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Abstract We present and analyze a Lagrange-Galerkin (LG) method combined

with a local projection stabilization (LPS) technique for convection dominated

convection-diffusion-reaction equations. This type of stabilization improves the ac-

curacy and performance of conventional LG methods when the diffusion coefficient

is very small. Numerical tests support the results of the numerical error analysis.

1 Introduction

LG methods discretize the total derivative (the convective part of the equations)

backward in time along the characteristic curves of the transport operator, this is a

natural way of introducing upwinding in the discretization of the equations, but such

an upwinding may not be strong enough to suppress the spurious oscillations that

may appear when the solution is not smooth and the mesh is not fine enough. Good

properties of LG methods are the following: (1) assuming that the integrals that

appear in the formulation of LG methods are calculated exactly, it is easy to show

that LG methods are unconditionally stable in the L2-norm, therefore, they allow the

use of a large time step without damaging the accuracy of the solution; (2) unlike

the pure Lagrangian methods, LG methods do not suffer from mesh deformation;

(3) they yield algebraic symmetric systems of equations; (4) the constant C in the
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error estimate is much smaller than the constant of the conventional Galerkin meth-

ods. However, an important drawback of LG methods is the calculation of some

integrals whose integrands are functions defined in different meshes, because, in

general, such integrals can not be calculated analytically, i.e., exactly, so one has

to use quadrature rules; this handicap is particularly serious when the diffusion co-

efficient is small, for in this case the calculation of such integrals has to be done

with quadrature rules of high order to keep the method stable, see [4] and [10], and,

therefore, it may become computationally expensive. We propose in this note a rem-

edy to correct this drawback and to partially suppress the spurious oscillations that

consists of combining LG methods with the LPS technique introduced and analyzed

in many papers, for instance, [1], [2], [9] and [6] just to cite a few. LPS technique is

a symmetric stabilizer that fits very well in LG methods because the combination of

both yields algebraic symmetric systems of equations.

2 The formulation of the local projection stabilized

Lagrange-Galerkin method

Let X := H1
0 (D), where D ⊂ Rd is a bounded domain with Lipschitz boundary ∂D,

and (d = 1, 2, or 3). We consider the problem: find a function c : [0,T ]→ X , c(0) =
u ∈ X , such that for all v ∈ X

(

Dc

Dt
,v

)

+ ε(∇c,∇v)+(αc,v) = ( f ,v), (1)

where Dc
Dt

:= ∂c
∂ t

+b ·∇c, b ∈ L∞(0,T ;W 1,∞(D)d), f ∈ L2(0,T ;L2(D)),

α ∈ C([0,T ];C(D)), and 0 < ε ≪ ‖b‖L∞(D×(0,T ))d . To guarantee the existence and

uniqueness of (1) we also assume that there is a real number β ≥ 0 such that

α − 1

2
div b ≥ β a.e. in D× (0,T ). (2)

Next, we consider a regular quasi-uniform partition Dh of D formed by simplices K,

and the finite element space Xh associated with Dh. The space Xh has the following

approximation property.

For v ∈ Hr+1(D)∩H1
0 (D), 1 ≤ r ≤ m,

inf
vh∈Xh

(

‖v− vh‖L2(D)+h‖∇(v− vh)‖L2(D)

)

≤Chr+1 ‖v‖Hr+1(D) , (3)

where m denotes the degree of the polynomials of Xh and h = maxK (hK), hK be-

ing the diameter of the element K. To apply the stabilization technique we also

consider the discontinuous finite element space Gh defined on Dh such that we

set Gh(K) := {qh |K : qh ∈ Gh}. Then for each K we use the local L2-projector

πK : L2(K) → Gh(K) to define the fluctuation operator κK := id − πK , where
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id := L2(K)→ L2(K) is the identity operator. We shall make the following assump-

tions.

Assumption A1. Let s ∈ (0, . . . ,m) be the degree of the polynomials of the space

Gh, the fluctuation operator κK satisfies the approximation property

‖κKw‖L2(K) ≤Chl ‖w‖H l(K) , ∀w ∈ H l(K), 0 ≤ l ≤ s+1. (4)

A sufficient condition for assumption A1 is Ps(K) ⊂ Gh(K), Ps(K) being the set of

polynomials of degree at most s defined in K

Assumption A2. There is an interpolation operator jh : H2 ∩Xh(D)→ Xh such

that for all w ∈ H1(D), and for all K ∈ Dh

‖w− jhw‖L2(K)+hK ‖∇(w− jhw)‖L2(K) ≤Chl
K ‖w‖H l(K) (1 ≤ l ≤ m+1). (5)

