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Abstract In this work we deal with a different technique from the considered one
in [1,3], to analyze the uniform convergence of some numerical methods which
have been used to solve successfully two dimensional parabolic singularly perturbed
problems of convection-diffusion type. For getting this, we split the discretization
methods in a two stage procedure where, firstly, we semidiscretize in space, using
the classical upwind scheme on a piecewise uniform Shishkin mesh, and, secondly,
we integrate in time the Initial Value Problems derived from the first stage, by using
the implicit Euler method. The analysis combines a suitable maximum semidiscrete
principle joint to some well known techniques used in the proof of the uniform
convergence of numerical schemes for elliptic singularly perturbed problems. We
prove that the stiff initial value problems resulting of the spatial semidiscretization
processes, have a unique solution which converges uniformly with respect to the
singular perturbation parameter. Using this technique, some restrictions among the
discretization parameters, which appeared in the uniform convergence analysis in
[3], can be removed. Some numerical results corroborate in practice the robustness
of the numerical method, according to the theoretical results.

1 Introduction

Let us consider 2D time-dependent convection-diffusion problems modeled by the
PDE
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∂u
∂ t
− ε∆u+−→v ·

−→
∇ u+ ku = f (x,y, t),

where the diffusion parameter ε , 0 < ε ≤ 1, can be very small and let us deal with
the efficient numerical integration of them. Although the proposed technique can be
extended to several interesting situations, here we consider only the case

−→v ≡ (v1(x,y),v2(x,y)), with vi(x,y)≥ v > 0, i = 1,2,k ≡ k(x,y)≥ 0. (1)

We assume that sufficient smoothness and compatibility conditions between data
hold in order to the solution is four times derivable in space and twice in time.

It is well known that, in general, the solution of these problems has a multiscale
character even for smooth data and, usually, regular boundary layers at x = 1,y = 1
of width O(ε) appear in the outflow boundary; as well, other types of layers can
appear depending on the geometry of the domain (see [5, 7, 9]). In such cases, stan-
dard finite difference or finite element methods, defined on uniform meshes, are
shown inappropriate to solve the problem unless a large number (ε-dependent) of
mesh points is considered. To find precise approximations, even inside the layers,
using meshes with a number of grid points which does not depend of the size of
ε , it is necessary to use uniformly convergent methods. For them, the rates of con-
vergence and the error constants of the methods are independent of ε . To construct
a uniformly convergent scheme, we use a fitted mesh method (see [7, 9]), which
concentrates appropriately the grid points in the boundary layer regions.

Numerical methods for 2D singularly perturbed elliptic problems have been de-
veloped and analyzed in many papers (see [2, 6, 8] and references therein). For 2D
time dependent problems, in [1, 3] the fully discrete numerical scheme is defined
and analyzed as a two step discretization process, discretizing firstly only in time
and later on in space. Nevertheless, in the proof of the uniform convergence of the
method there are some drawbacks related to the uniform stability of the spatial dis-
cretization process and, sometimes, a ratio between the discretization parameters,
which does not appear in the numerical experiments, is needed in the theoretical
analysis. To avoid these difficulties, here we consider an alternative technique of
analysis, discretizing first in space and, later on, integrating in time the resulting
stiff Initial Value Problems.

The paper is structured as follows: in section 2, we introduce the spatial dis-
cretization of the continuous problem on a special nonuniform mesh of Shishkin
type. In section 3 we prove almost first order uniform convergence for the spa-
tial semidiscretization. In section 4 we introduce the time discretization and, con-
sequently, define the numerical algorithm, proving also its uniform convergence.
Finally, in section 5 we include the numerical results obtained in two different ex-
amples, showing the influence of the compatibility conditions between data.

Henceforth, C denotes a generic positive constant independent of the diffusion
parameter ε and also of the discretization parameters N and M.
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2 Spatial semidiscretization

