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Abstract This paper is devoted to the numerical solution of the scalar convection–

diffusion–reaction equation. We present new results of the adaptive technique for

computing the stabilization parameter τ in the streamline upwind/Petrov–Galerkin

(SUPG) method based on minimizing the value of a functional called error indicator.

Particularly, we present results for conforming finite element spaces up to the order

5 with the parameter τ from the piecewise discontinuous finite element spaces, also

up to the order 5.

1 Introduction

We are seeking the solution of the scalar convection–diffusion–reaction problem

−ε ∆u+b ·∇u+ cu = f in Ω , u = ub on Γ D, ε
∂u

∂n
= g on Γ N . (1)

Here Ω ⊂ R
2 is a bounded domain with a polygonal Lipschitz–continuous bound-

ary ∂Ω and Γ D, Γ N are disjoint and relatively open subsets of ∂Ω satisfying

meas1(Γ
D) > 0 and Γ D ∪Γ N = ∂Ω . Furthermore, n is the outward unit normal

vector to ∂Ω , ε > 0 is a constant diffusivity, b ∈ W 1,∞(Ω)2 is the flow velocity,

c ∈ L∞(Ω) is the reaction coefficient, f ∈ L2(Ω) is a given outer source of the

unknown scalar quantity u, and ub ∈ H1/2(Γ D), g ∈ L2(Γ N) are given functions

specifying the boundary conditions. We make the usual assumption that

c− 1
2

divb ≥ 0 . (2)
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A very important aspect of the numerical solution of (1) are spurious oscillations

which often appear in the discrete solution when convection dominates diffusion and

standard discretizations are used. Various stabilized methods have been proposed.

These methods often depend on parameters whose optimal choice is usually not

known. Only bounds for the values of these parameters are derived for some of

these methods. Paper [5] describes how these parameters can be optimized in an

adaptive way. In this paper we enrich the space of parameters and also the finite

element space to get new results. We also provide experimental convergence rates.

We will use the standard notation for usual function spaces and norms, see,

e.g., [2]. The notation (·, ·)G is used for the inner product in the space L2(G) or

L2(G)2 and we set (·, ·) = (·, ·)Ω .

2 Weak formulation

Let ũb ∈ H1(Ω) be an extension of ub (i.e., the trace of ũb equals ub on Γ D) and let

V = {v ∈ H1(Ω) ; v = 0 on Γ D} .

Then the weak formulation of (1) reads: Find u ∈ H1(Ω) such that u− ũb ∈V and

a(u,v) = ( f ,v)+(g,v)Γ N ∀ v ∈V , (3)

where a(u,v) is the usual bilinear form

a(u,v) = ε (∇u,∇v)+(b ·∇u,v)+(cu,v) .

From the assumption (2) it follows that the weak formulation has a unique solution.

3 Galerkin finite element discretization

Let {Th}h be a family of triangulations of Ω parametrized by positive parameters h

whose only accumulation point is zero. The triangulations Th are assumed to consist

of a finite number of open polygonal subsets K of Ω such that Ω =
⋃

K∈Th
K and

the closures of any two different sets in Th are either disjoint or possess either a

common vertex or a common edge. Further, we assume that any edge of Th which

lies on ∂Ω is contained either in Γ D or in Γ N .

For each h, we introduce a finite element space Wh ⊂ H1(Ω) defined on Th and

approximating the space H1(Ω) in the usual sense, see [2]. Furthermore, for each h,

we introduce a function ũbh ∈ Wh whose trace on Γ D approximates ub. Finally, we

set Vh = Wh ∩V . Then the Galerkin discretization of (1) reads: Find uh ∈ Wh such

that uh − ũbh ∈Vh and
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a(uh,vh) = ( f ,vh)+(g,vh)Γ N ∀ vh ∈Vh . (4)

4 SUPG stabilization

It is well known that the Galerkin discretization (4) is inappropriate if convection

dominates diffusion, since then the discrete solution is usually globally polluted by

spurious nonphysical oscillations. An improvement can be achieved by adding a sta-

bilization term to the Galerkin discretization. One of the most efficient procedures of

this type is the streamline upwind/Petrov–Galerkin (SUPG) method [1], also called

streamline diffusion finite element method (SDFEM), which is frequently used be-

cause of its stability properties and higher-order accuracy.