We define in [0,T ] a uniform partition P∆ t := 0 = t0 < t1 < .. . < tN = T of

uniform step ∆ t such that the numerical solution to problem (1) is a mapping, ch :

P∆ t → Xh, satisfying for all n, 0 ≤ n ≤ N −1, the equations















(cn+1
h − cn

h ◦Xn,n+1,vh)

∆ t
+ ε(∇cn+1

h ,∇vh)+(αn+1cn+1
h ,vh)

+Sh(c
n+1
h ,vh) = ( f n+1,vh) ∀vh ∈ Xh,

(6)

where Sh(c
n+1
h ,vh) is the stabilization term given by

Sh(c
n+1
h ,vh) = ∑

K

τK(κK∇cn+1
h ,κK∇vh)K , (7)

τK being element-wise constant coefficients that depend on the mesh size, their op-

timal values are determined by the error analysis. In (6), f n+1 denotes the function

f (·, tn+1) and Xn,n+1, which is a shorthand notation for X(x, tn+1; tn) unless other-

wise stated, denotes the position at time tn of a particle that at time tn+1 will reach

the point x; specifically, for s, t ∈ [tn, tn+1) the mappings X(·,s; t) : D → D can be

defined by solving the system of ordinary differential equations











dX(x,s; t)

dt
= b(X(x,s; t), t),

X(x,s;s) = x ∀x ∈ D.

(8)
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3 Error analysis

Our concern in this paper is to estimate the error of LG methods when they are

stabilized by a local projection stabilization method, therefore to make clearer and

shorter the analysis we shall consider the exact solution of (8); nevertheless, the

calculation of a solution of (8) by a numerical method will contribute to the error of

the local stabilized LG method, but such a contribution can be estimated using the

methodology of [3].

For u,v∈H1
0 (D) and a.e. 0≤ t ≤ T , let us now define the time-dependent bilinear

form

a(u,v; t) = ε (∇u,∇v)+(α(·, t)u,v) . (9)

It is easy to see that a(u,v; t) is symmetric, continuous and coercive so that for

functions u : [0,T ]→ H1
0 (D)

(a(u,u; t))1/2 =

(

∥

∥

∥
ε1/2∇u(t)

∥

∥

∥

2

L2(D)
+
∥

∥

∥
α1/2u(t)

∥

∥

∥

2

L2(D)

)
1
2

. (10)

is an equivalent H1
0 (D)-norm, i.e.,

c2 ‖u(t)‖H1(D) ≤ (a(u,u; t))1/2 ≤ c1 ‖u(t)‖H1(D) , (11)

where the constants c1 = max(ε1/2,α1/2) and c2 = min(ε1/2,α1/2), and

(α1/2,α1/2) = (max(x,t) α(x, t),min(x,t) α(x, t)). Moreover, we define the mesh de-

pendent norm

|||u(t)|||2 := a(u,u; t)+Sh(u,u). (12)

We will use the following continuous and discrete time dependent norms, noting

that in the expressions that follow, when r = 0, H0(D) = L2(D).
Continuous norms:

‖u‖L∞(L∞(D)) ≡ ‖u‖L∞(0,T ;L∞(D)) = ess sup0≤t≤T ‖u(t)‖L∞(D) ,

‖u‖L∞(Hr(D)) ≡ ‖u‖L∞(0,T ;Hr(D)) = ess sup0≤t≤T ‖u(t)‖Hr(D) , r ≥ 0,

‖ut‖L2(L2(D)) ≡ ‖ut‖L2(0,T ;L2(D)) =

(

∫ T

0

∥

∥

∥

∥

∂u

∂ t

∥

∥

∥

∥

2
)1/2

.

(13)

Discrete norms:
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‖u‖l∞(Hr(D)) ≡ ‖u‖l∞(0,N;Hr(D)) = max0≤n≤N ‖un‖Hr(D) , r ≥ 0,

‖u‖l2(Hr(D)) ≡ ‖u‖l2(0,N;Hr(D)) =
(

∆ t ∑N
n=0 ‖un‖2

Hr(D)

)1/2

,

|||u|||l2(0,N) ≡
(

∆ t ∑N
n=0 |||un|||2

)1/2

.

(14)

Next, we establish an estimate for the error en = cn − cn
h.

