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Abstract A Dirichlet problem is considered for a singularly perturbed ordinary dif-
ferential convection-diffusion equation with a perturbation parameter ε (ε ∈ (0,1])
multiplying the highest-order derivative in the equation. This problem is approxi-
mated by the standard monotone finite difference scheme on a uniform grid. Such a
scheme does not converge ε-uniformly in the maximum norm when the number of
grid nodes grows. Moreover, under its convergence, the scheme is not ε-uniformly
well conditioned and stable to data perturbations of the discrete problem and/or
computer perturbations. For small values of ε , perturbations of the grid solution can
significantly exceed (and even in order of magnitude) the error in the unperturbed
solution. For a computer difference scheme (the standard scheme in the presence
of computer perturbations), technique is developed for theoretical and experimen-
tal study of convergence of perturbed grid solutions. For computer perturbations,
conditions are obtained (depending on the parameter ε and the number of grid inter-
vals N), for which the solution of the computer scheme converges in the maximum
norm with the same order as the solution of the standard scheme in the absence of
perturbations.

1 Introduction

Numerical methods using classical finite difference schemes on uniform grids (stan-
dard difference schemes) (see., e.g., [3, 6] and the bibliography therein) are widely
used for solving complicated theoretical and applied problems. The problems with
boundary layers constitute a large class among such problems. Only for some (rather
narrow) class of singularly perturbed problems, special numerical methods are de-
veloped in which accuracy of solutions in the maximum norm does not depend on
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the parameter ε defining the width of the boundary layer (see., e.g., [2, 4, 5, 7, 8]
and the bibliography therein). For this reason, for solving large classes of problems
with boundary layers, as a rule, standard numerical methods are applied.

It is known that in the case of singularly perturbed problem, the solution of the
standard scheme in the absence of perturbations converges with the growing number
of grid nodes, provided that the step-size h in the mesh across the layer is much
less than the value of the perturbing parameter ε (ε ∈ (0,1], h = 1/N, h� ε , N
is the number of mesh intervals). For the modern “advanced” supercomputers, in
general, this theoretical condition seems not much restrictive. However, here a new
problem appears. Standard schemes do not converge ε-uniformly, moreover, under
their convergence, they are not ε-uniformly stable to data perturbations; in the case
of the convection-diffusion problem, see, e.g., [8, 9, 10, 11, 12] and the bibliography
therein.

In the process of solving the grid problem on a computer, perturbations of the
grid solution arise caused by computer perturbations. For small values of ε , such
perturbations of the grid solution can be comparable with the error in the unper-
turbed grid solution and even significantly exceed this error. Thus, the applicability
of standard schemes for numerical solving singularly perturbed problems requires a
detailed study.

In the present paper, in the case of the Dirichlet problem for a singularly per-
turbed ordinary convection-diffusion differential equation, an approach is proposed
to the development of technique for theoretical and numerical study of grid solu-
tions in the presence of computer perturbations. Results of numerical experiments,
illustrating the theoretical results, are presented and discussed. A number of results
related to the research subject is published in the papers [8, 9, 10, 11, 12]. Detailed
results of the research will be presented in the journal publication.

2 Problem formulation; standard difference scheme

On the set D = D∪Γ , D = (0,1), we consider the Dirichlet problem for the singu-
larly perturbed ordinary differential convection-diffusion equation 1

L(1)u(x)≡
{

εa(x)
d2

dx2 +b(x)
d
dx
− c(x)

}
u(x) = f (x), x ∈ D, (1)

u(x) = ϕ(x), x ∈ Γ .

Here Γ = Γ1 ∪Γ2, where Γ1 and Γ2 are the left and right parts of the boundary Γ ;
the functions a(x), b(x), c(x), f (x) are assumed to be sufficiently smooth on D,

1 The notation L( j) (M( j), Gh( j)) means that these operators (constants, grids) are introduced in
formula ( j).
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moreover2

m≤ a(x), b(x), c(x)≤M, | f (x)| ≤M, x ∈ D, |ϕ(x)| ≤M, x ∈ Γ ,

the parameter ε takes arbitrary values in (0,1]. For small values of the parameter ε ,
a boundary layer appears in a neighborhood of the set Γ1.

