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Abstract. The paper presents a numerical study of the efficiency of the

newly proposed far-field boundary simulations of wall-bounded, stably strati-
fied flows. The comparison of numerical solutions obtained on large and trun-

cated computational domain demonstrates how the solution is affected by the
adopted far-field conditions. The mathematical model is based on Boussi-
nesq approximation for stably stratified viscous variable density incompressible

fluid. The three-dimensional numerical simulations of the steady flow over an

isolated hill were performed using a high-resolution compact finite difference
code, with artificial compressibility method used for pressure computation.

The mutual comparison of the full domain reference solution and the trun-
cated domain solution is provided and the influence of the newly proposed
far-field boundary condition is discussed.
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1. Introduction. The wall-bounded flows appear in many physical applications
and are subject of long-lasting theoretical and numerical investigation. The problem
of numerical simulation of such flows is necessarily associated with the choice of a
bounded computational domain. At the newly created artificial boundaries (i.e. all
boundaries except the wall), located at a finite distance from the region of interest,
some boundary conditions need to be prescribed. This is necessary from theoretical
point of view, to have a well-posed problem, but also from the numerical point of
view, to fully determine the numerical solution at the discrete level. The boundary
conditions adopted on the artificial boundaries of the computational domain need
to be strong enough to guarantee the solvability of the problem, while on the other
hand they should be “soft enough” to respect the natural physical behavior of the
computed solution fields, rather then forcing them into some pre-defined state.

The problem solved in this paper is motivated by the atmospheric boundary layer
flow over an isolated smooth hill, under the conditions of stable stratification. The
computational domain was chosen as a three-dimensional rectangular box (cuboid),
with six boundaries. One of them, the lower one, is the solid impermeable wall, in
our case representing the terrain surface, with the low, smooth isolated hill. This is
the only physical boundary of the computational domain. All the other boundaries
are artificial. When the coordinate system (attached to the computational domain)
is aligned with the mean flow, one of the artificial parts of the boundary can be
considered as inlet and one (the opposite one) as outlet. The lateral and upper
boundaries are kind of far-field open boundaries. The focus of this paper is on
these far-field artificial boundaries and the associated boundary conditions.

In the setup described above, the far-field boundaries (both the upper and lateral)
have some common characteristics. The flow is supposed to be almost (but not
necessarily exactly) parallel to the boundary, with the tangential velocity component
being in general dominant over the normal one. The (boundary-) normal velocity
component cannot be neglected (considered to vanish) without significantly affecting
the flow in the computational domain. The flow in such far-field regions can be
considered as convection-dominated, except a narrow near wall part of the lateral
boundaries.

The mathematical modeling and numerical simulation of wall-bounded, convec-
tion-dominated flows in this setup is in general very sensitive to the artificial bound-
ary conditions applied at far-field boundaries. In the homogeneous non-stratified
fluid flow case, the flow perturbations caused by the wall-mounted obstacle (hill in
our case) are well localized, affecting a region in space being dependent on the size
of the obstacle. The outer boundaries of the computational domain can usually be
shifted “far enough” from the perturbed region of interest. Also the computational
grid being coarsened towards those far-field boundaries is easy to construct. Thus
it is natural and relatively easy to adopt and prescribe the far-field boundary con-
ditions based on the undisturbed “outer flow” limit, e.g., assuming vanishing some
flow components or their gradients, imitating some background fully developed flow.

The stratified case is in this respect much more problematic. Every obstacle over
which the stratified fluid flows, induces flow perturbation that generates large grav-
ity waves field that perturbs the flow. It has a wavelength dictated by the strength
of the stratification (background density gradient) rather than being related to the
size of the obstacle. Also the spatial extent of the gravity waves is much larger than
the characteristic size of the obstacle (see e.g. [1], [2]). Thus in general the far-field
boundary of the computational domain cannot be placed “far enough” to consider
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the flow to be unperturbed. Also due to the presence of the gravity waves in the far
field, the computational grid cannot be excessively coarsened without significantly
affecting the solution.

The aim of this paper is to propose and test a boundary conditions setup allowing
to numerically resolve the flow, including possible gravity waves, in the whole com-
putational domain, up to the far-field boundaries. The efficiency of the proposed
far-field boundary setup is tested by comparing the numerical solution obtained for
large and truncated computational domain. The goal is to show that the proposed
computational setup provides a numerical solution on the truncated domain that
differs only marginally from the reference solution obtained on much larger domain.

