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Abstract For a singularly perturbed parabolic reaction-diffusion equation with a
perturbation parameter ε (ε ∈ (0,1]) multiplying the highest-order derivative, we
consider a technique to construct ε-uniformly convergent in the maximum norm
difference schemes of higher accuracy order on uniform grids. In constructing such
schemes, we use the solution decomposition method, in which grid approximations
of the regular and singular components in the solution are considered on uniform
grids. Increasing of the convergence rate of the scheme constructed with improved
accuracy of order O

(
N−4 ln4 N +N−2

0

)
, where N and N0 are the number of nodes

in the meshes in x and t, respectively, is achieved using a Richardson extrapolation
technique applied to the regular and singular components. In the proposed Richard-
son technique, when constructing embedded grids we use most dense grids as main
grids. This approach allows us to construct schemes that converge ε-uniformly in
the maximum norm at the rate O

(
N−6 ln6 N +N−3

0

)
and higher.

1 Introduction

Efficiency of numerical methods for solving regular boundary and initial-boundary
value problems is largely determined by order of their convergence rate (see, e.g.,
[2, 3]; there also high-order schemes are considered). For a number of singularly
perturbed problems (with a perturbation parameter ε (ε ∈ (0,1]) multiplying the
highest-order derivative), difference schemes with improved accuracy order which
converge uniformly with respect to the perturbation parameter ε , i.e., ε-uniformly,
were constructed on the basis of piecewise-uniform grids condensing in the bound-
ary layer using a Richardson extrapolation technique (see, e.g., [5, 6, 7, 9, 11], and
also [10], Ch. 10, and the bibliography therein). Note that serious difficulties arise
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when constructing ε-uniformly convergent finite difference schemes of high accu-
racy order with using difference schemes on non-uniform grids. Thus, in the case
of a parabolic reaction-diffusion equation, there exist no Richardson schemes on
piecewise-uniform grids convergent ε-uniformly with accuracy order higher than
three in x (see [7]), and in the case of an elliptic convection-diffusion equation such
accuracy order is not higher than two (see [11]). In [12] for a singularly perturbed
ordinary differential reaction-diffusion equation, a new approach was developed in
order to construct special ε-uniform difference schemes based on the asymptotic
construction technique, namely, the solution decomposition method. The main in
this approach is the use of classical approximations to subproblems for the regular
and singular components of the solution on uniform grids. In the same paper, us-
ing the Richardson technique, an improved scheme of the solution decomposition
method was first constructed which converges ε-uniformly in the maximum norm
at the rate O

(
N−4 ln4 N

)
where N +1 is the number of nodes in the spatial grid.

In [8], for a Dirichlet problem for the one-dimensional singularly perturbed
parabolic reaction-diffusion equation, a scheme of the solution decomposition
method was first constructed which converges ε-uniformly in the maximum norm
at the rate O

(
N−2 ln2 N +N−1

0

)
, where N +1 and N0 +1 are the numbers of nodes

in the spatial and temporal grids, respectively
In [13] for the same problem as in [8], using the Richardson technique, an im-

proved scheme of the solution decomposition method was constructed which con-
verges ε-uniformly in the maximum norm at the rate O

(
N−4 ln4 N +N−2

0

)
. When

constructing the improved scheme, embedded refined meshes were used, where the
main grid was coarse grid; this Richardson technique turned out to be little used (be-
cause of its cumbersome) to create schemes of the solution decomposition method
convergent with order of the convergence rate higher than the fourth at x.

On the other hand, when constructing an improved Richardson scheme it is pos-
sible to apply the alternative approach proposed in[13], i.e., to use embedded grids
where the main grid is the most finest (with smallest step-size) grid. Such an al-
ternative approach allows us to construct improved difference schemes convergent
ε-uniformly at the rate O

(
N−6 ln6 N +N−3

0

)
when the number of embedded grids

equals three, and with a higher accuracy order when the number of embedded grids
more than three.

In the present paper, for an initial-boundary value problem for a singularly
perturbed parabolic reaction-diffusion equation, we developed a technique (an al-
ternative to approach in [13]) for constructing an improved difference scheme
when the number of embedded grids is two. On the basis of the solution de-
composition method and the Richardson extrapolation method, we constructed
a difference scheme of high accuracy order convergent ε-uniformly at the rate
O
(
N−4 ln4 N +N−2

0

)
.

