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Abstract The classical do-nothing condition is very often prescribed at outflow
boundaries for fluid dynamical problems. However, it has a severe drawback in the
context of the Navier-Stokes equations, because not even existence of weak solu-
tions can be shown. The reason is that this boundary condition does not exhibit any
control about inflow across such boundaries. This has also severe impact onto the
stability of numerical algorithms for flows at higher Reynolds number. A modifi-
cation of this boundary condition is one possibility to circumvent these drawbacks.
This paper addresses such modifications in the context of the skew-symmetric for-
mulation of the convective term. Moreover, we introduce a parameter which gives
the possibility to downsize possible inflow even more and to enhance the stability
further. Numerical examples illustrate the effectiveness of the approach.

1 Introduction

The classical do-nothing condition (CDN) is very often prescribed at outflow bound-
aries for fluid dynamical problems. However, not even existence of weak solutions
can be shown, if this condition is used for the Navier-Stokes equation, see [6]. The
reason is that this boundary condition does not exhibit any control about inflow
across such boundaries, see [4]. This has also severe impact onto the stability of
numerical algorithms for flows at higher Reynolds numbers. The directional do-
nothing (DDN) boundary condition is one possibility to circumvent this disadvan-
tage. In particular, existence of weak solutions are proved in [4], and in several appli-
cations the stability is enhanced compared to the classical do-nothing condition, see
e.g. [1, 7]. The issue of appropriate boundary conditions for the Navier-Stokes and
Euler system is also recently addressed by Becker et al. in [2]. Therein, a Nitsche
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method with a proper scaling is proposed in order to obtain control over the kinetic
energy.

This paper addresses a variant of the DDN condition in the context of the skew-
symmetric formulation of the convective term. We show existence of weak solutions
and, in the case of small data, also uniqueness. Moreover, we introduce a parameter
which gives the possibility to downsize possible inflow even more and to enhance
the stability further.

We consider the stationary incompressible Navier-Stokes equation in the bounded
domain Ω ⊂ Rd , d ∈ {2,3},

(u ·∇)u−ν∆u+∇p = f in Ω ,

div u = 0 in Ω .

Here, p : Ω → R denotes the pressure and u : Ω → Rd the velocity field. The
usual variational spaces for these functions are L2(Ω) for p and the Sobolev space
H1(Ω)d for u. The constant ν > 0 is the viscosity. The right hand side f is assumed
to be in L2(Ω)d . The norm in the Sobolev space W m,p(Ω) is denoted by || · ||W m,p(Ω).
For the L2(Ω)-norm we suppress the index and simply write || · ||. The corresponding
L2-scalar product is denoted by (·, ·).

The boundary ∂Ω = S0 ∪ S1 is split into a Dirichlet part S0 with homogeneous
Dirichlet conditions

u = 0 on S0

and an outflow part S1. Although S1 is called ”outflow” boundary, the flow may
also be directed (locally) into Ω due to possible presence of vortices. The classical
do-nothing condition (CDN) reads

ν
∂u
∂n
− pn = 0 on S1. (1)

This condition is easy to implement for discretization methods based on variational
formulations, because it arises naturally by integration by parts of the viscous term
and the pressure gradient. The corresponding semi-linear form for φ ∈ V := {φ ∈
H1(Ω)d | φ = 0 a.e. on S0} and χ ∈ Q := L2(Ω) reads

B(u, p;φ ,χ) = ((u ·∇)u,φ)+(ν∇u,∇φ)− (p,divφ)+(divu,χ).

The severe drawback of the corresponding variational formulation is that not even
existence of weak solutions can be shown due to the absence of a uniform stability
property of possible solutions, see e.g. [4].
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2 Directional do-nothing condition

In order to distinguish between the outflow and the inflow portion of S1 we use for
a scalar quantity v the notation

v+ := max(v,0) and v− := min(v,0),

such that v = v+ + v−. In contrast to (1) we consider in this work the directional
do-nothing condition (DDN):

ν
∂u
∂n
− pn− 1+β

2
(u ·n)−u = 0 on S1, (2)

with free parameter β ≥ 0. This boundary condition was analyzed in [4] for the
particular case β = 0. Moreover, we consider here the case of the skew-symmetric
formulation of the convective term in combination with such DDN condition.

