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Abstract We consider the augmented mixed finite element method proposed in [3]
for Darcy flow. We develop the a priori and a posteriori error analyses taking into
account the approximation of the Neumann boundary condition. We derive an a
posteriori error indicator that consists of two residual terms on interior elements
and an additional term that accounts for the error in the boundary condition on
boundary elements. We prove that the error indicator is reliable and locally efficient
on interior elements. Numerical experiments illustrate the good performance of the
adaptive algorithm.

1 Introduction

The problem of Darcy flow is used to describe the flow of a fluid through a porous
medium. It arises in many applications in science and engineering. The natural un-
knowns (the fluid pressure and the fluid velocity) can be approximated simultane-
ously with the mixed formulation, which is the most popular approach in applica-
tions. The Galerkin scheme associated to this formulation is not always well-posed
and stability is ensured only for certain combinations of finite element subspaces. In
this framework, several stabilization methods have been proposed in the literature
(see, for instance, [2, 5, 10, 3] and the references therein).
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In this paper, we consider the augmented variational formulation proposed in [3]
for heterogeneous, possibly anisotropic, porous media flow, which is a slight gener-
alization of a method introduced in [10]. The augmented variational formulation is
obtained by adding to the classical dual-mixed variational formulation two weighted
residual type terms, that are related with Darcy’s law and the mass conservation
equation. We provided sufficient conditions on the stabilization parameters that en-
sure that the augmented variational formulation is well-posed. Under these same
hypotheses, we also proved that the corresponding Galerkin scheme is well-posed
and a Céa-type estimate holds whatever finite-dimensional subspaces are used. In
particular, we provided a priori error bounds when the fluid velocity is approxi-
mated by Raviart-Thomas or Brezzi-Douglas-Marini elements, and the pressure is
approximated using continuous piecewise polynomials. We remark that in this case
local mass conservation is not guaranteed. A special feature of this formulation is
that the stabilization parameters can be chosen independently of the mesh size and
the type of elements employed to solve the discrete problem. Further, we propose
in [3] a two-term a posteriori error estimator for the total error. The two residual
terms account for the error in Darcy’s law and in the mass conservation equation.
This a posteriori error estimator is jump-free and can be used with any conforming
approximation in Rd , for d = 2,3. Moreover, we proved that it is reliable and lo-
cally efficient. However, the numerical analysis presented in [3] is done under the
assumption that the Neumann boundary condition is satisfied exactly.

Our aim now is to develop an a priori and a posteriori numerical analysis of the
Galerkin scheme (11), that assumes the approximation of the Neumann boundary
condition by an L2-projection of the Neumann datum on an appropriate discrete
space. We develop a residual-based a posteriori error analysis of the augmented dis-
crete scheme (11) and derive a simple a posteriori error indicator that coincides with
the a posteriori error estimator proposed in [3] on interior elements. On each bound-
ary element, the new a posteriori error indicator consists of an additional term that
accounts for the error in the Neumann boundary condition. We prove that the new
error indicator is reliable and locally efficient on interior elements. We remark that
this a posteriori error indicator does not involve the computation of any jump across
the elements of the mesh. Numerical experiments illustrate the good performance
of the adaptive algorithm based on the new a posteriori error indicator. Indeed, ef-
ficiency indices are close to one and the adaptive algorithm is able to localize the
singularities and high-variation regions of the exact solution.

The paper is organized as follows. In Section 2 we describe the problem of
Darcy’s flow and recall the augmented variational formulation analyzed in [3]. In
Section 3 we propose an augmented discrete scheme in which the Neumann bound-
ary condition is approximated using an L2-projection on an appropriate piecewise
polynomial space. We analyze the stability and convergence properties of this dis-
crete scheme, and provide the corresponding rate of convergence when the velocity
is approximated by Raviart-Thomas or Brezzi-Douglas-Marini elements, and the
pressure is approximated by Lagrangian finite elements. The new a posteriori error
indicator is derived in Section 4, where we also prove that it is reliable and locally
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efficient on interior elements. Finally, some numerical experiments are reported in
Section 5.