2. Mathematical model.

2.1. Governing equations. The full incompressible, viscous (laminar), variable
density model can be written as:

divu = 0 , (1)

∂ρ

∂t
+ u · grad ρ = 0 , (2)

ρ

(
∂u

∂t
+ div(u⊗ u)

)
= −grad p+ div2µD + ρg , (3)

where µ is the dynamic viscosity, tensor D = 1
2 (gradu+ graduT ) is the symmetric

part of velocity gradient, and g is the gravitational acceleration. These equations
lead to the set of governing equations for the velocity u(x, t), density ρ(x, t) and
pressure field p(x, t). This model is sometimes called the non-homogeneous Navier-
Stokes equations.

This system is used as a starting point to develop the so-called Boussinesq ap-
proximation. The pressure and density fields are assumed to be perturbations of
the hydrostatic equilibrium state:

ρ(x, t) = ρ0(x) + ρ′(x, t) i.e. ρ(x, y, z, t) = ρ0(z) + ρ′(x, y, z, t) ,

p(x, t) = p0(x) + p′(x, t) i.e. p(x, y, z, t) = p0(z) + p′(x, y, z, t) ,

where the background density and pressure fields are linked by the hydrostatic
relation:

grad p
0

= ρ
0
g i.e.

∂p0

∂z
= ρ

0
g ,

with the gravity force (acceleration) expressed as g = (0, 0, g). This leads to a
rearranged momentum equation:

∂u

∂t
+ div(u⊗ u) =

1

ρ

(
−grad p′ + div2µD + ρ′g

)
. (4)

So far only decompositions and rearrangements were applied to the governing sys-
tem, no approximations were made, and thus the momentum equation (4) is equiv-
alent to the original equation (3).

The Boussinesq approximation is obtained from the full system of non-homo-
geneous incompressible Navier-Stokes equations by replacing the complete density
ρ in the convective terms by a suitable (fixed in space and time) characteristic
density ρ∗ and by using the notation p for the pressure perturbation. This immedi-
ately leads to the approximate set of governing equations, the so-called Boussinesq
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approximation1:

divu = 0 ,

∂ρ

∂t
+ u · grad ρ = 0 ,

∂u

∂t
+ div(u⊗ u) =

1

ρ∗

(
−grad p+ div2µD + (ρ− ρ

0
)g
)

.

This is the system that was used to compute the fields of velocity u(x, t) =
(u(x, t), v(x, t), w(x, t)), pressure (perturbation) p(x, t) and density ρ(x, t) in the
numerical simulations presented in this paper.

2.2. Problem of boundary conditions. The outflow as well as far-field boundary
conditions for incompressible flow models have been subject of research for a long
time. As noted above, the boundary conditions are needed either to complement
the governing equations to form a well-posed mathematical problem, or to fully
determine the numerical solution at the discrete level. In any case, when modelling
a physically relevant problem, they should also respect the physical nature of the
problem.

This paper is motivated by the incompressible non-homogeneous (variable den-
sity) stratified flow. The same problem, although being less apparent, is also present
in the homogeneous constant density case, represented by the classical incompress-
ible Navier-Stokes equations. Thus most of the below presented discussion and con-
clusions can easily be translated into the traditional homogeneous Navier-Stokes
based models.

Before presenting our tested newly proposed boundary conditions setup, let us
shortly mention two approaches that may come to question when dealing with the
above describe flows models.
Do-nothing condition is based on the paper by Heywood, Rannacher and Turek
[8]. The do-nothing (DN) condition is seen as a natural type of pressure-velocity
outflow condition implicitly embedded in the variational formulation of the problem.
This condition (for sufficiently smooth solution) implies that on the outlet boundary:

p = µ
∂un
∂n

and µ
∂uτ
∂n

= 0 , (5)

where un and uτ denote the (boundary-)normal and tangential components of ve-
locity. It means that the homogeneous Neumann condition is applied to tangen-
tial components of velocity vector while the normal derivative of normal velocity
component is used to set the Dirichlet condition for pressure. This condition was
successfully used in many simulations in the past decades. Recently, in the paper
by Braack and Mucha [6], the so called directional do-nothing (DDN) condition
was introduced and studied. In most cases the do-nothing condition performs very
well, however, for our purposes it does not seem to be suitable. We are solving a
convection-dominated case where the viscosity is small and so are the normal deriva-
tives of velocity. Thus it gives an almost constant (close to zero) pressure along the
boundary. Moreover the assumption of homogeneous Neumann condition for the
tangent velocity components is very strong and sometimes non-physical, especially
in the stratified case.

