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Abstract: This work is concerned with the theoretical analysis of the space-time
discontinuous Galerkin method applied to the numerical solution of nonstationary
nonlinear convection-diffusion problem in a time-dependent domain. At first, the
problem is reformulated by the use of the arbitrary Lagrangian-Eulerian (ALE)
method, which replaces the classical partial time derivative by the so-called ALE
derivative and an additional convection term. Then the problem is discretized
with the use of the ALE space-time discontinuous Galerkin method. On the basis
of a technical analysis we obtain an unconditional stability of this method. An
important step in the analysis is the generalization of a discrete characteristic
function associated with the approximate solution in a time-dependent domain
and the derivation of its properties. Further we derive an a priori error estimate
of the method in terms of the interpolation error, as well as in terms of h and 7.
Finally, some practical applications of the ALE space-time discontinuos Galerkin
method in a time-dependent domain are given. We are concerned with the nu-
merical solution of a nonlinear elasticity benchmark problem and moreover with
the interaction of compressible viscous flow with elastic structures. The main at-
tention is paid to the modeling of flow induced vocal fold vibrations in a simplified
human vocal tract.
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Introduction

Most of the theoretical mathematical results on the solvability and numerical
analysis of nonstationary partial differential equations (PDEs) are obtained un-
der the assumption that a space domain €2 is independent of time t. However,
problems in time-dependent domains €2, are important in a number of areas of
science and technology. We can mention, for example, problems with moving
boundaries, when the motion of the boundary 0€2; is prescribed, or free boundary
problems, when the motion of the boundary 0¢); should be determined together
with the solution of the PDEs in consideration. This is particularly the case of
fluid-structure interaction (FSI) problems, when the flow is solved in a domain
deformed due to the coupling with an elastic structure.

The simulation of an interaction of flow and elastic bodies plays an important
role in aerospace industry — aircraft design and safety, in civil engineering — sta-
bility of bridges, towers, smokestacks or skyscrapers, in mechanical engineering —
rotary bladed machines, etc. On the other hand, FSI is also used in biomedicine.
Namely, the flow in blood vessels or flow induced vocal folds vibrations are inten-
sively studied. The F'SI problems were studied by a number of different methods
in several books, e.g. [17], [18], [65], [66], [73].

There are various approaches to the solution of problems in time-dependent
domains as, for example, fictitious domain method [59], or imersed boundary
method [12]. Very popular technique is the arbitrary Lagrangian-Eulerian (ALE)
method based on a suitable one-to-one ALE mapping of the reference config-
uration Q,.; (usually €y) onto the current configuration ;. This method is
usually applied in connection with conforming finite element space discretization
combined with time discretization by the use of a backward difference formula
(BDF). From a wide literature we can mention, e.g., works [32], [55], [57], [63].
Paper [49] investigates the stability of the ALE-conforming finite element method
for linear parabolic convection-diffusion initial-boundary value problems, whereas
papers [4] and [50] are devoted to the error estimation.

For the numerical solution of compressible viscous flow, one of the most attrac-
tive techniques appears the discontinuous Galerkin method (DGM). It is based
on piecewise polynomial approximations over finite element meshes, in general
discontinuous on interfaces between neighbouring elements. This method was
applied to the solution of compressible flow first in [10] and then in [11]. It al-
lows a good resolution of boundary and internal layers (including shock waves
and contact discontinuities) and has been used for the solution of various types
of flow problems ([29], [30], [36], [40], [45], [51], [52], [61]). Theory of the space
DGM is a subject of a number of works. We cite only some of them: [2], [3], [16],
[19], [26], [31], [32], [47], [54], [56], [58], [64], [72]. It is also possible to refer to
the monograph [31] containing a number of references.

In the cited works, the time discretization is carried out with the aid of the
BDF of the first or second order. One possibility how to construct a higher order
method in time is the application of the DGM using piecewise polynomial ap-
proximation in time, which are in general discontinuous at discrete time instants
that form a partition of the time interval. This method was used for time dis-
cretization combined with conforming finite elements for the space discretization



of linear parabolic equations in [1], [23], [35], [37], [38], [70], [71] and [74]. An-
other approach combines DGM in space with Runge-Kutta time discretization as
mentioned in [69].

