
On the delay and inviscid nature of turbulent
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Abstract We complement the recently achieved status quo of a self-consistent

asymptotic theory: incompressible-flow separation from the perfectly smooth sur-

face of a bluff rigid obstacle that perturbs an otherwise uniform flow in an un-

bounded domain. Here the globally formed Reynolds number, Re, takes on arbi-

trarily large values, and we are concerned with a long-standing challenge in bound-

ary layer theory. Specifically, the external flow is sought in the class of potential

flows with free streamlines, and the level of turbulence intensity, concentrated in the

boundary layer undergoing separation, is measured in terms of distinguished lim-

its. Their particular choices categorise the type of the viscous-inviscid interaction

mechanism governing local separation and the strength of its downstream delay

when compared with laminar-flow separation. In the case of extreme retardation,

this implies the selection of a fully attached potential flow around a closed body,

the singular member of the family of free-streamline flows. In turn, the asymptotic

theory predicts the distance of the separation from the thus emerging rear stagna-

tion point or trailing edge of the body to vanish at a rate much weaker than that

given by 1/ lnRe, which plays a crucial role in the scaling of firmly attached turbu-

lent boundary layers. Notably, the overall theory only resorts to specific turbulence

closures when it comes to numerical studies.

1 Motivation, global potential and attached shear flow

Gross separation of a nominally two-dimensional (most developed) turbulent bound-

ary layer (BL) in subsonic flow around a bluff body in the limit of large values of
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Fig. 1 Structure of external

HK flow for k increasing
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the globally formed Reynolds number, Re, has regained awareness in the last years,

after different questions have attracted research in the asymptotic description of

high-Re flows for more than two decades — not unlikely owing to the difficulty of

that particular subject. According references are [4,6–9]; also note citations therein.

This contribution forges a bridge from reappraising the theory as available in the

above references to scrutinising some subtle (open) questions of the flow structure in

more depths and breadths and, finally, addressing new, hitherto unpublished results.

Let us first give a brief overview on the central findings and the current status of the

theory. The situation outlined is sketched in Fig. 1, referred to tacitly in the following

and with the notations introduced in the subsequent excursus on the external flow.

The asymptotic concept ties in with the well-established theory of laminar sep-

aration, cf. [10], as the intensity of turbulence, concentrated in the BL, relative to

that characterising a (hypothetical) fully developed BL is measured by some gauge

factor, T : 0 ≤ T ≤ 1. Its dependence on Re and the closely associated question of

the correct scaling of the attached flow that allows for a self-consistent description

of the separation process further downstream have posed major challenges in the

establishment of the present theory; tackling this was inspired by the scenario of a

strictly laminar flow (T = 0).

Overall flow structure

Hence, the initial degree of freedom introduced by the quantity T is equivalent to

parametrise the imposed potential flow of Helmholtz–Kirchhoff (HK) type by the

two positions where the free streamlines, confining a stagnating-fluid cavity, depart

from the body surface and which collapse with the separation points as Re → ∞.

As our interest here is with the local picture of separation, it is sufficient to con-

sider symmetric (circulation-free) flows, thus around symmetric bodies. Alterna-

tively, HK flows then are (uniquely) described by a single parameter, k (> 0), that

controls the strength of the singularity encountered by the surface pressure [10] and

increases monotonically for increasing distance between the points of separation

and front stagnation point along the surface. Simultaneously, the turbulence inten-

sity increases, i.e. retards separation. Finally, the separation points merge at a rear

stagnation point formed in the singular limit k → ∞. Here the HK flow represents a

perturbation of the fully attached potential flow and a near-surface subregion having

an extent of O(1/k2) and enclosing a correspondingly small, cuspidal cavity [6,11].

It is this flow regime of excessive delay and the highest turbulence intensities possi-

ble where formulating a proper distinguished (least-degenerate) limit that captures
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the essential features of the flow not only involves Re and T but also k. Due to the

emergence of a further stagnation point, the situation of ultimate delay is interpreted

as the (symmetric) collision of two turbulent BLs, forming a slender jet breaking off

the surface and two tiny recirculation bubbles [7].

