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Abstract We investigate the application of a multiscale sparse grid finite element
method for computing numerical solutions to a two-dimensional singularly per-
turbed convection-diffusion problem posed on the unit square. Typically, sparse
grid methods are constructed using a hierarchical basis (see, e.g., Bungartz and
Griebel [1]). In our approach, the method is presented as a generalisation of the two-
scale method described in Liu et al. [3], and is related to the combination technique
outlined by Pflaum and Zhou [7]. We show that this method retains the same level of
accuracy, in the energy norm, as both the standard Galerkin and two-scale methods.
The computational cost associated with the method, however, is O(N logN), com-
pared to O(N2) and O(N3/2) for the Galerkin and two-scale methods respectively.

1 Introduction

Consider the following two-dimensional convection-diffusion problem:

Lu :=−ε∆u+b ·∇u = f in Ω := (0,1)2, and u = 0 on ∂Ω . (1)

We are interested in the case where the parameter ε may be arbitrarily small, and so
the problem is singularly perturbed. Special layer-resolving meshes are often used
to obtain accurate numerical solutions to such problems, with the piecewise uni-
form mesh of Shishkin [5] receiving particular attention in the literature. Sparse grid
methods for singularly perturbed reaction-diffusion problems, solved on Shishkin
meshes, have been analysed [3, 4]. For the convection-diffusion problem, there are
computational and theoretical investigations of combination techniques [6, 2]. The
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work of Franz et al. [2] is of particular interest to us: it considers a two-scale combi-
nation technique on a Shishkin mesh. It is our goal to develop on that, by applying
the technique described in [4]. We use a standard finite element formulation, but
with a sparse grid basis for the finite element space. We give a sketch of the analysis
that leads to establishing uniform convergence, and present the results of numerical
experiments that demonstrate the efficiency of the method.

2 Solution decomposition and Shishkin mesh

We shall assume that the functions b and f are sufficiently smooth so that (1) has
a unique solution in H1

0 (Ω)∩H2(Ω). For b(x,y) = (b1(x,y),b2(x,y)) on Ω̄ we
assume that

b1(x,y)> β1 > 0 and b2(x,y)> β2 > 0. (2)

As a consequence, the solution to (1) features exponential boundary layers near the
boundaries at x = 1 and y = 1. To resolve these, we employ a piecewise uniform
Shishkin mesh. The transition points between the coarse and fines meshes are deter-
mined by the parameters

τx = min
{

1
2
,σ

ε

β1
lnN

}
and τy = min

{
1
2
,σ

ε

β2
lnN

}
. (3)

The mesh is then constructed as described in, e.g., [2, §2.2]. It features four distinct
subregions (see [2, Fig. 1])

ΩII = [0,1− τx]× [0,1− τy], ΩBI = [1− τx,1]× [0,1− τy],

ΩIB = [0,1− τx]× [1− τy,1], ΩBB = [1− τx,1]× [1− τy,1].

The behaviour of the solution to (1) is particular to each of these subregions. Fol-
lowing [2, Assumption 2.1], we shall assume that there is a corresponding decom-
position of the solution

u = v+ωBI +ωIB + z, (4)

where ωBI is associated with the edge at x = 1, ωIB is associated with the edge at
y = 1, and z is associated with the corner layer at (1,1). These may be bounded as∣∣∣∣ ∂ m+nv

∂xm∂ n (x,y)
∣∣∣∣≤C,

∣∣∣∣ ∂ m+nz
∂xm∂yn (x,y)

∣∣∣∣≤Cε
−(m+n)e−(β1(1−x)+β2(1−y))/ε , (5a)

∣∣∣∣∂ m+nωBI
∂xm∂yn (x,y)

∣∣∣∣≤Cε
−me−β1(1−x)/ε ,

∣∣∣∣∂ m+nωIB
∂xm∂yn (x,y)

∣∣∣∣≤Cε
−ne−β2(1−y)/ε , (5b)

for 0≤ m+n≤ 3. For m+n = 4, we have the following bounds
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∂xm∂yn (x,y)