The skew-symmetric formulation of the convective term is obtained for u,φ ∈V
and divu = 0 by partial integration:

((u ·∇)u,φ) =
1
2

(
((u ·∇)u,φ)− (u,div(φ ⊗u))+

∫
∂Ω

(u ·n)u ·φ ds
)

=
1
2
(((u ·∇)u,φ)− (u,(u ·∇)φ)))+

1
2

∫
S1

[(u ·n)++(u ·n)−]u ·φ ds.

The arising boundary integral does not vanish because we do not have Dirichlet
conditions on S1. We will treat the DDN condition (2) in the weak sense. This leads
us to the following associated bilinear form (linear in (u, p) and (φ ,χ)):

A(w)(u, p;φ ,χ) =
1
2
(((w ·∇)u,φ)− (u,(w ·∇)φ))+(ν∇u,∇φ)

−(p,divφ)+(divu,χ)

+
1
2

∫
S1

[(w ·n)+−β (w ·n)−]u ·φ ds.

The variational equation becomes for X :=V ×Q:

(u, p) ∈ X : A(u)(u, p;φ ,χ) = ( f ,φ) ∀(φ ,χ) ∈ X . (3)

The variational formulation with skew-symmetric convection terms and CDN con-
dition is also given by (3) with parameter β = −1. The advantage of this bilinear
form A for β ≥ 0 consists in the following two stability properties:

• The skew-symmetric form of the convective term is very convenient, because for
the convective term it holds:
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1
2
(((w ·∇)u,u)− (u,(w ·∇)u)) = 0 ∀w ∈V .

In particular, this sum vanishes even though w is not divergence free.
• Due to the signs of the boundary terms of DDN-type we get non-negativity for

the semi-linear form

A(w)(u, p;u, p) ≥ 0.

We will see in the next section that these properties are important to ensure existence
(and uniqueness) of solutions.

The formulation (3) has certain similarities to the one proposed in [5] but it is
not identical. They include the Stokes solution in the variational formulation and
use the symmetric stress tensor σ instead of ∂nu. In the particular case that the
Stokes solution vanishes and for a certain choice of parameters, their formulation
has similarities to (3) with β = 0.

3 Existence of weak solutions

For showing stability of the semi-linear form A we make use of the following non-
negative quantity:

|||u|||β :=
(

ν ||∇u||2 + 1
2

∫
S1

[(u ·n)+−β (u ·n)−]u2 ds
)1/2

.

Obviously holds |||u|||β ≥ ν ||∇u|| ≥ 0 for arbitrary non-negative β .

Proposition 1. Let Ω ⊂ Rd , d ∈ {2,3}, a bounded Lipschitz domain, f ∈ L2(Ω)d ,
S1 ⊆ ∂Ω a C1 boundary, and β ≥ 0. Then a weak solution (u, p) of (3) exists.
Solutions of (3) are bounded:

|||u|||β ≤ cΩ ν
−1/2|| f ||. (4)

Proof. Testing the semi-linear form A diagonally with φ = u and χ = p with a
possible solution (u, p) of (3) leads to the equality:

( f ,u) = A(u)(u, p;u, p)

= ν ||∇u||2 + 1
2

∫
S1

[(u ·n)+−β (u ·n)−]u2 ds

= |||u|||2
β
.

Applying Cauchy-Schwarz and the Friedrichs inequality (with constant cΩ ) yields
the upper bound:

|||u|||2
β
≤ || f ||||u|| ≤ cΩ || f ||ν−1/2|||u|||β .
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This implies (4). Hence, possible solutions are uniformly bounded. Now, we apply
standard arguments with finite-dimensional Galerkin solutions un ∈ V n, dimun =
n∈N. The uniform bound (4) is sufficient to deduce the existence of a limit solution
u ∈ V for n→ ∞. The pressure p is obtained by help of the inf-sup condition. The
C1 property of S1 is needed for the application of a trace theorem. For details we
refer to [4] where the proof is presented in more detail for the case β = 0. �

4 Uniqueness of weak solutions for small data

Proposition 2. Under the same conditions as Proposition 1 and the additional as-
sumption of small data

|| f || ≤ cν
2,

the solution (u, p) of (3) is unique. The constant c only depends on Ω and S1.