One must concede that, for the canonical case of a circular cylinder in cross-flow,

the comparison of the theoretical predictions with those extracted from experiments

and/or simulation of the full Navier–Stokes equations still suffers from the rather

moderate values of Re employed in the latter activities. Specifically, in experiments

Re can still hardly exceed a long-standing threshold of 8.89× 106 [6], and the data

are rather scarce in the regime Re ' 106 where the attached BL can be considered

as turbulent almost from stagnation upstream on. However, this on the other hand

renders the asymptotic theory attractive in the light of engineering applications.

We start the analysis with the Reynolds- or time-averaged Navier–Stokes equa-

tions for incompressible flow of uniform fluid density and viscosity, most concisely

written in Einstein notation making use of covariant derivatives [5]:

ui|i = 0, u jui| j =−p|i −〈ui
f u

j
f 〉| j +Re−1 ui| j j (i, j = 1,2) . (1a,b)

Herein xi, ui, ui
f , p denote natural (contravariant) coordinates along (i = 1) and per-

pendicular from (i = 2) the closed body contour, the corresponding (contravariant)

components of the nominal flow velocity, those of the corresponding turbulent fluc-

tuations, and the pressure difference with respect to potential-flow detachment, re-

spectively. All lengths are non-dimensional with a typical body dimension (a radius

of surface curvature), the flow speed with that of the unperturbed parallel flow, and p

and the Reynolds stress tensor −〈ui
f u

j
f 〉 with this speed squared times the density;

those reference values together with the kinematic viscosity define Re. Equations (1)

are supplemented with the usual adhesion condition ui = ui
f = 0 for x2 = 0. We next

revisit the external and the attached BL flow that arise in the singular limit Re → ∞.

External potential flow

With the small parameter ε ≪ 1, defined in Sect. 2.1, measuring the magnitude of u1

inside the BL and the value δd of the BL thickness, δ (≪ 1), at separation, we expand

[ui, p]∼ [ui
0, p0](x

1,x2;k)+ εδd [u
i
1, p1](x

1,x2;k)+O(ε2δd) . (2)

Here the first two terms represent the imposed HK flow and its irrotational perturba-

tion induced by the BL displacement. The HK flow exerts a surface slip on the BL:

us(x;k) := u1
0(x

1,0;k) (> 0); the local variable x := x1 − xd(k) means the streamwise

distance from potential-flow detachment at x1 = xd(k), say. With ud(k) := us(0;k)
(≤ 1), the associated singularity assumes the well-known canonical form [10]

us(x;k)∼ ud(k)
[

1+ 2k
√
−x+ 10k2(−x)/3+O(x3/2)

]

(x → 0−) , (3)

and the flow speed equals ud along a free streamline. Denotes d(k) the streamwise

distance from flow detachment to stagnation at the trailing edge existing for k = ∞,
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ud = O(d) , d ∼ 1/(6k2) (k → ∞) (4)

expresses the related retardation and a rebirth of expansion (3) in the aforementioned

subregion where x, y := x2 are of O(d) and two free streamlines encompass a tiny

cavity [6].

As their effects on (3) and the BL flow proves negligibly small, we disregard sur-

face curvature and (initially) surface roughness when it comes to the flow descrip-

tion on the BL scale for sufficiently small values of y. Therefore, x and y are taken

as Cartesian coordinates and [u,v] := [u1,u2] as the associated velocity components

for y ≪ 1. We thus write u0,1 − iv0,1 = ud w′
0,1(z;k), z = x+ iy with complex flow

potentials w0,1(z;k). The behaviour (3) and the local surface pressure agree with

[w0, p0]∼ [z− 4ik/3z3/2 +O(z2),−2k ℑ(z1/2)+O(z)] (z → 0) , (5a,b)

w1 ∼ az+ bz1/2 +O(z) (a,b ∈ R , z → 0) (5c)

as δ = O(x) (x → 0+) for the free shear layer. We fix the coefficients a, b in Sect. 2.1.