Detailed results of the research will be presented in the journal publication.
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2 Problem formulation and aim of research

On the set G
G = G∪S, G = D× (0,T ], D = (0,d), (1)

we consider a boundary value problem for the one-dimensional singularly perturbed
parabolic reaction-diffusion equation1

L(2)u(x, t)≡
{

ε
2a(x, t)

∂ 2

∂x2 − c(x, t)− p(x, t)
∂

∂ t

}
u(x, t)= f (x, t), (x, t) ∈ G, (2)

u(x, t)=ϕ(x, t), (x, t) ∈ S.

The functions a(x, t), c(x, t), p(x, t), f (x, t) and ϕ(x, t) are assumed to be sufficiently
smooth on the set G and on the lower and lateral sides of the set S, respectively,
moreover,2

a(x, t), c(x, t), p(x, t)> m, | f (x, t)| ≤M, (x, t) ∈ G;

|ϕ(x, t)| ≤M, (x, t) ∈ S;

the parameter ε takes arbitrary values in (0,1]. Here S = S0∪SL, S0 and SL are the
lower and lateral sides of the boundary S, SL = SL

1 ∪ SL
2 , SL

1 and SL
2 are the left and

right parts of the lateral boundary, and S0 = S0.
We assume that the data of problem (2), (1) on the set of corner points S∗ =

S0∩SL satisfy the compatibility conditions ensuring the required smoothness of the
solution on G.

For small values of the parameter ε , a parabolic boundary layer appears in a
neighborhood of the set SL [4, 10].

Our aim is for initial-boundary value problem (2), (1), on the basis of the solu-
tion decomposition method (using standard grid approximations of the regular and
singular components of the solution on uniform grids) and the Richardson extrapo-
lation technique, to construct a difference scheme that converges ε-uniformly in the
maximum norm with an improved accuracy order (two with respect to t and four
with respect to x up to a logarithmic factor).

3 Difference scheme of the solution decomposition method

In this section, we first consider a decomposition of the solution to problem (2),
(1) using an asymptotic construction technique. Further, on the basis of this solu-

1 The notation L( j) (M( j), Gh( j)) means that these operators (constants, grids) are introduced in
formula ( j).
2 By M (or m), we denote sufficiently large (small) positive constants independent of the parameter
ε and of the discretization parameters.
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tion decomposition of the differential problem, we construct a difference scheme
(scheme of the solution decomposition method), in which the regular and singular
components of the discrete solution are computed on uniform meshes.

3.1 Solution decomposition of the differential problem

For the solution u(x, t) of differential problem (2), (1), we construct the following
decomposition:

u(x, t) =U(x, t)+V (x, t), (x, t) ∈ G, (3a)

where U(x, t) and V (x, t) are the regular and singular components of the solution, re-
spectively. For the regular component, we use the following expansion with respect
to the parameter ε from three members:

U(x, t) =U0(x, t)+ ε
2 U1(x, t)+ vU (x, t), (x, t) ∈ G, (3b)

where U0(x, t) is the main term, U1(x, t) is the first term and vU (x, t) is the remainder
term. We represent the singular component V (x, t) as the sum of the functions

V (x, t) =V1(x, t)+V2(x, t), (x, t) ∈ G, (3c)

where Vi(x, t) is the singular component of the solution in a neighbourhood of the
lateral side to the boundary SL

i , i = 1,2. The components in the representation (3)
are solutions of corresponding differential problems (see, e.g., [8, 13, 14]).

3.2 Basic scheme of the solution decomposition method

Now, we construct difference schemes for boundary value problem (2), (1) by ap-
proximating corresponding problems for the solution components. We consider two
cases depending on the value of the parameter ε .

For not too small values of the parameter ε , namely, provided

ε ≥ ε0(N), ε0(N) = m`−1 d ln−1 N, (4)

where m is an arbitrary number in (0,m0), m0 = min1/2
G

[a−1(x, t)c(x, t)], `= 2, we
approximate problem (2), (1) by the standard difference scheme on a uniform grid
Gh

Λz(x, t)≡ {ε2 a(x, t)δxx− c(x, t)− p(x, t)δt}z(x, t) = f (x, t), (x, t) ∈ Gh, (5)

z(x, t) = ϕ(x, t), (x, t) ∈ Sh.