1See [3] for the formal development of the model.
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Figure 1. Vertical velocity contours and flow streamlines in the
plane of symmetry.

Radiation condition was introduced by Orlanski [11] and further extended e.g.
by Marchesiello in [10]. It is being used (in many variants) for various wave phe-
nomena simulations, mainly in the environmental fluid mechanics. It is designed as
non-reflective (or transparent) boundary condition to allow the traveling waves to
leave the computational domain without being reflected back to the computational
field. Roughly speaking, it is based on setting non-homogeneous Neumann condi-
tion for the considered variable, using the numerical estimate of the traveling wave
speed. This condition is however designed for traveling waves and for stationary
waves it will degenerate to the simple homogeneous Neumann condition for all flow
quantities. Namely in the case considered in this paper it will reduce to

∂un
∂n

= 0,
∂uτ
∂n

= 0 and
∂p

∂n
= 0 .

The homogeneous conditions are often used as far-field conditions, assuming that
at the far-field boundary the boundary-normal change of the variable is negligible.
This might be acceptable in homogeneous (non-stratified) flows, but it is certainly
far from being applicable in stratified cases including gravity waves in the far field.

Preliminary example. When the stratified flow over a hill is solved2, the solution
contains large field of gravity waves on the lee side of the hill. These waves can
best be visualized either using the flow streamlines, showing the characteristic wavy
pattern, or by contours (or isosurfaces) of the vertical component of velocity. The
regions of ascending/descending flow form a typical quasi-periodic pattern behind
the hill. Such situation is shown in Fig. 1, where the vertical velocity contours are
drawn together with streamlines in the plane of symmetry of the computational
domain (and of the flow field). The same case can be visualized in 3D, using the
isosurfaces of vertical velocity shown in Fig. 2, where the result is first visualized
on larger domain (left) and then a detail of the same result, truncated to the size
of a smaller domain, is shown (right). Going back to 2D visualization, the vertical
velocity contours in the plane of symmetry are shown in Fig. 3. The position of the
horizontal cutting plane, that is reducing the vertical size of the domain, is marked
by a dashed line. This result will now be taken as a reference solution. The aim
is to use only the small domain, compute the solution just on this truncated do-
main, applying the artificial boundary conditions on the far-field (upper and lateral)
boundaries, and compare this truncated domain solution with the one obtained on
the larger domain. The goal is to get numerical solution (on the truncated domain)

2The results presented in this section only serve as illustration of the problem of boundary
conditions. See Section 3.2 for detailed description.
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complete solution truncated solution

Figure 2. Vertical velocity isosurfaces.

Figure 3. Vertical velocity contours in the plane of symmetry –
truncated solution.

Figure 4. Vertical velocity contours in the plane of symmetry –
truncated domain – ∂p

∂n = 0.

that will be not disturbed and significantly affected by the presence of the artificial
far-field boundaries and the associated boundary conditions.

Now, let us consider only the smaller, truncated computational domain (see
Section 3.1). For the purpose of this example, let us assume that at the far-field
boundaries all flow variables, except pressure, are extrapolated (e.g. linearly3).
For pressure, the homogeneous Neumann condition is used. Solving now the same
case as above, but only on the small domain with the above mentioned artificial
boundary conditions, the vertical velocity field shown in Fig. 4 was obtained in the
plane of symmetry, instead of the results shown in Fig. 3.

