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Abstract We consider the SUPG method for the numerical solution of the scalar

steady convection-diffusion equation using conforming simplicial piecewise linear

finite elements. We change the convective vector in the SUPG stabilizing term and

adjust the triangulation so that the discrete maximum principle is satisfied. Then the

error analysis is performed and the method is tested on several numerical examples.

1 Introduction and the idea of the method

Let us solve the convection-diffusion equation

−ε∆u(x)+b(x)∇u(x) = f (x) in Ω ⊂ R
n , (1)

u(x) = 0 on ∂Ω , (2)

where n∈N, Ω is a bounded polytopic domain with Lipschitz-continuous boundary

∂Ω , ε > 0 is the constant diffusivity, b ∈W 1,∞(Ω)n is a given convective field and

f ∈ L2(Ω) is an outer force. Further, we assume that the boundary ∂Ω is divided

into three subsets Γ+ = {x ∈ ∂Ω , b(x)n(x)> 0}, Γ0 = {x ∈ ∂Ω , b(x)n(x) = 0} and

Γ− = {x ∈ ∂Ω , b(x)n(x)< 0} satisfying

∂Ω = Γ +∪Γ 0 ∪Γ − and Γ+∩Γ0 = Γ0 ∩Γ− = Γ−∩Γ+ = /0.

Here, a vector n(x) denotes a unit outer normal to the boundary ∂Ω . Let us also

emphasize that in the whole article any two vectors are always multiplied by the

standard inner product.
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As ε → 0, the equation (1) becomes singularly perturbed and near the bound-

ary Γ+ the finite element solution often contains spurious oscillations. We call this

region exponential boundary layer. In order to diminish the oscillations at the expo-

nential boundary layers, one may use the SUPG method [1]. However, the SUPG

method does not diminish all the oscillations, in particular, at the parabolic (char-

acteristic) boundary layers. These regions usually appear near the boundary Γ0, but

also along interior layers that propagate from discontinuous boundary conditions at

Γ− .

Apart from the SUPG method, one can also use the method of Mizukami and

Hughes [3]. Unlike the SUPG method, the Mizukami-Hughes method satisfies the

discrete maximum principle and therefore it diminishes all the spurious oscillations

at the layers. The drawback of the Mizukami-Hughes method is its nonlinearity and

the absence of an error analysis. In order to eliminate this drawback we construct

a special mesh, which is well-aligned with the vector field b. The created linear

method then enjoys both positive properties of the Mizukami-Hughes method and

the SUPG method – it satisfies the discrete maximum principle and we can apply an

error analysis analogous to the SUPG method.

Since ε is considered to be very small, the exact solution at any point x ∈ Ω
in fact depends almost only on the values in the direction −b(x). It means that

the discretization of the convective term should use only the upwind values. To

achieve this, we construct a special mesh Th . Each element of such a mesh should

have one of its edges oriented in the direction of the vector b. Then, if bK is a

constant approximation of b on the element K ∈ Th parallel to one of its edges and

if we use simplicial finite elements with linear basis functions {ϕK,i}n+1
i=1 , only two

values of bK∇ϕK,i, i ∈ {1,2, . . . ,n+1}, are nonzero. This property can be used for

characterization of a good mesh.

Due to their length we omit proofs of all lemmas and theorems. They can be

found in the future work [2].

2 Derivation of the method

At the beginning of any finite element discretization, we derive the weak formulation

of the respective problem. Let us therefore multiply (1) by the function ϕ ∈ H1
0 (Ω)

and integrate over the whole domain Ω . Using the Green’s theorem the weak for-

mulation of (1) reads: Find u ∈ H1
0 (Ω) such that

ε(∇u,∇ϕ)Ω +(b∇u,ϕ)Ω = ( f ,ϕ)Ω ∀ϕ ∈ H1
0 (Ω). (3)

