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Abstract It is demonstrated that the application of an algebraic flux correction

(AFC) scheme to a singularly perturbed steady convection–diffusion equation with

a non-vanishing right-hand side does not lead to satisfactory results in the bound-

ary layer region. It is proved that it is not possible to construct an AFC scheme of

the type considered for which the solution is accurate in the whole computational

domain for any convection–diffusion problem with non-vanishing right-hand side.

1 Introduction

It is well known that Galerkin finite element discretizations of convection-dominated

problems are not appropriate since the approximate solutions are usually polluted

by spurious oscillations. A common remedy is to modify the variational formu-

lation of the Galerkin FEM. An alternative approach modifies the algebraic form

of the Galerkin FEM with the aim to satisfy the discrete maximum principle. In

the present paper we consider an approach of this type, called algebraic flux cor-

rection (AFC). AFC schemes have been constructed, e.g., in [8, 6, 7] and recently

analyzed in [2, 1]. The aim of this paper is to demonstrate that for problems with

non-vanishing right-hand side the quality of AFC solutions may be not satisfactory

along boundary layers and to investigate this phenomenon theoretically.

The plan of the paper is as follows. In Section 2, we introduce a general AFC

scheme. Then, in Section 3, we present a particular example of limiters used in the

AFC scheme. For this choice, numerical results of the AFC scheme applied to a

convection–diffusion problem are presented in Section 4. Finally, in Section 5, the

accuracy of a general AFC scheme is investigated theoretically.
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2 An algebraic flux correction scheme

Consider a linear boundary value problem for which the maximum principle holds.

Let us discretize this problem by the finite element method. Then, the discrete solu-

tion can be represented by a vector U ∈R
N of its coefficients with respect to a basis

of the respective finite element space. Let us assume that the last N−M components

of U (0< M < N) correspond to nodes where Dirichlet boundary conditions are pre-

scribed whereas the first M components of U are computed using the finite element

discretization of the underlying partial differential equation. Then U ≡ (u1, . . . ,uN)
satisfies a system of linear equations of the form

N

∑
j=1

ai j u j = gi , i = 1, . . . ,M , (1)

ui = ub
i , i = M+1, . . . ,N . (2)

The starting point of the AFC algorithm is the finite element matrix A= (ai j)
N
i, j=1

corresponding to the above-mentioned finite element discretization in the case

where homogeneous natural boundary conditions are used instead of the Dirichlet

ones. We introduce a symmetric artificial diffusion matrix D= (di j)
N
i, j=1 possessing

the entries

di j = d ji =−max{ai j,0,a ji} ∀ i 6= j , dii =−∑
j 6=i

di j . (3)

Then the algebraic flux correction scheme is the following system of nonlinear equa-

tions:

N

∑
j=1

ai j u j +
N

∑
j=1

(1−αi j)di j (u j −ui) = gi , i = 1, . . . ,M , (4)

ui = ub
i , i = M+1, . . . ,N , (5)

where the limiters αi j = αi j(u1, . . . ,uN) ∈ [0,1] satisfy

αi j = α ji , i, j = 1, . . . ,N . (6)

We refer to [1] for a derivation of the equation (4).

The nonlinear problem (4), (5) is solvable under a continuity assumption on αi j:

Theorem 1. Let the matrix (ai j)
M
i, j=1 be positive definite. For any i, j ∈ {1, . . . ,N},

let αi j : RN → [0,1] be such that αi j(u1, . . . ,uN)(u j − ui) is a continuous function

of u1, . . . ,uN . Finally, let the functions αi j satisfy (6). Then there exists a solution of

the nonlinear problem (4), (5).

Proof. See [1], Theorem 3.3.
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3 An example of the choice of αi j

In this section we present a concrete choice of the limiters αi j proposed in [6]. This

choice is often used in computations and it was shown in [1] that it satisfies the

assumptions of Theorem 1 and hence leads to a solvable nonlinear problem (4), (5).

