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Abstract In this work we present the numerical analysis and study the performance
of a finite element projection-based Variational MultiScale (VMS) turbulence model
that includes general non-linear wall laws. We introduce Lagrange finite element
spaces adapted to approximate the slip condition. The sub-grid effects are modeled
by an eddy diffusion term that acts only on a range of small resolved scales. More-
over, high-order stabilization terms are considered, with the double aim to guarantee
stability for coarse meshes, and help to counter-balance the accumulation of sub-
grid energy together with the sub-grid eddy viscosity term. We prove stability and
convergence for solutions that only need to bear the natural minimal regularity, in
unsteady regime. We also study the asymptotic energy balance of the system. We fi-
nally include some numerical tests to assess the performance of the model described
in this work.

1 Introduction

This paper deals with the numerical analysis and study of performance of a fi-
nite element projection-based VMS model with wall laws in unsteady regime. The
projection-based VMS-LES turbulence models (Cf. [20, 21, 22, 23]) are three-
level methods with large, sub-filter (resolved) scales and small un-resolved scales.
In particular, we will address a multi-scale Smagorinsky modeling of the eddy
viscosity, which contains the restriction to the sub-filter scales through a pro-
jection/interpolation operator.
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Dpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Spain, e-mail:
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The simulation of wall-bounded flows with VMS models may become very expen-
sive in terms of computational resources due to the computation of boundary layers,
as this requires very fine meshes in the normal direction to the wall (see, for in-
stance, John and Kindl [25], Bazilevs et al. [3]). A way to overcome this difficulty,
recently applied to VMS models, is to weakly impose no-slip boundary conditions
(Cf. [4, 5]), that consistently incorporate the “law of the wall” in a weak sense. How-
ever, this requires to solve the flow in the whole physical domain (the advantage is
the use of uniform meshes vs. stretched meshes, but there is no reduction in number
of degrees of freedom). An alternative is the strong imposition of wall laws, which
in their turn replace the usual no-slip boundary conditions by modeled conditions
that set the stress of the flow at some distance from the wall. This directly permits
to avoid the quite costly calculation of the flow near the wall, reducing the computa-
tional domain with respect to the physical one (the computational boundary is now
inside the physical boundary layer). In this paper, we focus on the combined use of
VMS-LES models with general non-linear wall-law boundary conditions (strongly
imposed), in the context of the Finite Element Method (FEM).

In particular, we consider a finite element projection-based VMS model that only
needs a (fine) grid and interpolation operators on a virtual coarser grid. The large
scales are represented in the coarse grid, while the sub-filter scales are their comple-
ment into the fine grid. The eddy diffusion term has a projection structure to filter
out the large scales and let the eddy diffusion act only on the sub-filter resolved
scales. We use high-order term-by-term stabilization to stabilize each single term
that could lead to unstable discretizations (e.g. convection, pressure gradient), with
high accuracy (Cf. [9, 10, 13]). This allows in particular to use polynomials of the
same degree to interpolate velocity and pressure. The used stabilization procedure
perfectly fits into the VMS framework. The model includes mixed Dirichlet - wall-
law boundary conditions to take into account inflow and solid wall boundaries at the
same time.

We perform a numerical analysis of this approximation in unsteady regime (See
[12, 33] for the numerical analysis of the steady version of the proposed model). We
consider a full space-time discretization, semi-implicit in time. In the framework of
this discretization, we prove stability and weak convergence for solutions that only
bear the natural minimal regularity: The velocity lies in L∞(L2)∩L2(H1) and the
pressure in H−1(L2). This analysis is based upon the representation of the stabilized
projection-based VMS discretization as a Galerkin approximation of an augmented
weak formulation of the Navier-Stokes equations. This allows to use the standard
tools of functional analysis to analyze the stabilized discretization, much as the stan-
dard ones for mixed methods. In particular, we estimate in L∞(L2) the primitive in
time of the pressure, and we also use Nikolskii space to prove the compactness of the
velocity approximation (Cf. Simon [35]). However, the low regularity of the weak
solution does not allow to prove the strong convergence of the numerical approxi-
mation, and limits the energy balance to an inequality. In particular, we are able to
obtain an upper bound for the energy balance, in the case of the Manning wall law
(Cf. [28]).
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The paper is organized as follows: In Section 2, we present the variational formu-
lation of the continuous and discrete problems we work with, and we state their main
properties. Section 3 is devoted to the numerical analysis of the proposed discrete
model (stability, convergence) in its unsteady version, and to the study of the asymp-
totic energy balance of the system. Finally, numerical tests for a fully developed 3D
turbulent flow in a channel are presented in Section 4, to assess the performance of
the model described in this work.

2 The continuous and discrete problems

We introduce a mixed initial-boundary value problem for the incompressible evo-
lution Navier-Stokes equations, which includes a wall-law boundary condition in
combination with a Dirichlet boundary condition in the inflow part of the boundary.
To avoid unnecessary complexities, we just impose a homogeneous Dirichlet boun-
dary condition, and do not include outflow conditions. General Dirichlet and outflow
boundary conditions may be taken into account by standard techniques for Navier-
Stokes equations. Let [0,T ] be the time interval, and Ω a bounded polyhedric con-
nected domain in Rd , d = 2 or 3, with a Lipschitz boundary split into Γ = Γ D∪Γ n.
We suppose Γ split as the union of the sides Σ1, . . . ,Σr that we assume to be closed
(d−1)−dimensional sets (straight segments when d = 2 or polygons when d = 3),
in such a way that Γ D =

⋃k−1
i=1 Σi, Γ n =

⋃r
i=k Σi, for some integer k ∈ {2, . . . ,r}.

We impose a homogeneous Dirichlet inflow boundary condition on ΓD and a
wall-law boundary condition on Γn. The problem reads:

Find u : Ω × (0,T )−→ Rd and p : Ω × (0,T )−→ R such that:

∂tu+∇ · (u⊗u)−2ν∇ ·D(u)+∇p = f in Ω × (0,T ),
∇ ·u = 0 in Ω × (0,T ),

− [n ·2νD(u)]
τ
= g(u)τ on Γn× (0,T ),

u ·n = 0 on Γn× (0,T ),
u = 0 on ΓD× (0,T ),

u(x,0) = u0(x) in Ω ,

(1)

where u⊗u is the tensor function of components uiu j, D(u) is the symmetric de-
formation tensor given by D(u) = (1/2)(∇u+(∇u)t), n is the outer normal to Γ ,
the notation τ represents the tangential component with respect to Γ defined as
uτ = u− (u ·n)n, and g : Rd → Rd is a given function, which determines the wall
law. The unknowns are the velocity u and the pressure p of the incompressible fluid.
The data are the source term f, which represents a body force per mass unit (typi-
cally the gravity), the kinematic viscosity ν of the fluid, which is a positive constant,
and the initial data u0.

Remark 1. The analysis performed in the paper strongly uses the assumption that
Ω is a polyhedric domain, to approximate the slip boundary condition u · n = 0
on Γn. There exist well-established techniques to solve this difficulty for domain



4 Tomás Chacón Rebollo, Macarena Gómez Mármol, and Samuele Rubino

with curved boundaries, introduced by Verfürth. For instance, the slip condition
may be considered as a restriction, and implemented through a saddle-point problem
approach (Cf. [40]). Another possible remedy is to use isoparametric finite elements
to fit the curved parts of the boundary (Cf. [39]). We do not consider here this
situation, to avoid nonessential complexities that have been treated elsewhere.