By the combination of the DGM in space and time we get the space-time
discontinuous Galerkin method (STDGM). This method was theoretically ana-
lyzed in papers [9], [20], [43], [46], [77] and monograph [31]. In [42] and [62], the
BDF-DGM and STDGM are applied to linear and nonlinear dynamic elasticity
problems. One of the advantages of the STDGM is the possibility to use different
meshes on different time levels.

The mentioned methods have also been extended to the numerical solution
of initial-boundary value problems in time-dependent domains using the ALE
method. The ALE method combined with the space DGM and BDF in time
(ALE-DGM-BDF) was applied with success to the interaction of viscous com-
pressible flow with elastic structures in [21], [44], [53] and [62]. In [22], the
ALE-STDGM is applied to the simulation of flow induced airfoil vibrations and
the results are compared with the ALE-DGM-BDF approach. It appears that
the ALE-STDGM is more robust and accurate. We should note that in [79] the
ALE-STDGM technique is applied to inviscid compressible flow.

The ALE-time discontinuous Galerkin semidiscretization of a linear parabolic
convection-diffusion problem is analyzed in [14] and [15]. Both papers assume
that the transport velocity is divergence free and consider homogeneous Dirichelt
boundary condition. In [14], the stability of the ALE-time DGM is proved and
[15] is devoted to the error estimation. Papers [6], [7] and [8] are concerned
with the stability analysis of the ALE-STDGM applied to a linear convection-
diffusion initial-boundary value problem ([7], [8]) as well as to the case with
nonlinear convection and diffusion ([6]) with nonhomogeneous Dirichlet boundary
condition, using piecewise linear DG time discretization.

The present work is devoted to the theoretical analysis of the ALE-STDGM
and its applications to FSI problems. The structure of the thesis is as follows.

In Chapter 1 we introduce the system of Navier-Stokes equations describing
viscous compressible flow in a time-dependent domain.

In Chapter 2 we formulate the scalar nonstationary nonlinear convection-
diffusion problem equipped with initial condition and nonhomogeneous Dirichlet
boundary condition. This problem can be considered as a simplified prototype
of the compressible Navier-Stokes system. In this chapter we describe triangu-
lations, ALE mappings and introduce important function spaces and concepts.
Then an approximate solution of the nonlinear convection-diffusion problem using
the ALE-STDGM is defined.

Chapter 3 is devoted to the stability analysis of the ALE-STDGM with arbi-
trary polynomial degree in space as well as in time. The method analyzed here
corresponds to the technique used in [22] and [42] for the numerical simulation
of airfoil vibrations induced by compressible flow. This means that the ALE
mapping is constructed successively from one time slab to the next one. The pre-
sented stability analysis in this chapter is based on estimates of forms from the
definition of the approximate solution. An important tool is the concept of the
discrete characteristic function. It was introduced in [23] in the framework of the
time discontinuous Galerkin method combined with conforming finite elements
applied to a linear parabolic problem. The discrete characteristic function was



generalized in connection with the STDGM for nonlinear parabolic problems in
9], [20] and [31]. Here we generalize the concept of the discrete characteristic
function and prove its important properties in the case of the ALE-STDGM in
time dependent domains. On the basis of a technical analysis we obtain an un-
conditional stability of this method represented by a bound of the approximate
solution in terms of data, without any limitation of the time step in dependence
on the size of the triangulations.

In Chapter 4 we derive error estimates for the ALE-STDGM in terms of h
(mesh size) and 7 (time step). Here we use the standard procedure, which means
that we split the error e = u— U (difference between the exact solution v and the
approximate solution U) into two parts: & and . The term n approximates the
distance of the exact solution u from the space, where the approximate solution
is sought, whereas £ represents the distance between the approximate solution U
and the projection of the exact solution u on the space, where the approximate
solution belongs. At first error estimates in terms of £ and 7 are derived. Again
we use the generalized discrete characteristic function and its properties. After
that, using results from [31], error estimates in terms of h and 7 are proved.