Here
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Gh = ω×ω0, Gh = Gh∪Sh, (6)

is the uniform grid with the numbers of nodes N + 1 and N0 + 1 in the meshes ω

in x and ω0 in t, respectively. Using the solution of difference scheme (5), (6), we
construct the linear interpolant (see, e.g., [1])

zu(x, t), (x, t) ∈ G, under conditon (4), (7a)

which is the solution of the difference scheme {(5), (6); (4)} approximating the
differential problem (2), (1) under the condition (4).

Further, for approximation of the regular and singular components of the solu-
tion, we construct difference schemes for sufficiently small values of the parameter
ε , namely, provided

ε < ε0(4)(N). (8)

We approximate the function U(x, t) and its components in the representation
(3b) on the uniform grid (6). We find solutions of the corresponding difference
schemes (see, e.g., [8, 13, 14]) and obtain the function

zU (x, t) = zU0(x, t)+ ε
2 zU1(x, t)+ zvU (x, t), (x, t) ∈ Gh.

Using the values of the function zU (x, t) at the nodes of the grid Gh on the ele-
mentary partitions of the set G, generated by the grid Gh, we construct the bilinear
interpolant zU (x, t),(x, t) ∈ G. The function zU (x, t), (x, t) ∈ Gh, and also its inter-
polant zU (x, t),(x, t) ∈ G, are called solutions of difference schemes approximating
differential problems for the regular components under condition (8).

We approximate the singular components Vj(x, t) in (3c) on uniform grids which
are constructed on subdomains Gσ

j in G, adjacent to the boundaries SL
j , j = 1,2:

Gσ

j = Gσ
j ∪Sσ

j , Gσ
j = Dσ

j × (0,T ], j = 1,2, (9)

Dσ
1 = (0,σ), Dσ

2 = (d−σ ,d), σ = σ(ε, N, `) = min
[
d, m−1 `ε lnN

]
.

Solving discrete problems on the uniform grids

Gσ

j h = ω
σ
j ×ω0, Gσ

j h = Gσ
j h∪Sσ

j h, j = 1,2,

where ω0 = ω0(6), ω
σ
j is the mesh on Dσ

j with the step-size hσ = σN−1 and the
number of nodes N + 1, we find the functions zV j(x, t), (x, t) ∈ Gσ

j h, and their in-
terpolants zV j(x, t), (x, t) ∈ Gσ

j . We assume that, outside the set Gσ

j , the functions
zV j(x, t) and zV j(x, t) vanish. We set

zV (x, t) = zV1(x, t)+ zV2(x, t), (x, t) ∈ G.

The function zV (x, t), (x, t) ∈Gσ is the solution of discrete problems approximating
the differential problems for the singular components under condition (8).
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We call the following function:

zu(x, t) = zU (x, t)+ zV (x, t), (x, t) ∈ G, under condition (8), (7b)

the solution of difference schemes approximating differential problem (2), (1) under
condition (8).

Totality of the difference schemes used above forms the basic scheme of the
solution decomposition method. On its basis, the function zu(7a,b)(x, t), (x, t) ∈ G,
is constructed which approximates the solution of problem (2), (1). In [13] for the
solution zu(x, t) to the basic scheme of the solution decomposition method we have
obtained the following ε-uniform estimate:

|u(x, t)− zu(7a,b)(x, t)| ≤M [N−2 ln2 N +N−1
0 ], (x, t) ∈ G. (10)

4 Richardson extrapolation on the basis of classical scheme

We describe the Richardson extrapolation method, which is used for improving the
accuracy of the solution to difference scheme (5). On the set G we construct grids
uniform in x and t

G i
h = ω

i×ω
i
0, i = 1,2,3. (11a)