2.1 Variational formulation of the continuous problem

We consider the Sobolev spaces Hs(Ω), s ∈ R, Lp(Ω) and W m,p(Ω), m ∈ N,
1 ≤ p ≤ ∞. We shall use the following notation for vectorial Sobolev spaces:
Hs, Lp and Wm,p respectively shall denote [Hs(Ω)]d , [Lp(Ω)]d and [W m,p(Ω)]d

(similarly for tensorial spaces of dimension d × d). Also, the parabolic function
spaces Lp(0,T ;X) and Lp(0,T ;X), where X (X) stands for a scalar (vectorial)
Sobolev space shall be denoted by Lp(X) and Lp(X), respectively. In order to
give a variational formulation of problem (1), let us consider the velocity space
W =

{
w ∈H1 : w = 0 on ΓD,w ·n = 0 on Γn

}
. This is a closed linear subspace

of H1, and thus a Hilbert space endowed with the H1-norm. Thanks to Korn’s
inequalities (Cf. [19]), the H1-norm is equivalent on W to the norm ‖w‖W =
‖D(w)‖L2 . Also, let us introduce the space of free-divergence functions Wdiv =
{w ∈W : ∇ ·w = 0 a.e. in Ω × (0,T )}. The space Wdiv is a closed linear subspace
of W, and thus a Hilbert space endowed with the H1-norm. We shall consider the
following variational formulation of (1):

Given f ∈ L2(W′) and u0 ∈W′, find u ∈ L∞(L2)∩ L2(Wdiv), P ∈ L2(L2
0) such

that: 

−
∫ T

0
(u(t),v)Ω ϕ

′(t)dt−〈u0,v〉ϕ(0)

+
∫ T

0
[b(u(t);u(t),v)+a(u(t),v)+ 〈G(u(t)),v〉]ϕ(t)dt

+
∫ T

0
(P(t),∇ ·v)Ω ϕ(t)dt =

∫ T

0
〈f(t),v〉ϕ(t)dt,

(2)

for any v ∈W, ϕ ∈D([0,T ]) such that ϕ(T ) = 0, where 〈·, ·〉 stands for the duality
pairing between W and its dual W′. The physical pressure is the time derivative of
the unknown P : p = ∂tP ∈ H−1(L2

0) = H1
0 (0,T ;L2

0)
′. The interest of considering P

as unknown instead of p is that P naturally belongs to the Banach space L∞(L2). We
notice, however, that for practical computations one would approximate the physical
pressure p, and P is introduced just for the numerical analysis. We shall obtain uni-
form bounds in this space for its numerical approximations. Also, note that the initial
condition takes place in W′

div, since u ∈C0([0,T ],W′
div) (See [15], Sect. 10.2).
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The forms b, a and G in (2) are given by:

b(w,u,v) =
1
2
[(w ·∇u,v)Ω − (w ·∇v,u)Ω ] , (3)

a(u,v) = 2ν (D(u),D(v))Ω , (4)
〈G(u),v〉 = (g(u),v)Γn , (5)

for u, v, w ∈ H1. Semicolons (;) are used for form b when it is non-linear with
respect to its first argument, i.e. w = u, as in (2), otherwise comma (,) is used, as in
(3). The function g is given in implicit form as:

g(u) =


u
|u|

(uτ)
2 if |u|> 0,

0 if |u|= 0,

where uτ = uτ(|u|) is the wall-friction velocity, computed as unique solution of the
algebraic equation:

u+ = L(y+), with u+ =
|u|
uτ

and y+ =
uτ y
ν

. (6)

Here, u+ is a friction non-dimensional velocity, L is the wall-law function, ob-
tained from an asymptotic analysis in the boundary layer, y+ denotes a friction non-
dimensional normal distance to the solid wall, and y denotes the normal distance to
the solid wall. We suppose that the boundary layer is divided into two sub-layers
(Cf. [14]):

T+
1 = Γn× [0,y+0 ], T+

2 = Γn× [y+0 ,A
+],

where y+0 denotes a fixed friction non-dimensional normal distance to the solid wall.
The most common wall-law function is the logarithmic law of Prandtl [32] and Von
Kármán [41]:

L(y+) =


y+ if y+ ∈ [0,y+0 ],

1
C1

log(y+)+C2 if y+ ∈ [y+0 ,A
+],

(7)

where C1 ' 0.41 and C2 ' 5.5 are constants, calculated from experimental measure-
ments, and y+0 is chosen by preserving the continuity of L (y+0 ' 11.5). The law (7)
does not take into account the transition zone between the viscous and logarithmic
sub-layer, called the buffer layer. Actually, there exist other several possible settings
of L (e.g., the Spalding’s wall law [37]) which model the three boundary sub-layers
by a single formula. In all cases, the wall-law function L is non-negative, strictly
increasing and continuous, L′ admits a finite number of discontinuities, and there
exist two positive constants K1 and K2 such that:

lim
z+→0+

L(z+)
z+

= K1, lim
z+→∞

L(z+)
logz+

= K2. (8)
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This ensures that the associated mapping G is well defined from W into its dual (Cf.
Parés [31]).

2.2 Finite element spaces

This section focuses on the construction of finite element (FE) spaces that approxi-
mate the slip condition u ·n = 0 on Γn.

Let {Th}h>0 be a family of affine-equivalent and conforming (i.e., without han-
ging nodes) triangulations of Ω , formed by triangles or quadrilaterals (d = 2),
tetrahedra or hexaedra (d = 3). We shall assume that the family of triangulations
{Th}h>0 is also admissible in the following sense:

Definition 1. The family of triangulations {Th}h>0 is admissible if Γ D and Γ n are
the union of whole sides of elements of Th.

Given an integer l ≥ 0, and an element K ∈ Th, denote by Rl(K) either Pl(K) (i.e.,
the space of Lagrange polynomials of degree ≤ l, defined on K), if the grids are
formed by triangles (d = 2) or tetrahedra (d = 3), or Ql(K) (i.e., the space of La-
grange polynomials of degree ≤ l on each variable, defined on K), if the family of
triangulations is formed by quadrilaterals (d = 2) or hexaedra (d = 3). We consider
the following FE spaces for the velocity:

Y l
h =V l

h(Ω) = {vh ∈C0(Ω) : vh|K
∈ Rl(K), ∀K ∈Th},

Yl
h = [Y l

h ]
d = {vh ∈ [C0(Ω)]d : vh|K

∈ [Rl(K)]d , ∀K ∈Th},

Xh = {vh ∈ Yl
h : vh = 0 on Γ D,vh ·ni = 0 on Σi, i = k, . . . ,r} ⊂ Yl

h,

(9)

where ni is the outer normal to Σi for i = k, . . . ,r, and we recall that Γ n =
⋃r

i=k Σi.
Hereafter, Yl

h (resp., Y l
h ) will constitute the discrete foreground vectorial (resp.,

scalar) spaces in which we will work on.
We prove that the family of spaces {Xh}h>0 is effectively an internal approxi-

mation of W, i.e. a family of finite-dimensional sub-spaces of W such that for any
v ∈W, lim

h→0
inf

vh∈Xh
‖v−vh‖H1 = 0. To do it, let us consider the uniformly stable and

convergent Bernardi-Maday-Rapetti (BMR, [6]) interpolation operator IPh from H1

on Yl
h as follows. Let us denote by Ah the set of Lagrange interpolation nodes for

space Yl
h. Then:

IPhv = ∑
α∈Ah

vα λα(x) for x ∈Ω , (10)

where λα are the canonic basis functions of the Lagrange interpolation, given by:

λα ∈ Y l
h , λα(β ) = δα,β for all α,β ∈Ah,
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with δα,β the Kronecker delta and vα an averaged value of v in a neighborhood of
node α . Following Chacón and Lewandowski [15], Sect. A.3, it may be proved that
if the family of triangulations is admissible, then the values vα may be chosen to
preserve both the no-slip and slip boundary conditions: If v ∈W, then{

vα ·n|F = 0 for any F ∈ ∂Th(α) if α ∈Ah∩Γ n,

vα = 0 if α ∈Ah∩Γ D,

where ∂Th(α) = {F ⊂ Γ : F is a side of some element of Th such that α ∈ F },
and n|F denotes the outer normal to Ω on F . This permits to prove the following:

Lemma 1. Assume that the family of triangulations {Th}h>0 is admissible. Then,
IPhv ∈ Xh if v ∈W.