∥∥∥∥
0,Ω
≤C,

∥∥∥∥ ∂ m+nz
∂xm∂yn (x,y)

∥∥∥∥
0,Ω
≤Cε

1−m−n, (6a)

∥∥∥∥∂ m+nωBI
∂xm∂yn (x,y)

∥∥∥∥
0,Ω
≤Cε

−m+1/2,

∥∥∥∥∂ m+nωIB
∂xm∂yn (x,y)

∥∥∥∥
0,Ω
≤Cε

−n+1/2. (6b)

For p ∈ [2,∞) and φ ∈W 2,p[0,1], the piecewise linear interpolant INφ of φ satisfies

‖φ − INφ‖0,p,[xi−1,xi]+hi‖(φ − INφ)′‖0,p,[xi−1,xi]

≤C min
{

hi‖φ ′‖0,p,[xi−1,xi],h
2
i ‖φ ′′‖0,p,[xi−1,xi]

}
.

(7)

Define VNx
([0,1]) to be the space of piecewise linear functions on the one-dimen-

sional piecewise uniform Shishkin mesh with Nx intervals. The space VNy
([0,1]) is

defined in the same way. Taking the tensor product of these spaces gives VNx,Ny
(Ω̄)=

VNx([0,1])×VNy([0,1]). Let INx,Ny
be the piecewise bilinear interpolation operator

that projects onto VNx,Ny
(Ω̄). We write INx,0 and I0,Ny

as the interpolation operators
that interpolate only in the x- and y-directions respectively. Thus we have

INx,Ny = INx,0 ◦ I0,Ny = I0,Ny ◦ INx,0, (8a)

∂

∂x
INx,Ny = I0,Ny ◦

∂

∂x
INx,0, and

∂

∂y
INx,Ny = INx,0 ◦

∂

∂y
I0,Ny . (8b)

From standard inverse inequalities in one dimension one sees that

hx

∥∥∥∥∂ψ

∂x

∥∥∥∥
0,K

+ ky

∥∥∥∥∂ψ

∂y

∥∥∥∥
0,K
≤ ‖ψ‖0,K ∀ψ ∈VNx,Ny(Ω̄), (9)

where K is a mesh rectangle of size hx× ky. We also use the following inequalities,
which are easily established using standard inductive arguments: for k ≥ 2

k−1

∑
i=1

i4i+1 ≤ k4k+1,
k−1

∑
i=1

4i+1 ≤ 4k+1, and
k−1

∑
i=1

i2i+1 ≤ k2k+1. (10)

3 Multiscale Interpolation

The interpretation of multiscale interpolation that we employ is discussed in detail
in [4, Section 3.1]. Here we briefly review the main concepts. We define IN,N to
be the piecewise bilinear interpolation operator that maps onto VN,N(Ω). Further to
this we take the following definition of the two-scale interpolation operator from [2]
and [3]:

I(1)N,N = IN,µ(N)+ I
µ(N),N− I

µ(N),µ(N),
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where µ(N) is an integer that divides N, and where, for example, IN,µ(N)u is the
piecewise bilinear interpolant of u in VN,µ(N). Now suppose we choose µ(N) =N/2.
We define the Level 1 interpolation operator as:

I(1)N,N = IN,N
2
+ IN

2 ,N
− IN

2 ,
N
2
. (11)

By applying this Level 1 operator to the positively signed terms in (11) we arrive at
the Level 2 operator:

I(2)N,N = I(1)
N,N

2
+ I(1)N

2 ,N
− IN

2 ,
N
2
= IN,N

4
+ IN

2 ,
N
2
+ IN

4 ,N
− IN

2 ,
N
4
− IN

4 ,
N
2
. (12)

Applying the Level 1 operator to the positively signed terms of (12) gives the Level
3 operator. In general, the Level k operator is constructed by applying the Level 1
operator to the positively signed terms of I(k−1)