Proof. Let (u1, p1) and (u2, p2) be two solutions of (3). Reverse integration by parts
of the convective terms yields for both solutions (i = 1,2):

( f ,φ) = A(ui)(ui, pi;φ ,χ)

= ((ui ·∇)ui,φ)+ν(∇ui,∇φ)− (pi,divφ)+(divui,χ)

−1+β

2

∫
S1

(ui ·n)−ui ·φ ds.

With the particular choice φ = e := u1− u2 and χ = q := p1− p2 we obtain the
equality

0 = ((u1 ·∇)u1− (u2 ·∇)u2,e)+ν ||∇e||2

−1+β

2

∫
S1

((u1 ·n)−u1− (u2 ·n)−u2) · eds.

The convective and the boundary terms can be written as

(u1 ·∇)u1− (u2 ·∇)u2 = (e ·∇)u1 +(u2 ·∇)e,

(u1 ·n)−u1− (u2 ·n)−u2 = (e ·n)−u1 +(u2 ·n)−e.

This leads to the equality

ν ||∇e||2 = −((e ·∇)u1 +(u2 ·∇)e,e)

+
1+β

2

∫
S1

((e ·n)−u1 +(u2 ·n)−e) · eds.

The second term on the right hand side can be reformulated by partial integration:
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−((u2 ·∇)e,e) = −1
2

∫
S1

(u2 ·n)|e|2 ds

≤ −1
2

∫
S1

(u2 ·n)−|e|2 ds.

Using the non-positivity of the following boundary integral

β

2

∫
S1

(u2 ·n)−|e|2 ds ≤ 0,

yields the inequality:

ν ||∇e||2 ≤ −((e ·∇)u1,e)+
1+β

2

∫
S1

(e ·n)−u1 · eds.

The convective term can be bounded in the classical way by Hölder’s inequality and
the embedding of Sobolev, H1(Ω)⊂ Lq(Ω), with 1≤ q≤ 6 for d ∈ {2,3}:

((e ·∇)u1,e) ≤ ||(e ·∇)u1||L3/2 ||e||L3

≤ ||e||L6 ||∇u1||||e||L3

≤ C||∇u1||||∇e||2.

Taking into account that S1 is C1-regular, the remaining boundary integral can be
bounded by the trace theorem, W 1,1(Ω)⊂ L1(S1):∫

S1

(e ·n)−u1 · eds ≤ ||e2u1||L1(S1)

≤ C||e2u1||W 1,1(Ω)

= C
(
||e2u1||2L1(Ω)+ ||∇(e2u1)||2L1(Ω)

)1/2
.

Application of the Sobolev embedding (in similar fashion as above) and Friedrichs
inequality yields: ∫

S1

(e ·n)−u1 · eds ≤ C||∇u1||||∇e||2.

Hence, we arrive at the upper bound

ν ||∇e||2 ≤ C||∇u1||||∇e||2.

In the case of multiple solutions, e 6= 0, it follows

||∇u1|| ≥ C−1
ν .

Further, we know due to the stability result (4) that the upper bound holds
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||∇u1|| ≤ cΩ ν
−1|| f || .

The combination of these two inequalities implies in the case e 6= 0:

|| f || ≥ 1
cΩC

ν
2.

This states the assertion that the data must be large enough to admit multiple solu-
tions. �

Remark 1. We cannot expect uniqueness without the smallness assumption in Propo-
sition 2, since we encounter similar difficulties as for Navier-Stokes in the standard
case of homogeneous Dirichlet conditions on entire ∂Ω .

5 Numerical results

In this section, we illustrate the stability properties of the DDN condition and its
classical counterpart (CDN) in two examples. The simulations are done with piece-
wise bilinear elements, so called Q1-elements for pressure and velocities. The ab-
sence of a discrete inf-sup condition for this equal-order pair is cured by local pro-
jection stabilization (LPS). The convective term is stabilized by a LPS technique
as well. For details, we refer to [3]. We consider a stationary problem of a rotating
vortex driven by a right-hand side, and a standard time-dependent backward facing
step problem.