Finally, Chapter 5 is devoted to the application of the ALE-STDGM to the
solution of the compressible Navier-Stokes equations in the conservative ALE
form in a time-dependent domain coupled with linear or nonlinear elasticity. The
developed method is applied to the numerical simulation of air flow in a simplified
model of human vocal tract and flow induced vocal folds vibrations. This problem
was already solved in [44], where the ALE-DGM-BDF technique for the solution of
the compressible Navier-Stokes equations was combined with the linear elasticity
approximated in space by conforming finite elements and in time by the Newmark
method. In our work, because of the successful solution of the compressible
viscous flow by the ALE-STDGM, we discretize the elasticity problems also by
the STDGM. The interaction of the flow and elastic structures are interacted via
transmission conditions on the interface between the flow domain and the elastic
body. In the numerical process this is implemented with the aid of a strong
coupling algorithm. Our goal is to consider several nonlinear elasticity models and
compare them to the linear elasticity model in simulation of flow induced vocal
folds vibrations. We demonstrate that in the studied problem the nonlinear St.
Venant-Kirchhoff and neo-Hookean models give more accurate results than the
linear elasticity model. The presented numerical experiments show the robustness
of the developed method and suggest the importance of using nonlinear elasticity
models in such a study.



1. Formulation of the viscous
compressible flow problem in
time-dependent domains

In this chapter we shall consider unsteady, compressible viscous flow in a bounded,
time-dependent domain Q; C R? ¢ € [0,7]. Compressible viscous flow is de-
scribed by the system of Navier-Stokes equations, which consists of the continuity
equation, the Navier-Stokes equations of motion and the energy equation:

gi + div(pv) = 0 (L.1)
dpv; . 2 aTij .
5 + div(pv;v) ; dz, ori=1, (1.2)
8E 2 8 2
OB | oims vi—a 1.
8t _'_ le( 'U) ; axl (j:1 7—1]/0] Qz) Y ( 3)
where
Tij = —p&j—i-n‘;, (1.4)
' 1 /(0v; Ov;
Ti‘; = Adivwd;; + 2ud;;(v), dij(v) = 5 <8zvj + 83:2) ; (1.5)

7 = {7} is the stress tensor and 7V = {77} denotes the viscous part of the
stress tensor. Moreover we use the standard notation: p - density, v = (vq, v)
- velocity, E - total energy, p - pressure, ¢, - specific heat at constant volume,
0i; - Kronecker symbol, ;1 > 0 and A - viscosity coefficients. We assume that
A = —2u/3. The heat flux g = (q1, ¢2) satisfies the Fourier law

q=—kVo, (1.6)

where k > 0 is the heat conductivity assumed to be constant here and 6 denotes
the absolute temperature.
The above system can be written in the following form:

ow  ROf(w) G OR,(w,Vw)
E—FZ Ox =2 O ’ L7

s=1 s=1

where

(w17 s 7w4)T = (p7 /whpv%E)T € R4’
= w(z,t), €, t€(0,T),

g €

fs(w) = (fsly ) fs4)T = (pvm PU1Vs + 5181)7 PU2Vs + 525]?7 (E +p)US)T7
06
R,(w,Vw) = (Ra,...,Ru)" = (0,7, 75, mhv1 + Thvs + k@ 7, s=1,2.
Ts



System (1.7) is completed by the thermodynamical relations

p=(7—1)<E ph;') 9:;}<f_“’2’>

and is equipped with the initial condition
w(z,0) = w'(z), = € Q.

Concerning the boundary conditions, we distinguish following disjoint parts of
the boundary 0€2; :
0 =T;UTp Uy,

where I'; represents the inlet through which the fluid flows into the domain, I'g
is the outlet through which the fluid leaves €2; and I'y, are moving impermeable
walls (the parts of which can depend on time t). We assume that I'; and I'p are
fixed. We prescribe the following boundary conditions on individual parts of the
boundary:

00
p=pp, v=1p, Z(Z nz>vj+k8 =0 only, (1.8)
7j=1
2 ol _
z:: nj = 0 % = O7 1 = 1,2, on FO> (19)

v|r,, = zp = velocity of the moving wall, o 0 onI'y,, (1.10)
¢ n

with prescribed data pp, vp, zp. Here n = (ny,ny) denotes the outward unit
normal to 0§ and 0/0n is the derivative in the direction n. On I'p and I'y,
only three boundary conditions are specified. The missing condition is completed
in the discrete problem by extrapolation.

