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Abstract The core of numerical simulations of coupled incompressible flow prob-
lems consists of a robust, accurate and fast solver for the time-dependent, incom-
pressible Navier-Stokes equations. We consider inf-sup stable finite element meth-
ods with grad-div stabilization and symmetric stabilization of local projection type.
The approach is based on a proper scale separation and only the small unresolved
scales are modeled. Error estimates for the spatially discretized problem with rea-
sonable growth of the Gronwall constant for large Reynolds numbers are given to-
gether with a critical discussion of the choice of stabilization parameters. The fast
solution of the fully discretized problems (using BDF(2) in time) is accomplished
via unconditionally stable velocity-pressure segregation.

1 Introduction

We consider the time-dependent incompressible flow model for velocity u and pres-
sure p according to

∂tu−ν∆u+(a ·∇)u+∇p = f in (0,T )×Ω , (1)
∇ ·u = 0 in (0,T )×Ω , (2)

u = 0 on ∂Ω , u|t=0 = u0 on Ω , (3)

with bounded T > 0, bounded polygonal or polyhedral Lipschitz domain Ω ⊂
Rd ,d ∈ {2,3}, f ∈ L1(0,T ;L2(Ω)), u0 ∈ L2(Ω) and a constant ν . Model (1)-(2)
covers the Stokes problem (a ≡ 0), the Oseen problem (a ∈ L∞(0,T ; [W 1,∞(Ω)]d)
with ∇ ·a = 0) and the Navier-Stokes problem (a ≡ u). The weak form of problem
(1)-(3) reads:
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Find U := (u, p) : (0,T )→V ×Q := [W 1,2
0 (Ω)]d×L2

0(Ω), s.t.

(∂tu,v)+aG(a;U ,V ) = (f,v), (4)
u|t=0 = u0 (5)

for all V := (v,q) ∈V ×Q and with

aG(a;U ,V ) := (ν∇u,∇v)+ c(a;u,v)− (p,∇ ·v)+(q,∇ ·u), (6)

c(a;u,v) :=
1
2
[(a ·∇u,v)− (a ·∇v,u)]. (7)

Let Th be a suitable finite element (FE) mesh giving an exact decomposition
of the domain Ω . The standard Galerkin-FEM to problem (4)-(6) with conforming
subspaces Vh×Qh ⊂V ×Q reads:
Find Uh := (uh, ph) : (0,T )→Vh×Qh s.t. for all Vh := (vh,qh) ∈Vh×Qh

(∂tuh,vh)+aG(a;Uh,Vh) = (f,vh), (8)
uh|t=0 = u0h, (9)

with an appropriate approximation u0h of the initial condition u0.
In this paper, we consider stabilized FE approximations of problem (1)-(3). In

particular, inf-sup stable velocity-pressure FE pairs are chosen together with local
projection stabilization (LPS). For the linear Oseen problem Matthies & Tobiska
[21] provide a comprehensive overview on stabilized FE methods, in particular in
the case of LPS methods for inf-sup stable FE methods. (For a corresponding re-
view and presentation of LPS methods with equal-order interpolation of velocity
and pressure see [23].) To our knowledge there are not many results available in the
literature for the nonlinear problem. For the case of small data, the stationary case
was considered in [25, 1]. Some results for the time-dependent case can be found in
[22, 18] where LPS-based subgrid models of Smagorinsky type were considered.

Some challenges of numerical methods for problem (1)-(3) to be considered in
this paper are: (i) a stable velocity-pressure interpolation (Section 2), (ii) local mass
conservation (Section 3), (iii) high Reynolds numbers ReΩ := ‖u‖L∞(Ω)diam(Ω)/ν

� 1, (Section 3-4), and (iv) fast and scalable numerical algorithms (Section 5). A
fast FEM with inf-sup stable element pairs, minimal stabilization and robust esti-
mates w.r.t. ReΩ is a desired goal of current research. In this paper, we will give
some recent results often referring to [2].
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2 Finite element setting

2.1 Finite element spaces

For a measurable subset G of Ω , the usual Sobolev spaces W m,p(G) with norm
‖ · ‖W m,p(G) and semi-norm | · |W m,p(G) are used. In the case p = 2, we set Hm(G) =

W m,2(G). The L2 inner product on G is denoted by (·, ·)G. For G=Ω we will usually
omit the index G. This notation of norms, semi-norms and inner products is also
applied in the vector-valued case. For time-dependent problems we use the notation
Lp(0,T ;X) for vector-valued functions in the Sobolev space X with bounded norm

(
∫ T

0 ‖ · (s)‖
p
X ds)

1
p ,1≤ p < ∞ and standard modification for p = ∞.

Let {Th}h be a family of exact shape-regular decompositions of Ω . For a simplex
T ∈ Th or a quadrilateral/hexahedron T in Rd , let T̂ be the reference unit simplex
or the unit cube (−1,1)d . Let the reference mapping FT : T̂ → T be bijective and
satisfy

chd
T ≤ |detDFT (x̂)| ≤Chd

T ∀x̂ ∈ T̂

with constants c and C independent of the cell diameter hT . This mapping is affine
for simplices and multi-linear for quadrilaterals/hexahedra. Let Pl resp. Ql with
l ∈N0 be the set of polynomials of degree ≤ l resp. of polynomials of degree ≤ l in
each variable separately and let

Rl(T̂ ) :=
{
Pl(T̂ ) on simplices T̂
Ql(T̂ ) on quadrilaterals/hexahedra T̂ .

We define

Yh,−l := {vh ∈ L2(Ω) : vh|T ◦FT ∈ Rl(T̂ ) ∀T ∈Th}, Yh,l := Yh,−l ∩W 1,2(Ω).