N,N . The multiscale operator constructed

in this manner, which we denote I(k)N,N , satisfies the following formula (for more
detail, see [4, Lemma 3.1]):

I(k)N,N =
k

∑
i=0

I N
2i ,

N
2k−i
−

k

∑
i=1

I N
2i ,

N
2k+1−i

, for k = 0,1,2, . . . . (13)

For the further analysis of the method we require a bound on the difference between
I(k)NN and IN,N . We do this by first expressing the difference between interpolants at
successive levels in a succinct manner. Lemma 1 shows how the difference between
an interpolant at a given Level k and at Level k−1 can be written as the product of
one-dimensional operators.

Lemma 1. ([4, Lemma 3.2]) Let I(k)N,N be the multiscale interpolation operator de-
fined in (13). Then, for k = 0,1,2, . . . ,

I(k−1)
N,N − I(k)N,N =

k−1

∑
i=0

(
I N

2i ,0
− I N

2i+1 ,0

)(
I0, N

2k−1−i
− I0, N

2k−i

)
. (14)

Our main goal in this section is to establish a bound on ‖u− I(k)N,Nu‖ε , where

‖u‖ε = {ε‖∇u‖2
0,Ω +‖u‖2

0,Ω}1/2. (15)

We do this by first establishing a bound for ‖I(k)N,Nu− I(k−1)
N,N u‖ε .

Lemma 2. Suppose Ω = (0,1)2. Let u be a function satisfying the assumptions of
Section 2 and I(k)N,N be the multiscale interpolation operator defined in (13). Then
there exists a constant C independent of ε,N and k such that, for k = 1,2, . . . ,

‖I(k)N,Nu− I(k−1)
N,N u‖ε ≤C(ε1/2N1−σ +4k+1N−3 lnN +N−σ ln1/2 N + k4k+1N−4).
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Proof. We wish to show that

‖I(k)N,Nu− I(k−1)
N,N u‖0,Ω ≤C(N−σ + k4k+1N−4), (16a)

and

ε
1/2‖∇(I(k)N,Nu−I(k−1)

N,N u)‖0,Ω ≤C(ε1/2N1−σ +4k+1N−3 lnN+N−σ ln1/2 N). (16b)

For brevity, we shall consider only (16b) in detail; the arguments for (16a) are sim-
ilar (see also, [4, Lemma 3.3]). By (4) and Lemma 1 we have

ε
1/2‖∇(I(k)N,Nu− I(k−1)

N,N u)‖0,Ω

= ε
1/2

∥∥∥∥∥∇

(
k−1

∑
i=0

(
I N

2i ,0
− I N

2i+1 ,0

)(
I0, N

2k−1−i
− I0, N

2k−i

)
(v+ωBI +ωIB + z)

)∥∥∥∥∥
0,Ω

.

We analyse each of the right-hand side components separately. For the smooth com-
ponent v, we have by (5)–(8) along with (10) that

ε
1/2

∥∥∥∥∥ ∂

∂x

k−1

∑
i=0

(
I N

2i ,0
− I N

2i+1 ,0

)(
I0, N

2k−1−i
− I0, N

2k−i

)
v

∥∥∥∥∥
0,Ω

≤Cε
1/2

k−1

∑
i=0

(
N

2i+1

)−1∥∥∥∥(I0, N
2k−1−i

− I0, N
2k−i

)
∂ 2v
∂x2

∥∥∥∥
0,Ω

≤Cε
1/2

k−1

∑
i=0

(
N

2i+1

)−1( N
2k−i

)−2∥∥∥∥ ∂ 4v
∂x2∂y2

∥∥∥∥
0,Ω
≤C4k+1

ε
1/2N−3.