Now we mention some important properties of vector-valued functions f, and

R,. We set
D fs(w)
As = )
(w) =—5~
which are Jacobi matrices of the mappings fs. It is possible to show that

s=1,2,

fs(aw) = afs(w), for s>0,
which implies that

fs(w) = Ag(w)w, s=1,2. (1.11)
The viscous terms R, can be written in the form

2
R,(w, V) Z g;” s=1,2, (1.12)
k

where K (w) € R** for w € R*. These results are proved, for example, in [41]
or [31].

In Chapter 5 we shall deal with the numerical simulation of the interaction of
compressible flow with elastic structures. It is connected with some difficulties,
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particularly with the fact, that the compressible Navier-Stokes system is strongly
nonlinear and that it is considered in a time-dependent domain. These obstacles
will be overcome by the discretization using the space-time discontinuous Galerkin
method (STDGM) and by the arbitrary Lagrangian-Eulerian (ALE) method.

The next sections are devoted to the theoretical analysis of this technique.
Since the compressible Navier-Stokes problem is very complicated, we shall con-
sider an initial-boundary value problem in a time-dependent domain for a scalar
nonlinear parabolic convection-diffusion equation, which can be considered as a
simplified model of the Navier-Stokes system.



2. Formulation of a continuous
model problem and its
discretization

In this chapter we introduce the nonlinear convection - diffusion problem in a
time dependent domain. Then we reformulate it using the arbitrary Lagrangian-
Eulerian (ALE) method. Further we describe suitable function spaces and fi-
nally define the approximate solution using the space-time discontinuous Galerkin

method (STDGM).

2.1 Continuous problem

We shall be concerned with an initial-boundary value nonlinear convection - dif-
fusion problem in a time-dependent bounded domain Q; C R¢ with a Lipschitz-
continuous boundary 0€);, where d = 2,3, t € [0,T], T > 0:

Find a function v = u(z,t) with x € Q, t € (0,7) such that

du + zd: 0fslu) _ div(B(u)Vu) = ¢ in Q,te€ (0,7), (2.1)
ot ‘= Oz,
u = up on I, te (0,T), (2.2)
u(z,0) = u’(x), x€ Q. (2.3)
Function f(u) yields a nonlinear diffusion term. If we set S(u) = €, where

e € (0,400) is a constant, we arrive at a more standard linear case of equa-
tion (2.1). Then the diffusion term becomes div(S(u)Vu) = eAu.
Conditions (2.2) and (2.3) represent the Dirichlet boundary condition and the

initial condition, respectively, g, up and u° are given functions and f,, s = 1,...,d
are given inviscid fluxes. We assume that f, € C'(R), f,(0) =0 and
Ifi) <Ly s=1,...,d, (2.4)

where the constant L; does not depend on u. Moreover we assume that function
[ is bounded and Lipschitz-continuous:

BiR = [Bo, /1], 0<fy<pr<oo, (2.5)
]ﬁ(ul) — 5(’&2)’ S Lﬁ’ul — U2| Vul,u2 € R. (26)
In what follows, we shall use the standard notation L?*(w) for the Lebesgue
space, WFP(w), H*(w) = W"?2(w) for the Sobolev spaces over a bounded domain
w C R? d = 2,3, with Lipschitz boundary and the Bochner spaces L>(0,T; X)
with a Banach space X. Moreover we define
W (0, T; W ()
= {f € L0, T;W(Q,)); df /dt € L=(0,T; W>()) },
where df /dt denotes the distributional derivative.
If B is a Banach (Hilbert) space, then its norm (scalar product) will be denoted
by || - |z ((-,-)). By |- |p we denote a seminorm in B. For simplicity we use the
notation || - |2y = | - [l (- -)z2) = (5 )w and [ - 2wy = || - [low-

9



2.1.1 ALE formulation

Problem (2.1)-(2.3) can be reformulated with the aid of the so-called arbitrary
Lagrangian-Eulerian (ALE) method. Because of simplicity, first we consider a
standard ALE formulation prescribed globally in the whole time interval, used in
a number of works (cf., e.g., [6], [14], [15], [34], [49], [50], [55], [57]). It is based on
a regular one-to-one ALE mapping of the reference domain 2y onto the current
configuration {:

Atigoﬁﬁt, XEQQ%I:ZE(X,ﬂ:At(X)EQt, t e [O,T], (27)

see Figure 2.1.