From the direct comparison of the results shown in Figs. 3 and 4 is obvious, that
the truncation of the computational domain and mainly the homogeneous Neu-
mannn condition used for pressure, have notable impact on the obtained numerical
solution. The basic gravity waves flow pattern remains essentially the same (at
least close to the hill), however the vertical velocity contours are severely abrupt

3It is possible to show that the linear extrapolation is equivalent to the use of one-sided first
order approximation of the derivative in the corresponding direction.
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close to the upper boundary. The enforced zero normal pressure derivative seems
to block the corresponding boundary-normal flow component. In fact, the same
influence of the zero normal pressure derivative (homogeneous Neumann) condi-
tion can be observed on the lateral boundaries, where again the boundary normal
(transversal) velocity component v is blocked. Figs. 5 and 6 show again, side by side,
the truncated solution from larger domain with the results obtained on the smaller
(truncated) domain (applying the artificial boundary conditions using homogeneous
Neumann condition for pressure).

truncated solution truncated domain – ∂p
∂n = 0

Figure 5. Contours of the transversal velocity component v and
flow streamlines.

truncated solution truncated domain – ∂p
∂n = 0

Figure 6. Contours of the vertical velocity component w and flow streamlines.

The blocking of boundary normal velocity component is already evident from the
slices shown in Figs. 5 and 6, but the most apparent differences can be observed
in a direct comparison of the 3D isosurfaces of the transversal and vertical velocity
components shown in Figs. 7 and 8.
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truncated solution truncated domain – ∂p
∂n = 0

Figure 7. Isosurfaces of the transversal velocity component v.

truncated solution truncated domain – ∂p
∂n = 0

Figure 8. Isosurfaces of the vertical velocity component w.

The presented illustrative comparison of the truncated solution from a larger
domain with the solution obtained using standard artificial boundary conditions on
a smaller (truncated) domain shows significant differences. Although the truncated
domain solution can be considered good enough away from the far-field bound-
aries, close to the hill, it is evident that this solution is incorrect (or at least very
inaccurate) close to the artificial far-field boundaries.
Proposed convective pressure derivative boundary condition. Motivated by
the above demonstrated failure of the homogeneous Neumann condition for pressure
and by the previous tests summarized e.g. in [4, 5] the following non-homogeneous
Neumann condition for pressure is proposed:

∂p

∂n
= ρ∗|u|∂un

∂n
, (6)

Here un is the wall-normal component of the velocity and |u| is the local velocity
magnitude. This condition is applied to pressure at far-field, while the remaining
variables are just extrapolated (e.g. linearly) from the interior of the domain to the
boundary points.

The essential logic behind the proposed convective pressure derivative (CPD)
condition is based on the use of the (boundary) normal derivative of the normal
velocity component as an indicator of the velocity change “across” the artificial
boundary. It is assumed that the local normal velocity change is related to the
normal pressure difference. The multiplicative scalar term ρ∗|u| is added as a scaling
factor (between the pressure and velocity derivative) to keep the proper dimension
of the convective term in the Navier-Stokes equations. For further discussion of the
proposed CPD condition (6) see Section 4.
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3. Numerical simulations. The numerical simulations presented within this pa-
per were designed and performed in order to computationally demonstrate the in-
fluence and efficiency of the far-field boundary condition setup associated with the
convective pressure derivative condition (6).

The computational test case is motivated by the towing tank laboratory exper-
iments described in [9] and numerical simulations from [7]. This is however just
a starting point and the actual configuration of our numerical test cases differs
substantially in several aspects from the above mentioned papers.

The numerical solver used to obtain the results presented in this paper is a
three-dimensional extension of the method used and described in [1, 2]. It uses
a compact finite-difference discretization in space and Strong Stability Preserving
(SSP) Runge-Kutta (RK) time integration. Here the sixth-order spatial discretiza-
tion was combined with third-order SSP RK method in (pseudo-)time. The artificial
compressibility was used to compute the pressure and to enforce the divergence-free
constraint. In order to smooth the high frequency numerical oscillations, the eight
order compact low-pass filter was used. This method built into our in-house devel-
oped code was tested (in its 3D version) e.g. in [3], while the essential features are
inherited from the 2D version used in [1, 2].

3.1. Computational setup. The computational domain is chosen as a bounded
part of a half-space, with a rotationally symmetric hill placed on a wall. The
3D computational block has a size Lx × Ly × Lz, with the z coordinate pointing
in vertical direction (against the gravitational acceleration) and the x coordinate
pointing in the free stream direction. The hill shape is the same as in [9], resp. [7],

i.e. the surface elevation is given by zs(r) = h/
(

1 + (r/h)
4
)

, where r denotes the

distance from the hill symmetry axis. The parameter (length scale) h represents
the maximum hill height (set to 2cm in this case), as well as the hill half width4.