Further, let us define a triangulation Th of the domain Ω . It consists of the finite

number of open simplicial elements K. We assume that Ω = ∪K∈Th
K and that the

closures of any two different elements K, K̃ ∈ Th are either disjoint or possess a

common d-dimensional simplex (d ∈ {0,1, . . . ,n−1}). We also denote by Mh the

set of nodes of Th and by Nh ⊂ Mh the set of all inner nodes of Th.
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To derive the Galerkin’s finite element discretization of (1), we define a finite ele-

ment space Xh = {vh ∈C(Ω),vh|K ∈ P1(K),∀K ∈ Th} and a space of test functions

Vh = Xh ∩H1
0 (Ω). The barycentric coordinates {ϕK, j}n+1

j=1 of the element K ∈ Th

then form a basis of P1(K) and we reorder them so that

∫

K

b∇ϕK, j

|∇ϕK, j|
dx ≤

∫

K

b∇ϕK, j+1

|∇ϕK, j+1|
dx, for j = 1,2, . . . ,n. (4)

Remark 1. Since ∑n+1
j=1

∫
K b∇ϕK, j dx = 0 for each K ∈Th, then if one of the previous

expressions is nonzero we obtain
∫

K b∇ϕK,1 dx < 0 and
∫

K b∇ϕK,n+1 dx > 0.

Further, we assume that for each K ∈ Th the barycentric coordinates {ϕK, j}n+1
j=1

satisfy

(ϕK, j,ϕK,i)K ≤ 0 whenever i 6= j. (5)

In 2D this assumption is satisfied for triangulations not containing obtuse triangles.

The SUPG method adds weighted residuals R(u) =−ε∆u+b∇u− f to the usual

Galerkin’s finite element method. Since R(u) vanishes for the exact solution, we

can add any multiple of R(u) to the weak formulation. Unlike the original SUPG

method, which adds the residual multiplied by the streamline derivative of v, we add

the residual multiplied on each K ∈ Th by derivative of v in the direction PK,n+1 −
CK . Here CK are the barycentres of K and PK, j, j = 1,2, . . . ,n+1, are the vertices of

K satisfying ϕK,i(PK, j) = δi j for 1 ≤ i, j ≤ n+1.

Thus, the solution u ∈ H1
0 (Ω)∩H2(Ω) of the problem (3) satisfies also for all

ϕ ∈ H1
0 (Ω)

a(u,ϕ) = F(ϕ), (6)

where

F(ϕ) = ∑
K∈Th

( f ,ϕ +(PK,n+1 −CK)∇ϕ)K and (7)

a(u,ϕ) = ε(∇u,∇ϕ)Ω +(b∇u,ϕ)Ω + ∑
K∈Th

(
− ε∆u+b∇u,(PK,n+1 −CK)∇ϕ

)
K
.(8)

If we now apply the finite element method using the continuous piecewise lin-

ear finite elements, the spurious oscillations unfortunately persist (analogous to the

original SUPG method). The reason is the presence of the positive off-diagonal en-

tries in the matrix obtained by the discretization of the last two terms in (8) resulting

in the non-fulfillment of the discrete maximum principle.

In order to eliminate these positive entries, we define dK = PK,n+1 −PK,1 and

consider the element-wise constant approximation bK of the vector field b by vectors

that are parallel with dK on each element K. More precisely, first of all we consider

that our mesh is ”well-aligned” with respect to the vector field b and then on each

element K we construct a constant approximation bK of b. This ”well-alignment”

provides following assumptions.
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(A 1) The ordering given by (4) on each K ∈ Th uniquely defines the vector dK =
PK,n+1−PK,1. We assume that if any edge e of Th corresponds to dK of some

K, then e corresponds to dK for each K containing e. We denote by Eh the set

of such edges.

(A 2) Each inner node P of Th is the endpoint of exactly two edges of Eh.