We consider a standard difference scheme on the uniform grid Dh with the
step-size h = 1/N, where N + 1 is the number of nodes x = xi in the grid Dh,
i = 0,1, . . . ,N. Problem (1) is approximated by the difference scheme [6]

Λz(x)≡ {ε a(x)δxx̂ +b(x)δx− c(x)}z(x) = f (x), x ∈ Dh, (2)

z(x) = ϕ(x), x ∈ Γh;

here Dh = D∩Dh, Γh = Γ ∩Dh, and δxx̂ z(x) is the central second-order difference
derivative, and δx z(x) is the forward first-order difference derivative.

For the error in the grid solution z(x)− u(x), we have the following estimate
under the conditions of Theorem 1 below (similar to estimate (3) in [10]):

‖u− z‖Dh
≤M

(
ε +N−1)−1

N−1, (3a)

from which, under the condition

N−1 = o(ε), (3b)

the next estimate follows:

‖u− z‖Dh
≤M ν ; ν = ν(ε,N) = ε

−1 N−1; (3c)

here ν is the parameter of accuracy for the unperturbed difference scheme.
The following theorem on convergence of the standard difference scheme (2)

holds (similar to Theorem 1 from [12]):

Theorem 1. Let the solution u(x) of the problem (1) satisfy the estimate

|dk/dxk u(x)| ≤M (1+ ε
1−k + ε

−k exp−mε−1 x), x ∈ D, k ≤ K, K = 3.

Then the solution of the standard finite difference scheme (2) converges to the solu-
tion u(x) of the boundary value problem provided (3b) with the estimate (3c); for
the solution of the scheme, estimate (3a) holds.

2 By M (or m), we denote sufficiently large (small) positive constants independent of the parameter
ε and of the discretization parameters.
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3 Standard difference scheme in the presence of computer
perturbations

3.1 Matrix forms of difference schemes

Standard difference scheme (2) has the following matrix form:

AY = F. (4)

Here A is a three-diagonal (N+1)× (N+1)-matrix (ai j); Y and F are vectors from
the space RN+1 with the uniform vector norm ‖ ·‖. The components of the matrix A
and vectors Y and F are determined by the relations

ai,i−1 =−ε h−2 a(xi), ai,i = 2ε h−2 a(xi)+h−1 b(xi)+ c(xi),

ai,i+1 =−ε h−2 a(xi)−h−1 b(xi), 2≤ i≤ N; Yi = z(xi), 1≤ i≤ N +1;

F1 = ϕ(x1), Fi =− f (xi), 2≤ i≤ N, FN+1 = ϕ(xN+1);

here xi = xi+1, xi ∈ Dh, and a1,1 = aN+1,N+1 = 1.
For difference scheme (2) in the presence of data perturbations, we have the

following matrix form:
A∗Y ∗ = F∗. (5)

Here A∗ is the perturbed matrix (a∗i j), Y ∗ and F∗ are perturbed vectors, A∗ = A+δA,
Y ∗ = Y + δY , F∗ = F + δF . In the componentwise notation of the matrix δA and
the vectors δF and δY , we have

δai,i−1 =−ε h−2
δai−1

i , δaii = 2ε h−2
δai

i +h−1
δbi

i +δci
i, (6)

δai,i+1 =−ε h−2
δai+1

i −h−1
δbi+1

i , 2≤ i≤ N;

δF1 = δϕ(x1), δFi =−δ f (xi), 2≤ i≤ N, δFN+1 = δϕ(xN+1); δYi = δ z(xi).

3.2 Estimates for computer perturbation and solution

We denote by 4 the parameter characterizing “allowable” perturbations caused by
computer calculations.