For convenience, we write Vh = [Rk]
d instead of Vh = [Yh,k]

d ∩V and Qh = R±(k−1)
instead of Qh = Yh,±(k−1)∩Q.

Let us assume the following inverse and approximation properties in FE spaces.
Assumption (A.1): Let the FE space Yh,k satisfy the local inverse inequality

‖∇vh‖L2(T ) ≤Ch−1
T ‖vh‖L2(T ) ∀vh ∈ Yh,k, ∀T ∈Th.

Assumption (A.2): There are interpolation operators ju : V →Vh and jp : Q→ Qh
such that for all T ∈Th, for all w ∈V ∩ [W l,2(Ω)]d with 2≤ l ≤ k+1:

‖w− juw‖L2(T )+hT‖∇(w− juw)‖L2(T ) ≤Chl
T‖w‖W l,2(ωT )

and for all q ∈ Q∩W l,2(Ω) with 2≤ l ≤ k:

‖q− jp p‖L2(T )+hT‖∇(q− jpq)‖L2(T ) ≤Chl
T‖q‖W l,2(ωT )
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on a suitable patch ωT ⊃ T .

2.2 Inf-sup stable and stabilized velocity-pressure interpolation

Let us consider for simplicity here (and in Subsection 3.1) the stationary Stokes
problem with a≡ 0:
Find U := (u, p) ∈V ×Q, s.t. for all V := (v,q) ∈V ×Q

(ν∇u,∇v)− (p,∇ ·v)+(q,∇ ·u) = (f,v). (10)

The Galerkin-FEM simplifies to:
Find Uh := (uh, ph) ∈Vh×Qh ⊂V ×Q, s.t. for all Vh := (vh,qh) ∈Vh×Qh

(ν∇uh,∇vh)− (ph,∇ ·vh)+(qh,∇ ·uh) = (f,vh). (11)

An inf-sup stable interpolation according to
Assumption (A.3): (Discrete inf-sup condition)

∃β 6= β (h)> 0 s.t. : sup
v∈Vh\{0}

(∇ ·v,q)
‖∇v‖L2(Ω)

≥ β‖q‖L2(Ω) ∀q ∈ Qh (12)

implies a compatibility condition between Vh and Qh. Otherwise spurious pres-
sure modes may occur. Condition (12) is valid, e.g., for Taylor-Hood elements
[Rk]

d/Rk−1 with k ≥ 2 and FE spaces Rk ∈ {Pk,Qk} on Th.
For inf-sup stable Galerkin-FEM, we define

V div
h := {vh ∈Vh : (∇ ·vh,qh) = 0 ∀qh ∈ Qh} 6= {0}. (13)

The convergence result for the Stokes problem with (a≡ 0) reads:

‖∇(u−uh)‖L2(Ω) ≤C1 inf
vh∈Vh

‖∇(u−vh)‖L2(Ω)

+
C2

ν
inf

qh∈Qh
sup

vh∈V div
h \{0}

(p−qh,∇ ·vh)

‖∇vh‖L2(Ω)

.
(14)

Condition (12) is not valid for equal-order interpolation, e.g. [Qk]
d/Qk. To cir-

cumvent this, Franca/Hughes [14] introduced a pressure gradient stabilization via a
consistent residual-based method

aG(0;Uh,Vh)+ ∑
T∈Th

τT (−ν∆uh +∇ph− f,∇qh)T = (f,vh). (15)

The additional control of ∑T∈Th
τT‖∇ph‖2

L2(T ) allows a convenient error analysis
for the practically interesting case of equal-order interpolation of velocity/pressure.
A relevant drawback of such residual-based methods in applications to time-depen-
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dent coupled incompressible flow problems is the bulk of additional non-symmetric
terms leading to an expensive implementation.

Methods based on local projection stabilization [6] provide a potential remedy.
Here, a scale separation into small and large scales is performed via local orthog-
onal L2-projection onto appropriate discontinuous discrete function spaces. Details
are given later on in Section 4. In a sparse symmetric stabilization (here: pressure
gradient or PSPG) stabilization terms are added only on small scales:

aG(0;Uh,Vh)+ ∑
M∈Mh

τM(κM∇ph,κM∇qh)M = (f,vh), (16)

where κM : id|M − πM denotes the fluctuation operator with the local L2-projector
πM . Later on, we will extend method (16) to the original nonlinear problem (1)-(3).

3 Inf-sup stable Galerkin FEM with grad-div stabilization

In this section, we consider the application of inf-sup stable Galerkin FEM with
grad-div stabilization. For convenience, we start in Subsection 3.1 with grad-div sta-
bilization for the Stokes problem. Then, in Subsection 3.2, we extend the approach
to the Navier-Stokes problem.

3.1 Local mass conservation for Stokes problem

In the convergence result (14) for the Stokes problem (10) with inf-sup stable
Galerkin-FEM, the second error term is disastrous in case of 0 < ν � 1. It leads
to a strong error penetration for large external gradient forces in coupled problems.
This can be seen in Example 1 (Fig. 1) with γ = 0. There one observes a very strong
influence of the gradient force leading to a completely wrong physical solution. In
fact, the velocity error in the H1 semi-norm scales with ν−1.

Let us follow an important argument given by A. Linke in [16]: For the continu-
ous Stokes problem we observe

ν(∇u,∇v)− (pψ ,∇ ·v) = (f+∇ψ,v) = (f,v)− (ψ,∇ ·v).

Setting p := pψ −ψ we get ν(∇u,∇v)− (p,∇ ·v) = (f,v) and we obtain an invari-
ance property for incompressible flows:

f→ f+∇ψ =⇒ (u, p)→ (u, p+ψ).