For ωBI on ΩII ∪ΩIB using an inverse estimate (9) together with (8) and (7) yields

ε
1/2
∥∥∥∥ ∂

∂x
(I(k)N,NωBI− I(k−1)

N,N ωBI)

∥∥∥∥
0,ΩII∪ΩIB

≤ ε
1/2
∥∥∥∥ ∂

∂x
I(k)N,NωBI

∥∥∥∥
0,ΩII∪ΩIB

+ ε
1/2
∥∥∥∥ ∂

∂x
I(k−1)
N,N ωBI

∥∥∥∥
0,ΩII∪ΩIB

≤Cε
1/2
∥∥∥∥∂ωBI

∂x

∥∥∥∥
0,ΩII∪ΩIB

≤Cε
1/2N‖ωBI‖0,ΩII∪ΩIB

≤Cε
1/2N1−σ . (17)

On the region ΩBI ∪ΩBB, by (6–8) and (10) we have
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ε
1/2

∥∥∥∥∥ ∂

∂x

k−1

∑
i=0

(
I N

2i ,0
− I N

2i+1 ,0

)(
I0, N

2k−1−i
− I0, N

2k−i

)
ωBI

∥∥∥∥∥
0,ΩBI∪ΩBB

≤Cε
1/2

k−1

∑
i=0

(
ε

(
N

2i+1

)−1

lnN

)(
N

2k−i

)−2∥∥∥∥ ∂ 4ωBI
∂x2∂y2

∥∥∥∥
0,ΩBI∪ΩBB

≤C4k+1N−3 lnN.

For the third term ωIB on ΩII ∪ΩBI using (5) and an argument similar to (17) yields

ε
1/2
∥∥∥∥ ∂

∂x
(I(k)N,NωIB− I(k−1)

N,N ωIB)

∥∥∥∥
0,ΩII∪ΩBI

≤Cε
1/2 max

(x,y)∈ΩII∪ΩBI

e−β2(1−y)/ε ≤Cε
1/2N−σ .

On the region ΩIB∪ΩBB, (10), together with (6)–(8), leads to

ε
1/2

∥∥∥∥∥ ∂

∂x

k−1

∑
i=0

(
I N

2i ,0
− I N

2i+1 ,0

)(
I0, N

2k−1−i
− I0, N

2k−i

)
ωIB

∥∥∥∥∥
0,ΩIB∪ΩBB

≤Cε
1/2

k−1

∑
i=0

(
N

2i+1

)−1

ε
2
(

N
2k−i

)−2

ln2 N
∥∥∥∥ ∂ 4ωIB

∂x2∂y2

∥∥∥∥
0,ΩIB∪ΩBB

≤C4k+1
εN−3 ln2 N.

For the last term, z, by using an inverse estimate (9) and an argument similar to (17)
we see that on the region ΩII ∪ΩIB we have

ε
1/2
∥∥∥∥ ∂

∂x
(I(k)N,Nz− I(k−1)

N,N z)
∥∥∥∥

0,ΩII∪ΩIB

≤Cε
1/2N‖z‖0,ΩII∪ΩIB

≤Cε
1/2N1−σ .

By (5) we have on the region ΩBI that

ε
1/2
∥∥∥∥ ∂

∂x
(I(k)N,Nz− I(k−1)

N,N z)
∥∥∥∥

0,ΩBI

≤Cε
1/2

√√√√∫
ΩBI

∥∥∥∥ ∂ z
∂x

∥∥∥∥2

∞,ΩBI

dΩBI

≤Cε
1/2[measΩBI ]

1/2
∥∥∥∥ ∂ z

∂x

∥∥∥∥
∞,ΩBI

≤CN−σ ln1/2 N.

Finally on the region ΩBB, by (6)–(8) one obtains the following bound:
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ε
1/2

∥∥∥∥∥ ∂

∂x

k−1

∑
i=0

(
I N

2i ,0
− I N

2i+1 ,0

)(
I0, N

2k−1−i
− I0, N

2k−i

)
z

∥∥∥∥∥
0,ΩBB

≤Cε
1/2

k−1

∑
i=0

(
ε

(
N

2i+1

)−1

lnN

)(
ε

2
(

N
2k−i

)−2

ln2 N

)∥∥∥∥ ∂ 4z
∂x2∂y2

∥∥∥∥
0,ΩBB

≤Cε
7/2N−3 ln3 N

k−1

∑
i=0

22k−i+1
ε
−3 ≤C4k+1

ε
1/2N−3 ln3 N.

