Numerical experiments with a linear
convection—diffusion problem containing a
time-varying interior layer
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Abstract We examine a time dependent singularly perturbed convection-diffusion
problem, where the convective coefficient contains an interior layer. A smooth
transformation is introduced to align the grid to the location of the interior layer.
A numerical method consisting of an upwinded finite difference operator and a
piecewise-uniform Shishkin mesh is constructed in this transformed domain. Nu-
merical results are presented which indicate that the numerical approximations con-
verge at a rate of first order (up to logarithmic factors) uniformly in the pointwise
maximum norm.

1 Introduction

In addition to boundary layers, interior layers can appear in the solutions of singu-
larly perturbed problems. In the context of time dependent problems, an additional
issue with interior layers is that the location of the layer can move with time. Here
we focus on parabolic problems with moving interior layers.

Consider singularly perturbed convection-diffusion parabolic problems of the
general form: Find u such that

—E&ugs+aus +bu+cuy = f, (s,t) € (0,1)x(0,T], b,c>0; (la)
O<exl, u(0,1),u(1,t),u(s,0) specified. (1b)
Interior layers can appear in the solutions of problem (1), if the coefficients a,b,c

or the inhomogenous term f are discontinuous [2]. Strong interior layers [2, 7]
are generated, when the convective coefficient a is discontinuous and assumed to
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have the particular sign pattern a(s,z) > 0,5 < d(t);a(s,t) < 0,s > d(¢). In [7] a
piecewise-linear map X : (s,7) — (x,¢) was introduced, which transforms the curve
I :={(d(¢),1)|r €[0,T],0 < d(t) < 1} into a vertical line x = d(0). Using this trans-
formed domain as the computational domain, a piecewise-uniform Shishkin mesh
[3] was constructed and centered around the point x = d(0). Under the assumption
that the convective coefficient a(s) is discontinuous and independent of time, the
resulting numerical method was shown to be (essentially) first order €-uniformly
convergent to the solution of (1). In [4], interior layers appeared in the solution of
(1), in the case where the initial condition u(s,0), contained it’s own interior layer.
In the case of [4], the convective coefficient a(f) was assumed to be smooth, space
independent and of one sign. The reduced initial condition (set € = 0) was discon-
tinuous at some point x = d and this discontinuity was transported along the charac-
teristic curve I := {(d(¢),1)|t € [0,T],d'(t) = a(t),d(0) = d.}, associated with the
reduced hyperbolic problem av; +bv+cv; = f. Again, a parameter-uniform numer-
ical method (akin to the method analysed in [2]) was shown [4] to be (essentially)
first order uniformly convergent.

In the current paper, an interior layer appears in the solution of (1) due to the
fact that the convective coefficient ag(s,?) is assumed to be smooth, but to con-
tain a layer and to smoothly, but rapidly, switch from positive to negative values
along some given curve I within the domain. In §2, the space derivative of the
convective coefficient ae will be of order O(¢~!) in a neighbourhood of I3. With
this scaling, the problem may be viewed as a linearization of the quasilinear prob-
lem —&y,, +yy. + by +y; = f, with a moving interior layer present in the solution
y(x,1). If the space derivative of the convective coefficient a was uniformly bounded
at the turning point, then the width of the layer would not be O(¢€) and an alternative
numerical method (to what is examined in this paper) would be required (see, e.g.,
[1]). For the current paper, in the limiting case of € = 0, the convective coefficient
will be discontinuous. Unlike [7, 4], a smooth transformation of the discontinuity
curve I is utilized here, so that the data for the transformed problem is as smooth as
the data of the original problem. Based on the theoretical results established in [6]
for a related convection-diffusion problem, restrictions are placed on the possible
admissible transformations, in order that the central assumptions on the convective
coefficient, required for the numerical analysis in [6] to apply, are satisfied. In turn,
this motivates a particular choice for the transition parameter in the layer-adapted
Shishkin mesh. Numerical results are presented for the resulting numerical method,
which suggest that the constructed numerical method is also a first order (ignoring
logarithmic effects) uniformly convergent numerical method. In previous related pa-
pers examining interior layers [2, 4, 7], the location of the interior layer was tracked
exactly. In this paper, the fine mesh is centered at an approximate location of the
interior layer.