Theorem 1. Let c ∈ L∞(0,T ;H1
0 (D)∩Hm+1(D)), ct ∈ L2(0,T ;H1

0 (D)∩Hm+1(D)),

D2c

Dt2
∈ L2(0,T ;L2(D)), 0 < ∆ t < ∆ t0 < 1, and 0 < h < h0 < 1. There exists a con-

stant G independent of ∆ t and h such that

‖e‖l∞(L2(D))+ |||e|||l2(0,N) ≤ G
(

hm+1 +
√

τ + εhm + τ1/2hs+1

+T 1/2 min
(

K4∆ t√
ε
,
‖b‖L∞(L∞(D))∆ t

h
,
√

2
)

hm+1

∆ t
+∆ t )+‖u− jhu‖L2(D) ,

(15)

where τ =maxK (τK) with τK =O(hγ) and γ ≥ 1, u= c(0), K4 = ‖b‖L∞(L∞(D))+K5,

and K5 being another constant that depends on divb.

Proof. A sketch of the proof goes as follows. We decompose the error at time instant

tn+1 as

en+1 = (cn+1 − jhcn+1)+( jhcn+1 − cn+1
h )≡ ρn+1 +θ n+1

h , (16)

then the errors ‖e‖l∞(L2(D)), and |||e|||l2(0,N) are estimated by applying the triangle

inequality and (5) to estimate ρ , so we need to estimate θh. To this end, we notice

that for all n, cn
h = cn −ρn −θ n

h , so subtracting (6) from (1), and using the notation

an+1(·, ·) to denote a(·, ·; tn+1), some simple operational work yields

(

θ n+1
h −θ

n

h,vh

)

+∆ tε
(

∇θ n+1
h ,∇vh

)

+∆ t
(

αn+1θ n+1
h ,vh

)

+∆ tSh

(

θ n+1
h ,vh

)

= −∆ tan+1(ρn+1,vh)−∆ tSh(ρ
n+1,vh)−

(

ρn+1 −ρn,vh

)

+∆ t

(

cn+1 − cn

∆ t
− Dc

Dt
|t=tn+1

,vh

)

+∆ tSh(c
n+1,vh),

(17)

where gn := g(X(x, tn+1; tn), tn), g(·, tn) being a generic function defined in D

at time instant tn. Letting vh = θ n+1
h , see [4], we find that (θ n+1

h − θ
n

h,θ
n+1
h )

≥ 1
2
(‖θ n+1

h ‖2
L2(D)

−‖θ n
h ‖2

L2(D)
)− ∆ tC

2
‖θ n

h ‖2
L2(D)

, where C is a positive constant in-

dependent of h and ∆ t, but dependent on div b; then splitting ρn+1 − ρn as

(ρn+1 −ρn)+(ρn −ρn) yields
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1
2

(

∥

∥θ n+1
h

∥

∥

2

L2(D)
−
∥

∥θ n
h

∥

∥

2

L2(D)

)

+∆ tan+1(θ n+1
h ,θ n+1

h )+∆ tSh(θ
n+1
h ,θ n+1

h )

≤−∆ tan+1(ρn+1,θ n+1
h )−∆ tSh(ρ

n+1,θ n+1
h )−∆ tSh(c

n+1,θ n+1
h )

+
3

∑
i=1

(

zn+1
i ,θ n+1

h

)

+
C

2
∆ t ‖θ n

h ‖2
L2(D)

(18)

where














zn+1
1 =−(ρn+1 −ρn), zn+1

2 =−(ρn −ρn),

zn+1
3 = ∆ t

(

cn+1 − cn

∆ t
− Dc

Dt
|t=tn+1

)

.

(19)

Now, we estimate the terms on the right side. By Cauchy-Schwarz inequality and

Young’s inequality, ab ≤ ζ
2

a2 + 1
2ζ

b2, a, b and ζ > 0 real numbers, it follows that

∆ tan+1(ρn+1,θ n+1
h )≤ ∆ t

(

an+1(ρn+1,ρn+1)
)1/2 (

an+1(θ n+1
h ,θ n+1

h )
)1/2

≤ ∆ t

2
an+1(ρn+1,ρn+1)+

∆ t

2
an+1(θ n+1

h ,θ n+1
h ).

(20)

Similarly,

∆ tSh(ρ
n+1,θ n+1

h )≤ ∆ t

(

Sh(ρ
n+1,ρn+1)+

1

4
Sh(θ

n+1
h ,θ n+1

h )

)

. (21)

Noting that Sh(ρ
n+1,ρn+1)≤ ∑K τK

∥

∥∇ρn+1
∥

∥

2

L2(K)
and using A2 it follows that

∆ tSh(ρ
n+1,θ n+1

h )≤C∆ t ∑
K

τKh2m
K

∥

∥cn+1
∥

∥

2

Hm+1(K)
+

∆ t

4
Sh(θ

n+1
h ,θ n+1

h ). (22)

Similarly,

∆ tSh(c
n+1,θ n+1

h )≤ ∆ t

(

Sh(c
n+1,cn+1)+

1

4
Sh(θ

n+1
h ,θ n+1

h )

