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Abstract In this paper the numerical approximation of turbulent and laminar in-

compressible turbulent flow is considered. The mathematical model is either based

on incompressible Navier-Stokes equations or on Reynolds averaged Navier-Stokes

(RANS) equations enclosed by a turbulence model. The problem is discretized in

space by the finite element method, the detailed description of the stabilization shall

be given and several aspects of approximation of the turbulence/transition model

shall be given. The numerical results of the finite element method shall be presented.

1 Introduction

Recently the mathematical modelling and numerical approximation play important

role in the engineering practice in the civil, aerospace and mechanical engineering

(see e.g. [3], [11]). Considering the fluid flow particularly the complicated phe-

nomena such as turbulence can be treated using several approaches as direct nu-

merical simulations (DNS), large eddy simulations (LES) or using the Reynolds

averaged Navier-Stokes equations (RANS) approach, see e.g. [12]. In the technical

practice the DNS/LES computations are usually not performed particularly due to

their excessive requirements for both the memory and the CPU time. The Reynolds

averaged Navier-Stokes equations (RANS) are recently being used, see [17]. The

turbulence effects need to be taken into account even if the Reynolds number is rel-

atively low. In this case also the transition from the laminar to the turbulent flow

can influence the quality of the solution. There are three main possibilities how to

include transition: the low-Reynolds modifications of the turbulence models or the

eN method, which uses the local linear stability theory. Further, the empirical cor-

Petr Sváček
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relations approach can be applied. These approaches can produce very good transi-

tion predictions (particularly for the flow over an airfoil), but their application for

general CFD codes is usually complicated (due to several non-local operations). In

order to include the transition model into aeroelastic simulations and avoid using

the non-local operations, the transition model based on two transport equations for

intermittency and the onset momentum-thickness Reynolds number were used, see

[8], [14]. In the present paper we are concerned with the numerical simulation of the

aeroelastic problem of 2D viscous incompressible flow past a moving airfoil. The

main attention is paid to the description of the application of the k−ω turbulence

model (see [17], [5]) together with the transition model included, see [8].

2 Mathematical description

In order to practically treat the numerical discretization on the moving computa-

tional domain Ωt , the Arbitrary Lagrangian-Eulerian (ALE) method is used, see

[9], [10]. The ALE mapping A = A (ξ , t) = At(ξ ) defined for all t ∈ (0,T ) and

ξ ∈ Ω re f
0 = Ω0 is assumed to be sufficiently smooth mapping from Ω0 onto Ωt . Fur-

ther the domain velocity wD is defined by wD(x, t) =
∂A

∂ t
(ξ , t) for any x =A (ξ , t).

The time derivative with respect to the reference configuration Ω re f
0 is called the

ALE derivative, denoted as DA /Dt, see [15].

The mathematical formulation of the problem consists of the flow model, the

structure model and the interface conditions. The fluid flow is described in the two-

dimensional time dependent computational domain Ωt ⊂R
2 with the Lipschitz con-

tinuous boundary ∂Ωt =ΓD∪ΓO∪ΓWt . Here, ΓD denotes the inlet part of the compu-

tational domain, ΓO denotes the outlet part and ΓWt denotes the surface of the airfoil

at time t. The fluid motion in the domain Ωt is modelled using the Navier-Stokes

system of equations in Ωt written in the ALE form (i = 1,2)

DA ui

Dt
+(u−wD) ·∇ui −

2

∑
j=1

∂

∂x j

(2νSi j)+
∂ p

∂xi

= 0, divu= 0, (1)

where u = (u1,u2) is the fluid velocity vector, Si j =
1
2
( ∂ui

∂x j
+

∂u j

∂xi
) are the compo-

nents of the symmetric part of the gradient of u denoted by S = S(u), p is the

kinematic pressure (i.e., the pressure divided by the constant fluid density ρ), ν is

the constant kinematic viscosity of the fluid (i.e., the viscosity divided by the density

ρ). Let us note, that in the case of the Reynolds averaged Navier-Stokes equations

the viscosity coefficient is replaced by ν
eff
= ν +νT , where νT is a turbulent viscos-

ity (obtained by an additional model, see [17]).

