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Abstract A two-point boundary value problem whose highest-order term is a Ca-

puto fractional derivative of order δ ∈ (1,2) is considered on the interval [0,1]. It

is asserted in the published literature that the solutions of such problems can ex-

hibit a boundary layer at x = 1 as δ → 1+ when the convection coefficient b satis-

fies maxx∈[0,1] b(x) ≥ 1. It will be shown here that for constant b a boundary layer

can appear in the case b > 1 but in the case b = 1 the behaviour of the solution is

substantially different. Furthermore, a numerical example is given to show that for

certain b(x) the solution can exhibit an interior layer—a phenomenon that has not

previously been reported in the research literature.

1 Introduction

Let δ ∈ (1,2). Let g ∈ C1[0,1] with g′ absolutely continuous on [0,1]. Then the

Caputo fractional derivative Dδ
∗g associated with the point x = 0 is defined by

Dδ
∗g(x) :=

1

Γ (2−δ )

∫ x

t=0
(x− t)1−δ g′′(t)dt for 0 < x ≤ 1;

see [1, 4]. In the present paper we shall consider the two-point boundary value prob-
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−Dδ
∗u(x)+b(x)u′(x)+ c(x)u(x) = f (x) for x ∈ (0,1), (1a)

u(0)−α0u′(0) = γ0, u(1)+α1u′(1) = γ1. (1b)

The constants α0,α1,γ0,γ1 and the functions b,c and f are given. We assume that

b,c, f ∈C1[0,1] with c ≥ 0 in [0,1]. We assume also that

α0 =
1

δ −1
and α1 ≥ 0. (2)

With the exception of α0, all data in (1) is independent of δ . The problem (1) has

been investigated in [4, 7, 8] where it is shown that the conditions on c,α0 and α1

ensure satisfaction of a comparison/maximum principle, and hence that (1) has a

solution u ∈C1[0,1]∩C2(0,1] and this solution is unique.

The problem (1) is also examined in [3], where its use in modelling anomalous

diffusion is motivated analytically and various applications of it are listed. In that

paper one has b ≡ 0, so we have generalised the problem studied in [3] to one that

includes convective processes.

Remark 1. The analysis of [7, 8] assumes that α0 ≥ 1/(δ − 1) and α1 ≥ 0, which

is more general than (2). Here we take α0 = 1/(δ −1) since an examination of the

more general case would force us to consider further possibilities in the sections

below. We will address these in a later paper.

Remark 2. In a sister paper [2] we examine boundary layers in solutions to a prob-

lem resembling (1) except that the Caputo derivative is replaced by a Riemann-

Liouville fractional derivative and α0 = γ0 = 0.

In [7] we investigated the behaviour of the solution u as δ varied between 1 and 2,

and found that in certain cases u exhibited a boundary layer at x = 1 as δ → 1+. In

Sections 2 and 3 we shall discuss some aspects of this boundary layer that were

not revealed in [7]. Furthermore, in Section 4 we demonstrate that an interior layer

can appear in u; this possibility has not previously been reported in the research

literature.

Notation. We use the “big O” notation in its sharp form. Thus when we write for

example g = O(1/(δ −1)) as δ → 1+, we mean that limδ→1+ [(δ −1)g] exists and

is non-zero.

2 Background material for the constant-coefficient case

Throughout Sections 2 and 3 assume that b and f are non-zero constants, and c ≡ 0.

(If c > 0 then the solution of (1) is much better behaved; see [7, Theorem 3.3].)

In Figure 1 we take b = 1.1, f = 1, α1 = 0, γ0 = 0.4 and γ1 = 1.7, and plot the

solution u of (1) for δ = 1.1,1.075,1.05,1.025. It is clear that as δ → 1+, a boundary

layer develops in u at x = 1. The values of γ0 and γ1 were chosen arbitrarily; one
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can see easily from the analysis in Section 3.1 that for b > 1, f 6= 0 and any values

of γ0 and γ1, one will always have a boundary layer at x = 1 as δ → 1+.
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Fig. 1 Exact solution of (1) for b ≡ 1.1, c ≡ 0, f ≡ 1, α1 = 0, γ0 = 0.4 and γ1 = 1.7, with δ = 1.1
(1st row, left), δ = 1.075 (1st row, right), δ = 1.05 (2nd row, left) and δ = 1.025 (2nd row, right),

showing development of a boundary layer as δ → 1+.