Here G1
h is Gh(6), in which h1

x = dN−1 is the step-size in the mesh ω
1 with the

number of nodes N + 1, and h1
t = T N−1

0 is the step-size in the mesh ω
1
0 with the

number of nodes N0 +1; G2
h and G3

h are “coarsened” grids. The step-size h2
x in the

mesh ω
2 is k times larger than the step-size h1

x in the mesh ω
1, i.e., h2

x = k d N−1

and k−1N +1 is the number of nodes in the mesh ω
2. The step-size h2

t in the mesh
ω

2
0 is k2 times larger than the step-size h1

t in the mesh ω
1
0 , i.e., h2

t = k2 T N−1
0 and

k−2N0 +1 is the number of nodes in the mesh ω
2
0 . The step-size h3

x in the mesh ω
3

is k2 times larger than the step-size h2
x in the mesh ω

2, i.e., h=x k2 d N−1 and k−2N+1
is the number of nodes in the mesh ω

3. The step-size h3
t in the mesh ω

3
0 is k2 times

larger than the step-size h2
t in the mesh ω

2
0, i.e., h3

t = k4 T N−1
0 and k−4N0 + 1 is

the number of nodes in the mesh ω
3
0. For simplicity, we consider the case with two

embedded uniform grids. Let
G0

h = G1
h ∩G2

h (11b)

G0
h = G1

h if k is an integer (k≥ 2), and G0
h 6= G1

h if k is a noninteger; G0
h = ω

0×ω
0
0 .

Let zi(x, t), (x, t) ∈ G i
h, i = 1, 2 be solutions of the difference schemes

Λ(5)z
i(x, t) = f (x, t), (x, t) ∈ Gi

h, (12a)

zi(x, t) = ϕ(x, t), (x, t) ∈ Si
h, i = 1,2.

We set
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z0(x, t) = γ1 z1(x, t)+ γ2 z2(x, t), (x, t) ∈ G0
h , (12b)

where

γi = γi(k), i = 1,2, γ1 =−(k2−1)−1, γ2 = 1− γ1 = k2 (k2−1)−1.

Difference scheme (12), (11) constructed on the basis of scheme (5), (6) is called
the Richardson scheme on two embedded grids. The function z0

(12)(x, t), (x, t) ∈G0
h ,

is called the solution to Richardson scheme (12), (11); the functions z1
(12)(x, t),

(x, t) ∈ G1
h , and z2

(12)(x, t), (x, t) ∈ G2
h , are called the components generating the

solution of scheme (12), (11). The solution z0(x, t) of the Richardson scheme con-
verges to the solution u(x, t) of boundary value problem (2), (1) with the estimate

|u(x, t)− z0(x, t)| ≤M
[
ε
−4 N−4 +N−2

0
]
, (x, t) ∈ G0

h , (13)

i.e., with the fourth accuracy order in x but for fixed values of ε and under the
sufficiently restrictive condition N−1 = o(ε), N−1

0 = o(1) (see [13]).

5 Richardson extrapolation for solution decomposition scheme

To improve accuracy order of discrete solutions obtained on the basis of the solu-
tion decomposition method, we will apply the Richardson extrapolation technique
described in section 4. We repeat constructions from Subsection 3.2, applying in
each case two, instead of one grid, (or three) embedded grids.

We consider the construction of schemes with improved accuracy for not too
small values of ε

ε ≥ ε0(N), ε0(N) = m`−1 d ln−1 N, (14)

and for sufficiently small values of the parameter ε

ε < ε0(N), ε0(N) = ε0(14)(N), (15)

where m = m(4), and `= 4 unlike from Subsection 3.2.
Under the condition (14), using the solution of the Richardson difference scheme

(12), (11) on two uniform embedded grids, we construct the interpolant

ẑu(x, t), (x, t) ∈ G under condition (14), (16a)

which we call the solution of the scheme {(12), (11), (14)}, approximating differ-
ential problem (2), (1) under condition (14).

Let the condition (15) be fulfilled. We construct the grid approximation of the
regular component U(x, t), using the Richardson extrapolation on the embedded
uniform grids
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G i
h = G i

h(11) = ω
i×ω

i
0, i = 1,2; G0

h = G0
h(11). (17)

Unlike from Subsection 3.1, under approximating the problem for U0(x, t), we use
its “extension” to the set

Ge
= De× [0,T ], De

= [−h0,d +h0],

where h0 is the step-size of the “common” mesh ω
1. On the set Ge, we construct

embedded grids

Ge i
h = ω

e i×ω
i
0, i = 1,2; Ge0

h = Ge1
h ∩Ge2

h ,

where ω
e i are “extended” uniform meshes, ω

e i∩D = ω
i, i = 1,2. We find discrete

solutions for the components ze i
U0
(x, t) and zi

U1
(x, t), zi

vU
(x, t) on the grid Ge i

h and G i
h,

respectively. Set

zi
U (x, t) = ze i

U0
(x, t)+ ε

2zi
U1
(x, t)+ zi

vU
(x, t), i = 1,2.