Remark 2. Let us call a discrete streamline any set of edges S ⊂ Eh such that for

each e ∈ S there exists e′ ∈ S such that

e′ 6= e & e∩ e′ 6= /0. (9)

The discrete streamline S is closed if for each e ∈ S there exist exactly two dif-

ferent edges e′ and e′′ satisfying (9). Consequently, the assumptions (A 1)− (A 2)
do not allow closed discrete streamlines in 2D. Indeed, if there is a closed discrete

streamline then there exists a node (”inside” the closed streamline) which does not

satisfy (A 2). The mesh satisfying (A 1)− (A 2) can be, for instance, constructed

by approximation of streamlines by linear spline functions. This will be the subject

of future work. Further assumptions on the structure of the mesh will be given by

the inequalities (23) and (25).

It remains to define the piecewise constant approximation of b. On each element

K ∈ Th it is defined in the following way

bK = − 1

|K|

(∫

K
b∇ϕK,1 dx

)
dK . (10)

Finally, we apply the finite element method and the new method reads:

Find uh ∈Vh such that for all ϕh ∈Vh holds

ah(uh,ϕh) = Fh(ϕh), (11)

where

ah(u,ϕ) = ε(∇u,∇ϕ)Ω + ∑
K∈Th

(bK∇u,ϕ)K +

+ ∑
K∈Th

(
− ε∆u+bK∇u,(PK,n+1 −CK)∇ϕ

)
K
, (12)

Fh(ϕ) = ∑
K∈Th

(
f ,ϕ +(PK,n+1 −CK)∇ϕ

)
K

(13)

and the vectors bK are defined by (10). The stability of this method then results from

the following remark.

Remark 3. Instead of adding stabilization terms to the weak formulation (3) one

can equivalently define the method (11) by changing the test functions ϕK, j, j ∈
{1,2, . . . ,n+1}, K ∈ Th, to

ϕ̃K, j = ϕK, j +(PK,n+1 −CK)∇ϕK, j. (14)
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Then for all j = 1,2, . . . ,n we obtain ϕ̃K, j = ϕK, j − 1
n+1

whereas ϕ̃K,n+1 = ϕK,n+1 +
n

n+1
. This choice of test functions is the same as in the Mizukami-Hughes method

[3]. It means that the derived method satisfies the discrete maximum principle.

3 Coercivity

3.1 Technical lemmas

Since
∫

K vh − vh(CK)dx = 0 for all vh ∈Vh, we can write

(
bK∇uh, vh +(PK,n+1 −CK)∇vh

)
K

=
(

bK∇uh, vh + vh(PK,n+1)− vh(CK)
)

K
=

=
(

bK∇uh,vh(PK,n+1)
)

K
= |K| |bK |

|dK |
(

uh(PK,n+1)−uh(PK,1)
)

vh(PK,n+1).

Consequently, for the bilinear form ah holds

ah(vh,vh) = ε |vh|21,Ω + ∑
K∈Th

|K| |bK |
|dK |

(
vh(PK,n+1)− vh(PK,1)

)
vh(PK,n+1). (15)

Thus, when proving coercivity of the bilinear form ah, it is necessary to estimate

the second term on the right-hand side of (15). For this purpose we use the following

lemmas.

Lemma 1. Let N ∈N, 0< ρ j < 1, j = 1,2, . . . ,N, and q j, j = 1,2, . . . ,N, are positive

numbers satisfying q j/q j−1 ≤ ρ j−1 for j = 2,3, . . . ,N. Then for all v j ∈ R, j =
2,3, . . . ,N +1, holds

q1v2
2 +

N

∑
j=2

q j(v
2
j+1 − v jv j+1) ≥ 1

2

N

∑
j=1

(1−ρ j)q jv
2
j+1. (16)

Lemma 2. Let N ∈ N, N ≥ 8, 0 ≤ δ < 4 and q j, j = 1,2, . . . ,N, are positive num-

bers satisfying q j/q j−1 ≤ 1 + δ/N2 for j = 2,3, . . . ,N. Then for all v j ∈ R,

j = 2,3, . . . ,N +1, holds

q1v2
2 +

N

∑
j=2

q j(v
2
j+1 − v jv j+1) ≥ 4−δ

2N2

N

∑
j=1

q jv
2
j+1. (17)

Remark 4. If we take δ = 0 in Lemma 2, we obtain factor 2
N2 on the right-hand

side of (17). It can be shown that the constant 2 in this estimate is not optimal,

nevertheless, the order is optimal
(

1
N2

)
.

