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Abstract In this paper we present a numerical wall function method for the simu-
lation of isothermal flows with separation and reattachment based on the Reynolds
averaged Navier-Stokes equations using an unstructured flow solver. The method
is applied to the one-equation turbulence model by Spalart and Allmaras and is
implemented in OpenFOAM R©. For each wall node, a system of one-dimensional
boundary-layer equations for the wall-parallel velocity component and for the tur-
bulence quantity is integrated numerically on an embedded sub-grid in the near-
wall region. The method is applied to the flow over a flat plate, over a backward
facing step, and over a smoothly contoured ramp. The improvement of the results
compared to universal wall functions become significant in case of separation and
reattachment.

1 Introduction

Computational fluid dynamics (CFD) has become a mature tool for aerodynamic
research and design optimization in automotive and aerospace research and industry.
The statistically averaged (or: Reynolds averaged) Navier-Stokes (RANS) equations
together with a one- or two-equation model of Spalart-Allmaras (SA) and k-ω type
to model the mean effect of the turbulent stresses are a popular approach in CFD
[3]. In order to obtain accurate numerical solutions, the thin boundary layers in the
vicinity of viscous walls need to be captured by the computational grid. A so-called
low-Re grid requires a spacing in viscous units of y+(1)≤ 1 for the wall distance of
the first node above the wall y(1) and several grid nodes in the viscous sublayer. In
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the definition of y+(1) = y(1)uτ/ν , uτ is the friction velocity and ν is the kinematic
viscosity of the fluid. The requirements on low-Re grids cause several problems.
The first is the large number of grid points to be placed into the boundary layers,
which increases the computational costs significantly, especially for internal flows.
The second (and most important) point is the challenge to generate proper low-Re
meshes for complex geometries within a reasonable amount of time, in particular
due to the high aspect ratios of the cells. The third issue is that the high aspect ratios
of the grid cells near the wall increase the numerical stiffness and lead to a slower
convergence of the solver. To illustrate typical problems in industrial CFD meshing,
we show an example of collapsing boundary layers at the edges of a small gap on
a car door in Figure 1 (left) and a boundary layer mesh on a car roof consisting of
only a few number of layers of anisotropic hexa-cells in Figure 1 (right).

One solution strategy is to use wall-functions to bridge the near-wall region,
see [3]. Then so-called high-Re meshes can be used with a first off-wall node at
y+(1)≈ 50 or larger. Albeit the basic idea is more than 40 years old, wall-functions
are still a field of research. Standard wall-functions are based on the universal wall
law, i.e., the log-law, which works quite successful in regions of attached, fully
developed turbulent boundary layer flows without strong pressure gradients and
without significant non-isothermal effects. Concerning the improvement of univer-
sal wall functions, an important step was the work by [5] on grid-independent hybrid
universal wall functions, where the solution becomes (almost) independent of y+(1),
provided that y(1) is located in the log-layer or below. Such hybrid (or: adaptive)
wall functions are based on the turbulence model specific near-wall solution of, e.g.,
the SA or the k-ω model.

In case of strong pressure gradients or non-isothermal effects, the near-wall so-
lution can differ significantly from the universal wall-law. Then the idea is to in-
crease the modelling complexity by including the dominant terms of the RANS
equations into the near-wall model. For aerodynamic isothermal flows subjected to
strong pressure gradients, the dominant terms are the pressure gradient and the mean
inertial terms. The price to pay for this is that the arising (system of) equations can
no longer be solved analytically but need to be integrated numerically. In [1], the
two-dimensional boundary layer equations for the wall-parallel component of the
velocity U and for the wall-normal velocity component V are solved on an embed-
ded sub-grid in the vicinity of the viscous wall. However, the implementation of
this method into an unstructured flow solver is not simple. Therefore the aim is to
derive a system of one-dimensional boundary layer equations, which describes U
and the turbulence quantities in wall-normal direction. Such a 1D method including
the effects of the pressure gradient is considered in e.g. [11]. In [6] additionally the
mean inertial terms are taken into account using an approximation, but the method
is validated only for attached flows.
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2 Governing equations and wall function modelling