The definition of the coefficients αi j considered in this section relies on the values

P+
i =

N

∑
j = 1

a ji ≤ ai j

f+i j , P−
i =

N

∑
j = 1

a ji ≤ ai j

f−i j , Q+
i =−

N

∑
j=1

f−i j , Q−
i =−

N

∑
j=1

f+i j

computed for i = 1, . . . ,N. Here fi j = di j (u j − ui) and we use the notation f+i j =

max{0, fi j} and f−i j = min{0, fi j}. Using these quantities, one defines

R+
i := min

{

1,
Q+

i

P+
i

}

, R−
i := min

{

1,
Q−

i

P−
i

}

, i = 1, . . . ,N .

If P+
i or P−

i vanishes, we set R+
i := 1 or R−

i := 1, respectively. Finally, for any

i, j ∈ {1, . . . ,N} such that a ji ≤ ai j, one sets

αi j :=







R+
i if fi j > 0 ,
1 if fi j = 0 ,

R−
i if fi j < 0 ,

α ji := αi j .

4 Application to a convection–diffusion equation

Let us apply the algebraic flux correction scheme (4), (5) to the numerical solution

of the steady-state convection–diffusion equation

−ε ∆u+b ·∇u = g in Ω , u = ub on ∂Ω , (7)

where Ω ⊂ R
2 is a bounded domain with a polygonal boundary ∂Ω , ε > 0 is a

constant, and b ∈W 1,∞(Ω)d with ∇ ·b = 0, g ∈ L2(Ω), and ub ∈ H
1
2 (∂Ω)∩C(∂Ω)

are given functions. It is well known that the problem (7) has a unique weak solution

that satisfies the maximum principle.

Let Th be a triangulation of Ω consisting of triangles possessing the usual com-

patibility properties. First, we introduce the standard Galerkin finite element dis-

cretization of (7) based on a conforming piecewise linear finite element space. This

discretization can be written in the form of the linear system (1), (2) and it is known

to be inappropriate for solving (7) in the convection-dominated regime. The corre-

sponding algebraic flux correction scheme is obtained as described in Section 2 and

we use the limiters αi j defined in Section 3. Then the discrete maximum principle
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Fig. 1 Type of the triangula-

tion used for computations

is satisfied provided that Th is a Delaunay triangulation (i.e., the sum of any pair of

angles opposite a common edge is smaller than, or equal to, π), see [1].

In [1], numerical studies are presented for the algebraic flux correction scheme

applied to a convection–diffusion–reaction equation. They show the dependence of

the errors of the discrete solutions measured in various norms on the discretiza-

tion parameter and the type of the triangulation. Here we qualitatively compare the

approximate solution obtained using the AFC scheme with the exact solution and

approximate solutions obtained by two different discretization techniques. We con-

sider the following example.

Example 1. Problem (7) is considered with Ω = (0,1)2, ε = 10−8, and b = (2,3)T .

The right-hand side g and the boundary condition ub are chosen in such a way that

u(x,y) = xy2 − y2 exp

(

2(x−1)

ε

)

− x exp

(

3(y−1)

ε

)

+ exp

(

2(x−1)+3(y−1)

ε

)

is the solution of (7).

The triangulation Th of the above domain Ω used in all computations was of

the type shown in Fig. 1 and consisted of 800 triangles. The solution u is depicted

in Fig. 2 (top left). In the first row of Fig. 2, one can also see the solution of the

streamline upwind/ Petrov–Galerkin (SUPG) method [3], which is one of the most

efficient procedures for solving convection-dominated problems. It provides accu-

rate solutions away from layers but does not not preclude small nonphysical oscil-

lations localized in layer regions. This clearly shows that the SUPG method does

not satisfy the discrete maximum principle. In the left of the second row of Fig. 2,

one can see the solution of the AFC scheme with the limiters αi j from Section 3.