Collecting all these bounds together, observing that ε ≤ N−1 and then discarding
those terms that are bounded by larger terms, we arrive at the following result:

ε
1/2
∥∥∥∥ ∂

∂x
(I(k)N,Nu− I(k−1)

N,N u)
∥∥∥∥

0,Ω
≤C(ε1/2N1−σ +4k+1N−3 lnN +N−σ ln1/2 N).

The corresponding bound for ε1/2‖∂/∂y(I(k)N,Nu− I(k−1)
N,N u)‖0,Ω is derived in a similar

fashion. Combining these results then completes the proof.

Lemma 3. Let u and I(k)N,N be defined as in Lemma 2. Then there exists a constant C
independent of ε,N and k such that, for k = 1,2, . . . ,

‖I(k−1)
N,N u− IN,Nu‖ε ≤ ‖I(k)N,Nu− I(k−1)

N,N u‖ε +C(k−1)(ε1/2N1−σ +N−σ ln1/2 N).

Proof. The proof of this lemma follows closely that of [4, Lemma 3.6].

Lemma 4. Let u and I(k)N,N be defined as in Lemma 2. Then there exists a constant C
independent of ε,N and k such that for k = 1,2, . . . ,

‖I(k)N,Nu− IN,Nu‖ε ≤C(k(ε1/2N1−σ +N−σ ln1/2 N)+4k+1N−3 lnN + k4k+1N−4).

Proof. This result follows from the triangle inequality and Lemmas 2 and 3.

Corollary 1. Taking k̃ = log2 N−1 and σ ≥ 3/2, there is a constant C independent
of N and ε such that

‖I(k̃)N,Nu− IN,Nu‖ε ≤CN−1 lnN.

Proof. This is a direct consequence of Lemma 4 and observing that ε ≤ N−1.

Theorem 1. Let u and I(k)N,N be defined as in Lemma 2. Taking k̃ = log2 N− 1 there
exists a constant C independent of ε,N and k such that

‖u− I(k̃)N,Nu‖ε ≤CN−1 lnN.

Proof. By the triangle inequality, a standard interpolation result, Lemma 4 and
Corollary 1 we have

‖u− I(k̃)N,Nu‖ε ≤ ‖u− IN,Nu‖ε +‖IN,Nu− I(k̃)N,Nu‖ε ≤ 2CN−1 lnN ≤CN−1 lnN.
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4 Error analysis

It is known (see, e.g., [8, Theorem 3.109]) that, if uN,N is the finite element solution
obtained by the standard Galerkin FEM with bilinear elements, then,

‖u−uN,N‖ε ≤CN−1 lnN. (18)

To define the sparse grid finite element solution, first let ψN
i (x) be the usual

piecewise linear basis function supported on the subinterval [xi−1,xi+1]. We define
V (k)

N,N(Ω)⊂H1
0 (Ω) to be the finite dimensional space of piecewise bilinear functions

defined on the tensor product Shishkin mesh given by

V (k)
N,N(Ω) = span

{
ψ

N
i (x)ψ

N/2k

j (y)
}i=1:N−1

j=1:N/2k−1

+ span
{

ψ
N/2
i (x)ψN/2k−1

j (y)
}i=1:N/2−1

j=1:N/2k−1−1

+ · · ·+ span
{

ψ
N/2k−1

i (x)ψN/2
j (y)

}i=1:N/2k−1−1

j=1:N/2−1

+ span
{

ψ
N/2k

i (x)ψN
j (y)

}i=1:N/2k−1

j=1:N−1
.