In order to compare the numerical solution obtained on the truncated domain
(using the artificial far-field conditions), with the reference solution from the larger
domain, two computational domains were used. The larger domain is extended
(with respect to the small one) both vertically (up) and horizontally (on both sides)
by a length H = Lz/2. So the upper and lateral boundaries are shifted by H and
the corresponding computational grid is extended. Both domains are shown in
Fig. 9, where the truncated standard domain is emphasized by the red color. The

Figure 9. Computational domain and its extension.

4The width of the hill at the height of z = h/2 is 2h.
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standard (smaller, truncated) domain dimensions, in terms of maximum hill height
h, are Lx = 30h, Ly = 10h, Lz = 5h. The hill is placed (together with the origin
of the coordinate system) at the center of this domain base, i.e., at the position
Lx/2 = 15h from the inlet, at the plane of symmetry.

The computational grid is structured, wall fitted, smoothly refined close to the
hill. The smaller, truncated domain grid has 156×66×56 cells. For the larger
domain, this existing small grid is just extended by adding regularly spaced addi-
tional grid points, so the final grid size is 156×86×74 cells. On the overlapping
common part of both domains the grid is identical. The minimum cell size is
∆x = ∆y = 0.2cm and ∆z = 0.1cm.
Boundary conditions. The standard computational setup used in the below dis-
cussed series of simulations is based on the following boundary conditions:

• Inlet . . . The velocity profile u = (u(z), 0, 0) is prescribed. The horizontal
velocity component u is given by the second order polynomial profile u(z) =
U∗
(
2z̃ − z̃2

)
, where non-dimensional height z̃ is defined using the boundary

layer thickness as z̃ = z/(5h/2). Above the height z = 5h/2, the profile is
extended by the constant velocity U∞ = U∗. Density perturbation ρ′ = ρ−ρ0

is set to zero, i.e. ρ = ρ
0
(z). Homogeneous Neumann condition is used for

pressure.
• Outlet . . . All velocity components and also the density (perturbation) are

extrapolated. Pressure is set to a constant (zero).
• Wall . . . No-slip conditions are used on the wall, i.e. the velocity vector is

set to u = (0, 0, 0). The density is extrapolated. Homogeneous Neumann
condition is used for pressure.

• Far field . . . On upper as well as lateral boundaries all velocity components
and also the density are extrapolated. The non-homogeneous condition (6) is
used for pressure.

Figure 10. Inlet velocity profile setup.

In the simulations shown hereafter, the fluid is characterized by the density
ρ∗ = 1000 kg · m−3 and dynamical viscosity µ = 10−3kg · m−1 · s−1. The linear
background density profile is defined by ρ

0
(z) = ρ∗+γ · z, with the (stable) vertical

density gradient γ = −25 kg · m−4. The gravitational acceleration acts against
the z coordinate, so g = (0, 0, g) with g = −10m · s−2. The hill height was set to
h = 2cm = 0.02m and the velocity U∗ = 1 cm · s−1 = 0.01 m · s−1.

3.2. Numerical results. The results of the above described model are presented
here in the form of isosurfaces and contours of selected flow quantities. Unless
stated otherwise, the whole computational solution is shown, up to the boundary,
without any truncation or cut-off. For the large domain5, the results are sometimes

5The reference solution computed on the larger domain was obtained using the CPD condition
in the far-field. See Section 3.3 for further details and discussion concerning this choice.



EVALUATION OF ARTIFICIAL BOUNDARY CONDITION 11

truncated to the size of the small domain, to allow for a direct comparison as in
Section 2.2. This is essential to assess the effects of boundary conditions in the
proximity of artificial boundaries of the computational domain.

The transversal velocity contours, plotted at the horizontal slice of the domain
placed at z = h/2 are shown in Fig. 11. The solution obtained using the homo-
geneous Neumann pressure conditions shows that the transversal velocity vanishes
(is blocked) at the lateral boundaries. This is however in contradiction with the
reference truncated solution from the larger domain. The application of the new
non-homogeneous CPD condition provides results that are in this respect closer
to the reference solution, allowing the transversal flow passage through the lateral
boundaries.

truncated solution

truncated domain – ∂p
∂n = 0 truncated domain – CPD

Figure 11. Contours of the transversal velocity component v -
nondimensionalized ṽ = v/U∗.