The system (1) is equipped with boundary conditions

a) u= uD on ΓD, b) u=wD on ΓWt , (2)

c) −2νS(u) ·n+ pn+ 1
2
(u ·n)−u= 0 on ΓO,
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where α− = min(0,α) denotes the negative part of the number α ∈ R and n =
(n1,n2) denotes the unit outward normal to ∂Ωt . Further, the system (1) is equipped

with an initial condition u(x,0) = u0(x), x ∈ Ω0.

The flow is interacting with a flexibly supported airfoil, which is allowed to be

vertically displaced by h (downwards positive) and rotated by the angle α (clock-

wise positive). Its motion is then described by the nonlinear equations of motion

mḧ+Sα α̈ cosα −Sα α̇2 sinα + khh =−L(t), (3)

Sα ḧcosα + Iα α̈ + kα α = M(t),

where m is the mass of the airfoil, Sα is the static moment around the elastic axis

(EA), and Iα is the inertia moment around EA, see [15]. The parameters kh and

kα denote the bending and torsional spring stiffness coefficients, respectively. The

aerodynamical lift force L(t) and aerodynamical torsional moment M(t) (clockwise

positive) are given by

L =−l

∫

ΓWt

2

∑
j=1

σ2 jn j dS, M = l

∫

ΓWt

2

∑
i, j=1

σi jn jr
ort
i dS, σi j = ρ [−pδi j +2νSi j] , (4)

where l denotes the depth of the airfoil section, δi j is the Kronecker’s delta, rort
1 =

−(x2−xEA
2 ), rort

2 = x1−xEA
1 , and xEA = (xEA

1 ,xEA
2 ) is the position of EA of the airfoil

at the time instant t.

3 Numerical approximation

For an arbitrary but fixed time instant t we shall denote by Wt = H
1(Ωt) the

Sobolev space of vector square integrable functions together with their first deriva-

tives and by Qt = L2(Ωt) the Lebesgue space of square integrable functions. Further

by Xt ⊂H
1(Ωt) the space of the test functions being zero on ΓD ∪ΓWt at the time

instant t shall be denoted. The weak formulation of the Navier-Stokes equations is

obtained by multiplication of the first equation in (1) for i = 1,2 by zi, the compo-

nent of a test function z ∈ Xt , integration over the domain Ωt and application of

Green’s theorem. Thus we get that U = (u, p) ∈Wt ×Qt satisfies

(DA
u

Dt
,z
)

+
(

2νS(u),S(z)
)

+ c(u−wD;u,z)−
(

p,∇ ·z
)

+
1

2
((∇ ·wD)z,u) = 0

for all z ∈ Xt and (∇ ·u,q) = 0 for all q ∈ Qt , where by (·, ·) the dot-product in

L2(Ωt) is denoted, and
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c(w;u,z) =
1

2

(

(w ·∇)u,z
)

− 1

2

(

(w ·∇)z,u
)

+
1

2

∫

ΓO

(w ·n)+u ·z dS.

In order to formulate the aerodynamical forces L and M also weakly, we shall

use a function ϕ ∈ H1(Ωt) such that ϕ(x, t) = 1 for x ∈ ΓWt , and its compact

support suppϕ ⊂ Ωt ∪ΓWt . Multiplying the first equation of (1) by the function

Ψ
h = (0,ϕ)T , integrating over Ωt , applying Green’s theorem to viscous and pres-

sure terms, using the notation w = u−wD, we get

(DA
u

Dt
+(w ·∇)u,Ψ h

)

+
(

2νS(u),S(Ψ h)
)

−
(

p,∇ ·Ψ h
)

=
1

ρ

∫

ΓWt

σi jn jΨ
h

i dS

Thus with the aid of (4) and having Ψ
h = (Ψ h

1 ,Ψ
h

2 ) ∈Wt equal to (0,1)T on ΓWt ,

we get the weak form of the aerodynamical lift force L:

L =−ρl

∫

Ωt

DA
u

Dt
·Ψ h +((w ·∇)u) ·Ψ h − p(∇ ·Ψ h)+2ν S(u) : S(Ψ h)dx. (5)

Similarly using the vector-valued function Ψ
α = (Ψ α

1 ,Ψ α
2 ) = ϕ (rort

1 ,rort
2 )T we get

M = ρl

∫

Ωt

DA
u

Dt
·Ψα +((w ·∇)u) ·Ψα − p(∇ ·Ψα)+2ν S(u) : S(Ψα)dx. (6)

In order to discretize the problem in time the equidistant partition tk = k∆ t of the

time interval I is considered with a time step ∆ t > 0. We denote the approximations

u
k ≈u(·, tk) and pk ≈ p(·, tk). Moreover we approximate the domain velocity wD at

time level tk by w
k
D and focus on the description of the discretization at an arbitrary

fixed time instant t = tn+1. For the sake of simplicity we shall omit the subscripts t or

tn+1 in what follows. We shall consider all the function spaces X,W ,Q defined for

the time instant t = tn+1 on the domain Ω := Ωtn+1
. Then the ALE time derivative

in the weak formulation of (1) is approximated at the time t = tn+1 by the second

order backward difference formula, i.e.,

DA
u

Dt
|t=tn+1

≈ 3un+1 −4ũn + ũ
n−1

2∆ t
,

where by ũ
i = u

i ◦Ati ◦A
−1

tn+1
the transformation of ui from Ωti on Ω for i = n−1

and i = n is denoted.

In order to spatially discretize the problem (1) by the finite element method, the

spaces X,W and Q are approximated by finite element subspaces X∆ ,W∆ and

Q∆ , respectively. The Taylor-Hood family of finite element spaces defined over a

triangulation T∆ of the computational domain Ω = Ωtn+1
is used, i.e., the continu-

ous piecewise quadratic velocities and the continuous piecewise linear pressures are

used. Moreover for the involved high Reynolds numbers the fully stabilized scheme

is used, which consists of streamline-upwind/Petrov-Galerkin (SUPG) and pressure-
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stabilizing/Petrov-Galerkin (PSPG) stabilization combined with the div-div stabi-

lization, see [4]. For U,V,U∗ ∈W∆ ×Q∆ , U = (u, p), V = (z,q), U∗ = (u∗, p) we

define

a(U∗;U,V ) =
3

2∆ t

(

u,z
)

+ c(u∗−w
n+1
D ;u,z)+

(

2νS(u),S(z)
)

+(∇ ·u,q)−
(

p,∇ ·z
)

+
1

2

(

(∇ ·wn+1
D )u,z

)

,

L(V ) =
1

2∆ t

(

4ũn − ũ
n−1,z

)

,

and the terms L and F are the SUPG/PSPG terms defined by

L (U∗;U,V )

= ∑
K∈T∆

δK

( 3u

2∆ t
−ν△u+

(

w
n+1 ·∇

)

u+∇p,
(

w
n+1 ·∇

)

z+∇q
)

K
,

(7)

F (V ) = ∑
K∈T∆

δK

( 1

2∆ t
(4ũn − ũ

n−1),
(

w
n+1 ·∇

)

z+∇q
)

K
,

where the function w
n+1 = u

∗−w
n+1
D stands for the transport velocity. Here, the

constant viscosity assumption was used to simplify the viscous term to ν△u. In the

case of variable viscosity νe f f either the viscous term needs to be modified or the

elementwise constant viscosity νT is used.