Again, the solution is accurate away from layers but it is not correct in layer re-

gions. Nevertheless, the solution does not contain any spurious oscillations since

the method satisfies the discrete maximum principle, as we mentioned above. Fi-

nally, Fig. 2 also shows the solution of the Mizukami–Hughes method [9, 5]. Like

the AFC scheme, the Mizukami–Hughes method is a nonlinear method satisfying

the discrete maximum principle. We observe that the Mizukami–Hughes solution is
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Fig. 2 Example 1: exact solution (top left), SUPG method (top right), algebraic flux correction

scheme (bottom left), Mizukami–Hughes method (bottom right)

qualitatively correct and a detailed comparison with the exact solution reveals that

it is accurate in the whole computational domain.

Many other nonlinear stabilized methods are based on adding additional terms to

the SUPG discretization, aimed to suppress spurious oscillations without smearing

the layers, see [4]. By adjusting parameters of the methods, it is sometimes possi-

ble to obtain approximate solutions comparable to the solution of the Mizukami–

Hughes method. Now a natural question is whether the algebraic flux correction

scheme can also provide solutions of such a high quality if the limiters αi j are cho-

sen in an appropriate way. We shall show in the next section that it is not possible.

5 Accuracy of general algebraic flux correction schemes

The aim of this section is to investigate whether algebraic flux correction schemes

applied to convection–diffusion problems in two dimensions can provide accurate

approximate solutions in the whole computational domain like, e.g., the Mizukami–

Hughes method or some other nonlinear methods mentioned at the end of the pre-

ceding section. Solutions of many further stabilized methods still possess spurious

oscillations in layer regions but are very accurate away from layers. If an algebraic
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flux correction scheme should be competitive at least with these methods, it should

have this property. Therefore, in what follows, we consider only algebraic flux cor-

rection schemes whose solutions are accurate away from layers.

We shall investigate a general algebraic flux correction scheme that, apart from

the above accuracy assumption, satisfies only the assumptions made in Section 2.

Thus, we do not assume any particular definition of the limiters αi j. We can even

relax the definition of the artificial diffusion matrix D and instead of (3) assume

di j = d ji ≤−max{ai j,0,a ji} , i, j = 1, . . . ,M , i 6= j ,

di j = d ji ≤−max{ai j,0} , i = 1, . . . ,M, j = M+1, . . . ,N .

Let us consider the following boundary value problem in Ω = (0,1)2:

−ε ∆u+b ·∇u = g in Ω , (8)

u(0,y) = u(1,y) = 0 for y ∈ (0,1) , (9)

u(x,0) = u(x,1) , uy(x,0) = uy(x,1) for x ∈ (0,1) , (10)

where ε > 0, b = (b1,b2) with b1 > 0, and g > 0 are constants. In principle, this is

a one-dimensional problem, since u(x,y) = ū(x) for any x,y ∈ Ω , where ū(x) solves

the problem

−ε ū′′+b1 ū′ = g in (0,1) , ū(0) = ū(1) = 0 .

Note that

ū(x) = ω x−ω
e−δ (1−x)− e−δ

1− e−δ
, x ∈ [0,1] , (11)

where ω = g/b1 and δ = b1/ε . Thus, if ε ≪ b1, one sees that u(x,y)≈ ω x on most

of Ω and a boundary layer occurs along the line x = 1.

Let Th be again a triangulation of Ω of the type shown in Fig. 1 and let the

number of vertices in each direction be N +1. Then Th contains 2N2 triangles and

its vertices have the coordinates (xi,y j) with xi = ih, y j = j h, and h = 1/N, where

i, j = 0, . . . ,N. We denote

P = {(xi,y j) ; i = 0, . . . ,N, j = 1, . . . ,N} , P
D = {(x,y) ∈ P ; x ∈ {0,1}} .