Ay

/_\

\_/
Al

Figure 2.1: ALE mapping A, and its inverse A; .

We can also write A(X,t) = A;(X), X € Qq, t € [0,T]. Usually it is supposed
that the ALE mapping is sufficiently regular, e.g., A, € W1ho°(0,T; W1 (€,)).
In further considerations more general property will appear. Now we introduce
the domain velocity

0
2(X,t) = aAt(X), z(z,t) = 2(A; Y (2),1), t €[0,T], X € Dy, €y, (2.8)
and define the ALE derivative D,f = D f/Dt of a differentiable function
f=f(z,t) for z € Q and t € [0,T] as
D of
Dif(x,t) = Ef(m,t) = E(X, t), (2.9)

where f(X,t) = f(A(X), 1), X € Qp, and z = A;(X) € Q. The use of the chain
rule yields the relation

Df _of

=L 2L . 2.10
which allows us to reformulate problem (2.1)-(2.3) in the ALE form:
Find v = u(x,t) with = € Q,, t € (0,7) such that

Du & Of,(u)
Dt + Z Ox,

s=1

—z-Vu—div(f(u)Vu) = g in Q,te (0,7), (2.11)

u = up on I, te(0,7),(2.12)
u(z,0) = u%x), x€ Q. (2.13)

10



2.2 ALE space-time discretization

In the time interval [0, 7] we consider a partition 0 = tg < t; < -+ <ty =T
and set T, = ty — tm-1, I = (tm_1,tm)s Im = [tm_1,tm] for m = 1,..., M,
T = MaXpy—1,. MTm. We assume that 7 € (0,7), where 7 > 0. The space-
time discontinuous Galerkin method (STDGM) has an advantage that on every
time interval I,, = [tm—1,tm] it is possible to consider a different space partition
(i.e. triangulation) — see, e.g. [31], [20]. Here we also use this possibility for
the application of the STDGM in the framework of the ALE method. It allows
us to consider an ALE mapping separately on each time interval [t,, 1,t,,) for
m =1,..., M and the resulting ALE mapping in [0, 7] may be discontinuous at
time instants t,,, m = 1,..., M — 1. This means that one-sided limits A(¢,,—) #
A(t,+) in general. Similarly the same may hold for the approximate solution.
Such situation appears in the numerical solution of fluid-structure interaction
problems, when both the ALE mapping and the approximate flow solution are
constructed successively on the time intervals I,,,, m = 1,..., M, by the space-
time discontinuous Galerkin method (see [62]).

As was mentioned above, in what follows, we consider a new generalized ALE
technique developed for the simulation of the compressible fluid-structure inter-
action. This approach is applicable in the framework of the STDGM. To this
end, we introduce the following notation.

2.2.1 ALE mappings and triangulations

For every m =1, ..., M we consider a standard conforming triangulation ’fh,tm_l
in Q; _,, where h € (0,h) and h > 0. This triangulation is formed by a finite
number of closed triangles (d = 2) or tetrahedra (d = 3) with disjoint interiors.
We assume that the triangulations 7A’h,tm,1 have the standard properties men-
tioned in [24]. Thus, we assume that the domain €2, _, is polygonal (polyhedral).

Further, for each m = 1,..., M we introduce a one-to-one ALE mapping
At Q8 for t € [toi,t), h € (0,R). (2.14)

We assume that A", ! is in space a piecewise affine mapping on the triangulation

7A'h7tm71, continuous in space Variable X €y, , and continuously differentiable
in time t € [t;,—1,t,) and A}, - = Id (identical mapping). Hence, we assume
that all domains €, are polygonal (polyhedral). For every t € [t,,—1, t,,) we define
the conforming triangulation

Ty = {K = A77(K); K € Thg,, b in Q. (2.15)

For an illustration, see Figure 2.2.
At t = t,, we define the one-sided limit Aht _, introduce the triangulation

Thtm— = {AN(K); K € Thy,y } in O,

and suppose that B B
rol () =, (2.16)

We have Try,. . = Tht,,_,, but in general, Ty, — # T hy,.-

11



m—1
At

Q

m—1

O
Figure 2.2: ALE mapping A}, Yfor t € [tm_1,tm), h € (0,R).