The SUPG stabilization depends on a stabilization parameter which will be de-

noted by τh in the following. We assume that all admissible stabilization parameters

form a set Yh ⊂ L∞(Ω). The SUPG discretization of (1) reads: Find uh ∈ Wh such

that uh − ũbh ∈Vh and

a(uh,vh)+ sh(τh;uh,vh) = ( f ,vh)+(g,vh)Γ N + rh(τh;vh) ∀ vh ∈Vh , (5)

where

sh(τh;uh,vh) = (−ε ∆huh +b ·∇uh + cuh,τh b ·∇vh) ,

rh(τh;vh) = ( f ,τh b ·∇vh) .

The SUPG method requires that the functions from Wh are H2 on each element

of Th, which is satisfied for common finite element spaces. The notation ∆h denotes

the Laplace operator defined elementwise.

The parameter τh is often defined, on an element K ∈ Th, by the formula

τh|K =
hK

2 |b| ξ (PeK) with ξ (α) = cothα − 1

α
, PeK =

|b|hK

2ε
, (6)

where hK is the element diameter in the direction of the convection vector b, | · | is

the Euclidean norm, and PeK is the local Péclet number which determines whether

the problem is locally (i.e., within a particular element) convection dominated or

diffusion dominated.

5 Optimization of parameters

Let Dh ⊂ Yh be an open set such that, for any τh ∈ Dh, the SUPG method (5) has a

unique solution uh ∈Wh. To emphasize that uh depends on τh, we shall write uh(τh)
instead of uh in the following. Let Ih : Wh → R be an error indicator, i.e.,
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Φh(τh) := Ih(uh(τh))

represents a measure of the error of the discrete solution uh(τh) corresponding to a

given parameter τh.

We use two different indicators in our tests (not all reported here) proposed by

[5]. The first indicator is based on the value of the residue. It is defined as

Ih(wh) = ∑
K∈Th,K∩∂Ω= /0

h2
K ‖− ε∆wh +b ·∇wh + cwh − f‖2

0,K ∀wh ∈Wh (7)

and the second indicator which is described as an “indicator with crosswind deriva-

tive control term” is given by

Ih(wh)= ∑
K∈Th,K∩∂Ω= /0

(
‖−ε∆wh+b ·∇wh+cwh− f‖2

0,K + ‖φ(|b⊥ ·∇wh|)‖0,1,K

)
(8)

for all wh ∈Wh, where b = (b1,b2) and

b⊥(x) =

{
(b2(x),−b1(x))

|b(x)| if b(x) 6= 0,

0 if b(x) = 0,
, φ(t) =

{√
t if t ≥ 1,

0.5(5t2 −3t3) if t < 1,
(9)

and ‖ · ‖0,1,K is the usual L1 norm on an element K in Th.

For the derivative of Indicator (7) we have

〈DĨh(ũh(τh)),vh〉 = ∑
K∈Th,K∩∂Ω= /0

h2
K 2 (L uh(τh)− f ,L vh)K ∀ vh ∈Vh , (10)

where L = −ε ∆ + b · ∇ + c , Ĩh(wh) = Ih(wh + ũbh) for any wh ∈ Vh, and ũh =
uh − ũbh.

For the derivative of Indicator (8) we have

〈DĨh(ũh(τh)),vh〉= ∑
K∈Th,K∩∂Ω= /0

(
2(L uh(τh)− f ,L vh)K

+
∫

K
sgn(b⊥ ·∇uh(τh))φ

′(|b⊥ ·∇uh(τh)|)b⊥ ·∇vh dx
)

(11)

for all vh ∈ Vh. Our aim is to compute a parameter τh ∈ Dh for which Φh attains its

minimum. To this end, it is convenient to compute effectively the Fréchet derivative

of Φh. This is done by the technique of adjoint approach described in the detail in

[5] or [8].
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6 Numerical results

We consider piecewise polynomial spaces up to degree 5 which are globally con-

tinuous (Lagrange finite elements) for the discrete solution. In the following text,

we use abbreviations for these spaces derived from the FEniCS [7] software CG1 –

CG5. This defines the spaces Wh and Vh =Wh ∩V .

Based on our former observations in numerical experiments, we have chosen the

spaces Yh for the parameter τh as piecewise discontinuous, to name these spaces we

use again the abbreviations from the FEniCS software DG0 – DG5. So in addition to

the classical choice for the space of parameter τh with P0(K) for all K ∈ Th (which

is the space DG0 in our notation), we consider spaces of discontinuous piecewise Pk

functions, k = 1, . . . ,5.