The upper bound δ < 4 is not optimal as well. However, if we consider N = 5,
q j

q j−1
= 1+ 25

3
1

N2 = 4
3

for j = 2,3,4,5, then q1v2
2 +∑5

j=2 q j

(
v2

j+1 − v jv j+1

)
= 0 for
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(v2,v3,v4,v5,v6) = (16,24,24,18,9). Hence, the optimal upper bound for δ is not

greater than 25
3

.

Lemma 3. Let N ∈ N and let q j, j = 1,2, . . . ,N, are positive numbers satisfying

q j/q j−1 ≤ 1 for j = 2,3, . . . ,N. Then for all v j ∈ R, j = 2,3, . . . ,N +1, holds

q1v2
2 +

N

∑
j=2

q j(v
2
j+1 − v jv j+1) ≥ 1

2

{
q1v2

2 +
N

∑
j=2

q j(v j+1 − v j)
2

}
. (18)

Lemma 4. Let N ∈ N, N ≥ 8, 0 ≤ δ < 4 and q j, j = 1,2, . . . ,N, are positive num-

bers satisfying q j/q j−1 ≤ 1 + δ/N2 for j = 2,3, . . . ,N. Then for all v j ∈ R,

j = 2,3, . . . ,N +1, holds

q1v2
2 +

N

∑
j=2

q j(v
2
j+1 − v jv j+1) ≥ 4−δ

8

{
q1v2

2 +
N

∑
j=2

q j(v j+1 − v j)
2

}
. (19)

3.2 Coercivity estimates

We use the properties of the mesh oriented in the flow direction and derive the coer-

civity estimates in suitable norms. Again, we observe that the mesh whose edges are

oriented along b has a special property: For each mesh node Ps
0 lying on the bound-

ary Γ− there exists a sequence of nodes {Ps
j}Ns

j=1 which lay on the same discrete

streamline given by the vector field b.

Thus, each node Ps
j of the mesh can be characterised by two numbers - the

number denoting the streamline (s) and the number determining the order of the

node on this streamline ( j). For each node Ps
j we can further define the following

sets: a patch Ω s
j = ∪Ps

j⊂KK, a cluster C s
j = ∪Ps

j−1,P
s
j⊂KK and a complementary set

Ω s
0, j = Ω s

j\
(
C s

j ∪C s
j+1

)
(see Figure 1).

Ω s

0,j

Ω s

0,j

j+1P

Ω s
j b

P
s
j−2

P
s
j−1

s
jP

s

C
s
j−1

C
s
j

C
s
j+1

C j+2
s

Fig. 1 Definition of the splitting of the domain Ω s
j .
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Definition 1. For each cluster C s
j let us define the quantities hs

j = |dK |, K ⊂ C s
j ,

β s
j = 1

|C s
j | ∑K⊂C s

j
|bK ||K| and qs

j = −∑K⊂C s
j

∫
K b∇ϕK,1 dx = β s

j |C s
j |/hs

j > 0.

For each element K ∈ Th let us also define the mesh parameters θK and νK by

θK =
1

|K| max

{
max

2≤i≤n

∣∣∣∣
∫

K
b∇ϕK,i dx

∣∣∣∣ ,
∣∣∣∣∣

n

∑
i=2

∫

K
b∇ϕK,i dx

∣∣∣∣∣

}
and (20)

νK = max
1≤i≤n+1

σ(PK,i) with σ(Ps
j ) =

|C s
j |+ |Ω s

0, j|
|C s

j |
(hs

jNs)
2
‖b‖∞,Ω s

j

β s
j

max
K⊂Ω s

j

hK

hs
j

.

(21)

In the previous definition the quantity hs
j represents the length of the cluster in

the direction of dK , β s
j is the weighted average value of |bK | on C s

j and qs
j are flows

which we use in the Lemmas 1 – 4.