As we see, for every t € [0,7] we have a family {ﬁht}he(oﬁ) of triangulations

of the domain €2;. Triangulations ’7Aﬂh7tm_1 and ’fh,tm have different structure and,
in general, different number of cells. Triangulations 7, and 7, — have the same
structure as Ty, _, for t € [tm_1,tm], but starting from 74, the structure of
Tht for t € [ty tmsa], may be different from Thﬂgm_l.

2.2.2 Discrete function spaces
In what follows, for every m = 1,..., M we consider the space

s = {soeﬁ(ﬂtm )il € PE)YE € Tugif, (217)

where p > 1 is an integer andipp(f( ) is the space of all polynomials on K of
degree < p. Now for every t € I, we define the space

St = {p € L) wo AT € S (2.18)
It is possible to see that
St = {o € LA(); ¢lk € PP(K) VK € Thsf. (2.19)

Of course, S;™ ™! £ SP™ in general.

Further, let p, ¢ > 1 be integers. By P9(I,,; S*™') we denote the space of
mappings of the time interval [,,, into the space Sﬁ’mfl which are polynomials of
degree < ¢ in time. We set

St = {p; p(t) o AT
This means that if ¢ € S}"7, then
o (A1 (X),t) = Z 94 (2.21)

v, € S Xthmfl, tel, m=1,...,M, he(0,h).

f € Py P, m=1,..., M} (2.20)

An approximate solution of problem (2.11)—(2.13) and test functions will be ele-
ments of the space S}’7

By D, we denote the ALE derivative defined by (2.9) for t € U¥_, I

12



2.2.3 Some notation and important concepts

Over a triangulation 7y, for each positive integer k, we define the broken Sobolev
space

H*(Q, Thi) = {v; 0| € HYK) VK € Thy},

equipped with the seminorm

1/2
’U|Hk(ﬂt777z,t) = ( Z |U|%{k(K)> )

KeTh

where | - |1 (k) denotes the seminorm in the space H*(K), defined as

1/2
|U|Hk(K) = (/K Z |Dav|2dx) )

|a|l=k

The symbol D® denotes the d-dimensional derivative defined for example in [31],
page 11.

By Fj: we denote the system of all faces of all elements K &€ 7y, ;. It consists
of the set of all inner faces F}, and the set of all boundary faces F;;:

Each I' € F},; will be associated with a unit normal vector np. By KﬁL) and
KﬁR) € Tny we denote the elements adjacent to the face I' € Fj.,. Moreover, for
I'e ]-",ft the element adjacent to this face will be denoted by KﬁL). We shall use
the convention, that nr is the outer normal to 9K IQL). A
Similarly, by Fj,,, , we denote the system of all faces of all elements K €

7A’h7tm71 and it holds, that it consists of the set of all inner and boundary faces:
N AT ~ B
Fhtmr = Frtms Y F htrs

Ifve H (Q, Ths) and T € Fjy, then vﬁL) and vﬁR) will denote the traces of v

on I' from the side of elements KﬁL) and KﬁR), respectively. We set hx = diam K
for K € Ty, h(I') = diamT for T’ € F},, and

1
vy = 3 (U#) + UéR)) , average of traces of v on I € f;{,t,
[vlr = U%L) - vﬁR), jump of traces of v on I' € ]:l{,t'

Moreover, by px we denote the diameter of the largest ball inscribed into K € Tj ;.

2.3 Approximate solution

First we introduce the space semidiscretization of problem (2.11)-(2.13). We
assume that u is a sufficiently smooth solution of our problem. If we choose
an arbitrary but fixed ¢t € (0,7), multiply equation (2.11) by a test function

13



¢ € H*(Q4, Thy), integrate over any element K and finally sum over all elements
K € Ty, then for t € I,,, we get

3 / Sredet Y /Zaﬂ;‘;s (2.22)

KeTy ¢ KeTh
— Z /2:,28(9 pdr — Z /le u)Vu)pdr = Z /g(pdx
KeTht KeTy KeTh

Applying Green’s theorem to the convection and diffusion terms, introducing the
concept of a numerical flux and suitable expressions mutually vanishing, after
some manipulation we arrive at the identity