Example 1: As the first example, let us consider Equation (1) in Ω = (0,1)2 with

ε = 10−8, b = (−y,x)T , c = 0, f = 0, Neumann condition ∂u
∂n

= 0 on x = 0, and

ub =

{
1 if 1

3
≤ x ≤ 2

3
and y = 0,

0 otherwise, if x 6= 0.
(12)

Example 2: The second example has the setup used by [4]. Equation (1) is con-

sidered in Ω = (0,1)2 with ε = 10−8, b = (1,0)T ,

f =

{
0 if |x−0.5| ≥ 0.25 or |y−0.5| ≥ 0.25,

−32(x−0.5) otherwise,
(13)
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(a) Example 1 - exact solution
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(b) Example 2 - exact solution
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(c) Example 1 - SUPG solution
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(d) Example 2 - SUPG solution

Fig. 1 Interpolations of exact solutions and solutions of the SUPG method with τh defined in (6).
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and ub = 0 on ∂Ω . In the following we will refer to the first example as Example 1

and to the second example as Example 2.

(a) FE space CG1

(b) FE space CG2

(c) FE space CG3

(d) FE space CG4

Fig. 2 Optimized parameter τh for dif-

ferent FE spaces of the discrete solu-

tion, τh is from the space DG1, Ex. 1

The interpolation of the exact solution of Ex-

ample 1 in the CG1 space is depicted in Figure

1a on the previous page. The interpolation of

Example 2 in the CG1 space is in Figure 1b. The

Lagrange interpolation in Wh of the exact solu-

tion u(x,y) of a problem under consideration is

denoted as ue where necessary.

The solution of Example 1 possesses two

interior characteristic layers in the direction

of the convection starting at ( 1
3
,0) and ( 2

3
,0).

These interior layers are generally not aligned

with the direction of elements’ sides.

The solution of Example 2 possesses two

interior characteristic layers in the direction

of the convection starting at (0.25,0.25) and

(0.25,0.75). This also means that the resulting

discrete solution can be strongly influenced by

the choice of the mesh, particularly by align-

ment of elements’ sides.

If not said otherwise we provide results on a

structured mesh of Friedrichs–Keller type with

34 nodes in each direction.

In both examples we consider in the paper

the Péclet number from (6) is of the order 106.

We use Indicator (8) in all of the following nu-

merical tests.

In Figures 1c and 1d on the previous page

we show solutions of the SUPG method for the

CG1 FE space where the parameter τh is defined

in (6) and in this case we choose τh from the

space DG0.

The parameter τh is optimized by the

L-BFGS-B nonlinear minimization method

described in [10] using the default setup

from scipy library with gtol: 1e-14 and

ftol: 1e-14. The method starts with the

values given by (6).

We do not provide any figure which would

show just the values of the parameter τh from

(6), which is the starting point of the minimiza-

tion procedure. Such an image would be not in-

teresting as the values of τh for both examples

we use are (almost) constant on the whole domain. The quality of discrete solutions
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(a) τh from DG0 (b) τh from DG1 (c) τh from DG2 (c) τh from DG3

Fig. 3 Changing the space for the parameter τh and preserving the finite element space CG3 for

the discrete solution of Example 1.

after the minimization procedure is so good that images of such a discrete solution

would be very similar to images 1a and 1b and this is the reason we do not involve

them in the paper. In addition, the quality of discrete solutions after the minimization

procedure has been studied in [5] and [8].

The values of the parameter τh after the whole minimization procedure are in

Figures 2 and 3. In Figure 2 on the previous page we fix the FE space for the pa-

rameter τh and change the FE space of the discrete solution. On the other hand we

fix the FE space of the discrete solution in Figure 3 and change the FE space of the

parameter τh. We can see that higher values of the parameter τh are at places where

oscillations in the SUPG method with τh from (6) appear.

We provide in Figure 4a the value of the Indicator (8) after the 30 seconds run

of the minimization procedure and in the end of the whole minimization procedure.

We can see from the image that using finer FE spaces is not efficient to obtain lower

value of an indicator.

We provide numerical convergence results in Figure 4b where we changed the

mesh step by step from 8 elements in each direction to 100 elements in each direc-
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(a) - Minimization after 30s and at the end On the vertical axis

there is the value of Indicator (8), on the front axis there is the

number of dofs of the Lagrange FE (denoted by CG) space, and

on the last axis there is the number of dofs of the DG space of

parameter τh. Results after 30 seconds (dashed line) and at the

end of the program run are provided.

 0.001

 0.01

 0.01  0.1

fit of min
min

fit of SUPG
SUPG

(b) - Convergence rate Logarithmic scale, on

the vert. axis there is the value of the error

‖uh − ue‖H1(Ω), on the horiz. axis there is the

mesh par. h, compare with SUPG (τh from (6)).