Let z∗4(x),x ∈Dh be the solution of the difference scheme in the presence of data
perturbations, i.e., the solution of the difference scheme in the matrix form (5), (6)
under the condition that the data perturbations satisfy the following condition (see
[10, 12]):

|δa j
i |, |δb j

i |, |δci
i|, |δ f (xi)| ≤ 4, 2≤ i≤ N; |δϕ(xi)| ≤ 4, i = 1,N +1. (7)
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For the grid function z∗4(x)− z(x), i.e., the perturbation of the grid solution z(x)
caused by computer perturbations (or, in short, the computer perturbation), using a
technique in [1] (§13), we obtain the following estimate in the variables ε,δ ,4:

‖ z∗4− z ‖Dh
≤M ε

−1
δ
−24. (8a)

This estimate is equivalent to the following estimate in the variables ε,N,4:

‖ z∗4− z ‖Dh
≤M ε N24. (8b)

For the error in the computer solution z∗M(x)−u(x), by virtue of the estimate

‖ u− z∗4 ‖Dh
≤ ‖ u− z ‖Dh

+ ‖ z∗4− z ‖Dh
(9a)

taking into account estimates (3), (8), we obtain the estimate in the variables ε , δ ,
4:

‖ u− z∗4 ‖Dh
≤M1 δ +M2 ε

−1
δ
−24 ≤M

[
δ + ε

−1
δ
−24

]
, (9b)

where M1 = M(3), M2 = M(8a). In the variables ε , N,4, we have the estimate

‖ u− z∗4 ‖Dh
≤M1 (ε +N−1)−1 N−1 +M2 ε N24. (9c)

The following theorem is valid (similar to Theorem 5 from [12]):

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then for the computer
perturbation z∗4(x)− z(x) and the error in the computer solution z∗4(x)− u(x), the
estimates (8) and (9) hold, respectively.

4 Numerical investigation of model boundary value problem

For a model boundary value problem, using results of numerical experiments, we
study errors in the grid solution z(x)− u(x) and computer perturbations; results of
numerical experiments are compared with theoretical results.

4.1 Difference schemes for model boundary value problem

Consider the boundary value problem

L(10)u(x)≡
{

εa(x)
d2

dx2 +b(x)
d
dx

}
u(x)= f (x), x ∈ D, (10)

u(x)=ϕ(x), x ∈ Γ .
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Here D = [0,1], a(x) = 1, b(x) = 2, f (x) =−2, ϕ(x) = 0. The solution of problem
(10) is written out explicitly:

u(x) = (1− e−2ε−1
)−1 (1− e−2ε−1 x)− x, x ∈ D.

We approximate problem (10) by the standard difference scheme

Λz(x)≡ {ε δxx̂ +2δx}z(x) =−2, x ∈ Dh, z(x) = 0, x ∈ Γh. (11)

In the case of perturbations in the data, the following perturbed standard differ-
ence scheme corresponds to difference scheme (11):

Λ ∗ z∗(x)≡ {ε a∗(x)δxx̂ +b∗(x)δx} z∗(x) = f ∗(x), x ∈ Dh,

z∗(x) = ϕ∗(x), x ∈ Γh.
(12a)

The perturbed data in the scheme (12) are determined by the relations

a∗(x) = a(10)(x)+δai
i+1, b∗(x) = b(10)(x) = 2,

f ∗(x) = f(10)(x) =−2, x = xi, xi ∈ Dh; (12b)

ϕ
∗(x) = ϕ(10)(x) = 0, x ∈ Γh,

i.e., the coefficient of the second derivative is only perturbed, and only in the left
node of the three-point pattern. In numerical experiments, we set

δai
i+1 =−δa, δa = 10−8; i = 1, 2, . . . , N−1. (12c)

This corresponds to the difference scheme in the presence of computer perturbations
in the case of condition (7), where δa =4, and4= 10−8. Thus, we have z∗4(x) =
z∗(12)(x).