We consider the stationary incompressible RANS equations for mean velocity U :
Ω → Rd and mean pressure P : Ω → R in a bounded, polyhedral domain Ω ⊂ Rd

(d = 2,3) with given source term f = 0, kinematic viscosity ν and with the Reynolds
stresses being modelled using the eddy-viscosity assumption

−∇ · (2(ν +νt)S(U))+∇ · (U⊗U)+∇P = 0 in Ω , (1)
∇ ·U = 0 in Ω , (2)

where S(u) = 1
2 (∇u+∇uT ) is the rate of strain tensor. The eddy-viscosity νt = fv1ν̃

is modelled using the Spalart-Allmaras one-equation turbulence model [10] which
is formulated for ν̃ , and we seek ν̃ : Ω → R such that

U ·∇ν̃−∇ ·
(

ν + ν̃

σ
∇ν̃

)
− cb2

σ
∇ν̃ ·∇ν̃ = cb1ρ S̃(U)ν̃− cw1 fw

(
ν̃

d

)2

in Ω ,

(3)
where d is the distance to the closest wall. For the specification of fv1, which is a
function of ν̃/ν , S̃(U), fw, and the model constants cb1, cb2, cw1, σ , we refer to [10].
Additionally, appropriate boundary conditions need to be specified. On the viscous
wall Γw, we use U = 0 and ν̃ = 0. On the inflow boundary we impose Dirichlet con-
ditions for U and ν̃ . On the outflow boundary we prescribe homogeneous Neumann
conditions for U and ν̃ .

Then we apply the wall-function concept. This can be interpreted as a domain-
decomposition method with overlap [12]. Denote Ωδ ⊂Ω the near-wall region with
an artificial inner boundary Γδ . We assume that dist(Γδ ,Γw) / 0.15δ99, where δ99
denotes the boundary layer thickness [3]. We replace the problem (1)-(3) in Ω by
two computationally less expensive problems:

• A global flow problem to be solved in the whole domain Ω with solution U :
Ω → Rd , P, ν̃ : Ω → R, and with modified boundary condition for U on Γw.

• A boundary-layer problem to be solved for the wall-parallel velocity component
U : Ωδ → R, and for ν̃bl : Ωδ → R.

Then the wall-function formulation reads as follows:
Global RANS problem. Solve (1)-(3) in Ω with modified boundary condition

u ·n = 0, (I−n⊗n)2νS(U)n =−τ
bl
w Ût,δ on Γw. (4)

Therein n is the unit surface normal vector and I− n⊗ n is the projection opera-
tor onto the tangential space of Γw. Moreover we introduce Ût,δ = Vt,δ/|Vt,δ | with
Vt,δ = (I−n⊗n)U|Γδ

and Uδ ≡ |Vt,δ |.
Near-wall problem. For each xw ∈ Γw we solve a 1D boundary value problem

along the wall-normal line { xw− yn | y ∈ (0,yδ )} where yδ ≡ dist(Γδ ,Γw), which
is derived from (1)-(3) using boundary layer theory, see, e.g. [8]:
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− d
dy

(
(ν +ν

bl
t )

dUbl

dy

)
= f , (5)

− d
dy

(
ν + ν̃bl

σ

dν̃bl

dy

)
=

cb2

σ

(
dν̃bl

dy

)2

+ cb1ρ S̃bl
ν̃

bl− cw1 fw

(
ν̃bl

y

)2

. (6)

Therein νbl
t = f bl

v1ν̃bl, where f bl
v1 is a function of ν̃bl/ν . The boundary conditions for

Ubl and ν̃bl impose the no-slip condition on Γw and ensure matching with the global
solution on Γδ

Ubl = 0 , ν̃
bl = 0 for y = 0 , Ubl =Uδ , ν̃

bl = ν̃δ ≡ ν̃ |Γδ
for y = yδ . (7)

Finally, from Ubl the wall-shear stress τbl
w is computed

τ
bl
w = ν

dUbl

dy
|y=0 (8)

and can be provided as boundary condition for the global flow problem in (4). The
right hand side f in (5) can be computed using different levels of complexity

f =


0 : stress-equilibrium,

− 1
ρ

dP
dx : pressure gradient,

− 1
ρ

dP
dx −Ubl ∂Ubl

∂x −V bl ∂Ubl

∂y : full approximation.