Throughout this paper we will use the standard notations for Sobolev spaces
and norms (see, for instance, [1]). In particular, for a given bounded open domain
Ω ⊂ Rd (d = 2,3) with a Lipschitz-continuous boundary Γ , we denote L2

0(Ω) :=
{q ∈ L2(Ω) :

∫
Ω

q = 0}; H−1/2(Γ ) is the dual space of the trace space H1/2(Γ ),
and 〈·, ·〉Γ denotes the duality pairing between H−1/2(Γ ) and H1/2(Γ ) with respect
to the L2(Γ )-inner product. Finally, given ζ ∈H−1/2(Γ ), we denote by Hζ := {w ∈
H(div,Ω) : w ·n = ζ on Γ } (see [8]). We use C, with or without subscripts, to
denote generic constants, independent of the discretization parameter, that may take
different values at different occurrences.

2 The augmented variational formulation

We assume that the porous medium Ω is a bounded connected open domain of Rd

(d = 2,3) with a Lipschitz-continuous boundary Γ , and denote by n the unit outward
normal vector to Γ . Let K ∈ [L∞(Ω)]d×d be the hydraulic conductivity tensor. We
assume that K is symmetric and uniformly positive definite, that is,(

K (x)y
)
·y≥ α ||y||2 , a.e. x ∈Ω , ∀y ∈ Rd , (1)

for some α > 0. We recall that in isotropic porous media, the hydraulic conductivity
tensor is a diagonal tensor of the form K = κ

µ
I, where κ > 0 is the permeability

of the porous media, µ > 0 is the viscosity of the fluid and I ∈ Rd×d is the identity
matrix.

Let ρ > 0 be the fluid density, g be the gravity acceleration vector, gc be a con-
version constant, ϕ be the volumetric flow rate source or sink and ψ be the normal
component of the velocity field on the boundary. Then, the Darcy problem reads:
find the fluid velocity v : Ω → Rd and the fluid pressure p : Ω → R such thatK −1v + ∇p = f in Ω ,

div(v) = ϕ in Ω ,
v ·n = ψ on Γ ,

(2)

where f := − ρ

gc
g. In what follows, we assume that f ∈ [L2(Ω)]d , ϕ ∈ L2(Ω) and

ψ ∈ H−1/2(Γ ). We also assume that ϕ and ψ satisfy the compatibility condition∫
Ω

ϕ = 〈ψ,1〉Γ . Under these assumptions, problem (2) has a unique solution (v, p)
in Hψ ×M, with M := H1(Ω)∩L2

0(Ω).
Let H := H(div,Ω)×M and let ‖·‖H be the product norm of H. We consider the

following variational formulation of problem (2), that was proposed and analyzed
in [3]: find (v, p) ∈ Hψ ×M such that

As((v, p),(w,q)) = Fs(w,q) , ∀(w,q) ∈ H0×M, (3)
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where the bilinear form As : H×H→ R and the linear functional Fs : H→ R are
defined by

As((v, p),(w,q)) :=
∫

Ω

K −1v ·w −
∫

Ω

pdiv(w) +
∫

Ω

qdiv(v)

+κ1

∫
Ω

(∇p+K −1v) · (∇q−K −1w) + κ2

∫
Ω

div(v)div(w) ,
(4)

and

Fs(w,q) :=
∫

Ω

f ·w +
∫

Ω

ϕ q + κ1

∫
Ω

f · (∇q−K −1w) + κ2

∫
Ω

ϕ div(w) , (5)

for all (v, p),(w,q) ∈H.
We remark that the variational formulation (3) is obtained by adding to the usual

dual-mixed variational formulation of problem (2) two weighted residuals related
with Darcy’s law and the mass conservation equation. In what follows, we assume
that the stabilization parameters κ1 and κ2 are such that

κ1 ∈
(
0,

α

‖K ‖2
∞,Ω‖K −1‖2

∞,Ω

)
and κ2 > 0 (6)

where ‖ · ‖∞,Ω denotes the usual norm in [L∞(Ω)]d×d . Under these conditions, the
bilinear form As(·, ·) is elliptic in H, with ellipticity constant Cell, and problem (3)
has a unique solution (cf. Lemma 1 and Theorem 1 in [3]).