Problem 1 (Stabilized problem). The stabilized discrete problem reads: Find U =
(un+1

∆ , pn+1
∆ ) ∈ W∆ × Q∆ such that u

n+1
∆ satisfies approximately the Dirichlet

boundary conditions (2,a,b) and

a(U ;U,V )+L (U ;U,V )+ ∑
K∈T∆

τK(∇ ·u,∇ ·z)K = L(V )+F (V ) (8)

holds for all V = (z,q) ∈ X∆ ×Q∆ , where the stabilizing parameters τK and δK

for the Taylor-Hood family of finite elements are set to τK = maxx∈Ω ‖un(x)‖2 and

δK = h2
K/τK . This corresponds to the optimal choice in [4], particularly in the case

if maxx∈Ω ‖un(x)‖2 ≈ 1.

The non-linear problem is then solved using the Oseen linearization process,

where the solution of each of the linear problems is performed using an efficient

direct solver, see [2].

4 Turbulent flow

For modelling of the turbulent flow with the transition the Menter’s SST k−ω tur-

bulence model, see [7] is used, with the γ −Reθ t transition model introduced by [8].
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The viscosity coefficient ν in the equation (1) is replaced by the effective viscosity

ν
eff
= ν +νT , and the turbulent viscosity νT is modelled using the turbulent kinetic

energy k = k(x, t) and the turbulent specific dissipation rate ω = ω(x, t) satisfying

for any t ∈ (0,T ) in Ωt equations

DA k

Dt
+((u−wD) ·∇)k = γ

eff
Pk −β ∗ωkγ

eff
+∇ · (εk∇k),

(9)
DA ω

Dt
+((u−wD) ·∇)ω = Pω −βω2 +∇ · (εω ∇ω)+CD,

where εk = ν+σkνT , εω = ν+σω νT and the source terms Pk, Pω and CD are defined

by

Pk = νT S, S = S(u) : S(u), Pω =
αω ω

k
Pk, CD = 2(1−F1)

σD

ω
(∇k ·∇ω)+

and the turbulent viscosity is then given by

νT = min
( k

max(ω,SF2/a1)
,

0.6k√
3S

)

. (10)

The closure coefficients β , β ∗, σk, σω , αω are chosen according to [7], i.e., a1 = 0.3,

κ = 0.41, β ∗ = 0.09, σD = 0.5 and the coefficients σk, σω , β and αω are calculated

using the blending function F1 as φ = F1φ1 +(1−F1)φ2, where σk1 = 0.85, σω1 =
0.65, β1 = 0.075, σk2 = 1, σω2 = 0.856, β2 = 0.0828 and αω = β/β ∗−σω κ2/

√

β ∗.

For the sake of brevity, the blending functions F1, F2 are not specified here, see e.g.,

[7]. In order to capture the transition, the modification of the SST model in the

production and the destruction terms of (9) is used, using the effective intermittency

γ
eff

, γ
eff
= max(min(γ

eff
,1),0.1).

The effective intermittency is then modelled using the equation for the intermit-

tency coefficient γ written in the ALE form

DA γ

Dt
+((u−wD) ·∇)γ = Pγ −Eγ +∇ · ((ν +νT/σ f )∇γ), (11)

where Pγ and Eγ are the transition source and destruction terms given by Pγ =
F

length
ca1S

√

γFonset(1− ce1γ), and Eγ = ca2ΩγF
turb

(ce2γ −1), where S and Ω are the

strain rate and vorticity magnitudes, respectively. Further, Fonset = (F
onset2

−F
onset3

)+,

F
onset1

= ReV
2.193Reθc

, ReV = y2S
ν , RT = k

νω , F
turb

= e−(RT /4)4
, y denotes the wall distance,

and Reθ t is the transition Reynolds number and

F
onset2

= min
(

max
(

F
onset1

,F4
onset1

)

,2
)

, F
onset3

= max

(

1−
(

RT

2.5

)3

,0

)

.