The same kind of comparison can be made for the vertical velocity contours
plotted in the plane of symmetry in Fig. 12. While the homogeneous Neumann
pressure condition blocks the vertical flow through the upper boundary, both the
truncated solution from the larger domain and the truncated domain solution using
the CPD condition, do not exhibit this singularity. Although the agreement between
the truncated solution and the truncated domain solution using CPD condition is
not perfect, the improvement over the homogeneous Neumann solution is evident, at
least removing the artificial flow blocking at the upper boundary. The improvement
of the solution is most apparent where the discrepancy was most visible, i.e., in the
very different shape of the isosurfaces of the velocity components, already shown in
the demonstration of the failure of the homogeneous Neumann condition shown in
Figs. 7 and 8. Adding now the new convective pressure derivative condition to the
comparison, the great improvement using this condition can be seen for both the
transversal component v in Fig. 13 as well as for the vertical velocity component w
in Fig. 14.

The simulations have shown that on the truncated domain the newly proposed
CPD condition is able to provide a solution that is closer, at least qualitatively, to
the reference solution obtained on a much larger domain. The flow patterns and
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truncated solution

truncated domain – ∂p
∂n = 0 truncated domain – CPD

Figure 12. Contours of the vertical velocity component w - nondi-
mensionalized w̃ = w/U∗.

truncated solution

truncated domain – ∂p
∂n = 0 truncated domain – CPD

Figure 13. Isosurfaces of the transversal velocity component v -
nondimensionalized ṽ = v/U∗.

characteristics are well preserved, despite the severe truncation of the computational
domain. The ability to offer “flow-transparent” far-field boundary conditions, makes
more likely to accept the truncated domain solution in the whole domain, up to the
boundary, without the need of cut-off the evidently non-physical solution in the
regions close to the far-field boundaries, like in the case of homogeneous Neumann
pressure condition. This might, e.g., be of a crucial importance in evaluating certain
physical fluxes across the boundaries, or in the case of models coupling on nested
grids.

3.3. Some additional results. From the presented simulations and the compar-
ison of the truncated domain solution with the reference solution obtained on the
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truncated solution

truncated domain – ∂p
∂n = 0 truncated domain – CPD

Figure 14. Isosurfaces of the vertical velocity component w -
nondimensionalized w̃ = w/U∗.

larger domain a natural question arises whether the choice of the reference solu-
tion was right and how this choice affects the conclusions being made from the
comparisons.

As mentioned earlier, the reference solution was obtained on a larger computa-
tional domain using the CPD condition in the far field. The larger domain was,
compared to the standard truncated one, extended up (made thicker in the ver-
tical z direction) and also extended laterally (made wider in the transversal y
direction) on both sides. The size of the extension (boundary shift) was chosen
H = Lz/2 = (Ly/2)/2. So the question can be posed, what if an even bigger
domain will be used to get the reference solution, and what if the homogeneous
Neumann pressure condition will be used on the far-field boundaries? In order to
be able to give at least some qualitative answer, a series of additional simulations
was performed. Besides the standard truncated domain and the already used do-
main extended by +H, a third domain was adopted where the upper and lateral
boundaries are shifted further by another H, being now shifted by +2H with respect
to the original truncated domain. Simulations were run on all three domains, using
both, the classical homogeneous Neumann and the new CPD pressure conditions in
the far field.

Although the full 3D simulations were performed, only the 2D cuts in the plane of
symmetry are shown. Besides of the already presented vertical velocity w contours,
also the pressure p and longitudinal velocity u contours are shown for all six cases.

Starting with the pressure field shown in Fig. 15, the two initial observations can
be made. First, in the left column, where the homogeneous Neumann condition was
used, the isolines really enter the upper boundary vertically, being perpendicular
to the boundary. So the solution really respects the imposed (enforced) pressure
boundary condition. Second, when looking at the shape of the contours close to the
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truncated domain +2H truncated domain +2H

truncated domain +H truncated domain +H

truncated domain truncated domain

∂p
∂n = 0 CPD

Figure 15. Pressure contours in the plane of symmetry.