In general the choice of basis we make for this space is dependent on whether k is
odd or even. When k is odd, the basis is chosen as follows:

(k−1)/2⋃
l=0

{
ψ

N/2l

i ψ
N/2k−l

j

}i=1:2:N/2l−1

j=1:N/2k−l−1

⋃{
ψ

N/2(k+1)/2

i ψ
N/2(k−1)/2

j

}i=1:N/2(k+1)/2−1

j=1:N/2(k−1)/2−1

k⋃
l=(k+3)/2

{
ψ

N/2l

i ψ
N/2k−l

j

}i=1:N/2l−1

j=1:2:N/2k−l−1
.

When k is even, the basis is chosen as follows:

k/2−1⋃
l=0

{
ψ

N/2l

i ψ
N/2k−l

j

}i=1:2:N/2l−1

j=1:N/2k−l−1

⋃{
ψ

N/2k/2

i ψ
N/2k/2

j

}i=1:N/2k/2−1

j=1:N/2k/2−1

k⋃
l=k/2+1

{
ψ

N/2l

i ψ
N/2k−l

j

}i=1:N/2l−1

j=1:2:N/2k−l−1
.
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Equipped with this choice of basis and sparse grid finite element space the corre-
sponding multiscale sparse grid finite element method is: find u(k) ∈V (k)

N,N such that∫
Ω

ε∇u(k)N,N∇vN,N +
∫

Ω

b ·∇u(k)N,NvN,N =
∫

Ω

f vN,N for all vN,N ∈V (k)
N,N . (19)

Theorem 2. Let u be the solution to (1), subject to the assumptions of Section 2, and

let u(k̃)N,N be the solution to (19), where k̃ = log2 N−1. Then there exists a constant C
independent of ε and N such that

‖u−u(k̃)N,N‖ε ≤CN−1 lnN.

Proof. Noting the result from Theorem 1 and following an argument similar to [8,
Theorem 3.109] gives the desired result.

5 Numerical results

We verify the bounds of 2 with numerical results, based on a test problem taken
from [2, §4]:

−ε∆u− (2+ x)ux− (3+ y3)uy +u = f in Ω = (0,1)2, (20a)

and u = 0 on ∂Ω , with f such that

u(x,y) = cos(xπ/2)[1− e−2x/ε ](1− y)3[1− e−3y/ε ], (20b)

which exhibits exponential boundary layers at x = 0 and y = 0. In Table 1 we show
results computed when this is solved using both the standard Galerkin method with
bilinear elements, and the multiscale sparse grid method (19). In the top table we
take N = 28 and show that the errors for both methods are robust for small ε , as
proved in Theorem 2 (also, compare with [2, Table 3]). In the lower table, we
take ε = 10−8, and present results for N = 26,27, . . . ,210 for both methods, and
for N = 211 for the sparse grid method. This verifies the almost first-order conver-
gence proved in Theorem 2, and shows that the error associated with the multiscale
method is only slightly larger than for the Galerkin method. However, as shown, the
sparse grid method is far more efficient (times are solve-times for the linear systems,
measured in seconds, using a direct solver in MATLAB 8.1 (R2013a) on a single
core of an AMD Opteron 2427, 2200 MHz processor with 32Gb of RAM, averaged
over three runs).
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N = 256 ε = 1 ε = 10−2 ε = 10−4 ε = 10−6 ε = 10−8 ε = 10−10

Galerkin 2.771e-03 3.580e-02 3.560e-02 3.560e-02 3.560e-02 3.560e-02
Multiscale 3.000e-01 4.157e-02 3.730e-02 3.726e-02 3.726e-02 3.726e-02

ε = 10−8 N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

Galerkin 1.064e-01 6.223e-02 3.560e-02 2.003e-02 1.113e-02 -
Time (s) 0.04 0.20 1.13 6.99 131.06 -
Multiscale 1.111e-01 6.509e-02 3.726e-02 2.097e-02 1.165e-02 6.410e-03
Time (s) 0.01 0.03 0.16 0.94 6.26 53.47

Table 1: The Galerkin, ‖u−uN,N‖ε , and multiscale, ‖u−u(k)N,N‖ε , methods applied to solving (20a)
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