The proof of this Lemma can be found in [15] (Sect. 9.3.2), so that we omit it for
brevity. Lemma 1 and the convergence in H1(Ω) of the BMR interpolation operator
IPh permits easily to conclude that the family {Xh}h>0 is an internal approximation
of W for regular triangulations.

2.3 A projection-based VMS turbulence model

We approximate the weak formulation (2) of the initial-boundary value problem
(1) for the incompressible evolution Navier-Stokes equations by a projection-based
eddy viscosity multi-scale model. To state it, let us introduce the space:

Xh = {vh ∈ Yl−1
h : vh = 0 on Γ D,vh ·ni = 0 on Σi, i = k, . . . ,r}, (11)

and consider a uniformly stable (in H1(Ω)-norm) interpolation operator Πh on Yh,
where:

Yh = [V l−1
h (Ω)]d , (12)

or:
Yh = [V l

H(Ω)]d , (13)

and V l
H(Ω) in (13) is a sub-space of V l

h(Ω) with larger grid size H > h (typically,
H = 2h or H = 3h). The considered interpolation operator Πh must satisfy optimal
error estimates (Cf. [6]), and preserve both the no-slip and slip boundary conditions
when restricted to Xh. Thus, we define X′h = (Id−Πh)Xh, where Id is the identity
operator. In accordance to (12), we identify Xh = ΠhXh ⊂ Yh = [V l−1

h (Ω)]d as the
large scales velocity space, and X′h as the sub-filter scales velocity space. Space
X′h does not need to be explicitly constructed, only the operator Πh is needed. In
accordance to (13), another possible definition of Xh is:

Xh = {vh ∈ [V l
H(Ω)]d : vh = 0 on Γ D,vh ·ni = 0 on Σi, i = k, . . . ,r}. (14)
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In practical implementations, we consider a standard nodal Lagrange interpolation
operator Πh for its simplicity and its efficiency with respect to other choices. This
provides quite stable and accurate results. However, there exist other possibilities:
we may mention the Scott-Zhang interpolation operator (Cf. [34]), or the already
cited BMR (Cf. [6]). Also, the L2-projection is used by John in [24] to define the
large scales.

To state the unsteady projection-VMS discretization of (2), consider a positive
integer number N and define ∆ t = T/N, tn = n∆ t, n = 0,1, . . . ,N. We compute the
approximations un

h, pn
h to u(·, tn) and p(·, tn) by:

• Initialization. Set:
u0

h = u0h.

• Iteration. For n = 0,1, . . . ,N−1:
Given un

h ∈ Xh, find (un+1
h , pn+1

h ) ∈ Xh×Mh such that:

(
un+1

h −un
h

∆ t
,vh

)
Ω

+b(un
h,u

n+1
h ,vh)+a(un+1

h ,vh) + c′(un+1
h ;un+1

h ,vh)

+〈G(un+1
h ),vh〉− (pn+1

h ,∇ ·vh)Ω + sconv(un
h,u

n+1
h ,vh) = 〈fn+1,vh〉,

(∇ ·un+1
h ,qh)Ω + spres(pn+1

h ,qh) = 0,
(15)

for any (vh,qh) ∈ Xh×Mh, where Mh = Y l
h ∩L2

0(Ω), fn+1 is the average value
of f in [tn, tn+1], and u0h is some approximation to u0 belonging to Xh (e.g., the
discrete L2-Riesz projection on Xh).

The form c′ in (15) provides a multi-scale Smagorinsky modeling of the eddy vis-
cosity (Cf. [36, 11]), given by:

c′(uh;uh,vh) = 2(νT (u′h)D(u′h),D(v′h))Ω , (16)

where:
u′h = Π

∗
h uh, v′h = Π

∗
h vh, Π

∗
h = Id−Πh,

and the eddy viscosity νT is defined as:

νT (v)(x) = (CShK)
2|D(v|K )(x)| for x ∈ K, (17)

where | · | denotes the Frobenius norm on Rd×d and CS is a (theoretically) universal
constant. However, in practical applications, depending on the flow, the value of
CS may vary between 0.065 (Cf. [29]) and 0.25 (Cf. [26]). Here, we shall use an
intermediate value CS = 0.1. The forms sconv and spres in (15) correspond to a high-
order term-by-term stabilized method (Cf. [9, 10, 13]), and are given by:

sconv(uh;uh,vh) = ∑
K∈Th

τν ,K(σ
∗
h (uh ·∇uh),σ

∗
h (uh ·∇vh))K ,
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spres(ph,qh) = ∑
K∈Th

τp,K(σ
∗
h (∇ph),σ

∗
h (∇qh))K .

Here, τν ,K and τp,K are stabilization coefficients for convection and pressure gra-
dient, respectively, and σ∗h = Id−σh, where σh is some locally stable (in L2(Ω)-
norm) projection or interpolation operator on the foreground vectorial space Yl−1

h
(also called “buffer space” in this context), satisfying optimal error estimates. In
practical implementations, we choose σh as a Scott-Zhang-like linear interpolation
operator on space Yl−1

h (Cf. [34]). This gives rise to a discretization with a reduced
computational cost, but that maintains the same high-order accuracy with respect to
standard projection-stabilized methods. For the subsequent numerical analysis, we
need the following technical hypothesis on the stabilization coefficients:

Hypothesis 1 The stabilization coefficients τp,K and τν ,K satisfy the following con-
dition:

α1h2
K ≤ τp,K , τν ,K ≤ α2h2

K , ∀K ∈Th, (18)

for some positive constants α1 and α2, independent of h.

We work with the following expression for the stabilization coefficients:

τp,K = τν ,K =

{[
c1

ν +νT |K
(hK/l)2

]
+

[
c2

UK

(hK/l)

]}−1

, (19)

by adapting the form of Codina (Cf. [17]). In (19), c1 and c2 are experimental posi-
tive constants, νT |K is some local eddy viscosity on element K, and UK is some local
speed on element K. We assume UK and νT |K positive and uniformly bounded from
below and from above, for technical reasons. This ensures (18), in particular.

Remark 2. The chosen discretization in time gives rise to a semi-implicit Euler
scheme, since the discretization of the convection terms is semi-implicit, while that
of the remaining terms is implicit. Note that scheme (15) consists of a high-order
discretization method in space (optimal for smooth solutions, Cf. [1, 12, 33]) al-
though, for the sake of simplicity, we shall only consider a first-order discretization
in time to perform the numerical analysis. This allows to achieve the stability of
the scheme in L∞(L2)∩L2(H1) for the velocities. These stability properties are also
shared by more general θ -schemes (e.g., Crank-Nicolson scheme). Note that con-
sidering the discretization of the convection terms semi-implicit permits to obtain
optimal error estimates for rather general fluid viscosities (Cf. [1, 15]), and not just
for relatively high viscosities, which is the case for a fully implicit discretization, as
well as for the steady version of the model (Cf. [12, 33]).