)

, (23)

using A1 with l = s+1 it follows that

∆ tSh(c
n+1,θ n+1

h )≤C∆ t ∑
K

τKh
2(s+1)
K

∥

∥cn+1
∥

∥

2

Hm+1(K)
+

∆ t

4
Sh(θ

n+1
h ,θ n+1

h ) (24)

To estimate
(

z1,θ
n+1
h

)

, we note that by virtue of the Cauchy-Schwarz inequality

∣

∣

∣

∣

∫

D

(

∫ tn+1

tn

ρtdt

)

θ n+1
h dx

∣

∣

∣

∣

≤
∥

∥

∥

∥

∫ tn+1

tn

ρtdt

∥

∥

∥

∥

L2(D)

∥

∥θ n+1
h

∥

∥

L2(D)
, (25)
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hence, using Young’s inequality yields

(

z1,θ
n+1
h

)

≤ 3
2
‖ρt‖2

L2(tn,tn+1,L2(D))+
∆ t
6

∥

∥θ n+1
h

∥

∥

2

L2(D)

≤Ch2(m+1) ‖ct‖2
L2(tn,tn+1,Hm+1(D))+

∆ t
6

∥

∥θ n+1
h

∥

∥

2

L2(D)
.

(26)

Next, by a Taylor expansion along the curves X(x, tn+1, t) it follows that

∥

∥zn+1
3

∥

∥= ∆ t

(

∫

D

∣

∣

∣

∣

1

∆ t

∫ tn+1

tn

(t − tn)
D2c

Dt2
dt

∣

∣

∣

∣

2

dx

)1/2

≤ ∆ t√
3

3/2
∥

∥

∥

∥

D2c

Dt2

∥

∥

∥

∥

L2(tn,tn+1;L2(D))

,

(27)

then by using both the Cauchy-Schwarz and Young’s inequalities yields

∣

∣(zn+1
3 ,θ n+1

h )
∣

∣≤ 1

2
∆ t2

∥

∥

∥

∥

D2c

Dt2

∥

∥

∥

∥

2

L2(tn,tn+1;L2(D))

+
∆ t

6

∥

∥θ n+1
h

∥

∥

2

L2(D)
. (28)

To bound the term (zn+1
2 ,θ n+1

h ) we use Lemma 7 of [4] and obtain the following

estimates:

Estimate 1:

(zn+1
2 ,θ n+1

h )≤
∥

∥ρn −ρn ◦Xn,n+1
∥

∥

L2(D)

∥

∥θ n+1
h

∥

∥

L2(D)

≤ ∆ t min

(

K1 ‖∇ρn‖L2(D) ,K2

∥

∥

∥

ρn

∆ t

∥

∥

∥

L2(D)

)

∥

∥θ n+1
h

∥

∥

L2(D)

≤ 3
2
∆ t min

(

K2
1 ‖∇ρn‖2

L2(D) ,K2

∥

∥

∥

ρn

∆ t

∥

∥

∥

2

L2(D)

)

+ ∆ t
6

∥

∥θ n+1
h

∥

∥

2

L2(D)
,

(29)

where K1 = K3 ‖b‖L∞(L∞(D)), and K2 and K3 being constants depending on div b.

Noticing that by virtue of A2 we can set

min

(

K2
1 ‖∇ρn‖2

L2(D) ,K2

∥

∥

∥

ρn

∆ t

∥

∥

∥

2

L2(D)

)

≤C min

(

‖b‖2
L∞(L∞(D))∆ t2

h2 ,2

)

h2(m+1)

∆ t2 ‖c‖2
l∞(0,N;Hm+1(D)) ,

(30)

then one gets the estimate
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(zn+1
2 ,θ n+1

h )≤C∆ t min

(

‖b‖2
L∞(L∞(D))∆ t2

h2 ,2

)

h2(m+1)

∆ t2 ‖c‖2
l∞(0,N;Hm+1(D))

+∆ t
6

∥

∥θ n+1
h

∥

∥

2

L2(D)
.

(31)

Estimate 2

A second estimate, see [7], is the following

(zn+1
2 ,θ n+1

h )≤
∥

∥ρn −ρn ◦Xn,n+1
∥

∥

H−1

∥

∥∇θ n+1
h

∥

∥

L2(D)

≤ ∆ tK4 ‖ρn‖L2(D)

∥

∥∇θ n+1
h

∥

∥

L2(D)
,

(32)

where H−1 is the dual of H1
0 (D), K4 = ‖b‖L∞(L∞(D)) +K5, and K5 being another

constant that depends on div b. By using again A2 we obtain that

(zn+1
2 ,θ n+1

h )≤C∆ t
(

K2
4 ∆ t2

ε

)

h2(m+1)

∆ t2 ‖c‖2
l∞(0,N;Hm+1(D))

+∆ tε
4

∥

∥∇θ n+1
h

∥

∥

2

L2(D)
.