Unfortunately, nearly all inf-sup stable discretizations for incompressible flows vi-
olate the discrete version of the invariance property, i.e.,
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f→ f+∇ψ 6=⇒ (uh, ph)→ (uh, ph +ψ).

One exception are pointwise divergence-free velocity spaces Vh, e.g. Scott-Vogelius
elements [Pk]

d/P−(k−1), k ≥ d on barycentrically refined simplicial meshes Th.
As a remedy, grad-div stabilization provides an improved local mass conser-

vation for inf-sup stable FE methods for the Stokes problem with a ≡ 0. Let us
consider, e.g., Taylor-Hood type pairs [Rk]

d ×Rk−1 with k ≥ 2. Then one adds a
consistent symmetric penalty term to the Galerkin method such that

aG(0;Uh,Vh)+ ∑
T∈Th

γT (∇ ·uh,∇ ·vh)T = (f,vh). (17)

As a result one obtains the error estimate

ν‖∇(u−uh)‖2
L2(Ω)+ ∑

T∈Th

γT‖∇ ·uh‖2
L2(T )

≤C ∑
T∈Th

(
(ν + γT ) inf

vh∈Vh
‖∇(u−vh)‖2

L2(T )+min
( 1

ν
;

d
γT

)
inf

qh∈Qh
‖p−qh‖2

L2(T )

)
.

An essential problem is the choice of grad-div parameter γT which allows to remove
the ν−1-dependence of the pressure interpolation term in case of 0 < ν � 1. An
equilibration of the right-hand side terms in the error estimate gives

γT = γ0 max
(

0;
|p|W k,2(ωT )

|u|W k+1,2(ωT )

−ν

)
This choice is unfeasible in practical problems, e.g. for time-dependent Navier-
Stokes problem. Some numerical experiments for Stokes problem can be found in
[15]. A reasonable compromise is given by γT ≡ γ = O(1) with possibly problem-
dependent parameter γ . This leads to methods of order k such that

ν‖∇(u−uh)‖2
L2(Ω)+ ∑

T∈Th

γT‖∇ ·uh‖2
L2(T ) ≤C ∑

T∈Th

h2k
T

[
|u|2W k+1,2(ωT )

+ |p|2W k,2(ωT )

]
where the constant C is independent on ν−1 and ωT denotes an appropriate element
patch around element T .

Example 1. (No-flow test)
We consider the Stokes problem in the domain Ω = [0,1]2 with given forcing term
f = (3x2

1 +1,3x2
2)

T as gradient field and the analytical solution (u, p)(x) = (0,x3
1 +

x1 + x3
2− 1). We apply the grad-div stabilized Galerkin scheme with the [Q2]

2/Q1
pair on a distorted mesh Th. Comparing the cases γT = 0 and γT = 1 we observe
for the latter case with decreasing ν an essential improvement in the H1(Ω)-error.
Instead of a scaling like ν−1 we observe a dependence like ν−1/2 in the velocity
error. On a structured mesh one observes even superconvergence. The L2(Ω)-error
of the pressure is not influenced by grad-div stabilization. �
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Fig. 1 No-flow test for Q2/Q1 and ν ∈ {1,10−3,10−6} without (γ = 0) and with (γ = 1) grad-div-
stabilization: (i) distorted mesh, (ii) undistorted mesh

We may draw the conclusion that a grad-div stabilization can be very important for
coupled flow problems with large external gradient forces compared to the diffusion
term (like thermally coupled problems or resistive magnetohydrodynamics).

Finally, we mention the very recent approach by Linke et al. [17] to modify
inf-sup stable FE pairs for incompressible flows in such a way that a pointwise
divergence-free discrete velocity field can be obtained. The essential idea is to re-
place the test function vh in (f,vh) by Πhvh with a projector Πh : V +Vh → Xh to
an appropriate FE subspace of H(div;Ω) := {v ∈ [L2(Ω)]d : ∇ ·v ∈ L2(Ω)}. Poten-
tially this allows to omit the grad-div stabilization.

3.2 Extension to the nonlinear problem

Consider now the weak form of the time-dependent Navier-Stokes problem (1)-(3):
Find U := (u, p) : (0,T )→V ×Q, such that

(∂tu,v)+aG(u;U ,V ) = (f,v) (18)

for all V := (v,q) ∈ V ×Q and with aG(·; ·, ·) as in (6). The grad-div stabilized
Galerkin-FEM scheme with inf-sup stable interpolation in Vh×Qh ⊆ [Rk]

d ×Rk−1
reads:
Find Uh = (uh, ph) : (0,T )→Vh×Qh such that

(∂tuh,vh)+aG(uh;Uh,Vh)+ th(uh;uh,vh) = (f,vh) (19)

for all Vh = (vh,qh) ∈Vh×Qh with grad-div stabilization

th(uh;uh,vh) := ∑
T∈Th

γT (uh)(∇ ·uh,∇ ·vh)T .
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For the semidiscrete grad-div stabilized FEM we want to improve the results
of [21] for the Oseen problem with given solenoidal flow field a in problem (18)
towards the nonlinear problem with a = u. Moreover, we want to obtain a realistic
growth of Gronwall constants following Burman & Fernandez [8]. One basic idea
in the discrete stability analysis is to treat uh and ph separately since V div

h 6= {0},
see (13), and to apply interpolation estimates in V div

h following Girault & Scott [11].
Symmetric testing in V div

h yields

1
2

d
dt
‖uh‖2

L2(Ω)+ν‖∇uh‖2
L2(Ω)+ th(uh;uh,uh)︸ ︷︷ ︸

=:|||uh|||2

= (f,uh),

leading to the stability estimate (for details see [2], Section 3.2)

‖uh(t)‖2
L2(Ω)+

∫ t

0
|||uh(τ)|||2 dτ ≤ ‖uh(0)‖2

L2(Ω)+3‖f‖2
L2(0,T ;L2(Ω)). (20)

This result allows to apply the generalized Peano theorem and to prove existence
of the semidiscrete velocity uh : [0,T ]→ V div

h . Under the stronger condition of a
Lipschitz-continuous force term f one obtains uniqueness of uh. Existence of the
unique discrete pressure ph is a consequence of the discrete inf-sup condition.