3 Analysis of the discrete model

In this section, we perform the numerical analysis of the proposed unsteady model
(15), which we will call in the sequel VMS-S model. For technical reasons, we
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assume throughout the work that the family of triangulations {Th}h>0 is uniformly
regular. Actually, this technical hypothesis may be relaxed to the more general case
of regular grids, but we keep it to focus the analysis on the new aspects of the
method, and to not unnecessarily lengthen it.

3.1 Technical background

We state in this subsection some technical results that are required for the numerical
analysis. We shall denote throughout the paper by C a constant that may vary from a
line to another, but which is always independent of h and ∆ t. The analysis is based
upon the representation of the stabilizing terms on bubble FE spaces by means of
the static condensation operators introduced in Chacón [8].

Definition 2. A FE space Zh, constructed on a triangulation Th, is called a bubble
FE space if, for all bh ∈ Zh, for all K ∈Th, bh ∈ H1

0 (K).

A similar definition applies for vectorial bubble FE spaces Zh.

Lemma 2. There exists a family {Zh}h>0 of bubble FE sub-spaces of H1
0 and a

family {Sh}h>0 of bilinear uniformly continuous and uniformly coercive forms on
H1

0 such that:

sconv(uh;uh,vh) = Sh(ch,Rh(σ
∗
h (uh ·∇vh))), ∀vh ∈ Xh, (20)

spres(ph,qh) = Sh(dh,Rh(σ
∗
h (∇qh))), ∀qh ∈Mh, (21)

where ch = Rh(σ
∗
h (uh ·∇uh)), dh = Rh(σ

∗
h (∇ph)), and Rh : H−1→ Zh is the “static

condensation” operator on Zh defined as follows:
Given ϕ ∈H−1, Rh(ϕ) is the only element of Zh that satisfies

Sh(Rh(ϕ),zh) = 〈ϕ,zh〉, ∀zh ∈ Zh.

This result is proved in [8]. We next state a technical result that shall be used to
handle the stabilizing terms (Cf. [10]).

Lemma 3. Let {zh} be a sequence of scalar FE bubble functions. Then, for any
p ∈ [2,6] there exists a constant Cp > 0 independent of h such that:

‖zh‖Lp(Ω) ≤Cp hα ‖zh‖H1(Ω), where α =
3
p
− 1

2
.

Now, we state a specific discrete inf-sup condition for the stabilized approximation,
which is essential for the stability of the proposed method.

Lemma 4. Assume that Hypothesis 1 holds. Then, we have the following inf-sup
condition:
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∀qh ∈Mh, ||qh||L2(Ω) ≤C

(
sup

vh∈Xh

(qh,∇ ·vh)Ω

||D(vh)||L2
+ ||Rh(σ

∗
h (∇qh))||H1

)
, (22)

for some positive constant C independent of h.

The proof of this Lemma can be derived from [9]. Note that the discrete inf-sup
condition (22) can be extended to a more complex condition that holds for a regular
family of triangulations.

Our analysis also needs some properties of the eddy viscosity νT and the form c′

(Cf. [12, 15]):

Lemma 5. There exists a constant C > 0 only depending on d, Ω and the aspect
ratio of the family of triangulations {Th}h>0 such that:

‖νT (v′h)‖L∞(Ω) ≤ C h2−d/2 ‖D(vh)‖L2 , (23)

|c′(vh;vh,wh)| ≤ C h2−d/2 ‖D(vh)‖2
L2‖D(wh)‖L2 , (24)

where the aspect ratio of the family of triangulations is defined as the smallest pos-
sible constant Ĉ such that hK ≤ ĈρK , for any K ∈Th, h > 0, and ρK is the diameter
of the ball inscribed in K.

We report now the properties of the mapping G that sets the wall-law boundary
condition in the Navier-Stokes equations (2) (Cf. [31]):

Lemma 6. The functional G given by (5) is well defined from W into its dual, is
monotone, compact, and satisfies the estimates: ∀v, w ∈W,

‖G(v)‖W′ ≤ C (1+‖v‖2
H1), (25)

‖G(v)−G(w)‖W′ ≤ C (1+‖v‖H1 +‖w‖H1)‖v−w‖H1 , (26)

where C is a positive constant only depending on d, Ω and Γn.

Finally, for the analysis of the unsteady problem (15) we shall use a compactness
result on Nikolskii spaces stated in Simon [35].

Definition 3. Let B a Banach space. The Nikolskii space of order r ∈ [0,1] and
exponent p ∈ [0,+∞] associated with B and a time interval (0,T ) is defined as:

Nr,p(0,T ;B) = { f ∈ Lp(0,T ;B) such that ‖ f‖N̂r,p <+∞},

with:
‖ f‖N̂r,p = sup

δ>0

1
δ r ‖τδ f‖Lp(0,T−δ ;B),

where τδ f (t) = f (t +δ )− f (t), 0≤ t ≤ T −δ .

Space Nr,p(0,T ;B), endowed with the norm:

‖ f‖Nr,p(0,T ;B) = ‖ f‖Lp(0,T ;B)+‖ f‖N̂r,p ,

is a Banach space. Simon’s theorem is stated as follows (Cf. [35]):
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Lemma 7. Let E,F,G be Banach spaces such that E ↪→ F ↪→G, where the injection
E ↪→ F is compact. Then the injection:

Lp(0,T ;E)∩Nr,p(0,T ;G) ↪→ Lp(0,T ;F) with 0 < r < 1, 1≤ p≤+∞,

holds and is compact.

3.2 Existence and stability results

Let us now prove the existence, uniqueness of solution and stability of method (15).
To state these results, we shall consider the following discrete functions:

• uh is the piecewise linear in time function with values on Xh such that uh(tn) =
un

h.
• ch and dh are the piecewise linear in time functions with values on Zh such that

ch(tn+1) = cn+1
h = Rh(σ

∗
h (u

n
h ·∇un+1

h )) and dh(tn+1) = dn+1
h = Rh(σ

∗
h (∇pn+1

h )).
• ũh is the piecewise constant in time function that takes the value un+1

h on
(tn, tn+1), and uh(t) = u0

h in (−∆ t,0).
• ũ−h is the piecewise constant in time function that takes the value un

h on (tn, tn+1).
• p̃h is the piecewise constant in time function that takes the value pn+1

h on
(tn, tn+1).

• Ph(t) =
∫ t

0
p̃h(s)ds.

For simplicity of notation, we do not make explicit the dependence of these func-
tions upon ∆ t.

Theorem 2. Assume that Hypothesis 1 holds, and let f ∈ L2(W′), u0 ∈W′. Then,
problem (15) admits a unique solution that satisfies the estimates:

‖uh‖L∞(L2)+
√

ν ‖uh‖L2(H1)+hmin ‖D(u′h)‖
3/2
L3(L3)

+
∫ T

0
< G(ũh(t), ũh(t)> dt

+
√

νS

(
‖ch‖L2(H1)+‖dh‖L2(H1)

)
≤C

(
‖u0‖W′ +

1√
ν
‖f‖L2(W′)

)
, (27)

‖uh‖N1/4,2(L2) ≤ C, (28)

‖Ph‖L∞(L2) ≤ C, (29)

for some constant C > 0 independent of h and ∆ t, where hmin = min
K∈Th

hK , and νS is

the uniform coerciveness constant of forms Sh.