3 The stabilized mixed finite element method

From now on, we assume that Ω is a polygonal or polyhedral domain. We also
assume that ψ ∈ L2(Γ ). Let {Th}h>0 be a family of shape-regular meshes of Ω̄

made up of triangles if d = 2 or tetrahedra if d = 3. We denote by hT the diameter
of an element T ∈ Th and define h := maxT∈Th hT . Hereafter, given T ∈ Th and an
integer l ≥ 0, we denote by Pl(T ) the space of polynomials of total degree at most
l on T . Now, let Hh ⊂H(div;Ω) be either the Raviart-Thomas space of order r≥ 0,
RT r(Th) (cf. [11]), i.e.,

Hh :=
{

wh ∈ H(div;Ω) : wh|T ∈
(
[Pr(T )]d +x Pr(T )

)
, ∀T ∈Th

}
, (7)

where x∈Rd is a generic vector, or the Brezzi-Douglas-Marini space of order r+1,
BDM r+1(Th), r ≥ 0 (cf. [4]), i.e.,

Hh :=
{

wh ∈ H(div;Ω) : wh|T ∈ [Pr+1(T )]d , ∀T ∈Th

}
. (8)

We also consider the standard Lagrange space of order m≥ 1:
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Mh := Lm(Th) =
{

qh ∈ C (Ω̄)∩L2
0(Ω) : qh

∣∣
T ∈Pm(T ), ∀T ∈Th

}
. (9)

Let Fh := {e1, . . . ,en} be the partition of Γ inherited from Th. Given an integer
l ≥ 0, we denote Pl(Fh) := {p ∈ L2(Γ ) : p|ei ∈Pl(ei) , ∀i = 1, . . . ,n}, where
Pl(ei) denotes the space of polynomials of total degree at most l on ei. We consider
the L2-projection operator πl : L2(Γ )→Pl(Fh), defined by∫

Γ

ζ q =
∫

Γ

πl(ζ )q , ∀q ∈Pl(Fh) . (10)

Then, for any ζ ∈ L2(Γ ), we denote Hζ ,h := Hπl(ζ )
∩Hh, with l = r if Hh =

RT r(Th) and l = r+1 if Hh = BDM r+1(Th). We remark that H0,h = H0∩Hh ⊂
H0. However, Hψ,h is not contained in Hψ in general.

We consider the following Galerkin scheme associated to problem (3): find
(vh, ph) ∈ Hψ,h×Mh such that

As((vh, ph),(wh,qh)) = Fs(wh,qh) , ∀(wh,qh) ∈ H0,h×Mh . (11)

Since the bilinear form As(·, ·) is elliptic in H, it follows that problem (11) has
a unique solution (vh, ph) ∈ Hψ,h×Mh. Moreover, there exists a constant C > 0,
independent of h, such that

||(v−vh, p− ph)||H ≤ C inf
(wh,qh)∈Hψ,h×Mh

||(v−wh, p−qh)||H . (12)

The corresponding a priori error bound is given in the next theorem.

Theorem 1. Assume that the stabilization parameters κ1 and κ2 satisfy (6). Then, if
v ∈ [Ht(Ω)]d , div(v) ∈Ht(Ω) and p ∈Ht+1(Ω), there exists C > 0, independent of
h, such that

||(v−vh, p− ph)||H ≤ C hβ

(
||v||[Ht (Ω)]d + ||div(v)||Ht (Ω)+ ||p||Ht+1(Ω)

)
. (13)

with β := min{t,m,r+1}.
Proof. It follows straightforwardly from the Céa estimate (12) and the approxima-
tion properties of the corresponding finite element subspaces (cf. [4]).

4 A posteriori error analysis

In this section, we develop a residual-based a posteriori error analysis of the aug-
mented discrete scheme (11). As compared to the analysis presented in [3], here we
take into account the error in the approximation of the Neumann boundary condi-
tion. We derive a simple a posteriori error indicator that requires the computation of
two residuals per interior element and three residuals on each boundary element. We
show that this error indicator is reliable and locally efficient on interior elements.
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Let Hh×Mh be one of the finite element subspaces of H(div,Ω)×M considered
in the previous section. We assume that the stabilization parameters κ1 and κ2 satisfy
(6), and we let (v, p) ∈Hψ ×M and (vh, ph) ∈Hψ,h×Mh be the unique solutions to
problems (3) and (11), respectively.