The following constants for the intermittency equation were used ce1 = 1, ca1 = 2,

ce2 = 50, ca2 = 0.06, σ f = 1. Further, Reθc is the critical Reynolds number given by

an empirical correlation, and another empirical correlation is used for the function
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F
length

, which controls the length of the transition region. The correlations are based

on newly defined transported unknown Reθ t governed by the equation written in the

ALE form

DA Reθ t

Dt
+((u−wD) ·∇)Reθ t = Pθ t +∇ · (σθ tνeff

∇Reθ t), (12)

where the source term Pθ t = cθ t
ρ
t∞

(

Reθ t −Reθ t

)

(1−Fθ t), where cθ t = 0.03, σθ t =

2, t∞ = 500ν/U2 is the time scale, U is the magnitude of velocity U = ‖u‖2 and the

blending function Fθ t is defined as

Fθ t = min

(

1,max

(

F
wake

e−(y/δ )4

,1−
(

γ −1/ce2

1−1/ce2

)))

,

with δ = 375Ωy
U

θ , θ = Reθ t ν
U

, F
wake

= e−(Reω/105)2
, and Reω = ωy2

ν . The right hand

side includes the Reynolds number Reθ t = θtν/U given by an empirical correlation

specified later.

Here, we present the empirical correlations published in [6]. First, the length of

the transition is controlled by

F
length

=



























39.82−0.119Reθ t − 1.33
104 Re

2
θ t for Reθ t < 400,

263.4−1.24Reθ t +
1.95
103 Re

2
θ t − 1.02

106 Re
3
θ t for 400 ≤ Reθ t < 596,

0.5− 3
104 (Reθ t −596) for 596 ≤ Reθ t < 1200,

0.3188, for 1200 ≤ Reθ t .

The transitional onset momentum thickness Reynolds number Reθ t is correlated

to pressure gradient λθ and to turbulence intensity Tu defined by

λθ =
θ 2

t

ν

∂U

∂u
, Tu = 100

√

2k/3

U
,

where ∂U
∂u is the acceleration of the flow velocity in the streamwise direction. The

correlation for Reθ t is given by

Reθ t =







(

1173.51−589.428Tu+ 0.2196
Tu2

)

F(λθ ), for Tu ≤ 1.3,

331.5(Tu−0.5658)−0.671
F(λθ ), for Tu > 1.3,

where the function F(λθ ) reads

F(λθ ) =

{

1−
(

−12.986λθ −123.66λ 2
θ −405.689λ 3

θ

)

e−(2Tu/3)3/2
, for λθ ≤ 0,

1+0.275
(

1− e−35λθ
)

e−2Tu, for λθ > 0.

Last, the correlation for the critical Reynolds number is given by the relation
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Reθc =







101.21
102 Reθ t −3.96−8.68

Re
2
θ t

104 +6.97
Re

3
θ t

107 −1.74
Re

4
θ t

1010

Reθ t
1870

≤ 1,

Reθ t −593.11−0.482(Reθ t −1870) Reθ t
1870

> 1.

The effective intermittency is then taken as γ
eff
= max(γ ,γsep) where

γsep = Fθ t min

(

2,2

(

ReV

3.235Reθc

−1

)+
)

e−(
RT
20 )4

.

The equations (11) and (12) are equipped with the Dirichlet boundary conditions at

the inlet (γ = 1, Reθ t obtained by the previously specified correlation for Reθ t ) and

Neummann boundary conditions at the outlet and on the airfoil surface (ΓO ∪ΓWt).

The initial values are set to be equal to the inlet boundary condition. The turbu-

lence and transition models are linearized, time discretized, and approximated by

the SUPG stabilized finite element method. The resulting system of linear equations

is solved numerically using the direct solver.

5 Numerical results

The aeroelastic response of a typical airfoil section to both the light and heavy gusts

was studied. The input parameters were chosen according to [1] and the results were

also compared with the numerical results of the author [16], where no turbulent-

laminar flow transition was considered. The airfoil shape was given by a conformal

transformation and two shapes of the airfoil (A1 and A2) were considered, see [16].