Let us consider the following initial-boundary value problem

L u≡ ∂u
∂ t

+Lε u = f , in Ω × (0,T ],

u(x,y,0) = ϕ(x,y), in Ω ,

u(x,y, t) = g(x,y, t), in ∂Ω × [0,T ],

(2)

where Ω ≡ (0,1)× (0,1), and the spatial differential operator Lε is given by

Lε u≡−ε∆u+−→v ·
−→
∇ u+ ku, (3)

together with the asumptions given in (1)
For this case, we will assume the following smoothness and compatibility condi-

tions:

f ∈ C 2,1(Ω̄ × [0,T ]),ϕ ∈ C 4(Ω̄),

{g(0,y, t),g(1,y, t),g(x,0, t),g(x,1, t)} ⊂ C 4,2([0,1]× [0,T ]),
(4)

g(x,y,0) = ϕ(x,y), (x,y) ∈ ∂Ω ,

∂g
∂ t

(x,y,0) = f (x,y,0)−Lε ϕ(x,y), (x,y) ∈ ∂Ω ,

∂ 2g
∂ t2 (x,y,0) =

∂ f
∂ t

(x,y,0)−Lε f (x,y,0)+L 2
ε ϕ(x,y), (x,y) ∈ ∂Ω ,

(5)

and

∂g
∂ t

(x,y, t)+Lε g(x,y, t) = f (x,y, t),(x,y) ∈ {(0,0),(0,1),(1,0),(1,1)}, t ∈ [0,T ]
(6)

A finite difference spatial semidiscretizaton of (2) provides approximations of
u(xi,y j, t), where (xi,y j), i, j = 0, . . . ,N, are the grid points of a rectangular mesh
Ω N . For simplicity, we take the same number of mesh points in both space direc-
tions.

Let us denote [.]N the restriction of a function defined on Ω to Ω N and let
uN(t) be a semidiscrete function defined in Ω N which approaches the exact solu-
tion u(xi,y j, t) of (2) for all (xi,y j) ∈Ω N . Typically, uN(t) is defined as the solution
of an IVP of the form

u′N(t)+Lε,NuN(t) = [ f̃ ]N ,

uN(0) = [ϕ]N ,
(7)

where Lε,N is a finite difference approximation of the elliptic operator Lε and

[ f̃ ]N(xi,y j, t)≡

{
f (xi,y j, t), (xi,y j) ∈ΩN ,

g(xi,y j, t)+
∂g
∂ t

(xi,y j, t), (xi,y j) ∈ ∂ΩN .
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The first step to define the scheme is the choice of a suitable mesh Ω N . Such
mesh will be described as a tensor product of one dimensional meshes, i.e., Ω N ≡
Ix,ε,N× Iy,ε,N ⊂Ω , where Ix,ε,N = {0 = x0 < x1 < · · ·< xN = 1}, Iy,ε,N = {0 = y0 <
y1 < · · ·< yN = 1}. We show the details of the construction of Ix,ε,N and analogously
it can be done for Iy,ε,N . Let us take N as a multiple of four. We define the transition
parameter

σx = min(
1
2
, mxε lnN), (8)

where mx≥ 1
v ; then, we construct a piecewise uniform mesh with N

2 +1 equidistant
points in [0,1−σx] and the same in [1−σx,1]. Therefore, the mesh points are given
by

xi =

 i
2(1−σx)

N
, i = 0, · · · , N

2
,

1−σx +(i− N
2
)

2σx

N
, i =

N
2
+1, · · · ,N.

(9)

On this mesh we consider the simple upwind finite difference scheme, which is
defined as follows:

Lε,NuN(t)(xi,y j)≡ li, j−uN(t)(xi,y j−1)+ li−, juN(t)(xi−1,y j)+

li+, juN(t)(xi+1,y j)+ li, juN(t)(xi,y j)+ li, j+uN(t)(xi,y j+1), i, j = 1, . . . ,N−1,

Lε,NuN(t)(xi,y j)≡ uN(xi,y j, t), i = 0,N or j = 0,N,
(10)

where

li−, j =
−ε

hx,ih̃x,i
−

v1(xi,y j)

hx,i
, li+, j =

−ε

hx,i+1h̃x,i
, (11)

li, j− =
−ε

hy, jh̃y, j
−

v2(xi,y j)

hy, j
, li, j+ =

−ε

hy, j+1h̃y, j
,

li, j = k(xi,y j)− li, j−− li−, j− li+, j− li, j+,

with hx,i = xi− xi−1, hy, j = y j − y j−1, h̃x,i = (hx,i + hx,i+1)/2, i = 1, · · · ,N, h̃y, j =
(hy, j +hy, j+1)/2, j = 1, · · · ,N.

The following result (see [4] for full details of the proof) is one of the main keys
in the analysis of the uniform convergence of the spatial semisdiscretization.