Proof. We proceed by steps.
Step 1: Existence of solution of discrete problem. Problem (15) can be written

as: Find (un+1
h , pn+1

h ) ∈ Xh×Mh such that



FE approximation of an unsteady projection-based VMS turbulence model 13
b(un

h,u
n+1
h ,vh)+ ã(un+1

h ,vh)+ c′(un+1
h ;un+1

h ,vh) − (pn+1
h ,∇ ·vh)Ω

+〈G(un+1
h ),vh〉+ sconv(un

h,u
n+1
h ,vh) = 〈̃fn+1,vh〉,

(∇ ·un+1
h ,qh)Ω + spres(pn+1

h ,qh) = 0,
(30)

for any (vh,qh) ∈ Xh×Mh, where ã(un+1
h ,vh) = ∆ t−1(un+1

h ,vh)+ a(un+1
h ,vh) and

f̃n+1 = fn+1 + ∆ t−1un
h. This problem fits into the same functional framework as

the steady VMS-S, since ã is an inner product on space W that generates a norm
equivalent to the H1-norm. Then, the existence of at least a solution follows from
Brouwer’s fixed point theorem as for the steady case (Cf. [12, 33]).

Step 2: Velocity estimates. To obtain estimate (27), observe that:

2(un+1
h −un

h,u
n+1
h )Ω = ‖un+1

h ‖2
L2 −‖un

h‖2
L2 +‖un+1

h −un
h‖2

L2 .

Then, setting vh = un+1
h and qh = pn+1

h in (15), and using Young’s inequality, yields:

‖un+1
h ‖2

L2 +2∆ t ν‖D(un+1
h )‖2

L2 +2∆ t νS

(
‖cn+1

h ‖L2(H1)+‖d
n+1
h ‖L2(H1)

)
(31)

+2∆ t < G(un+1
h ),un+1

h >+2C2
S h2

min ∆ t ‖D(u′n+1
h )‖3

L3 ≤ ‖un
h‖2

L2 +
∆ t
2ν
‖fn+1‖2

W′ .

Summing up estimates (31) for n = 0,1, . . . ,k for some k ≤ N−1, we obtain:

‖uk+1
h ‖2

L2 +2∆ t ν

k

∑
n=0
‖D(un+1

h )‖2
L2 +2∆ t

k

∑
n=0

< G(un+1
h ),un+1

h >

+2∆ t νS

k

∑
n=0

(
‖cn+1

h ‖L2(H1)+‖d
n+1
h ‖L2(H1)

)
+2C2

S h2
min ∆ t

k

∑
n=0
‖D(u′n+1

h )‖3
L3

≤ ‖u0h‖2
L2 +

∆ t
2ν

k

∑
n=0
‖fn+1‖2

W′ ≤ ‖u0‖2
W′ +

∆ t
2ν

k

∑
n=0
‖fn+1‖2

W′ . (32)

This yields estimate (27), as
N−1

∑
n=0

∆ t ‖fn+1‖2
W′ ≤ ‖f‖

2
L2(W′), and:

‖uh‖L∞(L2) = max
n=0,1,...,N

‖un
h‖L2 , ‖uh‖2

L2(H1) ≤C ∆ t
N

∑
n=0
‖D(un

h)‖2
L2 ,

‖D(u′h)‖3
L3(L3)

≤C ∆ t
N

∑
n=0
‖D(u′nh )‖3

L3 ,

for some constant C > 0 independent of h and ∆ t.
Step 3: Uniqueness of solution of discrete problem. The uniqueness of solu-

tions is a consequence of the well-posedness of the discrete problem (See [15], Sect.
10.7).

Step 4: Velocity time increment estimates. Let us write method (15) as:
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(∂tuh(t),vh)Ω +b(ũ−h (t); ũh(t),vh)+a(ũh(t),vh)+ c′(ũh(t); ũh(t),vh) (33)

+〈G(ũh(t)),vh〉− (p̃h(t),∇ ·vh)Ω +Sh
(
c̃h(t),Rh(σ

∗
h (ũ
−
h (t) ·∇vh))

)
= 〈̃fh(t),vh〉,

(∇ · ũh(t),qh)Ω +Sh

(
d̃h(t),Rh(σ

∗
h (∇qh))

)
= 0, (34)

a.e.in [0,T ], where c̃h, d̃h, f̃h respectively are the piecewise constant functions that
take the values cn+1

h ,dn+1
h , fn+1 on (tn, tn+1). Integrating (33) in (t, t + δ ) for t ∈

[0,T −δ ], we have:

(τδ uh(t),vh)Ω =
∫ t+δ

t
〈Fh(s),vh〉ds+

∫ t+δ

t
(p̃h(s),∇ ·vh)Ω ds, (35)

where Fh(s) ∈W′ is given by:

〈Fh(s),v〉 = −b(ũ−h (s); ũh(s),v)−a(ũh(s),v)− c′(ũh(s); ũh(s),v)

− 〈G(ũh(s)),v〉−Sh
(
c̃h(s),Rh(σ

∗
h (ũ
−
h (s) ·∇v))

)
+ 〈̃fh(s),v〉,∀v ∈W.

Setting vh = τδ uh(t) in (33) and integrating from 0 to T −δ , we obtain:∫ T−δ

0
‖τδ uh(t)‖2

L2 dt =
∫ T−δ

0

∫ t+δ

t
〈Fh(s),τδ uh(t)〉dsdt,

−
∫ T−δ

0

∫ t+δ

t
Sh

(
τδ dh(t), d̃h(s)

)
dsdt := I + II, (36)

where we have used that, from (34):

(∇ · τ̃δ uh(t), p̃h(s)) =−Sh

(
τ̃δ dh(t), d̃h(s)

)
.

To estimate I in (36), we use in particular the L4/3 stability of the operator σh, which
implies:

|Sh
(
c̃h(s),Rh(σ

∗
h (ũ
−
h (s) ·∇v))

)
| ≤C‖ũ−h (s)‖H1‖c̃h(s)‖H1‖vh‖H1 .

Then, estimates (24), (26) and the continuity of the forms b and a yield:

‖Fh(s)‖W′ ≤C
[
‖ũ−h (s)‖

2
H1 +(1+h2−d/2)‖D(ũh(s))‖2

L2 +‖c̃h‖2
H1

+1+ν‖D(ũh(s))‖L2 + ‖̃fh(s)‖W′
]

, (37)

where we have used Young’s inequality. Due to estimate (27), this implies that the
Fh are uniformly bounded in L1(W′). Now, using Fubini’s theorem:

|I| =
∣∣∣∣∫ T

0

∫ s

s−δ

〈Fh(s), τ̂δ uh(t)〉dt ds
∣∣∣∣
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≤
∫ T

0
‖Fh(s)‖W′

(∫ s

s−δ

‖D(τ̂δ uh(t))‖L2 dt
)

ds

≤
∫ T

0
‖Fh(s)‖W′ δ

1/2
(∫ s

s−δ

‖D(τ̂δ uh(t))‖2
L2 dt

)1/2

ds

≤ C δ
1/2‖uh‖L2(H1) ≤C δ

1/2, (38)

for some constant C independent of h, where ·̂ denotes the extension by zero of a
function outside [0,T −δ ]. The last line above follows from (27) and (37).
The term II in (36) is estimated similarly. We apply Fubini’s theorem:

|II| =
∣∣∣∣∫ T

0

∫ s

s−δ

Sh

(
τ̂δ dh(t),dh(s)

)
dt ds

∣∣∣∣
≤ C

∫ T

0

∫ s

s−δ

‖∇τ̂δ dh‖L2‖∇dh(s)‖L2 dt ds

≤ C
∫ T

0
‖∇dh(s)‖L2 δ

1/2
(∫ s

s−δ

‖∇τ̂δ dh(t))‖2
L2 dt

)1/2

ds

≤ C δ
1/2‖dh‖L1(H1)‖dh‖L2(H1) ≤C δ

1/2, (39)

where we have used the uniform continuity of the forms Sh for pressure, and again
the last estimate follows from (27). Consequently, estimate (28) follows.