We are now in the position to derive error estimates of the semidiscrete grad-div
stabilized Galerkin scheme (19). First of all, for solutions u∈ [L∞(0,T ;W 1,∞(Ω))]d ,
p ∈ L2(0,T ;Q) and ∂tu ∈ [L2(0,T ;L2(Ω))]d one can show (via density arguments)
strong convergence of the discrete velocity in [L∞(0,T ;L2(Ω))∩L2(0,T ;V )]d . For
details we refer to Corollary 4.1 in [2].

In case of sufficiently smooth solutions of problem (18), we obtain the following
error estimate:

Theorem 1. Let assumptions (A.1)-(A.3) be valid. Assume for the solution of (1)-(3)
that u ∈ [L∞(0,T ;W 1,∞(Ω)) ∩ L2(0,T ;W k+1,2(Ω))]d , ∂tu ∈ [L2(0,T ;W k,2(Ω))]d

and p ∈ L2(0,T ;Q∩W k,2(Ω)). Moreover, let juu be the divergence-preserving in-
terpolant [11] of the velocity u and set uh(0) = juu0. Then we obtain

‖uh− juu‖2
L∞(0,T ;L2(Ω))+

∫ t

0
|||(uh− juu)(τ)|||2 dτ

≤C ∑
T∈Th

h2k
T

∫ t

0
eCG(u)(t−τ)

[
(1+νRe2

T +dγT )|u(τ)|2W k+1,2(ωT )

+ |∂tu(τ)|2W k,2(ωT )
+min

( d
γT

;
1
ν

)
|p(τ)|2W k,2(ωT )

]
dτ

(21)

with the local Reynolds number ReT :=
hT ‖u‖L∞(T )

ν
and Gronwall constant

CG(u) := 1+‖u‖L∞(0,T ;W 1,∞(Ω))+Ch‖u‖2
L∞(0,T ;W 1,∞(Ω)). (22)

Sketch of proof: The proof is a special case of Theorem 4.1 in [2]. Set
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U −Uh = (U − JU )+(JU −Uh)≡ (ηu,ηp)+(eh,rh).

Here the interpolant J consists of a standard interpolator for the pressure and
the divergence-preserving velocity interpolator ju : Vh → V div

h , see [11]. The lat-
ter choice implies eh ∈ V div

h . Then the approximate Galerkin orthogonality in V div
h ,

coercivity of aG(uh; ·, ·) and use of (rh,∇ · eh) = 0 thanks to eh ∈V div
h yield

1
2

∂t‖eh‖2
L2(Ω)+ |||eh|||2 = −(∂tηu,eh)−ν(∇ηu,∇eh)+(ηp,∇ · eh)

−th(uh;ηu,eh)+ c(uh;uh,eh)− c(u;u,eh).

Careful estimates of the convective terms give

c(uh;uh,eh)− c(u;u,eh)

≤ 1
4ε

∑
T∈Th

1+νRe2
T

h2
T

‖ηu‖2
L2(T )+3|||ηu|||2 +4ε|||eh|||2

+
[
|u|W 1,∞(Ω)+

(
εh2 +C max

T∈Th
hT

)
|u|2W 1,∞(Ω)

]
‖eh‖2

L2(Ω).

Finally, an application of the Gronwall Lemma to ‖eh‖2
L2(Ω)

with uh(0) = juu0 gives
the desired result with Gronwall constant (22). �

Corollary 1. Under the assumptions of Theorem 1 assume the mesh restriction

ReT =
hT‖u‖L∞(T )

ν
≤ C√

ν
(23)

Then we obtain the error estimate of order O(hk)

‖uh− juu‖2
L∞(0,T ;L2(Ω))+

∫ t

0
|||(uh− juu)(τ)|||2 dτ

≤C ∑
T∈Th

h2k
T

∫ t

0
e(t−τ)CG

[
|∂tu(τ)|2W k,2(ωT )

+ |u(τ)|2W k+1,2(ωT )
+ |p(τ)|2W k,2(ωT )

]
dτ

in the sense that all constants are uniformly bounded w.r.t. the data. In particular,
the Gronwall constant (22) does not explicitly depend on ν−1.

We proceed with some numerical examples. The first example is to check Corol-
lary 1 whereas the following examples may give an impression of a certain robust-
ness of grad-div stabilized Galerkin schemes with inf-sup stable elements for lami-
nar flow problems.

Example 2. For the numerical verification let us consider the Couzy test problem
[9] in Ω = (0,1)2. The solution of problem (4)-(6) with a = u is
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Fig. 2 Couzy test with optimized grad-div parameter γ for [Q2]
2/Q1: Dependence on

ReΩ ; (i) W 1,2-velocity error, (ii) L2-velocity error

u(x) = sin(πt)
(
−cos

(
1
2

πx1

)
sin
(

1
2

πx2

)
,sin

(
1
2

πx1

)
cos
(

1
2

πx2

))T

,

p(x) = π sin
(

1
2

πx1

)
sin
(

1
2

πx2

)
sin(πt) .