(9)

We add some remarks on the 1D problem (5), (6). Firstly, it is formulated in a
wall-fitted coordinate system with x being the streamwise direction and y being the
wall-normal direction, and Ubl and V bl are the wall-parallel and the wall-normal
component of the mean velocity. Secondly, using boundary layer theory [8] we as-
sume that dP bl/dx = dP/dx at least in the inner part of the boundary layer. Thirdly,
we come to the most important aspect. The option using the full approximation in
(9) is unclosed. The quantity ∂Ubl/∂x is not known as a function of y in a 1D ap-
proach. Instead, ∂Ubl/∂x is known only at y = 0 and at y = yδ from the global
problem. The quantity V is also not known in (5) in (0,yδ ). Therefore the sum con-
vective term requires closure modelling. Following [13], U∂U/∂x+V ∂U/∂y can
be expressed in terms of U(y) and duτ/dx. This is seen as a motivation to consider
the following two approximations based on Ubl

Ubl ∂Ubl

∂x
+V bl ∂Ubl

∂y
≈


Ubl ∂Uδ

∂x
Ubl

Uδ
: quadratic approx. in Ubl ,

Ubl ∂Uδ

∂x
y

yδ
: linear approx. in Ubl .

(10)

These approximations for the sum convective term will be discussed in Section 4.2.
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3 Numerical solution method using OpenFOAM R©

For the numerical simulations, OpenFOAM R©is used. This is an unstructured finite
volume solver on collocated meshes. The method is of cell-centered type, i.e., the
flow variables are assigned to the centroids of the control volumes. For the momen-
tum equation, the convective fluxes are discretized using a linear upwind scheme
in our study. The diffusive fluxes are discretized with a central scheme, i.e., the
gradients are reconstructed using the Green-Gauss formula in conjunction with a
gradient correction for non-orthogonal cells. The momentum and continuity equa-
tions are coupled regarding velocity and pressure. They are solved iteratively using
a projection method, viz., the SIMPLE method. The corresponding iterations are
called outer iterations. For the outer iteration loop, we use under-relaxation with re-
laxation factors αp = 0.3 for p, αu = 0.7 for U and αν̃ = 0.7 for ν̃ . As the values
of velocity and pressure are computed on the same set of nodes, a variant of the
interpolation scheme by Rhie and Chow is applied, see [4]. For the solution of the
arising linear systems we use a preconditioned bi-conjugate gradient solver (PBiCG)
for asymmetric matrices together with diagonal incomplete LU (DILU) precondi-
tioning for the momentum and turbulence model equations. For solving the pressure
equation, we use a generalised geometric-algebraic multi-grid solver (GAMG) with
a smoothing method of Gauss-Seidel type.

Within each outer iteration step of the SIMPLE method, the near-wall problem
(5)-(7) is solved on an embedded sub-grid using a second order accurate finite dif-
ference scheme, see Figure 2. The arising linear systems for wall-parallel velocity
and for ν̃ are tri-diagonal and are solved directly using the Thomas-algorithm. Then
we determine τbl

w using (8) and compute ubl
τ =

√
τbl

w /ρ . As an implementation de-
tail, the right hand side of (4) is not directly used but is altered, which is typical to
cell-centered schemes. Firstly, in (8) the underresolved mean velocity gradient on
the global mesh is used. Secondly, ν is replaced by ν +νt,WF in order to obtain the
correct τbl

w . This is achieved by defining

νt,WF = ν max

(
1,

y+
δ

Ubl,+(y+
δ
)

)
, Ubl,+ =

Ubl

ubl
τ

, y+
δ
=

yδ ubl
τ

ν
. (11)

4 Results

4.1 Turbulent boundary layer flow at zero pressure gradient

The method is applied first to a turbulent boundary layer flow at zero pressure gradi-
ent (ZPG). We consider the flow over a flat plate of length l = 5m at inflow velocity
u∞ = 33ms−1 and ν = 1.51×10−5m2s−1. The wall is treated fully turbulent.