Attached boundary layer flow

The continuity equation (1a) is satisfied identically by [u,v] = [ψy,−ψx] where ψ is

a streamfunction. Now [σx,σy] :=−[〈u2
f 〉,〈u f v f 〉] are the Reynolds stresses, δ is the

local thickness of the BL. Following [2, 8], this is initially two-tiered and governed

by a single small turbulent velocity scale, ut(x;Re) :=
√

Re−1 ∂yu|y=0, i.e. the local

skin friction velocity. Thus, the (first unknown) intensity gauge factor T here relaxes

the classical asymptotic structure of a firmly attached, fully developed turbulent BL.

This structure holds even for compressible flow as long as the Mach number

formed with ut and the speed of sound evaluated at the surface is small [1].

The outer, largely inviscid main region of the BL is characterised by the coordi-

nate η := y/δ and a small streamwise velocity deficit of O(ut):

{

[usy−ψ

utδ
,

σy

Tu2
t

]

,
δ

T γ

}

∼
{

[F,Σ ](x,η ;k), ∆(x;k)
}

+O(γ)
(

γ :=
ut

us

→ 0
)

. (6)

The scaled streamfunction F , shear stress Σ , and BL thickness ∆ are O(1)-quantities

and satisfy the accordingly expanded form of the x-component of (1b) (i = 1).

In the so-called viscous wall layer molecular and Reynolds shear stresses are

both of O(u2
t ). From this its scaling in the common “+”-representation

[ψ/(utδv), σx,y/(Tu2
t )] = [ψ+, σ+

x,y](s,y
+;Re) , y+ := y/δv , δv := 1/(ReTut) (7)

ensues. The streamwise component of (1b) (i = 1) is then rewritten as

σ+
y +

∂ 2ψ+

∂ 2y+
∼ 1+ p+y++

δv

T

[

1

ut

∫ y+

0

∂ 2(utψ
+)

∂y+∂ s
dt − ∂ψ+

∂ s

∂ 2ψ+

∂y+∂ s

]

+O(δv) (8)

after integration with respect to y. Here p+ represents the imposed pressure gradient,
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p+ =−usu
′
s/(ReTu3

t ) , (9)

and we have anticipated that T ≪ 1 since the integrated form of (δv/u2
t )∂ (u

2
t σ+

x )/∂x

gives the dominant neglected remainder term in (8). Matching σy in both layers

subject to the for y+ → ∞ vanishing viscous term on the left-hand side of (8) con-

firms the above identification of ut . Hence, the right-hand side of (8) starts with the

rescaled skin friction, and p+ and δv/T , measuring the strength of the inertia terms

in (8), appear to be small so that the near-wall flow is termed a developed one:

[ψ+,σ+
y ]∼ [ψ+

0 ,σ
+
y0](y

+)+O(p+) , [ψ+
0 ,σ

+
y0]∼ [y+ lny+/κ, 1] (y+ → ∞) ,

(10a,b)

matching ∂u/∂y gives the celebrated logarithmic law of the wall in (10b), involving

the von Kármán constant κ ; matching u provides the closure-free skin friction law

γ ∼ ε − (2/κ)ε2 lnε +O(ε2) [dγ/dx = O(ε2)] , ε := κ/ ln(T 2Re) . (11)

We stress that us = O(1) initially. A distinct deviation of the BL from a laminar

one, having a lateral extent of O(Re−1/2), means a predominance of the Reynolds

over the viscous stresses in its main portion, simultaneously implying the two-layer

splitting and a small velocity deficit as ε ≪ 1 or T ≫ Re−1/2. Thus (9), (11) pre-

dict p+ = O
[

(lnRe)3/(T Re)], which completes the analysis of the BL at this stage.

Having recapitulated the structure of the wall layer in the spirit of [8], we are

able to study gross separation, commencing as x becomes sufficiently small, in a

most generic manner. As a remarkable fact of the asymptotic concept, it is this local

mechanism,that fixes T and, according to (6), the thickness δ of the oncoming BL.