The forcing term f, the initial and the Dirichlet boundary data are deduced from the
exact solution. For the [Q2]

2/Q1-pair we obtain on a sequence of equidistant meshes
and for globally constant grad-div parameter γT convergence results as in Fig. 2. The
significant influence of grad-div stabilization is observed for a wide range of ReΩ .
The L2-errors of the divergence and of pressure show optimal rates of O(h2) robust
w.r.t. ReΩ . On the other hand, for the W 1,2- and L2-errors of the velocity we see a
deviation from the optimal error rate for increasing ReΩ . �

Example 3. (Driven cavity problem)
Next we consider the standard driven cavity flow with stationary solutions in the
range up to ReΩ = 7.500 in Ω = (0,1)2. In Fig. 3 we show exemplarily cross-

Fig. 3 Driven cavity problem with ReΩ = 5 · 103: Cross-sections of the solutions for [Q2]
2/Q1

without SUPG-LPS and [Q2]
2/Q2 with SUPG/PSPG-LPS

sections of the discrete velocity at ReΩ = 5 · 103 at x1 = 0.5 and x2 = 0.5 for the
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[Q2]
2/Q1-pair. The results on moderately fine meshes are in very good agreement,

even in the boundary layers, with the results given by Erturk et al. [10] on a much
finer 601×601 mesh. Interestingly, the results are very similar to an equal-order ap-
proximation with [Q2]

2/Q2 pair. In [19] a non-stationary approach with moderately
large time steps was applied showing that just grad-div stabilization was required in
experiments up to ReΩ = 7.5 ·103.
Moreover, we considered the time-accurate simulation of the driven cavity problem

Fig. 4 Time-dependent driven cavity problem at ReΩ = 104 with [Q2]
2/Q1 pair; whole domain

(left) and zoom into corners (right)

in the transient regime at ReΩ = 104 where only grad-div stabilization was required.
In Fig. 4 a snapshot of the time-periodic velocity solution for ReΩ = 104 is shown.
Secondary and tertiary vortices are well-resolved. �

Example 4. (Time-dependent 3D-flow around cylinder at ReΩ = 100)
The benchmark problem of the time-dependent 3D-flow around a cylinder in a chan-
nel at ν = 0.01 (corresponding to ReΩ = 100), see [24], is shown in Fig. 5 (left).
[Q2]

3/Q1 elements with 0.7×106 degrees of freedom were applied with a globally
constant grad-div stabilization. In Fig. 5 (right) the convergence of the (maximal)
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Fig. 5 Snapshot of flow at ReΩ = 100 (left). Development and convergence of lift coefficient
(right)

lift coefficient is compared to a reference solution with 12 ·106 degrees of freedom.
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�

The given examples show that grad-div stabilization is very often sufficient for aca-
demic examples and simple laminar flow problems. In order to show that grad-div
stabilization is not always sufficient, we found the following example of boundary
layer flow.

Example 5. (Flow over a horizontal plate)
Consider the flow over a infinitely thin horizontal plate at ReΩ = 103, see Fig. 6.
The attached laminar boundary layer developing along the plate can be quite well
described by the Blasius profile as exact solution of Prandtl’s boundary layer equa-
tions, see Fig. 6 (right). Using [Q2]

2/Q1-interpolation of velocity-pressure on a

η=y (u
∞

/( ν x))
1/2

0 2 4 6 8

u
/u

∞

0

0.2

0.4

0.6

0.8

1

1.2

Blasius profile
x=0.1
x=0.5
x=0.9

Fig. 6 Flow over a horizontal plate at ReΩ = 103

structured rectangular mesh, we observed spurious wiggles of the velocity in front
of the plate, see Fig. 6 (left). It seems that an additional stabilization mechanism is
required to remove such wiggles. �

Let us summarize some pros and cons of Galerkin schemes with inf-sup stable
velocity-pressure interpolation. We observed a certain robustness of such methods
for laminar flows. In the semidiscrete analysis we obtained no explicit dependence
of the Gronwall constant on ν−1 if u ∈ L∞(0,T ; [W 1,∞(Ω)]d). In case of smooth
solutions and under a mesh width restriction we obtained error estimates of order
O(hk). For problems with minimal regularity we proved in [2] strong convergence of
the discrete velocity for h→ 0 and fixed ν > 0. Interestingly, a result by Guermond
[12] clarified that the Galerkin-FEM converges for h→ 0 to a ”suitable” Navier-
Stokes solution. This result should remain valid for the grad-div stabilized Galerkin
scheme. Such results provide some mathematical justification for direct numerical
simulation (DNS) for h→ 0.

Nevertheless, the mentioned mesh width restriction hT‖uh‖L∞(T )≤C
√

ν disturbs
the robustness of the method w.r.t. ReΩ . In the following section, we want to obtain
better control of the convective terms by introducing a velocity subgrid model for
large ReΩ . This is important as the W 1,2-control disappears in case of ν → 0. As a
by-product, we can remove the mentioned mesh width restriction.
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4 Subgrid models for inf-sup stable Galerkin schemes

An appropriate and efficient numerical simulation of high Reynolds number flow is
only possible if the small scales of velocity and pressure which cannot be resolved
by a given mesh Th are modeled (see Fig. 7, left). So far any stabilization or sub-
grid modeling of the unresolved velocity scales in the grad-div stabilized Galerkin
schemes is missing. It is well-known that the standard subgrid model, the Smagorin-

k (log)

E
(k

) 
(lo

g)

Inertial range
E(k) ~ k-5/3

Dissipation
range

k
r

unresolved
small scales

resolved
small
scales

energy

k
c

Fig. 7 Left: Resolved and unresolved velocity scales in the energy cascade, Right: Two-grid LPS-
mesh

sky model, is too dissipative. The combination of the Smagorinsky model with local
projection stabilization (LPS) techniques had been considered for the Navier-Stokes
model in, e.g., [22, 18]. Sometimes grad-div stabilization is considered as model of
the unresolved pressure scales whereas a combination of streamline upwind stabi-
lization (SUPG) with LPS provides a potential model of the unresolved velocity
scales, see Fig. 7 (left). Let us remark that the application of standard stabilization
schemes as subgrid model can be seen as implicit large eddy simulation (ILES).