(33)

Next, substituting the estimates calculated above into (18), adding from n = 0 to

N − 1 and arguing as in [4] we find out that the estimates of (zn+1
2 ,θ n+1

h ) give the

term

min

(

K2
4 ∆ t2

ε
,
‖b‖2

L∞(L∞(D)) ∆ t2

h2
,2

)

h2(m+1)

∆ t2
‖c‖2

l∞(0,N;Hm+1(D)) . (34)

Then the application of Gronwall inequality and the triangle inequality, as we say at

the beginning of the proof, yields the estimate (15).

4 Numerical examples

Example 1. In this example, borrowed from [8], we consider the domain D= (0,1)2

and the partition Dh generated from a uniform square mesh of size h by divid-

ing the squares using the diagonals from the left lower corner to the right upper

corner. The prescribed solution is c(x, t) = t cos(xy2) for the parameters ε = 10−8,

b = (2,−1), α = 1 and T = 1. The non-homogenous Dirichlet boundary condi-

tions and the forcing term f are chosen such that the prescribed solution satis-

fies (1). The finite element spaces used in this example are: Xh = {vh ∈ C0(D) :

vh|K ∈ P bubble
1 (K)} and Gh = {qh ∈ L2(D) : qh|K ∈ P0(K)}. We show in Table 1

the error Err1 :=
(

∆ t ∑N
n=0 ε‖cn − cn

h‖2
H1(D)

)1/2

for different values of h and τK .

Since the time step is so small, then the errors represented in the table can be

considered spatial errors. By simple inspection we notice that the numerical so-

lution is not sensitive to the value of τK , and Err1 = O(h) according to Theo-
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rem 1 because, in this case with m = 1, the term that controls the error estimate

is min( ∆ t√
ε
,
‖b‖l∞(L∞(D))∆ t

h
,1)

hm+1

∆ t
=

‖b‖l∞(L∞(D)) ∆ t

h

hm+1

∆ t
= O(hm).

h Err1,τK = 100h Err1,τK = 10h Err1,τK = h

1/8 3.07E-06 3.03E-06 2.79E-06

1/16 1.53E-06 1.50E-06 1.37E-06

1/32 7.60E-07 7.32E-07 6.76E-07

1/64 3.67E-07 3.51E-07 3.36E-07

1/128 1.74E-07 1.69E-07 1.67E-07

Table 1 Error for different meshes with ∆ t = 0.0001

Example 2. In this example, taken from [5], D := (0,1)2 and the partition Dh

is formed by triangles obtained by dividing uniform squares of size h by diago-

nals that go from the left upper corner to the right lower corner. The velocity field

b(x,y) = ∇φ , where φ(x,y) = (1− cos2πx)(1− cos2πy). The streamlines of the

velocity converge to a sink at the center of D along trajectories that become parallel

to the diagonal that joins the left upper corner with the right lower corner. The initial

condition u(x,y) represents a transition from u(0,0) = 0 to u(1,1) = 1 according to

the rule

u(x,y) =







0 if ξ < 0,
1
2
(1− cosπξ ), 0 ≤ ξ ≤ 1,
1 if 1 < ξ ,

(35)

where ξ = x+y−1/2. The Dirichlet boundary conditions c(·, t) = u(·) are imposed

for all 0 ≤ t ≤ T . The forcing term f = 0, the diffusion coefficient ε = 0.001 and the

reaction term α = 0. The finite element spaces used in this example are: Xh = {vh ∈
C0(D) : vh|K ∈ P2(K)} and Gh = {qh ∈ L2(D) : qh|K ∈ P0(K)}, and τK = h2. Fig. 1

represents the cross section u(x,1/2,1) calculated in the mesh h= 1/32 and with the

time step ∆ t = h/2. Comparing this figure with Figure 6 of [5], where the same cross

sections of the solutions calculated by the conventional LG method and the Euler

implicit-quadratic finite element method are represented, we see that at least for this

example the LPS-LG method yields much better results than those methods because

much of the spurious oscillations have been killed and the interior boundary layer is

well resolved even with a relatively coarse mesh. The amplitudes of the overshoot

and undershoot, which appear in the figure, are ±0.031 respectively.
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Fig. 1 Section ch(x,y = 1/2, t = 1) for h = 1/32 and ∆ t = h/2
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