For zero pressure gradient flows, corresponding to f = 0 in (9), the deviation
to the low-Re solution should be very similar between the Spalding wall-function
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and the numerical wall-function. We generate a series of meshes using the same
distribution function for the grid points in wall-normal direction, where the wall-
distance of the first node y(1) and hence the number of mesh points are varied. The
aim is to obtain results which are robust w.r.t. changes in y+(1). We consider high
Re meshes with y+(1) = 65 and y+(1) = 160. The number of nodes in wall-normal
direction inside the boundary layer, i.e., with wall distance y < δ99, is 190 for the
low-Re mesh but only 24 on the mesh with y+(1) = 65.

The results for the skin friction coefficient c f = 2(uτ/u∞)
2 using numerical wall

functions (num WF) and universal wall functions using the wall law by Spalding
(Spalding) are shown in Figure 2. The deviation from the low-Re solution for x> 3m
is similar for the Spalding wall function and for the numerical wall function on the
mesh with y+(1) = 65, but the deviation for the numerical wall function becomes
larger on the mesh with y+(1) = 160.

4.2 Flow over a smoothly contoured ramp

In this section we consider the flow by [9], where separation is caused by an adverse
pressure gradient on a smoothly contoured surface. In the simulation, a turbulent
boundary layer develops over a long flat plate of length 2.0m and then follows the
smoothly contoured ramp of length 70mm and height h = 21mm, see also [7]. Due
to the ramp the flow experiences an adverse pressure gradient, causing the boundary
layer to separate, and the flow reattaches on the downstream flat plate. The ramp
starts at x = 0 and ends at x = 70mm = 3.33h. The flow conditions are given at the
reference position xref = −140mm. We consider the cases Reθ = 3400 and Reθ =
20100. For Reθ = 3400, the boundary layer edge velocity is Ue = 20.2ms−1, δ99 =
27.6mm and ν = 15.5×10−5m2s−1. For Reθ = 20100, the data are Ue = 20.5ms−1,
δ99 = 26.0mm and ν = 2.06×10−6m2s−1.

For Reθ = 20100, we study the boundary layer approximation and consider the
order of magnitude of the terms in (9). Moreover we assess the approximations in
(10). We extract the profiles for dP/dx, U∂U/∂x and V ∂U/∂y along a wall-normal
line at x = 35mm in the mid of the ramp in the adverse pressure gradient region.
We scale the terms in (9) to inner units by multiplication with ν/(ρu3

τ). Figure 3
(left) shows the results. The term dP/dx is almost constant in wall-normal direction,
and the deviation from the constant behaviour is due to the surface curvature of the
ramp [8]. The term U∂U/∂x is significantly larger than V ∂U/∂y, but the latter term
is not negligible small. Note that in a decelerating boundary layer typically ∂U/∂x
is negative, whereas U , V , and ∂U/∂y are positive. Therefore V ∂U/∂y reduces
U∂U/∂x. For y+' 50, the total convective term is of the same order of magnitude as
dP/dx. In Figure 3 (right) the two approximations to U∂U/∂x+V ∂U/∂y proposed
in (10) are assessed. Since both V and ∂U/∂y are not known accurately on Γδ ,
the contribution of V ∂U/∂y is neglected. This leads to an overestimation of the
total mean convection term by around 15% to 20%. The approximations given in
(10) are shown for two different positions of Γδ , i.e., at y+

δ
= 50, and 100. The
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quadratic approximation gives a qualitatively close approximation and is superior
to the linear approximation. However, in some circumstances, e.g., near separation
and reattachment, the linear approximation has better numerical properties than the
quadratic approximation, as described in the next paragraph.