Now we introduce the framework of local projection stabilization. Consider a
two-level ansatz with a coarse grid Mh = {M} consisting of elements M as union of
cells T ∈ Th of the primary mesh Th, see Fig. 7 (right), or a one-level method with
Mh = Th. One selects an appropriate projection space DM ⊂ L∞(M) for all coarse
grid cells M ∈Mh. The local orthogonal L2-projector: πM : L2(M)→ DM defines
the global projector πh : L2(Ω)→ Dh by (πhw)|M := πM(w|M) and the fluctuation
operator κM : id|M −πM . In a LPS model of velocity, the scale separation is given
via local L2-projection.

Assumption (A.4): The fluctuation operator κM = id−πM provides the approx-
imation property (depending on DM and s ∈ {0, · · · ,k}):

‖κMw‖L2(M) ≤Chl
M‖w‖W l,2(M), ∀w ∈W l,2(M), M ∈Mh, l = 0, . . . ,s. (24)

A sufficient condition for (A.4) is Ps−1 ⊂ DM .

Furthermore, consider a piecewise constant approximation uM ≈ uh|M with
Assumption (A.5): ‖uM−uh‖L∞(M) ≤ChM‖∇uh‖L∞(M)

and a symmetric LPS-stabilization of (uM ·∇)uh according to
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sh(uh;uh,vh) := ∑
M∈Mh

τM(κM(uM ·∇)uh,κM(uM ·∇)vh)M. (25)

The inf-sup stable Galerkin-FEM with grad-div stabilization and SUPG-LPS sub-
grid model reads: Find Uh = (uh, ph) : (0,T )→Vh×Qh, such that

(∂tuh,vh)+aG(uh;Uh,Vh)+ sh(uh;uh,vh)+ th(uh;uh,vh)+ ih(ph,qh) = (f,vh)
(26)

for all Vh =(vh,qh)∈Vh×Qh. Here aG(·; ·, ·) is the Galerkin form defined in (6). Be-
sides the grad-div stabilization term th(uh; ·, ·) and the SUPG-LPS term sh(uh; ·, ·),
the following stabilization of pressure jumps over edges E ∈ ∂M is defined by

ih(ph,qh) := ∑
E∈∂M,M∈Mh

φE([ph]E , [qh]E)E .

Let us briefly consider the semidiscrete numerical analysis of scheme (26). Re-
garding the stability of discrete solutions, we obtain the following improved estimate

‖uh(t)‖2
L2(Ω)+

∫ t

0
|||Uh(τ)|||2LPS dτ ≤ ‖uh(0)‖2

L2(Ω)+3‖f‖2
L2(0,T ;L2(Ω)) (27)

with

|||V |||LPS :=
(

ν‖∇v‖2
L2(Ω)+ th(uh;v,v)+ sh(uh;v,v)+ ih(q,q)

) 1
2
. (28)

The existence of a solution (uh, ph) : (0,T )→ V div
h ×Qh of the LPS-model (26)

follows as in Section 3.2.

Theorem 2. Let the assumptions of Theorem 1 be valid and assume τM(uM)|uM|2 ≤
C = O(1). Then the semidiscrete convergence results of Theorem 1 and Corollary 1
remain valid with norm ||| · ||| replaced by the LPS-norm (28).

The proof is very similar to Theorem 1, but one takes advantage of the approxi-
mation property of the fluctuation operator ‖κMw‖L2(M) ≤ chk

M‖w‖W k,2(M). For fur-
ther details of the analysis, we refer to Theorem 1 in [2].

Henceforth, we want to remove the mesh width restriction hT‖uh‖L∞(T )/ν ≤
C/
√

ν and to refine the analysis of the SUPG-LPS scheme. The essential step is
based on an additional inf-sup condition on projection space DM .
Assumption (A.6): There exists β > 0 independent of h such that

sup
v∈VM

(v,q)M

‖v‖L2(M)

≥ β‖q‖L2(M) ∀q ∈ DM

for all M ∈Mh where VM := {vh|M : vh ∈Vh, vh = 0 on Ω \M}.
Matthies et al. [20] proved the following technical result.
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Lemma 1. Select projection spaces DM such that (A.6) is valid. Then there exists
an interpolator i : V →Vh with optimal interpolation estimates in W 1,2(M) and the
orthogonality condition

(v− iv,wh) = 0 ∀wh ∈
⊕

M∈Mh

DM, ∀v ∈V.

The assumptions of Lemma 1 can be realized for two- and one-level methods.
Let Rk(T̂ ) = Pk(T̂ ) or Qk(T̂ ). For two-level methods set DM := Pk−1(M) and select

Vh :=V ∩{vh ∈C(Ω) : vh|T ◦FT ∈ Rk(T̂ ) ∀T ∈Th}.

For one-level methods set DM := Pk−1(T ) and define enriched velocity spaces by

Vh :=V ∩{vh ∈C(Ω) : vh|T ◦FT ∈ Rk(T̂ )+bT̂ ·Rk−1(T̂ ) ∀T ∈Th}

with polynomial (cubic or d-quadratic) bubble function bT̂ ∈W 1,2
0 (T̂ ), see Fig. 8.