For any P ∈ P , let ϕP be the standard basis function of the piecewise linear space

Wh = {v ∈C(Ω) ; v|T ∈ P1(T ) ∀T ∈ Th, v(x,0) = v(x,1) ∀x ∈ (0,1)}

assigned to the vertex P, i.e., ϕP(P) = 1 and ϕP(Q) = 0 for all Q ∈ P \{P}. Then

the algebraic flux correction scheme (4), (5) applied to (8)–(10) discretized using

the space Wh can be written in the form
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Fig. 3 Elements of Th sharing

an interior vertex A

E

G

B

D C

F

A

∑
Q∈P

aPQ uQ + ∑
Q∈P

(1−αPQ)dPQ (uQ −uP) = gP ∀ P ∈ P \P
D , (12)

uP = 0 ∀ P ∈ P
D , (13)

where, for any P,Q ∈ P ,

aPQ = ε (∇ϕQ,∇ϕP)+(b ·∇ϕQ,ϕP) , gP = (g,ϕP) , (14)

αPQ = αPQ({uR}R∈P) ∈ [0,1] , αPQ = αQP , (15)

dPQ = dQP ≤−max{aPQ,0,aQP} if P,Q ∈ P \P
D , P 6= Q , (16)

dPQ = dQP ≤−max{aPQ,0} if P ∈ P \P
D , Q ∈ P

D . (17)

The notation (·, ·) denotes the inner product in L2(Ω) or L2(Ω)d .

Let A be an interior vertex of the triangulation Th. Then the elements of Th con-

taining the vertex A are arranged as in Fig. 3. We denote by B, . . . ,G the remaining

vertices of these triangles, see again Fig. 3. Then

aAA = 4ε , gA = gh2 ,

aAB = aEA =−ε+
h

6
(2b1 −b2) , aAE = aBA =−ε+

h

6
(−2b1 +b2) ,

aAC = aFA =
h

6
(b1 +b2) , aAF = aCA =

h

6
(−b1 −b2) ,

aAD = aGA =−ε+
h

6
(−b1 +2b2) , aAG = aDA =−ε+

h

6
(b1 −2b2) .

Consequently,

max{aAB,aBA}= max{aAE ,aEA}=−ε+
h

6
|2b1 −b2| , (18)

max{aAC,aCA}= max{aAF ,aFA}=
h

6
|b1 +b2| , (19)

max{aAD,aDA}= max{aAG,aGA}=−ε+
h

6
|b1 −2b2| . (20)
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To simplify our considerations, let us assume that

hb1 ≥ 6ε and b2 ∈ [−b1,b1] .

Then the maxima in (18) are nonnegative. Since the diffusion matrix satisfies the

conditions for the discrete maximum principle, it is not necessary to define the ar-

tificial diffusion matrix D using the maxima (18)–(20), but one can define D using

the convection matrix only (i.e., (18)–(20) with ε = 0). Another possibility is to use

an intermediate variant based on the sum of the convection matrix and the diffusion

matrix with ε replaced by ε̄ ∈ (0,ε), see the discussion in [2] on the optimal choice

of the artificial diffusion in a related method of AFC type. In what follows, we shall

consider this more general choice of the matrix D. In particular, we have

dAB = dBA = dAE = dEA = ε̄ −
h

6
(2b1 −b2) , (21)

dAC = dCA = dAF = dFA =−
h

6
(b1 +b2) , (22)

dAD = dDA = dAG = dGA = min

{

0, ε̄ −
h

6
|b1 −2b2|

}

, (23)

where

ε̄ ∈ [0,ε ] .

Note that D then satisfies the assumptions (16), (17).

Remark 1. Since aAE ≤ 0, aAF ≤ 0, the assumption (17) enables to set dAE = dEA =
dAF = dFA = 0 if E,F ∈ PD. However, the values of these entries of D have no

influence on our further proceeding and hence we shall use the values from (21),

(22). If B,C ∈ PD, the assumption (17) does not enable to use other values of dAB,

dBA, dAC, dCA than the inequality in (16) since aBA ≤ 0, aCA ≤ 0.