Lemma 1. Let us suppose that Lε,N is an inverse monotone and consistent operator
of the form (10). If [ f (x,y, t)]N ≤ 0, [ϕ(x,y)]N ≥ 0, for any (x,y) ∈ Ω N and any
t ∈ [0,T ], and g(x,y, t) ≥ 0 for any (x,y) ∈ ∂ΩN ≡ Ix,ε,N ×{0,1}

⋃
{0,1}× Iy,ε,N

and any t ∈ [0,T ], then the solution of (7) achieves its maximum value at the discrete
initial condition or at the discrete boundary ∂ΩN× [0,T ], i.e., it holds

max
(x,y,t)∈Ω N×[0,T ]

{uN(t)(x,y)} ≤ max
(x,y)∈Ω N , (x,y,t)∈∂ΩN×[0,T ]

{ϕ(x,y),g(x,y, t)}. (12)



2D parabolic singularly perturbed problems 5

From this result, we can deduce (see [4]) the following corollary, proving the uni-
form stability of the semidiscretization.

Corollary 1. (inverse monotonicity of the semidiscrete operator). If a semidis-
crete function ψ defined on ΩN × [0,T ] is less or equal to zero at the initial
points (xi,y j,0) and also on the points belonging to ∂ΩN × [0,T ], and it satis-
fies that ψ ′(t)(x,y)+(Lε,Nψ(t))(x,y)≤ 0, ∀ (x,y, t) ∈ΩN× [0,T ], then, it holds
ψ(t)(x,y)≤ 0 ∀ (x,y, t) ∈Ω N× [0,T ].

Moreover, there exists a constant C, depending only on v, such that

‖uN(t)‖∞,N ≤max{‖[ϕ]N‖∞,N ,G}+C max
t∈[0,T ]

‖[ f (x,y, t)]N‖∞,N ,

where
‖ψ‖∞,N ≡ max

(x,y)∈Ω N

|ψ(x,y)|,

and
G = max

(x,y,t)∈∂Ωn×[0,T ]
|g(x,y, t)|.

To obtain the uniform convergence of the scheme we must bound, uniformly in
ε , the global error

eNu(t) = [u(t)]N−uN(t).

For getting this, we start by analyzing the local truncation error

τNu(t) = [(
∂

∂ t
+Lε)u(t)]N− (

d
dt

+Lε,N)[u(t)]N .

Note that this error admits an immediate simplification to

τNu(t) = [Lε u(t)]N−Lε,N [u(t)]N ,

and therefore the analysis of the consistency for the space semidiscretization of
problem (2) is essentially identical to the analysis performed for its corresponding
stationary version. For such problems, in [3] it was proven that u can be decomposed
in the form u = u0 + w, where u0 is the regular part of u and w is the singular
component, which can also be decomposed in the form w = u1 + u2 + u3, where
u1, u2 are the regular layer functions near x = 1 and y = 1 respectively and u3 is
the corner layer function. Also in [3] appropriate bounds of the derivatives of the
regular and singular components were proved.

Imitating these decompositions of the continuous problem, we decompose the
numerical solution of the upwind scheme in a similar way, i.e.,

uN(t) = u0,N(t)+
3

∑
p=1

up,N(t),

where
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u′0,N(t)+Lε,Nu0,N(t) = [ f ]N ,

u0,N(0) = [u0]N ,u′p,N(t)+Lε,Nup,N(t) = [gp +
∂g
∂ t

]N , p = 1,2,3,

up,N(0) = [up]N , p = 1,2,3

where g1,g2 contain evaluations of certain boundary conditions at the two outflow
sides of Ω (x = 1 and y = 1), and g̃3 contains evaluations of boundary conditions at
the corner (1,1).

Then, (see [4, 6] for full details), using the barrier function technique and the
appropriate bounds for the truncation errors associated to the components of the
exact and the numerical solution introduced before, it can be deduced that

‖eNu(t)‖∞,N ≤CN−1 lnN,

proving that the space semidiscretization is uniformly convergent of almost first
order.

3 Time integration: the fully discrete scheme

After the spatial semidiscretization stage introduced and analyzed in previous sec-
tion, to obtain a fully discrete scheme we discretize in time the IVP resulting of the
first stage. To get this with a uniform behavior, both in N and ε , the simplest scheme
is the backward Euler method. Let tm = mτ , where τ = T/M (for simplicity we
consider a uniform mesh in time); then, using the Euler method, the fully discrete
scheme is given by

um
N−um−1

N
τ

+Lε,Num
N = [ f̃ ]N(tm), m = 1, . . . ,M,

u0
N = [ϕ]N .