The airfoil parameters were as follows: the mass m = 2× 10−4 kg the inertia and

static moments Iα = 1.2× 10−7 kg m2 and Sα = 2× 10−6 kg m, respectively, the

chord c = 0.1m, the elastic axis was located at 30% of the chord, the center of grav-

ity was at 40% of the chord, and the depth of the airfoil section was l = 0.03m. The

stiffness coefficients of the springs were kh = 26N/m, kα = 0.29N m/rad for the air-

foil A1 and kh = 42.5N/m, kα = 0.68N m/rad for the airfoil A2. The air density was

ρ = 1.225kg m−3 and the air kinematic viscosity was ν = 1.453×10−5 m2/s. The

inlet turbulence intensity was 1% (k = 1.5× 10−4 U2
∞, ω = 10s−1 on ΓI). The ver-

tical gust of 1s duration was considered as a sudden perturbation of the aeroelastic

system for t ∈ [t0, t0 +1] Vg(t) =
VG
2
(1+ cos(π(t − t0))) , where VG = 1.5m s−1 and

VG = 5m s−1 were considered for the light and heavy gusts, respectively. The numer-

ical simulation of the aeroelastic response of the airfoil started from the zero initial

conditions and VG = 0 and the constant far field stream velocity U∞ = 15m s−1. The

time step was chosen equal to ∆ t = 6.6667×10−5 s.

The aeroelastic airfoil responses h(t) and α(t) for the light gust are shown in

Figs. 1, 2, and compared to the laminar (no turbulence, νT ≡ 0) and k−ω turbu-

lent models. The computations were performed up to the time t ≥ 1s, when the

responses to the gust nearly faded out. During the beginning phase of the simulation

t ≥−0.05s the airfoil is fixed in the horizontal position, then the airfoil is released
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Fig. 1 Aeroelastic response to the light gust, airfoil A1: Comparison of the aeroelastic response

computed by laminar (solid line), turbulent (dashed) and transitional (dotted) models.
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Fig. 2 Aeroelastic response to the light gust, airfoil A2: Comparison of the aeroelastic response

computed by laminar (solid line), turbulent (dashed) and transitional (dotted) models.
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Fig. 3 Aeroelastic response to the heavy gust, airfoil A2: Comparison of the aeroelastic response

computed by laminar (solid line), turbulent (dashed) and transitional (dotted) models.

and moves to a static position. Afterwards at the time instant t = 0 s the sudden

vertical gust starts to load the airfoil. Similarly, the numerically simulated airfoil

responses h(t) and α(t) for the heavy gust (VG = 5m s−1) are shown in Fig. 3. The

results for the transitional flow model are close to the simulations using the tur-

bulence model. A too noisy response for the rotation angle α(t) resulted from the

laminar model both for the light and heavy gust. Figure 4 shows the airflow velocity

patterns for the laminar, turbulent and transitional flow models, respectively, at the

time t0 just before the gust starts. Many small eddies are shed in the airfoil wake for

the laminar flow model. Practically no eddies are visible in a wider wake for turbu-

lent flow model and much narrow wake results from the transitional model, where a

laminar flow exists on the large portion of the profile surface. It is supported by the

turbulent kinetic energy pattern around the airfoil shown in Fig. 5, where the most

of the turbulent kinetic energy is in a far wake and almost zero turbulent kinetic

energy is at the airfoil surface.
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Fig. 4 Comparison of velocity flow patterns for the laminar (left), turbulent (middle) and transi-

tional (right) models just before the gust starts, airfoil A1.

Fig. 5 Comparison of the turbulent kinetic energy k distribution for the turbulent (left) and transi-

tional (right) models just before the gust starts, airfoil A1.

6 Conclusion

The present paper describes the solution of FSI problem of flow induced vibrations

with the consideration of a sudden gust. The problem is discretized in space using

the finite element method. The main attention is paid to the description of the tran-

sition model, originally proposed by [8], but the necessary theoretical correlations

was not specified there. These were later specified also by different authors as [13],

and also by [6]. In this paper, we focus on the detailed presentation of the transi-

tional model, which was implemented into the in-house FE code and applied for

solution of FSI. The numerical results were compared with the relevant results.
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