2 Moderate delay: generic triple deck applied to wall flow

Since self-induced separation of strictly laminar flow requires k = O(Re−1/16) [10],

one deals with the least-degenerate case by assuming T ≫ Re−1/2 and k = O(1),
which shall coin the notion of moderately retarded separation. A central question is

whether regularising the potential-flow singularity (5) singles out a (unique) value

of k, i.e. fixes the distance xd and, finally, the picture of separation at the body scale.

Three key observations made at incipient separation [8] deserve a critical review:

1. the velocity defect remains of O(ε) in the predominantly inviscid main layer;

2. at its base, a Reynolds-stress blending layer might form;

3. the viscous wall-layer flow remains fully developed to leading order.

The first and second issue are envisaged next; their careful investigation alleviates

the insight why and how the third inevitably invokes the formation of the triple-

deck (TD) structure addressed, embedded in but largely unaffected by the core flow.
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2.1 Small-defect Euler stage

The streamwise scale shortens under the action of (3). Then the corresponding

growth of the surface-normal pressure gradient is the only new effect that becomes

relevant as in the bulk of the BL. Furthermore, F , Σ , ∆ , and hence δ attain fi-

nite limits as x → 0− we indicate by a subscript d. Matching the oncoming BL de-

scribed by (6) for x → 0− and the potential flow as given by (5), one finds a =−Fd1,

b =−4Fd1, Fd1 := Fd(1;k) [8]. This furthermore implies δd = O(Tε), σx,y = O(δd)
in the so evoked square region described by (X ,Y ) := (x,y)/δd = O(1) where the

BL limit ceases to be valid as ∂y p/∂x p = O(1). Inspection of (1,b) shows that

the Reynolds stress gradients do not enter the problems for the coefficient func-

tions ψ0,1,2,3(X ,Y ;k), P2,3(X ,Y ;k) in the arising double expansion

[ψ/(udδd)−Ψ0 − εΨ1, p]∼
√

δd [Ψ2, P2]+ ε
√

δd [Ψ3, P3]+O(ε2,δd) (12)

(and a corresponding one of δ ). Then (12) states a level of approximation governing

an Euler stage: once the first integral (∂xx + ∂yy)ψ ∼−ω(ψ), ω ∼ εudF ′′
d (Y;k) is the

vorticity due to the incident BL, of the vorticity transport equation derived from (1)

is solved in accordingly expanded form, P2,3 follow by virtue of Bernoulli’s law.

The expansion process reveals the hierarchy of Dirichlet problems:

(∂XX + ∂YY )[Ψ0,1,2,3] = [0,−F ′′
d , 0,−Ψ2F ′′′

d (Y;k)] , Ψ0,1,2,3|X≤0,Y=0 = 0 , (13a,b)

and Ψ0,1,2,3 subject to conditions of matching with the external flow (Y → ∞) in view

of (5) and the BL flow upstream (X →−∞); those with the separated shear layer

emerging for large values of X and the missing near-wall conditions for X > 0 are

considered in the course of the analysis. First, one detects a “frozen” small velocity

defect as [Ψ0,Ψ1] = [Y,−Fd(Y ;k)]: any further harmonic contributions to Ψ0,1 vanish

in the above limits and exhibit zero Y -derivatives for X = 0 due to the vanishing

associated pressure variations; so they vanish at all by (13b).

Homogeneous second-order problem

The behaviour (5a) suggests Ψ2 =−(4k/3)ℜ[Z3/2W (Z;k)], Z := X + iY (Y ≥ 0)

with some holomorphic functionW satisfying W → 1 (Z → ∞) and ℑW = 0 (X ≤ 0),

see (13b). Because (5c) expresses zero potential-flow pressure acting on the sepa-

rated BL and the pressure in the adjacent recirculation region can only originate

in the weak viscous backflow, linearised Bernoulli’s law gives ∂YΨ2|Y=0 = ℑW = 0

(X > 0). We then arrive at Wiener–Hopf-type boundary conditions on the real axis,

typically describing separation of high-Re flows at an inviscid scale, cf. [10]. Now

any non-trivial ℑW vanishes at Z = ∞ (Y > 0) and on the X-axis apart from the

origin where ℑW and thus ℜW must be singular. But such a strengthening of the

potential-flow singularity (5a,b) by the Euler stage has to be discarded. We then

have ℑW ≡ 0, W ≡ 1; (5a,b) remains unaltered first: no viscous effects, no regular-

isation process.
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Inhomogeneous third-order problem