Notation Throughout this paper C denotes a generic constant which is independent
of € and all mesh parameters.
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2 Continuous Problem

Consider singularly perturbed linear parabolic problems, posed on the domain 2 :=
(0,1) x (0,71, of the form
—Eilgs +k(s,)Ke (5,0)is +b(s,0)ii+E(s, )i, = f(s,1), (s,t) € Q;  (2a)
k(s,t) > a1 >0, b(s,t) > 00 >0, &(s,0)>053>0, (s5,1)€Q;  (2b)
ﬂ(oat):¢L(t)7 ﬁ(lvt):(PR([ ) ’1(570):&0(‘;); (2¢)
q(t) —s
(L=

Ke(s,t) :=tanh , 0<gq(r) <1,V (2d)
where for each value of 7, the convection coefficient (k&g )(s,?) has a single zero at
s = ¢(¢) and this point may vary with time. The data is assumed to be sufficiently
regular so that the solution # € €**7(Q). In this problem, the convective coefficient
is positive to the left of the curve I := {(¢(¢),#),t > 0} and it is negative to the right.
This results in an interior layer forming in the vicinity of the curve I". Below we
deploy a coordinate transformation so that in the transformed domain the location
of the interior layer lies within O(€) of a fixed point in time.

Consider maps X : (s,t) — (x,¢) of the form X (s,#) = (Z(s,t),). Below we will
design invertible maps = : Q — [0, 1] so that

E(0,6)=0, Z(q(t),1) =4(0), E(1,1)=1,

Z:[0.q()] % [0.7] — [0,g(0)]  and = :[qr),1] x[0.7] > [g(0), 1.
Moreover, we assume that the inverse map & -1
u(x,t) ;= i(s,t) and since E(s,1) = x, we have that

is a polynomial in x. Hence, if

dii s[@ Ju di 1 du 3212_ See O 1 0%u
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Using a map of this form, the differential equation (2a) will transform into

Leu:= 76uxx+(a8+8g)ux+s§(bu+cut) = (s)ch)(x,t), (x,1) € Q2, (3a)
where  ag = (ksy)(Ke —s,%) and g:= e (3b)
s

X
To ensure the map is invertible and that s(0,¢) = 0,s(1,7) = 1, we require that
sx(x,2) > 0 for all (x,7) € Q. Since s(x,t) is assumed to be a polynomial in x, and
given that s(¢(0),1) = ¢(¢) with 0 < ¢(¢) < 1, it follows that there exists a smooth
positive function r(x,#) such that

q(t) —s(x,t) = (q(0) —x)r(x,1), r(x, ) > >0,(x,t) € Q.

Using this fact and ze™* < 2%/ 2,z > 0, one can deduce that
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"ag

H oM HQ

<C, m=1,273.

Thus by aligning the coordinate system along the direction of the layer movement
(along the curve I"), the time derivatives of the convective coefficient ag(x,?) are &-
uniformly bounded. Observe that the time derivatives of the convective coefficient
Ke(s,1) are not, in general, €-uniformly bounded in the original (s,7) coordinate
system. However, the space derivatives in the transformed variables do depend ad-
versely on the singular perturbation parameter as

aiag i .
|55 llp sce™, i=1.23.4.
In general, the point at which the convective coefficient a¢(x,t) is zero, is not al-
ways located at x = ¢(0). However, if |cs,k‘1\ <1, t<T,0<x<1 then for &
sufficiently small the coefficient a¢(x,7) will be zero within an O(€)— neighbour-
hood of x = g(0). Hence, we restrict the problem class being examined by imposing
the following two constraints on the data. The ¢(¢),T are restricted so that there
exists a smooth inverse mapping s : [0,1] x [0,7] — [0, 1] such that
CSy

se(x, 1) = Po >0, |—

Sl <Pt Vo (ene1]x[0.T] (o

$(0,6) =0, s(l,7)= s(q(0),6) =¢q(r). (3d)

Under these constraints and for sufficiently small €, there exists a unique d(t) €
(0, 1) such that

ag(d(t),r) =0 and |d(t)—q(0)] <Ce, forallr € [0,T].