It is reasonable to require that the solution of (12), (13) is constant in the y direc-

tion as it is for the exact solution and also for the Galerkin solution. Then uB = uC,

uA = uD = uG, and uE = uF , so that (12) with P = A reduces to

− ε (uE −2uA +uB)+
hb1

2
(uB −uE)

+ [(1−αAB)dAB +(1−αAC)dAC] (uB −uA)

+ [(1−αAE)dAE +(1−αAF)dAF ] (uE −uA) = gh2 . (24)

We set

γA = (1−αAB)dAB +(1−αAC)dAC

for any vertices A,B,C ∈ P arranged as in Fig. 3. Note that

ε̄ −
hb1

2
≤ γA ≤ 0 . (25)
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Obviously, dAF = dDE . Moreover, since the solution of (12), (13) does not depend

on the y coordinate, one has αAF =αDE . Then the symmetry of dPQ and αPQ implies

(1−αAE)dAE +(1−αAF)dAF = (1−αAE)dAE +(1−αDE)dDE

= (1−αEA)dEA +(1−αED)dED = γE .

Since the approximate solution does not depend on the y coordinate, one can

denote by ui the value of the approximate solution at any vertex A having the x

coordinate equal to xi, i ∈ {0, . . . ,N}. Similarly, one can denote γA by γi for any

such vertex A. Then (24) can be written in the form

− ε (ui−1 −2ui +ui+1)+
hb1

2
(ui+1 −ui−1)

+ γi (ui+1 −ui)− γi−1 (ui −ui−1) = gh2 , i = 1, . . . ,N −1 , (26)

with u0 = uN = 0. Summing up the equations (26) over i = l, . . . ,N − 1 with any

l ∈ {1, . . . ,N −2}, one obtains

ε (uN−1 +ul −ul−1)+
hb1

2
(uN−1 −ul −ul−1)

− γN−1 uN−1 − γl−1 (ul −ul−1) = (N − l)gh2 ,

which implies that

uN−1 =
(N − l)gh2 − ε (ul −ul−1)+

hb1
2

(ul +ul−1)+ γl−1 (ul −ul−1)

ε + hb1
2

− γN−1

. (27)

Assuming

0 < ε ≪ hb1 ,

the exact solution on (0,1−h)× (0,1) is indistinguishable from the linear function

ω x in a finite precision arithmetic, cf. (11). Since we assume that the solution of the

algebraic flux correction scheme is accurate away from layers, one has

ui ≈ ω hi , i = 0, . . . ,k , (28)

with some k < N. The philosophy of algebraic flux correction schemes implies that

the limiters αi j should equal 1 for a linear function, at least sufficiently far from the

boundary. Thus, for some l ≤ k, one has

γl−1 ≈ 0 . (29)

The relations (28) and (29) imply that

the numerator of (27) ≈ ω h

[

b1

(

1−
h

2

)

− ε

]

> 0 .
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Thus, it follows from (27) and (25) that

uN−1 ≥
(N − l)gh2 − ε (ul −ul−1)+

hb1
2

(ul +ul−1)+ γl−1 (ul −ul−1)

hb1 + ε

≈ ω h
b1

(

1− h
2

)

− ε

hb1 + ε
= ω xN−1

hb1

hb1 + ε
+

ω h

2

hb1 −2ε

hb1 + ε

≈ ū(xN−1)+
gh

2b1
.

This result shows that uN−1 is larger than the value of the exact solution at xN−1,

at least by gh/(2b1), which corresponds to the observation in the preceding section

and also in many other computations. Since we considered general limiters αi j, we

conclude that it is not possible to construct an algebraic flux correction scheme

of the type considered in this paper for which the approximate solution would be

accurate in the whole computational domain for any convection–diffusion problem

with non-vanishing right-hand side.
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In M. Papadrakakis, E. Oñate, and B. Schrefler, editors, Proceedings of the Int. Conf. on Com-

putational Methods for Coupled Problems in Science and Engineering, pages 1–5. CIMNE,

Barcelona, 2007.
7. Dmitri Kuzmin. Linearity-preserving flux correction and convergence acceleration for con-

strained Galerkin schemes. J. Comput. Appl. Math., 236:2317–2337, 2012.
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