ+1(b)Eδ−1,δ−1(b)−
[

Eδ−1,δ (b)
]2

= O

(

1

(δ −1)3
b1/(δ−1) exp

(

b1/(δ−1)
)

)

as δ → 1+. (26)

Proof. By (10) we have

Eδ−1,δ+1(b)Eδ−1,δ−1(b)−
[

Eδ−1,δ (b)
]2

=
1

b2

[

Eδ−1,2(b)−1
]

Eδ−1,0(b)−
1

b2

[

Eδ−1,1(b)−1
]2

=
1

b2

{

Eδ−1,2(b)Eδ−1,0(b)−
[

Eδ−1,1(b)
]2
−Eδ−1,0(b)+2Eδ−1,1(b)−1

}

= O

(

1

(δ −1)3
b1/(δ−1) exp

(

b1/(δ−1)
)

)

as δ → 1+, (27)

on invoking (25), because the highest-order terms cancel and the expression in (27)

is then the dominant term among those remaining.

We use Lemma 3 to analyse the behaviour of u near x = 1. From (9) one has
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u′(1) = γ1

Eδ−1,δ−1(b)

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)

+ f

[

Eδ−1,δ+1(b)+α1Eδ−1,δ (b)

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)
Eδ−1,δ−1(b)−Eδ−1,δ (b)

]

=
1

Eδ−1,δ (b)+α1Eδ−1,δ−1(b)
×

{

γ1Eδ−1,δ−1(b)+ f Eδ−1,δ+1(b)Eδ−1,δ−1(b)− f
[

Eδ−1,δ (b)
]2
}

.

Here
{

. . .
}

= O

(

1

(δ −1)3
b1/(δ−1) exp

(

b1/(δ−1)
)

)

by Lemma 3 and (25). From (25) we also get

Eδ−1,δ (b)+α1Eδ−1,δ−1(b) =
1+α1b1/(δ−1)

b(δ −1)
exp
(

b1/(δ−1)
)

+O

(

1

(δ −1)2

)

.

Consequently

|u′(1)|= O

(

b1/(δ−1)

(δ −1)2

(

1+α1b−1/(δ−1)
)

)

as δ → 1+. (28)

Thus u′(1) blows up when δ → 1+ and b > 1, and this behaviour is more extreme if

α1 = 0, i.e., if there is a Dirichlet boundary condition at the endpoint x = 1. Figure 2

indicates that a layer appears at x = 1 when δ is near 1. One can prove analytically

that this layer is present, but this derivation is too long to include here.

Fig. 2 Exact solution of

(1) for b = 1.1, f = 1,α1 =
0,γ1 = 1.7 and δ = 1.03.
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In closing, we mention that when b > 1, ‖u‖∞ is unbounded as δ → 1+. The

analysis needed to show this resembles the analysis given above for u′(1).
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7. Martin Stynes and José Luis Gracia. Blow-up of solutions and interior layers in a Caputo

two-point boundary value problem. (Submitted to BAIL 2014 proceedings).
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