On the set G0
h , we define the function z0

U (x, t)

z0
U (x, t) = γ1 z1

U (x, t)+ γ2 z2
U (x, t), (x, t) ∈ G0

h , γi = γi(12)(k), (18)

which is the grid approximation of the function U(x, t) constructed on the basis of
the Richardson technique. Using the function z0

U (x, t), (x, t) ∈ G0
h , we construct its

interpolant
ẑ0
U (x, t), (x, t) ∈ G, (19)

which is the continual approximation of the function U(x, t).
Under the condition (15), using the Richardson technique, we construct the grid

approximation of the singular component V (x, t). On G we introduce the sets Gσ

j

Gσ

j = Gσ

j (9) = Gσ
j ∪Sσ

j , σ = σ(9)(ε, N, `) f or `= 4, j = 1,2. (20)

On the sets Gσ

j , we construct the embedded grids (similar to grids G i
h(17), G0

h(17))

Gσ i
j h = Gσ i

j h(21) = ω
σ i
j ×ω

i
0, i = 1,2; (21)

Gσ 0
j h = Gσ 0

j h(21) = Gσ 1
j h ∩Gσ 2

j h , j = 1,2.

Solving discrete problems on Gσ i
j h , we find zi

V j
(x, t), i = 1,2. On the set Gσ 0

j h we
define the function

z0
V j
(x, t) = γ1 z1

V j
(x, t)+ γ2 z2

V j
(x, t), (x, t) ∈ Gσ 0

j h , (22)

j = 1,2, γi = γi(12), i = 1,2.
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The function z0
V j
(x, t), (x, t)∈Gσ 0

j h , is the grid approximation of the function Vj(x, t),
constructed using the Richardson technique. We construct its interpolant:

ẑ0
V j
(x, t), (x, t) ∈ Gσ 0

j , j = 1,2; (23)

outside the set Gσ0
j , the function ẑ0

V j
(x, t) is assumed to be zero. Set

ẑ0
V (x, t) = ẑ0

V1
(x, t)+ ẑ0

V2
(x, t), (x, t) ∈ G.

We call the function

ẑu(x, t) = ẑ0
U (x, t)+ ẑ0

V (x, t), (x, t) ∈ G, under condition (15). (16b)

the solution of the Richardson difference scheme, which approximates differential
problem (2), (1) under condition (15).

Thus, we have constructed the function ẑu(16a,b)(x, t), (x, t) ∈ G, approximating
the solution of the differential problem (2), (1). This function and the grid functions
ze0
U0
(x, t),z0

U1
(x, t), z0

vU
(x, t), (x, t)∈G0

h , and z0
V j
(x, t), (x, t)∈Gσ 0

j h , j = 1,2, are called
the continual and grid solutions, respectively, of the Richardson difference scheme
of the solution decomposition method.

For the solution to the Richardson scheme of the solution decomposition method,
in [13] we have obtained the following ε-uniform estimate:

|u(x, t)− ẑu(x, t)| ≤M [N−4 ln4 N +N−2
0 ], (x, t) ∈ G. (24)

6 On the higher accuracy order schemes

The technique described above allows us to construct a Richardson scheme of type
(12) on the three embedded grids G1

h , G2
h and G3

h with the solution z0(x, t) on the set
G0

h , which is the intersection of these sets,

G0
h = G1

h ∩G2
h ∩G3

h , G i
h = G i

h(11a), i = 1,2,3.

Application of this Richardson scheme to the basic scheme of the solution decompo-
sition (similar constructions presented here) leads to the scheme of higher accuracy
order whose solution ẑu(x, t) converges ε-uniformly in the maximum norm at the
rate O

(
N−6 ln6 N +N−3

0

)
on the set G.
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