assumed artificial boundaries of the smaller domains (marked by a dashed line), it is
evident that the contours are far from being perpendicular to these “boundaries”. So
enforcing the homogeneous Neumann condition for pressure would certainly affect
the solution. On the other hand, the use of the CPD condition gives much reasonable
slopes of the contours close to the boundary. From the comparison of the pressure
fields for the three domain sizes, it can be seen that the domain truncation has
much smaller impact on the solution, when the CPD condition is used. A very
similar conclusion can be drawn also from the longitudinal (Fig. 16) and especially
vertical velocity contours (Fig. 17). The homogeneous Neumann condition leads
to very different solutions for different domain sizes. The CPD condition however
seems to reduce the effect of the domain size on the solution. Even for the smallest
truncated domain, the solution obtained using the CPD condition is comparable
with the one obtained on a much larger domain (preserving its main characteristic
features).

The comparisons presented in Figs. 15–17, document and justify the choice of
the middle sized (+H extended) domain with the CPD condition for the relevant
reference solution. Although this choice affects (to some extent) the comparisons
being made between the truncated reference solution and the truncated domain
solution, these differences do not change the conclusions being made from it.

4. Conclusions & Remarks. The convective pressure derivative boundary con-
dition (6) performed very well in our numerical simulations. The obvious alteration
of the solution close to boundaries was minimalized while retaining the numerical
convergence for this simulation.

• Physical interpretation/justification of the CPD condition – The ad-hoc pro-
posed formula (6) for pressure was based on our previous experience with
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truncated domain +2H truncated domain +2H

truncated domain +H truncated domain +H

truncated domain truncated domain

∂p
∂n = 0 CPD

Figure 16. Longitudinal velocity contours in the plane of symmetry.

truncated domain +2H truncated domain +2H

truncated domain +H truncated domain +H

truncated domain truncated domain

∂p
∂n = 0 CPD

Figure 17. Vertical velocity contours in the plane of symmetry.

numerical solution of this type of flows. The importance of the term ∂un

∂n is
really essential. It can be better understood when a local coordinate system is
adopted at an artificial boundary point. Let us, e.g., assume that the (outer)
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normal direction is associated with the z axis, while the x and y axes now
define a tangential plane (to boundary). Due to incompressibility, i.e., due to
the divergence-free constraint ux+vy+wz = 0, the value of normal derivative
of normal velocity component wz indicates to what extent the tangential, two-
dimensional continuity equation ux + vy = 0 is satisfied, i.e. ux + vy = −wz.
So, when wz = 0, the flow field can be seen as locally two-dimensional and it
makes a sense to drop the pressure derivative in the third (normal) direction.
Any imbalance of this local two-dimensionality of the flow field leads to the
appearance of the normal pressure derivative. In the absence (or negligibility)
of local viscous forces, the pressure gradient should compensate the inertia
represented by the convective term. Thus the proportionality factor (with
respect the normal velocity normal derivative ∂un

∂n = wz) was set to ρ∗|u|,
which assures the proper (convective term like) scaling and is invariant to
the orientation of the chosen coordinate system. In the case solved in this
paper the velocity u at the far-field was almost parallel to the boundary, so
|uτ | ≈ |u|, so there is still an open question whether e.g. use of |uτ | instead
of |u| would not give better results in some other configurations.

• No-slip wall & Inlet – It is good to note that at the no-slip wall (where |u| = 0)
the CPD condition (6) reduces to the classical homogeneous Neumann pres-
sure condition. Also at the inlet, where ∂un

∂n vanishes (e.g., due to prescribed
uτ = 0) the homogeneous Neumann condition for pressure is recovered. So,
in fact, we can claim, that in our case we have used the CPD condition on all
boundaries, except the outlet.

• Outlet pressure condition - In this (variable density, stratified) case the outlet
pressure was simply set to a constant. This choice is obviously not optimal
but has only minor influence on the upstream flow field. The variable density
case behaves much more like a compressible flow where the pressure should
be prescribed (by a Dirichlet condition) on the subsonic outlet. On the other
hand, the homogeneous (constant density, non-stratified) case was successfully
tested as well, with the CPD condition (6) used on all boundaries.

• Velocity at the far-field boundaries – The (linear) extrapolation6 of all velocity
components used in this study seems to work well for the solved test case. The
possibility of using the homogeneous Neumann condition for the tangential
components of velocity7 (while keeping the extrapolation for the normal one),
was successfully tested. It has only marginal (but yet visible) effect on the
solution close to the boundary. Its use however can be of some importance in
the theoretical analysis of the model.