In the case of boundary value problem (10), we are interested in the behavior of
the error in the solution of standard difference scheme (11)

δu = δu(ε,N) =‖ u− z ‖Dh
(13a)

and the perturbations in the solution of computer difference scheme (12)

δz = δz(ε,N;4) =‖ z∗4− z ‖Dh
(14a)

depending on the parameter ε , the number of grid intervals N and the value 4, as
well as the comparison of the experimental with the theoretical results.

Technique to study δu = δu(ε,N) is well known (see., e.g., [2], Ch. 2 for the
convection-diffusion problem). In a similar way, studying δz = δz(ε,N;4) is per-
formed.

Tables of errors in the solution of the difference scheme and perturbations in the
solution of the computer scheme in the variables ε and N have sufficiently compli-
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cated character making it difficult to analyze the computer difference scheme. The
results obtained are qualitatively consistent with estimate (3c) from Theorem 1 and
with estimate (8b) from Theorem 2, but they are not shown here. Instead the results
in the variables ε and N, in the next subsection, results of numerical experiments
are presented in other (automodel) variables, which makes the obtained numerical
results informative.

4.2 Study of errors in standard and computer schemes in the
automodel variables

For model boundary value problem (10), we discuss the behavior of the error in the
solution of the standard scheme and the computer perturbation of the grid solution
with regard to their theoretical estimates (3c) and (8b).

Consider the error in the solution of the standard scheme (11), using the vari-
ables ε and β , where β = ε N is the automodel variable in the case of the standard
difference scheme (11).

Table 1 Errors in the grid solution δ u = δ u(ε,β ) of the standard scheme (11) for
various values ε and β , and also the value {β max

ε
δ u(ε,β )} for various values β

ε \ β 20 22 24 26 28 210

1 3.96e−2 1.27e−2 3.37e−3 8.54e−4 2.14e−4

2−2 1.90e−1 7.59e−2 2.17e−2 5.64e−3 1.42e−3 3.57e−4

2−4 1.98e−1 7.65e−2 2.18e−2 5.67e−3 1.43e−3 3.59e−4

2−6 1.98e−1 7.65e−2 2.18e−2 5.67e−3 1.43e−3 3.59e−4

2−8 1.98e−1 7.65e−2 2.18e−2 5.67e−3 1.43e−3 3.59e−4

2−10 1.98e−1 7.65e−2 2.18e−2 5.67e−3 1.43e−3 3.59e−4

{β max
ε

δ u(ε,β )} 0.198 0.306 0.358 0.366 0.368 0.369

In Table 1, errors in the grid solution δ u = δ u(ε,β ) of the standard scheme (11)
are given for various values ε and β , where β = β (ε, N) = ε N. Here also the values
{β max

ε
δ u(ε, β )} are given for various values β . Note that

δ u = δ u(ε,β ) = δ u(ε,β (ε, N)) = δu(13)(ε, N).

From the numerical experiments it follows that for a fixed β , the values δ u(ε,β )
rather weakly depend on the values of the parameter ε and they stabilize quickly
with decreasing ε . The values {β max

ε
δ u(ε, β )} are weakly dependent on β , and
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they stabilize quickly with increasing of β ; the maximum of these values does not
exceed 0.369.

Thus, in the case of the model problem, for the error in the grid solution
δu(13)(ε, N), using the results in Table 1, we obtain the experimental estimate

δu(ε, N)≤M1 ε
−1 N−1, (13b)

where (according to Table 1) we have

M1 = max
β

{β max
ε

δ u(ε, β )} ≈ 0.369.

The estimate (13) for the error in the solution of the standard difference scheme (11)
is fully consistent with the estimate (3c) from Theorem 1.

Consider the computer perturbations, using the variables ε and γ , where γ = ε N2

is the automodel variable in the case of the computer difference scheme (12).
In Table 2, computer perturbations of the grid solutions δ̃z = δ̃z(ε, γ;4) are

given for various values ε and γ , where γ = γ(ε, N) = ε N2. Here also the values
{(γ4)−1 max

ε
δ̃z(ε, γ; 4)} are given for various values γ . Note that

δ̃z = δ̃z(ε, γ;4), δ̃z(ε, γ(ε, N); 4) = δz(14)(ε, N; 4).