The analysis in [7] (see Section 2.2 and Theorem 3.5) shows that as δ → 1+ one

has |u′(1)| → ∞ if and only if b ≥ 1; in this regime, the problem (1) is singularly

perturbed. If in Figure 1 one changes the value of b to any other number greater

than 1, then for δ close to 1, the graph of u will resemble qualitatively the final

graph in Figure 1, i.e., a boundary layer at x = 1 will be evident.

But if b = 1, although the theory of [7, Section 2.2] still predicts that |u′(1)| → ∞
as δ → 1+, the graph of u is fundamentally different. Figure 2 shows that for b = 1

and the same values of f ,α1,γ0 and γ1 as in Figure 1, as δ → 1+ the solution u of (1)

does not exhibit a standard boundary layer at x = 1. (The scaling of the vertical axis

in Figure 2 implies that |u′(x)| → ∞ at each point in [0,1] as δ → 1+; this surprising

property will be proved analytically in Section 3.2.)

This difference in the case b = 1 passed unnoticed in [7]; our main aim in the

present paper is to explain what Figure 2 displays.

We begin by listing some known results that will be needed later in our analysis.

Define the two-parameter Mittag-Leffler function by
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0 0.2 0.4 0.6 0.8 1

2

2.5

3

3.5

4

4.5

5

5.5

6

x

E
xa

ct
 s

ol
ut

io
n 

u

0 0.2 0.4 0.6 0.8 1

2

3

4

5

6

7

8

9

10

11

12

x

E
xa

ct
 s

ol
ut

io
n 

u

0 0.2 0.4 0.6 0.8 1

5

10

15

20

25

30

35

40

45

50

55

x

E
xa

ct
 s

ol
ut

io
n 

u

0 0.2 0.4 0.6 0.8 1

50

100

150

200

250

300

350

400

450

500

550

x

E
xa

ct
 s

ol
ut

io
n 

u

Fig. 2 Exact solution of (1) for b ≡ 1, c ≡ 0, f ≡ 1, α1 = 0, γ0 = 0.4 and γ1 = 1.7, with δ = 1.1
(1st row, left), δ = 1.05 (1st row, right), δ = 1.01 (2nd row, left) and δ = 1.001 (2nd row, right).

Eα ,β (z) =
∞

∑
k=0

zk

Γ (αk+β )
for α,β ,z ∈ R with α > 0. (3)

See [1, 5] for the analysis of this function.

Lemma 1. (Properties of the Mittag-Leffler function)
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(i)
d

dx

(

xEδ−1,2(bxδ−1)
)

= Eδ−1,1(bxδ−1) (4a)

(ii)
(2−δ )(e− i)

δ −1
≤ Eδ−1,i(1)≤

δ (e+1− i)

δ −1
for i = 1,2 (4b)

(iii) For y ∈ (0,1), one has

1

2(1− y)
≤ Eδ−1,1(y)≤

1

θ(1− y)
(4c)

where θ = min{Γ (x) : 1 ≤ x ≤ 2} ≈ 0.8856

(iv) Fix y > 1, x ∈ (0,1] and n > 0. Then as δ → 1+ one has

Eδ−1,n

(

yxδ−1
)

=
1

δ −1

(

yxδ−1
)(1−n)/(δ−1)

exp

(

(

yxδ−1
)1/(δ−1)

)

+O

(

1

(δ −1)2

)

. (4d)

Proof. For (4a) see [5, (1.82)]; for (4c) see [7, (2.28)]. Bounds slightly stronger

than (4b) are proved in [7, (2.23)–(2.25)] under the assumption that 1/(δ −1) is an

integer; when this assumption is removed, a straightforward modification of these

calculations (as in the proof of [7, Lemma 3.6]) yields (4b). The estimate (4d) is

proved in [7, (2.19)] for the case x= 1. The same argument will work when x∈ (0,1)
because yxδ−1 → y > 1 as δ → 1+. ⊓⊔

By [7, (2.13)], the solution of (1) is

u(x) = γ0 +
(α0 + x) f

b
+

[

α0 + xEδ−1,2(bxδ−1)
]