(13)

or equivalently by

(IN + τLε,N)um
N = um−1

N + τ[ f̃ ]N(tm), m = 1, . . . ,M,

u0
N = [ϕ]N .

(14)

Lemma 2. Operators IN + τLε,N are inverse monotone and it holds

‖(IN + τLε,N)
−1‖∞,N ≤ 1. (15)

From Lemma 2, it immediately follows the next result, proving the numerical
stability as well as the contractivity of the method.

Corollary 2. If we consider the perturbed problem
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ũm
N− ũm−1

N
τ

+Lε,N ũm
N = [ f̃ ]N(tm)+δ

m,m = 1, . . . ,M,

ũ0
N = [ϕ]N + τδ 0,

then it holds that

‖ũm
N−um

N‖∞,N ≤ τ

m

∑
i=o
‖δ i‖∞,N .

Moreover, if f = 0,g = 0 in the continuous problem (2), then it holds

‖um
N‖∞,N ≤ ‖um−1

N ‖∞,N .

Now, let us introduce the local truncation error at time tm for method (13) by

em
N = uN(tm)− (IN + τLε,N)

−1(uN(tm−1)+ τ[ f̃ ]N(tm)).

Then, it can be proved the following result of uniform consistency (see [4]).

Lemma 3. The local truncation error satisfies

‖em
N‖∞,N ≤Cτ

2, (16)

being C a constant independent of ε and N.

Jointing the previous results of uniform consistency and stability, for the global
error of the time integration process

Em
N = uN(tm)−um

N ,

we deduce the following result, proving the first order uniform convergence for it.

Lemma 4. The global error satisfies

‖Em
N ‖∞,N ≤CM−1, (17)

being C a constant independent of ε and N.

Finally, combining the main results of this section and the previous one, we de-
duce the next uniform and unconditional convergence result for our proposal.

Theorem 1. Assuming that the solution of the continuous problem (2) satisfies that
u ∈ C 4,2(Ω̄ × [0,T ]), the global error, associated to the numerical method (14),
satisfies

max
1≤i, j≤N,1≤m≤M

|u(xi,y j, tm)−um
N(xi,y j)| ≤C

(
N−1 lnN +M−1) .

Proof. Using that

u(xi,y j, tm)−um
N(xi,y j)

= (u(xi,y j, tm)−uN(tm)(xi,y j))+(uN(tm)(xi,y j)−um
N(xi,y j)) ,
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the result follows from the uniform convergence results of section 2 and Lemma 4.
ut

Remark 1. Note that we have proved the uniform convergence of the fully discrete
scheme without any ratio between the two discretization parameters N and M, in
contrast with the results previously proved in [1, 3].

4 Numerical experiments

The first example is given by

ut − ε∆u+
(

1− xy
2

)
ux +

(
1+

xy
2

)
uy = f (x,y, t), (x,y, t) ∈Ω × [0,1],

u(0,y, t) = u(1,y, t) = 0, y ∈ [0,1], t ∈ [0,1]

u(x,0, t) = u(x,1, t) = 0, x ∈ [0,1], t ∈ [0,1]

u(x,y,0) = 0, x,y ∈ [0,1],

(18)

with f (x,y, t) = t(1− et)(cos(πxy/2)−1+ xy).
To approximate the maximum pointwise errors, we use a variant of the two-mesh

principle. Then, we calculate {ûN}, the numerical solution on the mesh {(x̂i, ŷ j, t̂n)}
containing the original mesh points and its midpoints, i.e.,

x̂2i = xi, i = 0, . . . ,N, x̂2i+1 = (xi + xi+1)/2, i = 0, . . . ,N−1,
ŷ2 j = y j, j = 0, . . . ,N, ŷ2 j+1 = (y j + y j+1)/2, j = 0, . . . ,N−1,

t̂2m = tm, m = 0, . . . ,M, t̂2m+1 = (tm + tm+1)/2, m = 0, . . . ,M−1.

The maximum errors at the mesh points of the coarse mesh are approximated by
computing the following two-mesh differences

dN,M = max
0≤m≤M

max
0≤i, j≤N

|uN(xi,y j, tm)− ûN(xi,y j, tm)|,

and the orders of convergence are calculated by

q = log(dN,M/d2N,2M)/log2.