The chance that the Euler limit is at least capable to settle the value of k is attributed

to the arising Poisson problem governingΨ3, cf. (13). This attracted attention first in

the context of turbulent trailing-edge flows in terms of a semi-analytical/numerical

treatment [3]; note that F ′′
d is given by the numerical solution of the leading-order

BL problem governing the flow upstream with Fd(0;k) = 0 and F ′
d ≡ 0 (Y ≥ 0,

i.e. outside the BL). However, the formal change of variables (X ,Y ) = (Z + iY,Y ),
Ψ3 = (4k/3)ℜW3(Z,Y ;k) gives Ψ3 in closed form as elucidated tersely next.

By taking into account the form of Ψ2, we arrive at the problem for W3:

∂Y (∂Y + 2i∂Z)W3 =−Z3/2 F ′′
d (Y ;k) , W3 ∼ 3iFd1Z1/2 (Z → ∞ , Y ≥ 1) (14a,b)

with (14b) representing the match with the induced potential flow according to (5b).

Once (14a) is integrated with respect to Y (Z fixed), the further change of variables

(Z,Y ) = (Z∗+ 2iY,Y) allows for the second integration, which finally yields

Ψ3 =
4k

3
ℜ
[

Z3/2F ′
d(Y )− 3i

∫ Y

0

√
Z − 2i(Y − t)F ′

d(t)dt

]

. (15)

Herein the bracketed term satisfies (14) and is of O(Z3/2 lnZ) as Z → 0 where the

match between F and ψ+
0 according to (10b) accounts for the logarithmic variation.

Hence, Ψ3 given by (15) not only meets (13b) but also two further requirements:

a) (∂YΨ3 +F ′′
d Ψ2)Y=0,X>0 = 0, arising by Bernoulli’s law and complementing (13b)

when we assume that even P3(X ,0;k) vanishes downstream of separation,

b) W ∼ BZ1/2 (Z → 0) for some constant B ∈R .

Let us for the moment accept b). Then any contribution Ψ̄ , say, to Ψ3 adding to (15)

is harmonic and satisfies Wiener–Hopf boundary conditions as does Ψ2. These and

the fact that Ψ̄ must be of o(Z1/2) as Z → ∞ gives Ψ̄ ∼ c|Z|−1/2 cos(arg(Z)/2) in

this limit with π ≥ arg(Z)≥ 0 and some constant C. In analogy to the above anal-

ysis of Ψ2, writing Ψ̄ = ℜ[Z−1/2 W̄ (Z;k)] means ℑW̄ = 0 for Y = 0 and Y = ∞ and

thus ℑW̄ ≡ 0, W̄ ≡C for the newly introduced analytic function W̄. Avoiding the sin-

gularity at Z = 0 means C = 0, so (15) is the only acceptable representation for Ψ3.

As an important finding, the absence of a singularity stronger than that indicated

by item b) renders (15) valid for all admissible values of k: the originally desired

selection does not take place. In fact, one can readily demonstrate that a slight shift

of the origin x = 0 along the smooth body surface by weakly disturbing a prescribed

value of k only shifts the local asymptotic structure of the flow correspondingly. This

ambiguity contrasts with separation from a fixed corner, yielding a unique HK flow.

In the aforementioned near-wall behaviour of F ′, only at separation a half-

power term follows the conventional leading terms: F ′
d ∼−κ−1 lnY +C+O(Y1/2)

(Y → 0, with some C(k)> 0). It reflects the emergence of an intermediate layer.

This is provoked by the singular behaviour (3) and accounts for the blending of

the then, according to (11), rapidly varying value of σ+
y0 on top of the wall layer

and the “frozen” value 1 of Σ as Y → 0. However, that new sublayer is meaningless
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in the current setting because it only applies for δ ≫ Re−1/3 [8] but the subsequent

TD analysis gives the opposite. Even more important, the flow there is still predomi-

nantly inviscid as the relative velocity defect is still of O(ε), but the regularisation of

the potential-flow singularity in (5) is accomplished entirely by the BL-internal TD.