Fig. 8 One-level method: Enrichment of velocity space Vh via bubble functions

Please note that in the error splitting

U −Uh = (U − JU )+(JU −Uh)≡ (ηu,ηp)+(eh,rh)

we cannot apply the divergence-preserving interpolant in V div
h , hence eh 6∈V div

h . The
approximate Galerkin orthogonality in Vh and coercivity of aG(uh; ·, ·) yield

1
2

∂t‖eh‖2
L2(Ω)+ |||(eh,rh)|||2LPS

= −(∂tηu,eh)−ν(∇ηu,∇eh)+(ηp,∇ · eh)− (rh,∇ ·ηu)− ih(ηp,rh)

−th(uh;ηu,eh)− sh(uh;ηu,eh)+ sh(uh;u,eh)+ c(uh;uh,eh)− c(u;u,eh).

Furthermore, we have to estimate the non-vanishing term −(rh,∇ ·ηu)− ih(ηp,rh)
for discrete pressure spaces Qh ∈ {Pk−1,P−(k−1)}. Careful estimates of the convec-
tive terms lead to the improved bound
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c(uh;uh,eh)− c(u;u,eh)

≤ 1
2ε

∑
M∈Mh

(
1

τM
+

1
2h2

M

)
‖ηu‖2

L2(M)+3|||ηu|||2LPS +4ε|||eh|||2LPS

+C
(
|u|W 1,∞(Ω)+max

M
hM|u|2W 1,∞(Ω)

)
‖eh‖2

L2(Ω)

provided assumption (A.6) is valid.
We are now in the position to derive improved error estimates for smooth solu-

tions where any mesh width restriction could be avoided. For a detailed proof of the
result we refer to Theorem 2 in [2].

Theorem 3. Let assumptions (A.1)-(A.6) be valid. Moreover, let Qh =Pk−1 or Qh =
P−(k−1) and select the stabilization parameters as

τM(uM)≤C
1
|uM|2

; γM(uM)∼ 1, φE = φ0 ∼ 1.

Then we obtain an O(hk)-estimate uniformly w.r.t. data:

‖uh− iu‖2
L∞(0,T ;L2(Ω))+

∫ t

0
|||(uh− iu, ph− jp p)(τ)|||2LPS dτ

≤C ∑
M∈Mh

h2k
M

∫ t

0
eCG(u)(t−τ)

[
|∂tu(τ)|2W k,2(ωM)

+ |u(τ)|2W k+1,2(ωM)

+ |p(τ)|2W k,2(ωM)

]
dτ

with Gronwall constant CG as in Theorem 1.

For the numerical verification let us consider again Example 2.
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Fig. 9 Couzy test for ReΩ = 106 with grad-div stabilization: Comparison of [Q2]
2/Q1 and

[Q+
2 ]

2/Q1; (i) W 1,2-velocity error, (ii) L2-velocity error

Example 6. The data are given as in Example 2. For the [Q2]
2/Q1-pair we obtain
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on a sequence of equidistant meshes and globally constant grad-div parameter γT
convergence results as in Fig. 9. The significant influence of grad-div stabilization
is observed for a wide range of ReΩ . Compared to the results in Example 2, we
observe with the enriched one-level method in Fig. 9 W 1,2- and L2-errors of the
velocity without any deviation from the optimal error rate for increasing ReΩ . �

Let us now look at problems with boundary layers and separation.
Example 7. (Flow over a horizontal plate)
We consider again the situation of Example 5 with boundary layer flow over a in-
finitely thin horizontal plate at ReΩ = 103. In Fig. 10 we see the Blasius boundary
layer flow at ReΩ = 103 without (left) and with SUPG stabilization (right). Spu-
rious wiggles in front of the leading edge appear without SUPG-LPS (left), but
SUPG-LPS allows to suppress these wiggles (right). Moreover, we obtain the cor-
rect Blasius profile with an adapted choice of the parameter set τM = 1. Then the
stabilization vanishes at the surface of the plate, which seems to be essential. Other-
wise, the stabilization influences the thickness of the boundary layer especially on
coarse meshes and leads to wrong boundary profiles. �

Fig. 10 Blasius boundary layer flow, ReΩ = 103, global mesh size h = 2−5 without (left) and with
(right) SUPG stabilization

Example 8. (Flow over an inclined plate)
Here we consider the flow over an inclined (infinitely thin) plate at ReΩ = 106

and an angle of attack of 18.43◦ in the domain Ω = (0,16)× (0,10). The pa-
rameters are selected as γT ≡ γ = 1 and τM = 1/|uM|2. In both cases we ap-
ply an isotropic mesh refinement based on a residual jump indicator of the form
η2

T = hT ∑E∈∂T ‖[∇uh · n]‖2
L2(E). Fig. 11 shows snapshots of the flow. Differences

between both variants are clearly visible above the plate. Due to the high Reynolds
number, the wake should be closely attached to the plate. Without SUPG-LPS sta-
bilization the trailing edge vortex is suppressed by a leading edge vortex of high
intensity. Compared to the grad-div stabilized case the flow with additional SUPG-
LPS stabilization seems to be more appropriate for the numerical simulation. �

Let us summarize some first experiences with the SUPG-LPS as subgrid model.
Away from boundary layers one should apply SUPG-LPS with τM = τ0/u2

M and
τ0 ∼ 1. Rewriting the stabilization yields
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Fig. 11 Different strong separation for grad-div stabilization (left) vs. grad-div + SUPG-LPS
(right)

sh(uh;uh,uh) = ∑
M∈Mh

τ0

|uM|2
(κM (uM ·∇uh) ,κM (uM ·∇vh))M

= ∑
M∈Mh

τ0

(
κM

(
uM

|uM|
·∇uh

)
,κM

(
uM

|uM|
·∇vh

))
M
.