Step 5: Estimate of the time primitive of the pressure. Integrating (33) in time
from 0 to t, we obtain:

(Ph(t),vh)Ω = (uh(t)−u0h,vh)Ω −
∫ t

0
〈Fh(s),vh〉ds

≤ C
(
‖uh‖L∞(L2)+‖u0h‖L2 +‖F‖L1(W′)

)
‖vh‖H1 ≤C‖vh‖H1 ,

where the last estimate follows from estimates (27) and (37). Also:

Rh(σ
∗
h (∇Ph(t))) =

∫ t

0
Rh(σ

∗
h (∇ p̃h(s)))ds =

∫ t

0
d̃h(s)ds.

Using again (27), we deduce:

‖Rh(σ
∗
h (∇Ph(t)))‖H1 ≤C‖dh‖L1(H1) ≤C.

Then, by the inf-sup condition (22), estimate (29) follows. �

Remark 3. The estimate (27) for the convective and pressure stabilizing terms gua-
rantees an extra-control on the high frequencies of the convective derivative and
pressure gradient, which is not obtained by standard projection-based VMS methods
(Cf. [25]), for which only the sub-grid eddy viscosity term of Smagorinsky type is
added to the standard Galerkin discretization.
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3.3 Convergence analysis

To prove convergence, we need some preliminary results (Cf. [15]).

Lemma 8. Let z ∈ L∞(L2)∩L2(L4). Then, z ∈ L3(L3) and:

‖z‖L3(L3) ≤ ‖z‖
1/3
L∞(L2)

‖z‖2/3
L2(L4)

. (40)

Lemma 9. Assume that the sequence {ũ−h }h>0 ⊂C0(Wh) strongly converges to u in
L3(L3), and that {vh}h>0⊂Xh strongly converges to v∈W in W. Let ϕ ∈D([0,T ]).
Then ũ−ih(x, t)v jh(x)ϕ(t) strongly converges to ũi(x, t)v j(x)ϕ(t) in L2(L2), i, j =
1, . . . ,d, where we denote ũ−h = (ũ−1h, . . . , ũ

−
dh), vh = (v1h, . . . ,vdh).

The convergence of method (15) is now stated as follows:

Theorem 3. Assume that f ∈ L2(W′), u0 ∈ L2, and Hypothesis 1 holds. Then, the
sequence {(uh,Ph)}h>0 contains a sub-sequence {(uh′ ,Ph′)}h′>0 that is weakly con-
vergent in L2(H1)×L2(L2) to a weak solution (u,P) of the unsteady Navier-Stokes
equations (2). Moreover, {uh′}h′>0 is weakly-* convergent in L∞(L2) to u, strongly
in L2(Hs) for 0≤ s < 1, and {Ph′}h′>0 is weakly-* convergent in L∞(L2) to P. If the
solution of problem (2) is unique, then the whole sequence converges to it.

Proof. We proceed by steps.
Step 1: Extraction of convergent sub-sequences. Observe that, if the discrete

initial condition is given by the L2-Riesz projection of u0 on Xh (as we are as-
suming), then ‖u0h‖L2 ≤ ‖u0‖L2 . Then, the uniform estimates for uh in L2(H1) and
N1/4,2(L2) obtained in Theorem 2 ensure the compactness of the sequence {uh}h>0
in L2(Hs), where we have used the compactness result of Lemma 7. Also, by es-
timate (29), the sequence {Ph}h>0 is uniformly bounded in L∞(L2). Then, the se-
quence {(uh,Ph)}h>0 contains a sub-sequence (that we denote in the same way)
such that {uh}h>0 is strongly convergent in L2(Hs) to some u, weakly in L2(H1),
and weakly-* in L∞(L2), and {Ph}h>0 is weakly-* convergent in L∞(L2) to some P.
We give in the sequel a sketch of the proof showing that (u,P) is a weak solution of
(2).

Also, note that by (27) the sequence {ũh}h>0 is uniformly bounded in L2(H1)
and in L∞(L2). Then, it contains a sub-sequence weakly convergent in L2(H1) and
weakly-* in L∞(L2) to some v. Both limit functions u and v are equal, since one can
prove (Cf. [10, 15]) that ũh strongly converges to u in L2(L2). Observe that similarly
ũ−h strongly converges in L2(L2) to u.

Step 2: Limit of the continuity equation. To pass to the limit in the continui-
ty equation, we consider a test function q ∈ D(Ω)∩L2

0(Ω), and some interpolant
qh ∈Mh, strongly convergent to q in L2

0(Ω) and satisfying optimal error estimates.
Observe that:

‖σ∗h (∇qh)‖L2 ≤ ‖σ∗h (∇(qh−q))‖L2 +‖σ∗h (∇q)‖L2

≤ C‖∇(qh−q)‖L2 +‖σ∗h (∇q)‖L2

≤ C
(

hm‖q‖Hm+1(Ω)+hl‖q‖H l+1(Ω)

)
, for m, l ≥ 1.
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Then, for any ϕ ∈C∞([0,T ]):∣∣∣∣∫ T

0
Sh(Rh(σ

∗
h (∇qh)), d̃h(t))ϕ(t)dt

∣∣∣∣= ∣∣∣∣∫ T

0
(σ∗h (∇qh), d̃h(t))Ω ϕ(t)dt

∣∣∣∣
≤ C h‖ϕ‖L∞(0,T )

∫ T

0
‖d̃h(t)‖L2 dt→ 0, as h→ 0.

Consequently, as ∇ · ũh weakly converges to ∇ ·u in L2(L2), from (34) we have:∫ T

0
(∇ ·u(t),q)Ω ϕ(t)dt = lim

h→0

∫ T

0
(∇ · ũh(t),qh)Ω ϕ(t)dt

= − lim
h→0

∫ T

0
Sh(Rh(σ

∗
h (∇qh)), d̃h(t))ϕ(t)dt = 0.

The same property readily holds for q = 1, since u ∈W. As the set of functions
{φ(x, t) = q(x)ϕ(t), for q ∈ D(Ω),ϕ ∈ D(0,T )} is dense in L2(L2) (Cf. Lions
[27]), we deduce that ∇ ·u = 0 a.e. in Ω × (0,T ).

Step 3: Limit of the momentum equation. To pass to the limit in the momentum
conservation equation (33), we reformulate it as:

−
∫ T

0
(uh(t),vh)Ω ϕ

′(t)dt− (u0h,vh)Ω ϕ(0)+
∫ T

0
b(ũ−h (t); ũh(t),vh)ϕ(t)dt

+
∫ T

0
a(ũh(t),vh)ϕ(t)dt +

∫ T

0
c′(ũh(t); ũh(t),vh)ϕ(t)dt

+
∫ T

0
〈G(ũh(t)),vh〉ϕ(t)dt +

∫ T

0
(Ph(t),∇ ·vh)Ω ϕ

′(t)dt

+
∫ T

0
Sh(c̃h(t),Rh(σ

∗
h (ũ
−
h (t) ·∇vh)))ϕ(t)dt =

∫ T

0
〈̃fh(t),vh〉ϕ(t)dt, (41)

for any function ϕ ∈ D([0,T ]) such that ϕ(T ) = 0. Let v ∈W be a test function.
As Xh is an internal approximation of W (See Subsection 2.2), then there exists
a sequence {vh}h>0 ∈ Xh strongly convergent to v ∈W. By using Lemma 8 for
the time derivative term and Lemma 9 for the convection term, then the proof of
the convergence of the standard Galerkin plus the wall-law terms follows by rather
standard arguments (See [15], Sect. 10.4 for details). Also, by (24), the multi-scale
eddy diffusion term vanishes in the limit. To pass to the limit in the stabilizing term
for convection, we write:∣∣∣∣∫ T