This is different from the situation for large values of k in Sect. 3 where the regular-

isation due to a self-induced pressure takes place at the scale of the inviscid-flow.

2.2 Triple-deck structure

The predominance of inertia terms and stress gradients in the main and the wall

layer, respectively, have these only interacting loosely, even around separation. In

turn, the viscous wall-layer flow is subject to a distinctly different shortening of

streamwise scales. Specifically, inspection of (7), (9), (11) shows that in the lin-

earised version of (8) according to (10a) the dominant perturbations of O(p+) gov-

ern a balance of the stress and pressure gradients with the convective terms as −x

has decreased to O[1/(ReT 2εud)]. In (8) inertia terms then dominate for smaller

values of −x, but, according to (3), even those disturbances attain finite limits [8].

This scenario for developed viscous flow and a strong adverse pressure gradient

is tied in with the one that occurs when a non-developed viscous BL flow is sub-

jected to a driving surface pressure ps(x;k) := p0(x,0;k) that stays finite as |p′s| → ∞
(x → 0−). We distinguish if variations of ps are small, case A), or of O(1), case B):

A) laminar BL, p′s mostly adverse where p′s → 0 as Re → ∞ avoids the well-known

non-removable Goldstein singularity further upstream;

B) (i) laminar BL (then p′s favourable, prominent example: aforementioned separa-

tion from concave corner [10, chap. 2.1]), (ii) (developed) turbulent wall layer.

The no-slip condition requires the BL equations remaining fully intact in a so-

called lower deck (LD) around the origin x = y = 0 and where (x,y) := O(δTD,δLD),
say. In order to regularise the otherwise singular behaviour of p and the skin friction

when changing sign, however, p no longer equals ps to leading order but is induced

in a square so-called upper deck (UD) of extent δTD on top of the so formed main

deck (MD). This just continues the layer upstream addressed in cases A) and B).

In both we now assign the thickness δv and the velocity scale ut to it. Evaluating ψ
for x = 0− then describes the predominantly inviscid flow free of pressure variations

in the MD, cf. the arguments underlying the forms of Ψ0, Ψ1 subsequent to (13). The

displacement of the streamlines by the LD is shifted unaltered towards the UD, there

in turn causing inviscid-flow disturbances. This mechanism completes the feedback

cycle of the ensuing TD, for laminar flow studied exhaustively e.g. in [10].

The remainder of this section is devoted to the general scaling of the TD, see

Fig. 2a, deduced by inspection analysis, specifically, the dependences of δTD, δLD

on Re in case B). For the sake of conciseness, “∼” now replaces the Landau symbol.

Denotes uLD a velocity scale for the LD, evaluation of (1b) for i = 1 there yields
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(a) (b)

Bernoulli
sublayer

LD

MD

UD

δ

δ 7/4δv

δLD

δTD

u u

x x

y y

Fig. 2 Structure of triple deck (a) vs. of Rayleigh stage, here oncoming BL three-tiered (b).

u∂xu+ · · · ∼ −∂x p+Re−1∂yyu , uLD/δTD = 1/(Re δ 2
LD) . (16a,b)

We derive two further relations involving the first unknown scales uLD, δLD, δTD, δv:

uLD = ut(δLD/δv)
r (r > 0) , δ 3

TD/δ 5
LD = Re2ud . (17a,b)

The first reflects the wall-normal rise of u in the LD into the overlap with the MD.

The predominance of the inertia terms there has u varying proportional to ut(y+A)r

in leading order, with r depending on the behaviour of the oncoming flow as x → 0−
and the x-dependence of the displacement function A being part of the solution of

the TD problem. In turn, utδLD/δv gives the magnitude of the u-, utδLD that of the

ψ-perturbation exerted by the LD displacement in the MD. The latter produces a v-

disturbance −∂xψ, provoking u- and p-disturbances of the same order of magnitude

udδLD/δTD by linearisation of the flow about the locally frozen oncoming one; we

either identify ut with ud (laminar BL) or use (11) (turbulent wall layer) and con-

sider (10b) when matching the MD and the UD with a passive buffer layer. Those

p-variations react on the LD, giving u2
LD ∼ udδLD/δTD by (16a) and (17b) by (16b).