This means that just directional information is used for the stabilization.

In boundary layer regions a combination of (anisotropic) local refinement and
near-wall modeling with an appropriate choice of the SUPG-LPS parameter set
τM(uh) as in Example 7 is required.

5 Robust and fast solvers

For the numerical implementation the C++-FEM library deal.II [4, 5] is used.
Here the goal is to construct an efficient, i.e. robust and fast, solver for the semidis-
crete system. In particular, one has to decide whether a fully coupled or a segregated
approach w.r.t. velocity and pressure is applied.

A fully coupled parallel approach to the preconditioned saddle-point problems
appearing in each time step had been considered by Bangerth et al. in [3] in the FE
simulation of mantle convection problems. The model is a Stokes/Fourier model for
velocity, pressure and temperature. They applied algebraic multigrid precondition-
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Fig. 12 Weak and strong scaling properties of the mantle convection problem. Results by Bangerth
et al. [3]

ers which showed robustness w.r.t. ν , the mesh size h and time step ∆ t. In particular,
very good weak and strong scaling properties for the Stokes/Fourier model were ob-
tained on unstructured adapted grids with up to 109 unknowns, cf. Fig. 12.

Unfortunately, the extension of the fully coupled solver to Navier-Stokes simu-
lations proved to be too less robust and to have unacceptable CPU times, mostly for
Large-Eddy simulations of weakly turbulent flows. Due to these reasons we used a
segregated approach with velocity/pressure decoupling with a Chorin/Temam-type
splitting:

3ũk+1−4uk +uk−1

2∆ t
−ν∆ ũk+1 + ũk+1 ·∇ũk+1 +∇pk = f(tk+1) in Ω ,

ũk+1 = 0 on ∂Ω ,

(29)

3uk+1−3ũk+1

2∆ t
+∇φ

k+1 = 0 in Ω ,

∇ ·uk+1 = 0 in Ω ,

uk+1 ·n = 0 on ∂Ω ,

φ
k+1− pk+1 + pk = ν∇ · ũk+1 in Ω .

(30)

A BDF(2) time discretization is applied together with a rotational incremental pres-
sure correction scheme [13]. In the first step (29) solving a reaction-diffusion-
advection for the velocity is required and we use a GMRES solver in conjunction
with an algebraic multigrid (AMG) preconditioner. The second step (30) consists
simply of a pressure-Poisson problem that is solved by a CG solver and again AMG
preconditioner.
In Fig. 13 we observe a convincing strong scaling of the used algorithm. All the ma-
jor parts apart from solving the Poisson equation behave optimally in this regime. In
particular, the total time is inversely proportional to the number of processes used.
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Fig. 13 Strong scaling results for the Couzy problem (Example 2)

6 Summary and Outlook

In this paper, we considered the numerical simulation of time-dependent incom-
pressible flow problems via inf-sup stable Galerkin-FEM with minimal stabiliza-
tion. In practice, the classical grad-div stabilization leads to improved local mass
conservation, but a rigorous theoretical foundation is missing even for the Stokes
problem.

For grad-div stabilized Galerkin schemes with inf-sup stable velocity-pressure
interpolation and sufficiently smooth solutions of the time-dependent Navier-Stokes
problem we can prove error estimates of order O(hk) uniformly w.r.t. the data.
Moreover, the Gronwall constant does not depend explicitly on ν . Unfortunately,
a mesh-width restriction is required, see Theorem 1. For laminar flows, numerical
experiments show a certain robustness of grad-div stabilized Galerkin schemes with
inf-sup stable velocity-pressure interpolation.

The results extend to grad-div stabilized Galerkin schemes with a subgrid model
for the unresolved velocity scales. The subgrid model consists of local projection
stabilization of an approximate streamline derivative of the velocity, see Theorem 3.
Under an additional compatibility condition on the projection space, one can remove
the mentioned mesh width restriction while maintaining the features of the previous
analysis, see Theorem 5. We considered some basic problems with boundary layers
and flow separation.

A velocity-pressure segregation based on BDF(2)-approximation in time and the
rotational incremental pressure-correction scheme was parallelized within the C++-
FEM package deal.II. First reasonable scaling results for up to 512 processors
are reported.

An extension of the results is possible in the following directions:

• An extension to problems with in- and outflow, in particular based on the so-
called directional do-nothing condition by Braack & Mucha [7], is desirable.
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• The approach by Linke et al. [17] with enhancement of inf-sup stable elements to
exactly divergence-preserving schemes will eventually allow to remove grad-div
stabilization.

• Further improvement of the velocity subgrid model based on local projection
of the streamline derivative is required for boundary layer problems, flows with
separation and for weakly turbulent flows.

• Finally, an extension of the approach to coupled flow models like nonisothermal
incompressible flows and resistive incompressible magnetohydrodynamics is in
preparation.
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24. M. Schäfer, S. Turek. Benchmark computations of laminar flow around a cylinder. Notes Nu-
mer. Fluid Mech. 52 (1996), in: Flow Simulation with High-performance Computers II, E.H.
Hirschel; (ed), 547-566.

25. Y. Qin, M. Feng, K. Luo, K. Wu. Local projection stabilized finite element methods for Navier-
Stokes equations, Appl. Math. Mech. - Engl. Ed. 31 (2010) 5, 7651-7664.