Moreover, the sign pattern of the convective coefficient ag is essentially preserved
as
(d(t) — x)ae(x,1) >0, x & (d(t) —Ce,d(t) +Ce).

Using the equality
9az 9d | dac
dd dt It

we deduce that |d’(¢)| < Ce and by repeating the differentiation we conclude that

=0

d™) (1)] < Ce,m=1,2,3.

Hence, in the transformed domain, the location of the interior layer lies within an
O(¢&)-neighbourhood of the initial point x = ¢(0) at all values of time. In the original
domain, the position of the turning point of the convective coefficient is explicitly
know (as s = ¢(t)), but in the computational domain the position of the turning
point is only approximately known as x = d(t), d(¢) € (¢(0) —Ce,q(0) +Cg). Note
further, that due to the nature of the convective coefficient, although ag(d(t),t) =0,
we have that a.(d(t) =Ce,t) = O(1).



Convection—diffusion problem containing a time-varying interior layer 5

3 Bounds on the continuous solution

In this section, the solution is decomposed into the sum of a discontinuous regular
component and a discontinuous layer component. We obtain a pointwise bound on
the singular component, which identifies the rate of exponential decay of the sin-
gular component within the interior layer. This rate depends both on the location of
the curve I" and the particular choice of transformation s, introduced in the previous
section.

Lemma 1. For the solution u of (3) we have the following bounds

Jj+m )
H8 “N<ce | o< jrom<a.

oxJ o™

Proof. The bound on ||u|| is established using a maximum principle. Use the
stretched variables § := (x — ¢(0))/€,n :=t/€ and the a priori bounds [5, pg. 320,
Theorem 5.2] to deduce the bounds on the partial derivatives of the solution. O

For all points in Q \ I', define the differential operator
c
+(1=s7), x <4(0),

Lot = —Euy + (ao—|—£g)ux+s§(bu—|—cu,), aop(x,t) :=ksy k

—(1 +Si%)a x>q(0)

Observe that the convective coefficient in the operator .Z; is discontinuous across
the curve I'.

Lemma 2. For sufficiently small €, there exists functions r=(t) such that the solu-
tions vt of the problems

ZevT = f(x,1), (x,0) € Q7 :=(0,d(¢)) x (0,T],
v (x,0) =¢(x), 0<x<d(r), v (0,t) = ¢p(t), v (d(t),t) =1 (1), 0<t <T,

Levt =flx,t), (x,t) € Q= (d(t),1) x (0,T],
vi(x,0) = o(x), d(t) <x< 1, vi(1,t) = ¢r(t), v

+
QU
=
~
~—
I
<~
T
—
~
—
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~

are, respectively, in ‘54+7(§i) and satisfy the bounds
aj+mvi
H dxiotm ’

Proof. Asin[6]. O

L <C(1+e Uty 0< j4om <4

Q

o —
We now define the interior layer components w* € €477(Q7) as

wh(x, 1) == u(x,r) —vi(x,1), (x,1) € ﬁi,
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which satisfy the problems

Lew® (x,1) = (ag(x,1) — ae (x, ) VE(x,1),  (x,1) € QF; (4a)

w (0,/) =0, w (d(),t)=(w—v7)(d({),t), t>0; (4b)
w (x,0) =0, 0<x<d(r), wh(x,0)=0, d(t)<x<l;

wh (L) =0, wh(d(t),t) = (u—v")(d(t),t), t>0. (4c)

Observe that i alo)
ILew® (x,t)| <Ce & .

Lemma 3. Assume that o1y < 2. The solutions w* of the problems specified in
(4) satisfy the following pointwise bounds

‘ wr (x,1)

ﬁiSC(%M(O%’C‘, where 0 := a1 fo(1— B1).

Proof. We outline how to establish the bound in the region Q™. For € sufficiently
small, there exists a C} such that for all > 0, and x € (0,d(¢t) — C; €)

ag(x,1) = sxk(tanhw - E) > g (x,t) >0,

k
B(a(0) —x)
&€

where 0 (x,t) := o Po(tanh —B1), x<d({r)

Since |z\sech2z < C,Vz, we have that

B(q(0) —x)

da,
® + o} = A’ tanh? — +(AB)?

ox

—2¢€

+ A@Bsech?P@0) =) (q«?—x) — 24, tanh P40 =) (‘I(?_’C)), A=
B(q(0) —x)

= A2(tanh®z+ B?) + A(2Bsech’z — 2AB; tanhz), where z := .