In case A), we set δv = Re−1/2 and r = 1 as u in the LD matches u ∼ y at the base

of the unperturbed BL upstream with positive skin friction. Then (16b), (17) imply

the conventional TD scaling. We recall that u2 ∼ p ∼ Re−1/4 in the LD: for massive

separation, (3) gives p ∼ u2
d kδ

1/2
TD and the classical results k ∼ Re−1/16, ud ∼ 1.

In case B), we are concerned with an external HK flow parametrised by k typi-

cally independent of Re; the relationship for p in the LD holds as in case A). Here

(16) gives u2
d kδ

1/2
TD ∼ δ 2

TD/(Re2δ 4
LD). From this and (17b) we extract

δTD = u
−4/3

d k−10/9Re−4/9 , δLD = u−1
d (k Re)−6/9 . (18)

In the most interesting situation (ii), we have again r = 1 in (17a). Eliminating uLD

with the aid of (16b) yields the estimate for δv, using (11), (7), (6) completes the

scaling even of the oncoming turbulent BL and shows that the submerged TD of

case B) here implies δTD/δ ∼ 1/ lnRe (k fixed) only:

δv = u
−2/3

d
k4/3εRe−5/9 , T = u

−1/3

d
k−4/3ε−2Re−4/9 , ε ∼ κ/(9lnRe) . (19a,b,c)
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These considerations apply also to nominally unsteady flows (i.e. in the LD

where δTD/uLD forms the time scale), in case A) also to supersonic external flows.

In the present case B) (ii), the TD problem is cast into standard form independent

of k, i.e. just depending on (x̂, ŷ) := (x,y)/δTD, ȳ := y/δLD, and first devised and

solved numerically for laminar gross separation [8]. The translational invariance

of its solution against a x̂-shift agrees with the indeterminacy of k. In the UD, we

expand ψ ∼ δTDud ŷ+ · · ·+(4δ
3/2
TD k/3)ψ̂(x̂, ŷ)+ · · · and ψ̂ being part of the solution

as ψ̂ ∼−ℜ(ẑ− b̂)3/2 (ẑ → ∞) with a constant b̂ ∈ R condensing the origin shift.

That form is due to the match with (12) and the singularity (5a) recovered by Ψ2 and

justifies a) and b) in Sect. 2.1: b̂ = 0 by (15). This fixes the location of separation

with an accuracy of O(δTD) — once a self-consistent global flow picture has fixed k.

3 Strong delay: Rayleigh stage and beyond

The downstream-moving TD first shrinks as k increases to O(1) to admit the “im-

mersed” structure of case B) (ii) and grow again for k ≫ 1 by (18), (19) and (4)

so that its substructure breaks down for d varying algebraically with Re. However,

its invalidity is already encountered in a new limit d ∼ 1/k2 ∼ ε1/2/(− lnε)1/4 fix-

ing d [6]: the BL has grown as the linear decay of us signals the advent of the

rear stagnation point such that the relative velocity defect is locally of O(1) and the

scenario of Sect. 2.1 no longer applies. This finally gives rise to a Rayleigh stage

around separation or the much weaker constraint T ≪ 1/ lnRe rather than (19b) [6]:

Fig. 2b. Here the fully nonlinear inertia terms in (1b) (i = 1) are retained in the sub-

layer where Bernoulli’s law prevails. Solving the (homogeneous) Rayleigh problem

subject to Wiener–Hopf-type boundary conditions is a topic of the current activities.

Increasing k (and T ) further raises a novel stage of ultimately delayed separation

[7] with the vorticity again convected by the stagnating external flow as in (14a,b).

Regarding moderately retarded separation, unsettled questions concern the merge

of the free shear layers closing the stagnation zone for larger values of k (cf. Fig. 1)

and and the additional delay by distributed wall roughness markedly modifying (10).
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