From the double-mesh differences we obtain the uniform maximum errors by

dN,M = max
ε

dN,M,

and from them, in a usual way, the corresponding numerical uniform orders of con-
vergence by

quni = log
(
dN,M/d2N,2M)/log2.
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To solve the linear system associated to the full discrete method at each time level,
we use the BI-CGSTAB algorithm with a relaxed incomplete LU-factorization (see
[10]) applied to a pentadiagonal matrix, with a tolerance equal to 1.e−10.

Table 1 displays the results obtained in this case; the numerical orders show a
slow approaching to 1 as long as N increases, which is typical when the logarithmic
factor appears. This behavior of the errors is related with the election which we
have made of the parameters N and M; then, the errors associated to the spatial
semidiscretization stage dominate in the global error of the numerical scheme in this
experiment. Other elections of the discretization parameters, with N much larger for
the same M, will cause that the error in time dominates and, consequently, values
much closer to 1 for the numerical orders of convergence will be observed.

Table 1 Maximum errors and orders of convergence for example (18)

ε N=16 N=32 N=64 N=128 N=256
M=8 M=16 M=32 M=64 M=128

2−6 0.7137E-2 0.4236E-2 0.2329E-2 0.1216E-2 0.6193E-3
0.753 0.863 0.938 0.973

2−8 0.7773E-2 0.4747E-2 0.2677E-2 0.1426E-2 0.7345E-3
0.711 0.826 0.909 0.957

2−10 0.7964E-2 0.4933E-2 0.2803E-2 0.1495E-2 0.7721E-3
0.691 0.816 0.906 0.954

2−12 0.8015E-2 0.4984E-2 0.2839E-2 0.1518E-2 0.7864E-3
0.685 0.812 0.903 0.949

2−14 0.8028E-2 0.4997E-2 0.2848E-2 0.1525E-2 0.7909E-3
0.684 0.811 0.902 0.947

2−16 0.8031E-2 0.5000E-2 0.2851E-2 0.1526E-2 0.7921E-3
0.684 0.811 0.901 0.946

dN,M 0.8031E-2 0.5000E-2 0.2851E-2 0.1526E-2 0.7921E-3
quni 0.684 0.811 0.901 0.946

The second example is given by

ut − ε∆u+
(

1− xy
2

)
ux +

(
1+

xy
2

)
uy = f (x,y), (x,y, t) ∈Ω × [0,1],

u(0,y, t) = u(1,y, t) = sin(πy), y ∈ [0,1], t ∈ [0,1]

u(x,0, t) = u(x,1, t) = sin(πx), x ∈ [0,1], t ∈ [0,1]

u(x,y,0) = sin(πx)+ sin(πy), x,y ∈ [0,1],

(19)

and f (x,y, t) is the same as in the first example.
Table 2 displays the results obtained in this case; again we observe a uniformly

convergent behavior in them, but a reduction in the numerical orders of convergence
appears due to some of the compatibility conditions (5), (6) are not fulfilled. The
influence of such incompatibilities, which causes a lack of smoothness in u(x,y, t)
and a subsequent reduction in the order of convergence of its numerical approaches,
will be the subject of future studies.
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Table 2 Maximum errors and orders of convergence for example (19)

ε N=16 N=32 N=64 N=128 N=256
M=8 M=16 M=32 M=64 M=128

2−6 0.3837E+0 0.2858E+0 0.1931E+0 0.1194E+0 0.6812E-1
0.425 0.566 0.694 0.810

2−8 0.4304E+0 0.3386E+0 0.2534E+0 0.1771E+0 0.1148E+0
0.346 0.418 0.517 0.626

2−10 0.4419E+0 0.3546E+0 0.2760E+0 0.2036E+0 0.1424E+0
0.318 0.362 0.439 0.516

2−12 0.4447E+0 0.3594E+0 0.2820E+0 0.2117E+0 0.1524E+0
0.307 0.350 0.414 0.475

2−14 0.4455E+0 0.3606E+0 0.2835E+0 0.2139E+0 0.1552E+0
0.305 0.347 0.407 0.463

2−16 0.4456E+0 0.3609E+0 0.2839E+0 0.2144E+0 0.1559E+0
0.304 0.346 0.405 0.460

dN,M 0.4456E+0 0.3609E+0 0.2839E+0 0.2144E+0 0.1559E+0
quni 0.304 0.346 0.405 0.460
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