= A2B? +2AB +A(A — 2B) tanh? z — 2A2B; tanhz
>A%(1-PBy)?, if A<2pB.

Consider the following layer function
—1 - [0 el g
B(x,t):=¢ ‘e Js=x T2¢ ¥ dp, x<d(t);

and noting that [ tanhx dx =t +log((1+e~*)/2) >t —log2, we have that

[d(t) O (s,7)ds (/q<0> tanh(W) —PBi dx) +O(e)

JI=X §=X

> A
> A(1=Bi)(d(r) —x) +O(e).

Using the above lower bound, we have that
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Cre— P00 ¢ = aetoa) ds o= dl0)—0)
IB
la(x,t)’ < CB(x,t), as |d'(r) <Ce.

Using these bounds, for € sufficiently small, one can deduce that

A(1-PB)? A(1-P)?
LeB>(——————-C)B> ————B
B2 (—753 B> —%¢
where we have also used the fact that a; — o > —Ce, x € (d(t) —C1€,d(t)). Hence

we can choose C so that CB(x,t) —w™ (x,#) > 0,(x,t) € Q. O

In [6] a similar class of problems to the problem class (3) was studied. A numer-
ical method was constructed and shown to be (essentially) first order €-uniformly
convergent on a suitably constructed Shishkin mesh. This motivates the choice of
numerical method in this paper. The choice of the transition parameter in the mesh
is dictated by the bounds established in this section. A proof of an associated error
bound for the numerical method presented in §4, as applied to problems of the form
(2), would require some modifications in the analysis in [6]. Due to space restric-
tions, we do not discuss these modifications here.

4 Numerical method

A numerical approximation U; (s, ) to the solution of (2) is generated by discretizing
the transformed problem (3) (with an upwind finite difference method) to generate a
discrete nodal solution U (x;,7;). which is interpolated (using bilinear interpolation)
to produce a global approximation U;(x, ) and then this is subsequently transformed
back to the original domain to produce Uj(s,). To capture the interior layer we will
design a layer-adapted piecewise uniform mesh.

The discrete problem is: Find a mesh function U such that:

LYMU (i) = sef (1)), (xit)) € 207, (5a)
U(O7tj):u(07tj)7 U(l,tj):u(l,tj)7 U()C,‘,()):l/t()cl'7())7 (Sb)
LZSV‘M = —85)(2 + (ag + €g)Dy + sybI + sxcDy (5¢)

DY Z(xi,t;) — Dy Z(x;,t;)
522 i»lj) = X nJ 2 nJ , hii=xi—xi_ 5d
(i) (hiv1+hi)/2 R Cd
(AD.Z)(xi,17) := 5 ((A+|A)Dy + (A= |A)D}) Z(xi,1)), (5)

where D} and Dy are the standard forward and backward finite difference operators
in space, respectively. We define the piecewise-uniform Shishkin mesh EQV’M by
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0 1—¢4(0
o ::min{—q(z),%glnN}, 0 := min { g( ),

2 InN}, (6a)

Hy = %(q(0)—01), h:= %(01+02), Hi := 5(1—q(0)—02), k=L, (6b)
= Hoi, 0<i<y,
§N,M x,—XN +/’l( %) %<l< 3TN, 6
= it .
¢ (rty) xl—x%+H1( ), A <i<N, (0
tj = jk, 0<j<M=N,
where the parameter 0 in (6b) is defined in the statement of Lemma 3.
5 Numerical experiments
Let us consider the following particular map, whose inverse is of the form
0)—q(t
s(er) = x—AW(1-x), A(r) = L0 =40 7

q(0)(1—4q(0))

The transformed differential equation (3a) can be written in the form

ae(x.1) = tanh ("4 (q(0) =) =51, glr) = 2L, (8

se=1+A@N)(2x—1), 5 =A'(x(x—1), r(xn):= 4 +A@)x.  (8b)