The mesh parameters θK vanish whenever b is parallel to bK in K and therefore

we use them for characterization of a good mesh. Finally, in the case of constant

vector b, hs
jNs = L and for a mesh consisting of regular simplices it holds

σ(Ps
j ) =

|K|n!+ |K|(n−1)n!

|K|n!
L2 = nL2 for all possible j,s. (22)

For more general data we obtain different values of σ(Ps
j ) or νK , however, the value

(22) is still a good approximation, in particular, for quasi-equidistant meshes.

We use these quantities together with the Lemmas 1 – 4 and prove the coercivity

of the method with respect to two types of energy norms (see Definition 2).

Theorem 1 (divb < 0). Let there exists ω > 0 such that divb ≤ −ω < 0 in Ω and

let for each K ∈ Th holds

θK ≤ ω

n+1
. (23)

Further, let there exists the constant κ independent of h (and ε) such that
|C s

j+1|
|Ω s

j |
≥ κ

for all s = 1,2, . . . ,P and j = 1,2, . . . ,Ns, then

ah(vh,vh) ≥ 1

2

{
ε |vh|21,Ω +

ωκ

2
‖vh‖2

0,Ω + ∑
K∈Th

hK

2|bK |
‖bK∇vh‖2

0,K

}
. (24)

Remark 5 (divb = 0). If there exists δ ≥ 0 such that

θK ≤ δ

νK

‖b‖∞,K hK for each K ∈ Th, (25)

then in the case when divb = 0 in Ω we obtain (due to the Lemma 4) the estimate

ah(vh,vh) ≥ ε |vh|21,Ω +
4−δ

4
∑

K∈Th

hK

2|bK |
‖bK∇vh‖2

0,K . (26)
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Theorem 2 (divb = 0). Let the assumption (25) be fulfilled. Further, let there exist

positive numbers κ ,L,R,β such that for all s= 1,2, . . . ,P and j = 1,2, . . . ,Ns holds

|C s
j | ≥ κ |Ω s

j |, Nsh
s
j ≤ L, max

K⊂Ω s
j

hK ≤ Rhs
j, and β s

j ≥ β . (27)

Then ah(vh,vh) ≥ ε |vh|21,Ω + (4−δ )κβ

2L2R
(n+1)∑K∈Th

hK‖vh‖2
0,K for each vh ∈Vh.

4 Error estimates

Definition 2. We estimate the error of the presented method in the following types

of energy norms
(
using C∗

2 = (4−δ )κβ

2L2R
(n+1) and C∗

b = 4−δ
4

)

|||v|||2b = ε |v|21,Ω +
ωκ

2
‖v‖2

0,Ω + ∑
K∈Th

hK

2|bK |
‖bK∇v‖2

0,K , (28)

|||v|||2b,∗ = ε |v|21,Ω +C∗
2 ∑

K∈Th

hK‖v‖2
0,K +C∗

b ∑
K∈Th

hK

2|bK |
‖bK∇v‖2

0,K . (29)

We follow the error analysis applied in [4] using the coercivity estimates and the

Galerkin’s quasi-orthogonality resulting from the consistency of the method.

Theorem 3. Let there exists constant κ independent of h (and ε) such that
|C s

j+1|
|Ω s

j |
≥ κ

for all s = 1,2, . . . ,P and j = 1,2, . . . ,Ns, constant ω > 0 such that divb ≤−ω < 0

in Ω and let for each K ∈ Th holds

θK ≤ min

{
ω

n+1
, |b|1,∞,K

√
ω max

{
hK

ε1/2
,

2

|bK |
ε1/2

}}
. (30)

If the solution u of (1) satisfies u ∈ H2(Ω), then there exists constant C > 0 inde-

pendent of h and ε such that for the solution obtained by the method (11) it holds

|||u−uh|||b ≤ C

(

∑
K∈Th

min

{
h2

K ,max

{
h4

K

ε
,εh2

K

}}(
|u|22,K + |u|21,K

))1/2

, (31)

i.e., for hK ≥ ε1/2 the order of the convergence is 1, for ε ≤ hK ≤ ε1/2 the order

increases to 3/2, whereas for hK ≤ ε the order decreases back to 1.