Now, let (v̄, p̄) be the solution of a Darcy problem with boundary data πlψ , that
is, K −1v̄ + ∇p̄ = f in Ω ,

div(v̄) = ϕ in Ω ,
v̄ ·n = πlψ on Γ .

(14)

Then, by the triangle inequality,

‖(v−vh, p− ph)‖H ≤ ‖(v− v̄, p− p̄)‖H +‖(v̄−vh, p̄− ph)‖H . (15)

Let ηh be the a posteriori error estimator proposed in [3]:

η
2
h := ∑

T∈Th

ηh(T )2 , (16)

with
ηh(T )2 := ‖f−∇ph−K −1vh‖2

[L2(T )]d + ‖ϕ−div(vh)‖2
L2(T ) . (17)

Then, from the analysis in [3], we have that

‖(v̄−vh, p̄− ph)‖H ≤ Crel ηh, (18)

with Crel :=
√

2C−1
ell max(1+κ1(1+‖K −1‖∞,Ω ),1+κ2).

On the other hand, the pair (v− v̄, p− p̄) satisfiesK −1(v− v̄) + ∇(p− p̄) = 0 in Ω ,
div(v− v̄) = 0 in Ω ,
(v− v̄) ·n = ψ−πlψ on Γ .

(19)

Therefore, using the continuity of the solution with respect to the data, we have that

‖(v− v̄, p− p̄)‖H ≤C‖ψ−πlψ‖H−1/2(Γ ) . (20)

The H−1/2(Γ )-norm in (20) can be estimated using a duality argument. Indeed,
since ψ−πlψ is orthogonal to P0(Fh),

‖ψ−πlψ‖H−1/2(Γ ) = sup
φ∈H1/2(Γ )

φ 6=0

∫
Γ

(ψ−πlψ)(φ −π0φ)

‖φ‖H1/2(Γ )

= sup
φ∈H1/2(Γ )

φ 6=0

∑
e∈Fh

∫
e
(ψ−πlψ)(φ −π0φ)

‖φ‖H1/2(Γ )

,

(21)
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where π0 : L2(Γ ) → P0(Fh) denotes the L2-projection operator onto P0(Fh).
Then, applying the Cauchy-Schwarz inequality and using that (cf. equation (20)
in [7])

‖φ −π0φ‖L2(e) ≤Ch1/2
e ‖φ‖H1/2(e) , (22)

where he is the measure of the boundary element e ∈Fh, we have

‖ψ−πlψ‖H−1/2(Γ ) ≤C sup
φ∈H1/2(Γ )

φ 6=0

∑
e∈Fh

h1/2
e ‖ψ−πlψ‖L2(e) ‖φ‖H1/2(e)

‖φ‖H1/2(Γ )

. (23)

Then, using the Cauchy-Schwarz inequality, taking into account that (see [7])

sup
φ∈H1/2(Γ )

φ 6=0

(
∑

e∈Fh

‖φ‖2
H1/2(e)

)1/2

‖φ‖H1/2(Γ )

≤C , (24)

where C can be bounded independently of h, and that vh ·n = πlψ on Γ , we deduce
that

‖ψ−πlψ‖H−1/2(Γ ) ≤ C

(
∑

e∈Fh

he ‖ψ−vh ·n‖2
L2(e)

)1/2

. (25)

Motivated by the previous analysis, we define the error indicator ζh by

ζ
2
h := ∑

T∈Th

ζh(T )2 , (26)

where
ζh(T )2 := ηh(T )2 + osch(T )2 , (27)

with
osch(T )2 := ∑

e∈E(T )∩Fh

he ‖ψ−vh ·n‖2
L2(e) , (28)

where E(T ) denotes the set of edges (d = 2) or faces (d = 3) of an element T ∈Th.
We remark that when T is an interior element, the local error indicator ζh(T )

consists of two residual terms, namely, the local residual in Darcy’s law and the
local residual in the mass conservation equation. In case T is a boundary element,
then ζh(T ) contains an additional term that accounts for the error in the Neumann
boundary condition. We also notice that the global a posteriori error indicator ζh
does not involve the computation of any jump across the elements of the mesh. This
fact, besides the properties of the estimator stated in the next theorem, makes ζh
well-suited for numerical computations.