[γ1 − γ0 − (1+α0 +α1) f/b]

α0 +Eδ−1,2(b)+α1Eδ−1,1(b)
(5)

for 0 ≤ x ≤ 1. Hence, using (4a),

u′(x) =
f

b
+

[γ1 − γ0 − (1+α0 +α1) f/b]Eδ−1,1(bxδ−1)

α0 +Eδ−1,2(b)+α1Eδ−1,1(b)
for 0 ≤ x ≤ 1. (6)

3 Behaviour of solutions as δ → 1+

In this section we give a definition of layer that is suitable for the typical boundary

layers that one encounters in solutions of singularly perturbed two-point boundary

value problems. This definition will be seen to be suitable also for the layers en-

countered when b > 1, as in Figure 1. But the behaviour of the solution of (1) when

b = 1, which is exhibited in Figure 2, is different.

Let us start from familiar territory: boundary layers in convection-diffusion

boundary value problems. As is well known (see, e.g., [6, Section I.1.1]), the so-

lution of such problems can usually be expressed as a sum of smooth and layer

components; as a typical example we take φ(x) = 5x+ e−2(1−x)/ε for 0 ≤ x ≤ 1.
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Here ε ∈ (0,1] is the singular perturbation parameter and φ(x) develops a boundary

layer at x = 1 as ε → 0+ because of the component e−2(1−x)/ε .

With a view to what comes later, we now define what is meant by a layer.

Definition 1. Let v ∈ C1[0,1], with v dependent on some parameter ε ∈ (0,1]. We

say that v has a layer at a point z ∈ [0,1] as ε → 0+ if

(i) limε→0+ v′(z) is ∞ or −∞,

(ii) limε→0+ v′(x) is finite at each point x ∈ [0,1] satisfying 0 < |x− z| < k for some

positive constant k. (Here k can depend on z but not on ε .)

Our example above satisfies this definition with v = φ and z = 1; for one

has limε→0+ φ ′(1) = ∞ and limε→0+ φ ′(x) = 5 for each fixed x ∈ [0,1). Defini-

tion 1 is adequate for typical singularly perturbed convection-diffusion and reaction-

diffusion problems in one dimension, including those whose solutions have interior

layers; see [6, Chapter I].

One can use Definition 1 mutatis mutandis to define a layer at x = 1 for the

solution u of (1) as δ → 1+.

3.1 The case b > 1

Assume in Section 3.1 that b > 1. From (6) and [7, Section 2.2.1] it follows that

lim
δ→1+

u′(1) =±∞, (7)

with sign equal to the sign of − f/b. Furthermore, by inspection, as δ → 1+ the dom-

inant term in the numerator of the second fraction of (6) is −α0( f/b)Eδ−1,1(bxδ−1).
But by (4d), for each fixed x in (0,1) one has

lim
δ→1+

α0Eδ−1,1(bxδ−1)

Eδ−1,2(b)
= lim

δ→1+

1
δ−1

[

1
δ−1

exp
(

(bxδ−1)1/(δ−1)
)

+O
(

1
(δ−1)2

)]

1
δ−1

b−1/(δ−1) exp
(

b1/(δ−1)
)

+O
(

1
(δ−1)2

)

= lim
δ→1+

1
δ−1

exp
(

(bxδ−1)1/(δ−1)
)

b−1/(δ−1) exp
(

b1/(δ−1)
)

= lim
δ→1+

1

δ −1
b1/(δ−1) exp

(

(x−1)b1/(δ−1)
)

= 0. (8)

From (6) and (8) it follows that

lim
δ→1+

u′(x) =
f

b
for each x ∈ (0,1). (9)
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Taking (7) and (9) together, we have shown analytically that when b > 1, the

solution of (1) has a layer (in the sense of Definition 1) at x = 1 as δ → 1+.

3.2 The case b = 1

Assume in Section 3.2 that b= 1. In [7] it was shown that u′(1) blows up as δ → 1+,

and from this fact it was inferred that “u exhibits a boundary layer at x = 1” [7,

Section 2.2.2], but as we shall see below, the behaviour of u as δ → 1+ does not

satisfy Definition 1 at x = 1.