5.1 Standing vortex

In this example, we consider two computational domains, the larger reference do-
main Ωre f = (−2,1)× (−1,1) and the cut-domain Ω = (−1,1)× (−1,1). At the
boundaries x = −2, x = 1, y = −1, and y = 1 we consider homogeneous Dirichlet
conditions for u. The outflow conditions (CDN and DDN) are implemented at the
left boundaries, i.e. for Ωre f at x =−2 and for Ω at x =−1. The right-hand side is
given by

f (x) = s(|x− x0|)xt ,

where xt is the vector obtained by rotating x counter-clockwise by the angle π/2,
x0 = (1/2,0) and s is the scaling function

s(r) =
{

r2(r−1/2)2 if r ≤ 1/2
0 else.

This right-hand side enforces a rotation around the origin.
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Fig. 1 Pressure field (colors) and streamlines for µ = 7 · 10−4 in the large domain Ωre f (left fig-
ures), and in the cut domain Ω (right figures) obtained with the classical do-nothing condition
(CDN). A spurious pressure peak (red color) appears in the lower left corner.

Fig. 2 Pressure field (colors) and streamlines for µ = 7 · 10−4 in the large domain Ωre f (left fig-
ures), and in the cut domain Ω (right figures). The upper row shows the use of the directional
do-nothing condition (DDN) with β = 0, the lower row corresponds to β = 2.

In Figure 1 the pressure field and streamlines for the Navier-Stokes system with
the classical do-nothing condition (CDN) are shown. Comparison of the solutions
for Ω and Ωre f shows that the CDN does a pretty good job. However, some differ-
ences can be observed in the flow field close to the lower left corner in Ω . Moreover,
a small recirculation zone appears which is not the case in the larger domain Ωre f .
An even more evident difference is a broad pressure peak in the same area.
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Fig. 3 Solution of the backward-facing step problem with the CDN condition and two different
lengths of the domain. The shorter configuration (lower figure) shows a secondary recirculation
zone, which is too large.

The solutions with the directional do-nothing (DDN) conditions are shown in the
upper and lower row of Figure 2 for β = 0 and β = 2, respectively. The (artificial)
recirculation zone at the lower left corner of Ω reduces with higher values of β .
The spurious pressure peak disappears as well. In this example, the use of the DDN
condition is obviously better than the CDN condition.

5.2 Backward-facing step

The second example consists of the backward-facing step configuration at Reynolds
number Re = 8,000. The flow becomes time-dependent, because it is strongly
convection-dominated. For time integration we use the trapezoidal rule (Crank-
Nicolson) with constant time step ∆ t = 0.125. As initial condition we choose a
parabolic flow in the upper part of the domain, consistent with the parabolic inflow
at the left boundary.

In Figure 3 we depict streamlines at time t = 25 by use of the CDN condition for
two different lengths of the domain, L = 7 and L = 10. The streamlines are colored
according to the horizontal velocity component. In the shorter domain, the location
of the outflow boundary S1 is located inside the secondary recirculation zone. There-
fore, the use of CDN leads to a too dominant recirculation. The larger domain leads
to a smaller amount of recirculation. Using the DDN condition with β = 0 results in
solutions displayed in Figure 4. The solution for the longer domain coincides per-
fectly with the one with CDN in the long configuration. Due to the smaller amount
of recirculation at the outflow boundary at x = 10, the choice of boundary condition
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Fig. 4 Solution of the backward-facing step problem with the DDN condition (β = 0) and two
different lengths of the domain. Although the fit of the two solutions is not perfect, the solution of
the shorter configuration is much better than the corresponding one with CDN.

is less critical in this case. However, the solution with DDN condition in the shorter
domain coincides much better with the one in the longer configuration. In particular,
the spurious recirculation is avoided with the DDN condition. We conclude that the
origin of this spurious inflow is a consequence of the lack of stability of the classical
do-nothing (CDN) condition.
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