Table 2 Perturbations of the grid solution δ̃z = δ̃z(ε,γ;4) of scheme (12) for various
values ε and γ , and also the values {(γ4)−1 max

ε
(δ̃z(ε,γ;4))} for various values γ

ε\γ 28 210 212 214 216 218

1 5.35e−8 2.24e−7 9.18e−7 3.71e−6 1.49e−5 5.98e−5

2−2 3.15e−7 1.29e−6 5.22e−6 2.10e−5 8.42e−5 3.37e−4

2−4 5.16e−7 2.07e−6 8.32e−6 3.33e−5 1.33e−4 5.34e−4

2−6 5.93e−7 2.38e−6 9.54e−6 3.82e−5 1.53e−4 6.12e−4

2−8 6.22e−7 2.49e−6 9.99e−6 4.00e−5 1.60e−4 6.41e−4

2−10 6.33e−7 2.53e−6 1.01e−5 4.06e−5 1.62e−4 6.51e−4

{(γ4)−1 max
ε

(δ̃z(ε,γ;4))} 0.247 0.249 0.249 0.249 0.249 0.250

From Table 2, it follows that, for fixed values γ , the computer perturbations
δz = δ̃z(ε, γ; M) sufficiently weakly depend on the parameter ε , moreover, they
are stabilized quickly with decreasing ε . For fixed values ε , the perturbations
δ̃z(ε, γ; 4) change significantly with increasing γ; these perturbations grow with
increasing γ at the rate close to linear one for all values ε . Here also the values
(ratio)

{(γ4)−1 max
ε

(δ̃z(ε, γ; 4))}
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are given for various values γ . These values weakly depend on the γ , and they sta-
bilize quickly with increasing γ; the maximum of that ratio does not exceed a value
of 0.250.

Thus, in the case of the model problem for the computer perturbations
δz(ε,N;4), using the results in Table 2, we obtain the experimental estimate in
the variables {ε, N, 4}

δz(ε,N;4)≤M2 ε N24, (14b)

where (according to Table 2) we have

M2 = max
γ
{(γ4)−1 max

ε
(δ̃z(ε,γ;4))} ≈ 0.250.

The estimate (14) is fully consistent with the estimate (8b) from Theorem 2.

4.3 On convergence of the computer solution

Taking into account the estimates (13), (14), for the error of the perturbed computer
solution δ ∗u = δ ∗u/4 = ‖u−z∗4‖, we obtain the experimental estimate in the variables
{ε, N, 4}:

δ
∗
u ≤M1 (ε +N−1)−1 N−1 +M2 ε N24, (15)

M1 ≈ 0.369, M2 ≈ 0.250. The estimate (15) is fully consistent with the estimate (9c)
from Theorem 2.

The estimate (15) which is unimprovable with respect to order of incoming val-
ues, allows us to specify conditions imposed on the computer perturbations under
which the computer solution converges to the solution of the boundary value prob-
lem with the same convergence order as the solution of the standard scheme in the
absence of perturbations. From the estimate (15), it follows that provided

4≤M ε
−2 N−3 (16a)

for the computer solution z∗4(x), the following estimate holds

‖u− z∗4‖ ≤M ε
−1 N−1, (16b)

which is the same in order as the estimate (3) for the solution z(x) of the unperturbed
difference scheme (2).

5 Conclusions

For the Dirichlet problem for a singularly perturbed ordinary differential convection-
diffusion equation, a technique is presented for theoretical and experimental studies
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of influence of the computer perturbations on the perturbations of the grid solu-
tions. The results of numerical experiments are also showed and analyzed. For the
computer perturbations, conditions are obtained under which the solution of the
computer scheme converges in the maximum norm with the same accuracy order
as the solution of the standard scheme in the absence of perturbations. The fulfill-
ment of these conditions allows one to use standard schemes for solving singularly
perturbed problems. The obtained experimental results are consistent with the theo-
retical results.
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