• Other numerical methods – The results presented in this paper were obtained
using a finite-difference discretization on a structured grid. Pressure was com-
puted using the artificial compressibility method. The finite-volume simula-
tions on the same grid, using also the artificial compressibility method, gave
identical results for the solved cases. The question is, what could be the effect
of unstructured grids and e.g. pressure correction methods on the efficiency
of the proposed CPD condition. Technically, the implementation should be
straightforward, as the CPD condition (6) is nothing but a non-homogeneous

6The linear extrapolation is equivalent to the use of one-sided (backward) first order approxi-
mation of derivatives at the boundary points.

7Motivated by the same approach as used in the do-nothing condition (5).
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Neumann condition applied to pressure. The implementation in the finite
element case is also still an open question.

In summary, the presented setup, using the prescribed profile of velocity and
density at the inlet, given pressure at the outlet and no-slip condition for the velocity
at the wall, combined with velocity extrapolation and CPD pressure condition (6)
in the far-field proved to work well (best from all the setups we have tested so far)
in the numerical simulations for this specific case. It is usable both in the variable
density (stratified) case as well as in the homogeneous, constant density case.

The theoretical study of the well-posedness of the problem using this bound-
ary setup should be provided in order to better understand and justify its use. In
addition further numerical simulations have to be performed to verify the suitabil-
ity of this artificial boundary conditions setup for other geometrical and physical
configurations.
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[1] T. Bodnár and L. Beneš, On some high resolution schemes for stably stratified fluid flows,

in Finite Volumes for Complex Applications VI, Problems & Perspectives, vol. 4 of Springer

Proceedings in Mathematics, Springer Verlag, 2011, 145–153.
[2] T. Bodnár, L. Beneš, P. Fraunié and K. Kozel, Application of compact finite-difference

schemes to simulations of stably stratified fluid flows, Applied Mathematics and Computation,

219 (2012), 3336–3353.
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[5] T. Bodnár, P. Fraunié and H. Řezńıček, Numerical tests of far-field boundary conditions for

stably stratified stratified flows, in Topical Problems of Fluid Mechanics 2019, Institute of
Thermomechanics CAS, Prague, 2019, 1–8.

[6] M. Braack and P. Mucha, Directional do-nothing condition for the Navier-Stokes equations,

Journal of Computational Mathematics, 32 (2014), 507–521.
[7] L. Ding, R. J. Calhoun and R. L. Street, Numerical simulation of strongly stratified flow over

a three-dimensional hill, Boundary-Layer Meteorology, 107 (2003), 81–114.

[8] J. Heywood, R. Rannacher and S. Turek, Artificial boundaries and flux and pressure con-
ditions for the incompressible Navier-Stokes equations, International Journal for Numerical

Methods in Fluids, 22 (1996), 325–352.

[9] J. C. R. Hunt and W. H. Snyder, Experiments on stably and neutrally stratified flow over a
model three-dimensional hill, Journal of Fluid Mechanics, 96 (1980), 671–704.

[10] P. Marchesiello, J. McWilliams and A. Shchepetkin, Open boundary conditions for long-term
integration of regional oceanic models, Ocean Modelling, 3 (2001), 1–20.

[11] I. Orlanski, A simple boundary condition for unbounded hyperbolic flows, Journal of Com-

putational Physics, 21 (1976), 251–269.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: Tomas.Bodnar@fs.cvut.cz

E-mail address: Philippe.Fraunie@univ-tln.fr

E-mail address: knobloch@karlin.mff.cuni.cz

E-mail address: Hynek.Reznicek@fs.cvut.cz

mailto:Tomas.Bodnar@fs.cvut.cz
mailto:Philippe.Fraunie@univ-tln.fr
mailto:knobloch@karlin.mff.cuni.cz
mailto:Hynek.Reznicek@fs.cvut.cz

	1. Introduction
	2. Mathematical model
	2.1. Governing equations
	2.2. Problem of boundary conditions
	Preliminary example

	3. Numerical simulations
	3.1. Computational setup
	3.2. Numerical results
	3.3. Some additional results

	4. Conclusions & Remarks
	Acknowledgments
	REFERENCES