0
Sh(c̃h(t),Rh(σ

∗
h (ũ
−
h (t) ·∇vh)))ϕ(t)

∣∣∣∣= ∣∣∣∣∫ T

0
(c̃h(t),σ∗h (ũ

−
h (t) ·∇vh))Ω ϕ(t)

∣∣∣∣
≤ ‖ϕ‖L∞(0,T )

∫ T

0
‖σ∗h (ũ−h (t) ·∇vh)‖L3/2‖c̃h(t)‖L3 dt

≤ C‖ϕ‖L∞(0,T )

∫ T

0
‖ũ−h (t)‖L6‖∇vh‖L2‖c̃h(t)‖L3 dt
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≤ C‖ϕ‖L∞(0,T )‖∇vh‖L2

(∫ T

0
‖ũ−h (t)‖

2
L6 dt

)1/2(∫ T

0
‖c̃h(t)‖2

L3 dt
)1/2

≤ C‖ϕ‖L∞(0,T )‖∇vh‖L2‖ũ−h ‖L2(H1)‖c̃‖L2(H1) h1/2 ≤C‖ϕ‖L∞(0,T )‖∇vh‖L2 h1/2,

where we have used the stability of the interpolation operator σh in L3/2, the stability
estimate (27) and Lemma 3. Thus, by the preceding analysis, we deduce that (u,P)
is a weak solution of (2).

Step 4: Uniqueness. As the convergence analysis follows from a compactness
argument, it is standard to prove, by reductio ad absurdum, that if the limit, solution
of (2), is unique, then the whole sequence converges to it. �

3.4 Asymptotic energy balance

Due to the low regularity of the weak solution, we are not able to get an asymptotic
energy identity. We can prove an energy inequality, related to the dissipative nature
of the approximation (15), for some simplified wall laws. Indeed, assume that the
wall law is given by the Manning formula (Cf. [28]):

g(u) = c f |u|u,

where c f is a friction coefficient. Then, the following holds:

Lemma 10. Let u ∈ L∞(L2)∩ L2(Wdiv) be a weak solution [together with some
pressure p ∈ D ′(Ω × (0,T ))] of problem (2), which is obtained as a weak limit of
some sequence {uh}h>0 in the terms stated in Theorem 3. Then:

1
2
‖u(t)‖2

L2 +2ν

∫ t

0
‖D(u(s))‖2

L2 ds +
∫ t

0

∫
Γn

〈G(u(s)),u(s)〉 ds

≤ 1
2
‖u0‖2

L2 +
∫ t

0
〈f(s),u(s)〉 ds, (42)

for almost every t ∈ [0,T ].

Remark 4. In the proof of (42) (Cf. [15], Sect. 10.6), the sub-grid dissipation energy
term so as the sub-grid stabilizing energy terms are treated only using that they
are positive. By estimate (27), they are uniformly bounded with respect to h and ∆ t.
However, stability estimate (27), combined with inverse inequalities, is not sufficient
to prove that these terms asymptotically vanishes (further regularity is needed to
ensure it).
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4 Numerical experiments: turbulent channel flow

In this section, we discuss some numerical results to analyze the basic numerical
performances of the proposed model applied to the computation of turbulent flows,
with and without wall-law boundary conditions. In particular, we present results of
a fully developed 3D turbulent flow in a channel at Reτ = 180 for coarse grids. The
turbulent flow in a 3D lid-driven cavity at higher Reynolds numbers up to Re = 104

was investigated by the third author in [15] and [33] applying the same turbulence
model described in the present paper, but just with Dirichlet boundary conditions.

4.1 Setting for numerical simulations

The proposed test consist of a fluid that flows between two parallel walls driven by
an imposed pressure gradient source term which is defined by the Reynolds number
Reτ based on the wall shear velocity uτ . For the setup of our numerical simulations,
we choose to follow the guidelines given by Gravemeier in [18] (See [12, 33] for
a detailed description of the setting). As a benchmark, we will use the fine Direct
Numerical Simulation (DNS) of Moser, Kim and Mansour [30]. In particular, we
test the following different settings of the eddy viscosity term for the proposed tur-
bulence model:

• SMA model: The Smagorinsky setting, given by

c′(uh;uh,vh) = 2(νT (uh)D(uh),D(vh))Ω ;

• VMS-S model: The Small-Small VMS-Smagorinsky setting, given by

c′(uh;uh,vh) = 2(νT (u′h)D(u′h),D(v′h))Ω ;

• VMS-B model: A modified version of Berselli-Iliescu-Layton setting of Ref. [7],
in which:

c′(uh;uh,vh) = 2(νT (Π̃
∗
h D(uh))Π̃

∗
h D(uh),Π̃

∗
h D(vh))Ω ,

where Π̃ ∗h = Id− Π̃h, and we have denoted by Π̃h an interpolation operator on a
coarser (e.g., P0) FE space.

The boundary conditions are periodic in both the stream-wise and span-wise direc-
tions (homogeneous directions). We perform a comparison between the application
of wall-law and no-slip boundary conditions at the walls.

Our strategy is as follows: to reach a statistically steady state, we use an evolu-
tion approach starting by an initial parabolic velocity profile perturbed by a random
velocity fluctuation. We first run a simulation with no-slip boundary conditions at
the walls, in order to stabilize uτ near a unitary value, for which we choose to work
with Van Driest damping [38] too.
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The difficulty we face in the numerical simulations is to obtain a good accuracy
with a relatively coarse spatial resolution. Our grid consists of a 163 partition of
the channel, uniform in the homogeneous directions. The distribution of nodes in
the wall-normal direction is non-uniform, and obeys the cosine function of Gauss-
Lobatto. We use three-dimensional P2 FE for velocity and pressure. A simulation
equivalent in number of degrees of freedom (d.o.f.) to our discretization for a tur-
bulent channel flow at Reτ = 180 has been carried out by Akkerman in his PhD
thesis [2], by using a residual-based VMS (RB-VMS) turbulence model. Note that
this discretization is four times coarser than the DNS one.

We use the Crank-Nicolson scheme for the temporal discretization, combined
with linearization of convective and sub-grid eddy viscosity terms. The choice of
this modified Crank-Nicolson scheme is due to the fact that it provides a good
compromise between accuracy and computational complexity, while keeping the
numerical diffusion levels below the sub-grid terms (Cf. [25]). The discretized
scheme is first integrated for 1250 time steps, with ∆ t = 0.004. This time step is
smaller than the Kolmogorov time scale, and it fits into the range proposed in [16]
to ensure numerical stability (Cf. [25]). Within this time period, the flow is expected
to develop to full extent, including a subsequent relaxation time.

Afterwards, we further integrate in parallel the numerical schemes either with no-
slip boundary conditions and wall-law boundary conditions, within another 1250
time steps, in order to collect statistics and perform a comparison. We choose to
apply wall-law boundary conditions only to VMS-S method, which is the model that
gives the most promising results. We consider the logarithmic wall-law of Prandtl
and Von Kármán, where we fix the computational boundary at y+ = 11.5, and we
use a uniform mesh with 12 grid-lines in wall-normal direction, neglecting the use
of Van Driest damping too. This permits to avoid the quite costly calculation of
the flow near the walls, reducing the number of d.o.f., with a saving in computing
time of about 34% compared with the use of no-slip boundary conditions. Note
that before the flow becomes quasi-stationary, the value of uτ changes a lot in time,
and this implies a dynamic development of the boundary layer thickness, due to
the definition of y+. This requires a dynamic adaptation in the use of wall laws.
Here, we choose a simpler procedure, letting the flow develop until reaching a stable
configuration before applying wall laws in a static way.