Invoking (4b), from equation (6) one sees that

lim
δ→1+

u′(1) =±∞ (10)

with sign equal to the sign of − f/b.

Next, (2) and (4b) imply that

1

δ −1
≤ α0 +Eδ−1,2(1)+α1Eδ−1,1(1)≤

(1+α1)eδ

δ −1
. (11)

Consider an arbitrary but fixed point x ∈ (0,1). By (11) we have

lim
δ→1+

α0Eδ−1,1(x
δ−1)

α0 +Eδ−1,2(b)+α1Eδ−1,1(b)
≥ lim

δ→1+

Eδ−1,1(x
δ−1)

(1+α1)eδ
. (12)

Writing ⌊1/(δ − 1)⌋ for the integer part of 1/(δ − 1), from the definition (3) one

obtains

Eδ−1,1(x
δ−1)≥

⌊1/(δ−1)⌋

∑
k=0

(xδ−1)k

Γ (2)

=
1− (xδ−1)1+⌊1/(δ−1)⌋

1− xδ−1

>
1− x

1− xδ−1
(13)

because (xδ−1)1+⌊1/(δ−1)⌋ < (xδ−1)1/(δ−1) = x. Combining (12) and (13) yields

lim
δ→1+

α0Eδ−1,1(x
δ−1)

α0 +Eδ−1,2(b)+α1Eδ−1,1(b)
≥ lim

δ→1+

1− x

(1+α1)eδ (1− xδ−1)
= ∞ (14)

since 0 < x < 1. It now follows from (6) that

lim
δ→1+

u′(x) =±∞ for each x ∈ (0,1), (15)



8 Martin Stynes and José Luis Gracia

with sign equal to the sign of − f/b.

That is: unlike the case b > 1 where u′(x) blows up only at x = 1 as δ → 1+,

the limits (10) and (15) show that when b = 1 the derivative u′(x) of the so-

lution of (1) blows up at every point x in (0,1] as δ approaches its limiting

value!

Figure 2 demonstrates this behaviour clearly—note the increasing compression

of the y-axis scales in the graphs as δ → 1+.

Heuristically, the essential difference between the cases b = 1 and b > 1 lies

in the denominator α0 +Eδ−1,2(b)+α1Eδ−1,1(b) of (5) and (6): when b = 1 this

denominator is O(1/(δ − 1)) by (4b) but when b > 1 it is much larger, as can be

seen from (4d).

4 An interior layer

Our discussions above and the analysis in [7] have focused on the presence or ab-

sence of boundary layers in the solution u of (1). These depend on the value(s) taken

by b in (1a). We close our presentation by alerting the reader to the fact that when

b(x) is non-constant and varies in a certain way, it can engender an interior layer

in the solution u. This possibility has not previously been mentioned in the research

literature. It will be demonstrated here by means of an example.

Suppose that b(x) = −8x2 + 6x+ 1 for 0 ≤ x ≤ 1. The key property of this par-

ticular function is that b(x)> 1 on part of the interval but b < 1 near x = 1. Its graph

is shown in Figure 3.
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Fig. 3 Plot of b(x) =−8x2 +6x+1
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Take f ≡ 1, c ≡ 0, α1 = 0, γ0 = 0.4 and γ1 = 1.7 in (1). Graphs of the solu-

tion u, which are computed using the numerical method of [8], are shown in Fig-

ure 4 for δ = 1.1,1.01,1.001,1.0001. They exhibit an interior layer at the point

where b(x) switches from b > 1 to b < 1. No qualitative change in the solution is

evident at the point where b(x) changes sign.
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Fig. 4 Test problem with b(x) =−8x2+6x+1, c ≡ 0, f ≡ 1, α1 = 0, γ0 = 0.4, γ1 = 1.7. Solutions

computed for δ = 1.1 (1st row, left), δ = 1.01 (1st row, right), δ = 1.001 (2nd row, left) and

δ = 1.0001 (2nd row, right)

Note that in Figure 4 it is apparent that ‖u‖∞ := max[0,1] |u(x)| = O(1/(δ −1)).
This behaviour agrees with the bound

‖u‖∞ ≤C min{α0,Eδ−1,δ+1(M)}=Cα0

of [7, Theorem 3.10(i)], where M := max[0,1] b(x) and we used (4d).
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