Fig. 4 Minimization after 30s and at the end (a) and convergence results (b) for Example 1
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tion and run everytime the whole optimization process. We see that in this case the

convergence rate of our method (labeled min) is approximately the same as of the

SUPG method with parameter from (6) (labeled SUPG).

To obtain precisely the convergence rates we use a different technique than it is

usual in other papers from the numerical mathematics branch. We use a technique

of curve fitting which is rather known to physicists. This approach is justified by

having a lot of data for such a ”physical” fitting. The objective function f (a,b),
whose parameters a and b are fitted, has the form

f (a,b) = a ·hb. (14)

Python scipy library uses the Levenberg–Marquardt algorithm in curve fit

function of scipy module. Paper [9] describes how this algorithm is implemented

in the python library. An important fact about this approach is that we obtain also a

rigorous uncertainty or standard deviation of fitted coefficients.

In Figure 5a we can see the convergence results of SUPG method for Example 2

and in Figure 5b we can see the convergence results obtained by minimizing accord-

ing to the Indicator (8). As we see, if the meshes are chosen properly we are able to

obtain a higher order convergence using our technique. A properly chosen mesh in

Example 2 is apparently, regarding the exact solution or regarding the convergence

graphs, a structured mesh which has 2+ 4k sides (or equivalently 3+ 4k nodes),

k ∈N at x = 0. We will refer to such a mesh as 4k mesh. The 4k mesh has the inner

layers well resolved by an element’s side.

The resulting coefficients of fitted function for the SUPG method with τh defined

in (6) are, together with their standard deviation: f (h) = (0.5±0.3) ·h(2.5±0.1). The

values of the coefficient a naturally differ slightly among the types of meshes with
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 0.01

 0.01  0.1

fit of SDFEM
SDFEM points

(a) On the vertical axis there is the value of the error

‖uh −ue‖H1(Ω), uh is the sol. of SUPG meth. (τh from (6)).

 1e-05

 0.0001

 0.001

 0.01

 0.01  0.1

4k series fit
all points

(b) On the vertical axis there is the value of the error

‖uh −ue‖H1(Ω), where uh is the solution of the min. probl.

Fig. 5 Comparison of the results from the SUPG method with parameter τh from (6) and the

adaptive method. On the horizontal axis there is the mesh parameter h. On the right hand side the

fit is only for the points corresponding to the 4k mesh. Results are for Example 2.
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different numbers of elements, the alignment of elements’ sides with the direction

of the convection is better than in Example 1. The values of parameter b were (2.5±
0.1). So we have h2.5 convergence rate for the SUPG method for Example 2 on our

structured grid.

But how behaves the solutions of our adaptive method? The Figure 5 suggests

a higher rate of convergence than the SUPG method has for a special mesh (every

fourth point in the graph has apparently a different order of convergence). After all,

for the 4k mesh defined earlier the fitted function is f (h) = (7.0± 0.3) · h(3.5±0.1).

This means that the convergence rate is h3.5. The gain in convergence rate in this

setting is 1 in comparison with SUPG method. It is a substantial improvement in

this setup and shows us the potential of our adaptive techniques.

7 Conclusions

From the numerical tests we have done so far it comes out that using higher order

finite elements or higher order discontinuous finite element spaces for the parame-

ter τh has almost no positive effect on the resulting discrete solution of our adaptive

technique. By a higher order finite element is meant an element with the polyno-

mial degree higher than 3. This holds also for other indicators we have tested in our

adaptive framework.

Much more useful seems to be to use the adaptive method together with a care-

fully chosen mesh. In such a setup the adaptive method can give us satisfactory

results since the rate of convergence of the SUPG method can be improved by the

order of 1.

Although the nodally exact solution of the initial equation is piecewise flat and

the interior layer follows a smooth curve, the oscillations in the SUPG solution still

appear along the sharp layers of the solution of (1). The optimization method then

chooses the parameter τh so that it minimizes the error indicator. It is natural that

the parameter itself is not smooth anymore as it can change even inside one element

quite rapidly. To get an insight into this behaviour is not easy as the value of the

parameter τh is a product of the process of a nonlinear optimization. On the other

hand we see in Figures 2 and 3 that higher values of optimized parameter τh appear

where necessary which means in the vicinity of spurious oscillations of the solution

of SUPG method.

Our future interest is to implement and test other error indicators which could be

more suitable to our adaptive method. We will also apply our adaptive method to

other stabilized methods with free parameters.
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