4.2 Numerical results

Hereafter, we denote by 〈·〉 the mean values and by ·̃ the respective fluctuations,
where mean values are obtained averaging over all time steps of the statistical period
as well as over the homogeneous directions. In Figure 1, we show the mean stream-
wise velocity profile 〈u1〉 (first-order statistic), normalized by the computed uτ , in
wall coordinates y+. As usual, only half of the channel width is illustrated (i.e., the
upper half-width here).
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In particular, the displayed mean stream-wise velocity profiles are obtained by
using both no-slip boundary conditions (for all methods) and wall-law boundary
conditions (for VMS-S method), and a comparison is performed with DNS data [30]
and the numerical results of Akkerman [2]. Note that the DNS data so as the RB-
VMS results of Akkerman are obtained by the standard approach that uses no-slip
boundary conditions at the walls. The results show an acceptable agreement with
the fine DNS, even with the very coarse basic discretization at hand. The profiles
obtained with the wall-law boundary conditions starting from y+ = 11.5 are simply
extended linearly up to the wall located at y+ = 0. We are entitled to do so, because
in this case the leading component of the velocity is the stream-wise velocity, so
that we can “identify” the friction non-dimensional velocity u+, defined in (6), by
〈u1〉/uτ . We display in Table 1 (first column) the deviation e〈u1〉

0 for the mean stream-
wise velocity profile from the respective DNS data in a normalized discrete L2-norm
subject to:

e〈u1〉
0 =


∫ y+=180

y+=0
|〈u1〉+h −〈u1〉+DNS|

2 dy+∫ y+=180

y+=0
|〈u1〉+DNS|

2 dy+


1/2

. (43)

We can observe as all methods give similar errors levels between 11% and 22%.

Table 1 L2-norm of the deviation from the DNS profiles for the stream-wise velocity.

Methods e〈u1〉
0 (y+ ∈ [0,180]) e

√
〈ũ2

1〉
0 (y+ ∈ [30,180], inertial

layer)

VMS-S (NO-SLIP BC) 0.1141 0.2320
VMS-S (WALL-LAW BC) 0.1734 0.2094
VMS-B (NO-SLIP BC) 0.1786 0.3341
SMA (NO-SLIP BC) 0.1260 0.3123
RB-VMS (Akkerman) 0.2221 0.6104

To investigate more in detail statistical properties of this wall-bounded turbulence
test, we plot second-order statistics as measure of turbulence intensities, by using
either no-slip (for all methods) and wall-law (for VMS-S method) boundary condi-
tions. Figure 2 displays the normalized (by the computed uτ ) r.m.s. values of veloci-

ty fluctuations
√
〈ũ2

i 〉 =
[
〈u2

i 〉−〈ui〉2
]1/2 (i = 1,2,3) in wall coordinates y+ at the

upper half-width of the channel. If we compare with DNS data the various me-
thods tested with no-slip boundary conditions, we can see slight differences for the
curves associated to wall-normal and span-wise velocities, while the curve related
to stream-wise velocity shows a noticeable over-prediction. We can also observe as
for the r.m.s. values, the results obtained by the application of wall laws are only
meaningful for the stream-wise component of the velocity, that is the leading one.
Note that in this case the related curve starts at y+ = 11.5, since the computational
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Fig. 1
Normalized mean stream-wise velocity profiles in wall coordinates y+.

domain starts at y+ = 11.5, and no extension is possible, as for the mean stream-wise
velocity. However, a comparison with the other curves is possible starting from the
first interior node at y+ ≈ 30, i.e. in the so-called inertial layer, as we could physi-
cally expect. Indeed, the inertial layer is where the logarithmic approximation of the
friction-velocity u+ is more accurate (see Figure 1). Actually, the best approxima-
tion of the r.m.s. stream-wise velocity fluctuation in the inertial layer is effectively
given by the use VMS-S method with wall-laws, as shown quantitatively in Table 1
(second column), where the normalized discrete L2-norm of the deviation from the
DNS profile is computed, analogously to formula (43). Nevertheless, the results for
the other “minor” velocity components are not acceptable compared with the DNS
data at hand. In particular, this is true for the wall-normal component of the velocity,
as in this case the model itself contemplates the imposition of a null wall-normal ve-
locity at the fictitious boundary of the resulting reduced computational domain [see
the boundary condition u ·n = 0 on Γn in problem (1)], that is not expected by the
use of standard no-slip boundary conditions.

Table 2 provides a quantitative picture for errors levels related to second-order
statistics when the standard no-slip boundary conditions at the physical walls are
incorporated in the various methods. Again, the VMS-S method is in general more
in agreement with the DNS data, being SMA method the one that presents the largest
distance from the experimental curves.

The numerical experiments confirm on one hand that the application of wall-law
boundary conditions could provide (at least for the leading stream-wise component
of the velocity) similar results to those obtained by the standard approach based on
the use of no-slip boundary conditions, a refined mesh towards the walls and the Van
Driest damping improvement, with a noticeable reduced computational cost. On an-
other hand, they show that the VMS-S method gives quite good results for both first
and second-order statistics (error levels similar to a more complex residual-based
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Normalized r.m.s. velocity fluctuations profiles in wall coordinates y+.
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Table 2 L2-norm of the deviation from the DNS profiles for the second-order statistics.

Methods e
√
〈ũ2

1〉
0 e

√
〈ũ2

2〉
0 e

√
〈ũ2

3〉
0

VMS-S (NO-SLIP BC) 0.2252 0.1652 0.1108
VMS-B (NO-SLIP BC) 0.2881 0.2018 0.1246
SMA (NO-SLIP BC) 0.3002 0.2236 0.1597
RB-VMS (Akkerman) 0.5694 0.1753 0.1331

VMS method), in the worst condition of a very coarse basic discretization, thus pro-
viding a good compromise between accuracy and computational complexity, which
is an important feature in the context of its practical performances.
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20. T. J. R. Hughes, G. R. Feijóo, L. Mazzei, and J.-B. Quincy. The variational multiscale
method—a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg.,
166(1-2):3–24, 1998.

21. T. J. R. Hughes, L. Mazzei, and K. E. Jansen. Large eddy simulation and the variational
multiscale method. Comput. Vis. Sci., 3(1-2):47–59, 2000.

22. T. J. R. Hughes, L. Mazzei, A. A. Oberai, and A. Wray. The multiscale formulation of large
eddy simulation: Decay of homogeneous isotropic turbulence. Phys. Fluids, 13(2):505–512,
2001.

23. T. J. R. Hughes, A. A. Oberai, and L. Mazzei. Large eddy simulation of turbulent channel
flows by the variational multiscale method. Phys. Fluids, 13(6):1784–1799, 2001.

24. V. John, S. Kaya, and A. Kindl. Finite element error analysis for a projection-based variational
multiscale method with nonlinear eddy viscosity. J. Math. Anal. Appl., 344(2):627–641, 2008.

25. V. John and A. Kindl. Numerical studies of finite element variational multiscale methods for
turbulent flow simulations. Comput. Methods Appl. Mech. Engrg., 199(13-16):841–852, 2010.

26. W. P. Jones and M. Wille. Large eddy simulation of a jet in a cross-flow. In 10th Symposium
on Turbulent Shear Flows, volume 4, pages 1–6, 1995.
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