Theorem 4. Let divb = 0 and let there exists δ ∈ (0,4) such that (25) is sat-

isfied. Further, let there exist positive numbers κ ,L,R and β such that for all

s = 1,2, . . . ,P and j = 1,2, . . . ,Ns holds (27).

If the solution u of (1) satisfies u ∈ H2(Ω), then there exists constant C∗ > 0

independent of h and ε such that for the solution obtained by the method (11) it

holds
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|||u−uh|||b,∗ ≤ C∗
(

∑
K∈Th

min

{
hK ,max

{
h4

K

ε
,εh2

K

}}(
|u|22,K + |u|21,K

))1/2

, (32)

i.e., for hK ≥ ε1/3 the order of the convergence is 1/2, for ε ≤ hK ≤ ε1/3 the order

increases to 3/2, whereas for hK ≤ ε the order decreases from 3/2 to 1.

5 Numerical experiments

Example 1

Let us consider Ω ⊂ R
n and let P = [P1,P2, . . . ,Pn] ∈ R

n be any point such that

P 6∈ Ω . Further, let us choose any constant ω > 0 and define b(x) = ω
n
(P−x), i.e.,

bi(x) =
ω
n
(Pi − xi), where x = [x1,x2, . . . ,xn]. Then divb =−ω and the streamlines

of b are rays ending at the point P. Moreover, it can be shown, that for each ele-

ment K with one edge lying on the streamline holds θK = n−1
n

ω
n+1

< ω
n+1

. Thus, the

condition (23) is always satisfied, however, one cannot improve it to (25) or (30) by

mesh-refinig.

To be more specific, let us consider the equation (1) with n = 2, Ω = (0,0.9)2 ,

b= 1
2
(1−x,1−y)T and ε = 10−6. The right-hand side f and the boundary condition

are given by Figure 2 while the computed solution is depicted in Figure 3.

0 0.3 0.9 1

0.3

0.9

1

f=1

f=0

f=0
bu =1

Fig. 2 Definition of the Example 1.

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9  0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

 0

 0.5

 1

 1.5

 2

 2.5

Fig. 3 Solution of the Example 1.

Example 2

Let us consider the equation (1) with n = 2, Ω = (0.05,0.5)2, ε = 10−6 and b =(
1/
√

x2 + y2
)
(−y,x)T . The right-hand side f and the boundary condition are given

by Figure 4. The computed solution is depicted in Figure 5.
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b

f=0f=1

f=0

u=10.05

0.20

0.35

0.50

0.50

Fig. 4 Definition of the Example 1.

 0.05  0.1 0.15  0.2 0.25  0.3 0.35  0.4 0.45  0.5 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Fig. 5 Solution of the Example 2.

In order to demonstrate the discrete maximum principle property, we have com-

pared the new method with the SUPG method (Figures 6 and 7).

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Fig. 6 The SUPG Solution of the Example 2.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

Fig. 7 Solution obtained by the new method.

6 Conclusion

We have constructed a new method for solving singularly perturbed problems: we

added another stabilization term than in the SUPG method and adjusted the mesh so

that the discrete maximum principle is satisfied. We also derived error estimates in

appropriate energy norms. In spite of using first order finite elements it is also possi-

ble to extend the method to finite elements of higher orders. This extension and the

construction of a suitable mesh generator will be the subject of the future research.
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2. Lamač, J.: Adaptive methods for singularly perturbed partial differential equations. Doctoral

Thesis. Faculty of Mathematics and Physics, Charles University in Prague, expected in 2015.

3. Mizukami, A., Hughes, T.J.R.: A Petrov-Galerkin finite element method for convection-

dominated flows: An accurate upwinding technique for satisfying the maximum principle.

Comput. Methods in Appl. Mech. Engrg. 50, 181–193 (1985).

4. Roos, H.-G., Stynes, M., Tobiska, L.: Robust Numerical Methods for Singularly Perturbed

Differential Equations. 2nd edition. Berlin: Springer-Verlag 2008.