The predictions for c f are shown in Figure 4 for a mesh with y+(1) = 30 at the
reference position. Note that the reference solution is the low-Re solution, not the
experimental data. The numerical wall functions are applied using the second and
third approximation for f in (9). For the mean convective term we use the linear
and the quadratic approximation in (10). The local peak of c f at x = 0 due to the
local flow acceleration is captured quite well using the numerical wall functions.
Moreover, the flow deceleration in the adverse pressure gradient region on the ramp
and the decrease in c f are predicted in close agreement with the low-Re solution.
The prediction in the separation region and after reattachment is also closer to the
low-Re solution than for the Spalding wall functions. Note that the spurious oscilla-
tions in c f at x≈ 0.07m are caused by the kink in the geometry, which causes mild
oscillations in dP/dx. In the vicinity of separation and reattachment, the solution
using the quadratic approximation suffers from additional oscillations, which are
not observed for the linear approximation. Finally we mention that regarding the
performance acceleration of the method, wall functions give a speed up of a factor
of more than three regarding the solver iterations compared to the low-Re mesh.

4.3 Flow over a backward facing step

In this section we consider the turbulent flow over a long flat plate, where sudden
flow separation is caused by a backward-facing step of height h at x = 0, followed
by reattachment at x/h = 6.26± 0.10. The channel height upstream of the step is
8h and the length of the inflow section is 110h. The test case was studied exper-
imentally by Driver and Seegmiller [2]. In agreement with the experimental flow
conditions, the inflow centerline velocity prior to the step is U0 = 44.2ms−1, the
Reynolds number based on the momentum thickness [3] is Reθ ≈ 5000 and the
boundary layer thickness is δ99 ≈ 1.5h. The height of the step is h= 0.0127m, yield-
ing Reh =U0h/ν ≈ 36000. Wall-functions are used on the top and bottom wall. The
wall opposite the step was parallel to the wall in the experiment considered here.
On the low-Re mesh, the number of grid points in wall-normal direction with wall
distance y < δ99 is 102, whereas on the high-Re mesh with y+(1) = 55 (measured
at x/h =−2) only 20 points are needed.

The results are shown in Figure 5. The predictions using numerical wall functions
are significantly closer to the low-Re solution than for the Spalding wall function.
The deviation with and without the convective term are very small.
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5 Conclusion

We presented a numerical wall function method for aerodynamic flows with separa-
tion and reattachment applied to the Spalart-Allmaras (SA) model. The wall func-
tion method is implemented and validated using the unstructured incompressible
flow solver OpenFOAM R©. The method solves a one-dimensional boundary layer
equation for the wall-parallel velocity and for the SA model on an embedded sub-
grid in the near-wall region. For a robust usage of the present method for complex
configurations, meshes with y+(1) = 30 seem to be a good compromise between
robustness and accuracy of the method. On meshes with y+(1) = 30, the pressure
gradient term is the most important term in the boundary layer equations. Taking
into account additionally the mean convection term does not give significant im-
provements in accuracy for the test cases and meshes studied in this work, but is
found to degrade the robustness of the method.
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Fig. 1 Example of typical problems in industrial CFD meshing. Left: Collapsing boundary layers
at the edges of a small gap on a door. Right: Boundary layer mesh on the car roof consisting of six
or less layers of anisotropic hexa-cells. Isotropic hexa-cells are used outside of the boundary layer.

Fig. 2 Left: Sketch of the embedded sub-grid for solving the 1D boundary layer equations. Right:
Turbulent boundary layer flow over a flat plate at zero pressure gradient. Distribution of the skin
friction coefficient c f using wall functions on high-Re grids compared to the low-Re solution.
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Fig. 3 Flow over a smoothly contoured ramp at Reθ = 20100 [9]. Left: Right hand side (RHS)
terms extracted from the low-Re solution in the mid of the ramp at x = +35mm in the adverse
pressure gradient region along a wall-normal line. Right: Approximation of the convective term in
(10). Note that the convection terms are plotted with a minus sign in the right figure.

Fig. 4 Smoothly contoured ramp at Reθ = 3400: Distribution of friction coefficient c f for high-Re
grid and different wall functions compared to low-Re solution (left) and sketch of the flow (right).

Fig. 5 Flow over a backward facing step [2]: Distribution of friction coefficient c f for high-Re
grid and different wall functions compared to low-Re solution (left) and sketch of the flow (right).