Imposing the constraints from the previous sections on the particular map (7) yield
l9(1) = q(0)] < (1= Po)g(0)(1—4(0)), Po>0; (%)
llck™llq' (1)] < 4B1g(0)(1 —¢(0)), B <1: (9b)

oq(t) 1—q(t) | _
rx,t) > o@‘é‘r{m’ T=4(0) } =B >0.580; (9¢)

which are more stringent than the natural constraint of 0 < g(r) < 1, 0<r < T.
As an example from the problem class (3), let us examine

g(t) =L +mt(1—1), f(x,t) =1(2+1)cos(mx), (10a)
c=b=1, u(x,0)=0, (10b)
w(0,0) =22, u(l,t)=—*, t<T=1. (10c)

This example has been designed so that the level one compatibility conditions
(.e. u € C°(Q) and (Lue)(0,0) = £(0,0), (Lug)(1,0) = £(1,0)) at the points
(0,0),(1,0) are satisfied. Then all the constraints (9), on the allowed time variation
on the interior layer location, are met if
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‘m|<17 ﬁO::1_|m‘7ﬁl = |m|7 ﬁ:1—05|m|205ﬁ0

Hence we take 0 := (1 — |m])?.

We estimate the order of convergence using the double mesh principle [3]. The
linear interpolants of the numerical solutions on the coarse and fine mesh will be
denoted by UIN’M and U, 12 N,2M respectively. We compute the maximum global two-
mesh differences déV’M and the uniform global differences ¢V from

djsv’M :

= max
QNM Q2N 2M

(U,N’MfUIZN'ZM)(x,-,tj) . dVM = rréaxdzgv'M,
£

where Se := {20,271 ... 2729} From these values we calculate the corresponding
computed orders of global convergence ngV’M and the computed orders of uniform
global convergence ¢"V'™ using

g:™ = log, (dfev’M/ dgN’2M> . g i=log, (@M @ 2M). (n

For all € € S¢ the computed orders of uniform convergence ¢¥'™ for test problem
(8)-(10) for sample values of m,N are given in Table 1. A selection of particular
values of global convergence gh ™, & = 27102715 220 gre also presented. Observe
that as the parameter m approaches the limiting value of 1, the number of mesh
points (N) must be sufficiently large before the asymptotic rate of convergence is
established. Nevertheless, for the sample values of m examined, one observes rates
of global convergence tending to rates corresponding to an error bound of the form
N~'InN. A sample computed solution is displayed in Figure 1, where the interior
layer is visible.

5
& Lo

Fig. 1 Numerical approximation to solution of (8)-(10); with m = 0.5 using the numerical method
(5,6) for £ = 2712 and N = 128 transformed to the s and ¢ variables using the map (7).
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€ N=32 N=64 N=128 N=256 N=512 N=1024 N=2048

m=0.25

210 0.77 0.60 0.72 0.79 0.83 0.85 0.87

215 0.73 0.62 0.72 0.79 0.83 0.85 0.87

2-20 0.73 0.62 0.72 0.79 0.83 0.85 0.87

"M 0.72 0.63 0.73 0.79 0.83 0.85 0.87
m=20.5

210 1.20 0.55 0.74 0.81 0.84 0.82 0.87

215 1.19 0.56 0.74 0.81 0.84 0.82 0.87

2-20 1.19 0.56 0.74 0.81 0.84 0.82 0.87

"M 1.09 0.68 0.74 0.82 0.84 0.77 0.84
m=0.75

2-10 0.38 0.56 0.97 0.82 0.67 0.81 0.89

2715 0.36 0.54 0.96 0.92 0.66 0.88 0.89

2720 0.35 0.54 0.96 0.93 0.66 0.88 0.89

"M 0.30 0.73 0.97 0.82 0.67 0.81 0.89
m=0.9

2-10 0.45 0.57 0.84 1.40 0.61 1.01 1.01

2-15 0.12 0.19 0.28 0.39 0.55 0.93 1.08

2720 0.10 0.19 0.28 0.39 0.55 0.93 1.09

"M 0.32 0.13 0.31 0.51 0.55 0.93 1.07

Table 1 Computed rates of convergence, (11), generated from applying the numerical scheme
(5,6) to test problem ((8)-(10)) for sample values of m, N and €.
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