Theorem 2. There exists a positive constant Cr, independent of h, such that
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‖(v−vh, p− ph)‖H ≤ Cr ζh . (29)

Moreover, if T ∈ Th is an interior element of Th, there exists a positive constant
Ceff, independent of h and T , such that

Ceff ζh(T ) ≤ ‖(v−vh, p− ph)‖H(div,T )×H1(T ) , ∀T ∈Th . (30)

In fact, C−1
eff := max(1,

√
2‖K −1‖∞,Ω ).

Proof. Inequality (29) follows from inequalities (15), (18), (20), (25) and the defi-
nition of ζh. On the other hand, let T be an interior element of Th. Then, ζh(T ) =
ηh(T ) and inequality (30) follows using that (v, p) satisfies the two first equations
in (2) and applying the triangle inequality. ut

5 Numerical results

In this section we present some numerical experiments that illustrate the reliability
and efficiency of the a posteriori error estimator ζh. The experiments have been
performed with the finite element toolbox ALBERTA (cf. [12]) using refinement
by recursive bisection [9]. The solutions of the corresponding linear systems have
been computed using the SuperLU library [6]. We use the standard adaptive finite
element method (AFEM) based on the loop:

SOLVE→ ESTIMATE→MARK→ REFINE.

Hereafter, we replace the subscript h by k, where k is the counter of the adaptive
loop. Then, given a mesh Tk, the procedure SOLVE is an efficient direct solver for
computing the discrete solution (vk, pk), ESTIMATE calculates the error indicators
ζk(T ), for all T ∈Tk, using the computed solution and the data. Based on the values
of {ζk(T )}T∈Tk , the procedure MARK generates a set of marked elements subject
to refinement. For the elements selection, we rely on the maximum strategy with a
threshold σ = 0.6. Finally, the procedure REFINE creates a conforming refinement
Tk+1 of Tk, bisecting d times all marked elements (where d = 2,3 is the space
dimension).

The robustness of the augmented scheme (11) with respect to the stabilization
parameters and the sensitivity of the stabilized formulation to the ratio of the per-
meability to the viscosity were tested in [3] for the finite element pair (RT 0,L1).
Here we compare the performance of a finite element method based on uniform re-
finement (in each step, all elements of the actual mesh are bisected twice), with the
adaptive algorithm described above.

Let Ω = (0,1)2 be the unit square and let K = ε I, with ε > 0. We take the data
f, ϕ and ψ so that the exact solution of problem (2) is given by the pair (v, p), with

p(x,y) = xy
(
1− e

x−1
ε

)(
1− e

y−1
ε

)
, (x,y) ∈Ω , (31)
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and v =−K ∇p. We remark that the solution has a boundary layer around the point
(1,1).

We solve the problem using the finite element pair (RT 0,L1) with uniform
refinement (FEM algorithm) and the adaptive refinement algorithm (AFEM) de-
scribed above. We choose κ1 =

ε

2 and κ2 = 1.0. We remark that these values of the
stabilization parameters are consistent with the theory and ensure that the bilinear
form As(·, ·) is elliptic in the whole space. For implementation purposes, instead of
imposing the null media condition required to the elements of Mh, we fix to zero
the value of the pressure in a corner of the domain. Finally, the non-homogeneous
Neumann boundary condition is imposed by interpolation.

In Figure 1 we show the decay of the total error and the a posteriori error indi-
cator ζh versus the degrees of freedom (DOFs) for the uniform (FEM) and adaptive
(AFEM) refinements for ε = 10−2 (left) and ε = 10−3 (right). We observe that for
ε = 10−2, the uniform FEM algorithm attains the theoretical convergence rates pre-
dicted by the theory. However, the AFEM algorithm converges faster. For ε = 10−3,
the uniform refinement procedure does not attain the optimal convergence rate,
whereas the AFEM algorithm is able to attain linear convergence, revealing itself
as a competitive algorithm.
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Fig. 1 Decays of total error and estimator vs. DOFs for ε = 10−2 (left) and ε = 10−3 (right).

Efficiency indices (which are defined as the ratio of the estimated error to the
total error) are reported in Figure 2. We observe there that the efficiency indices are
bounded from above and below by positive constants, independently of the mesh
size, which confirms that error and estimator are equivalent. In fact, the efficiency
indices for the AFEM tend to stabilize around 1.
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