(Dtu’ 90>Qt + Ah(u’ 2 t) + bh(“? ¥, ) + dh(u ¥, ) l (907 t) (2'23>

where the forms appearing here are defined for u,¢ € H?*(Qy, Thyt), © € R and
cw > 0 in the following way:

an(u, o, t) == > /Kﬁ(u)Vu~Vg0dx (2.24)
KeTh s
= Y [(B@)u) e el + O (B)Ve) - [u]) dS
rer/,
- > /F(B( )WVu-nrp+0p8uw)Ve-nru—0p8w)Vy - nrup) dS
rerp,
To(u,o,t) =y 3 h(F)’l/F[u] eldS+ew 3 h(r)*l/rwds, (2.25)
rerl, rery,
TP (u,p,t) i=cw > R(T /u@dS, (2.26)
rery,
Ah(uv 2 )Z (u P, )"'_50 Jh( ) (227)
bu(u, 0,t) == — > / Zfs 84,0 dx (2.28)
KeTh s

Ly /HuF o) lds+ Y [ H@ uf nr) pds,

Feff Fe]—‘B

dp(u, o, t) === > /2238 pde=— > / z - Vu)pde, (2.29)

KeTy . KeTh

= Y /ggodx—i—ﬂocw > (I /chpdS. (2.30)

KGT Fe]:B

If w is a measurable set and @, € L*(w), then we set

= /w Y de.

Let us note that in integrals over faces we omit the subscript I' of (-) and
[]. We consider © = 1, © = 0 and © = —1 and get the symmetric (SIPG),
incomplete (IIPG) and nonsymmetric (NIPG) variants of the approximation of

14



the diffusion terms, respectively. The constant cy will be specified in Section
3.2.1.

In (2.28), H is a numerical flux with the following properties:
(H1) H(u,v,n) is defined in R? x By, where B; = {n € R% |n| = 1}, and is
Lipschitz-continuous with respect to u,v: there exists Ly > 0 such that

|H(u,v,n) — H(u*,v*,n)| < Ly(Ju —u*| + |[v —=v*|), for u,v,u*,v* € R.

(H2) H is consistent:

(H3) H is conservative:
H(u,v,n) = —H(v,u,—m), u,v € R, n € By.

In what follows, in the stability analysis we shall use properties (H1) and
(H2). Assumption (H3) is important for error estimation.
For a function ¢ defined in U%zl 1, we denote

om = @(tmE) = lim @(t), {}m = @ltm+) — o(tm—), (2.31)

t—tm T

if the one-sided limits ¢~ exist.
Now we define an ALE-STDG approximate solution of problem (2.11)—(2.13).

Definition 1. A function U is an approzimate solution of problem (2.11)—(2.13),
if U € Syl and

| (D, 9)g, + An(U,0,) + u(U, 0, ) + dn(Us p,)) (2:32)
+({U}m—17 SO:;Lfl)th71 = /I lh(QO, t) dt VCP € }633—7 m = ]-7 s 7M7
Uy €SP (Uy —u®up), =0 Vo, € SP. (2.33)

(For m =1 we set {U},—1 = {U}o := Uy — Uy with Uy given by (2.33)).

The ALE-STDG numerical method (2.32)—(2.33) was applied in [22] and [62]
in the computer programs for the numerical simulation of a compressible flow in
time-dependent domains and fluid-structure interaction.
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3. Analysis of the stability

In what follows we shall be concerned with the numerical solution of the ALE
problem (2.11)-(2.13) by the space-time discontinuous Galerkin method. In the
theoretical analysis a number of various constants will appear. Some important
constants in main assertions will be denoted by Cry, Cro, etc. in Theorem 1,
Theorem 2, etc. and Crg, Cpqg, etc. in Lemma 9, Lemma 10, etc. Inside proofs,
constants are denoted locally by c¢, ¢, co, ¢* etc. The aim of this notation is to
show the continuity of individual theorems and lemmas.

3.1 Some auxiliary results

Similarly as in Section 2.1, we define the following Bochner spaces over a time
interval I,,, m=1,..., M:

Wheo (I, Whe2(Q,))
= {f € L®(Lyy WH(Q)); df /dt € L (Ly; W() },
W (L, Whee(Q,, )
= {f € L®(Ly; WH(Qu,,_)); df /dt € L™ (L,; W(Q,,,))}
W (I, L (€,))
={f € L™(Ln; L=(2)); df /dt € L™ (L;n; L=(S2))},
Wl’oo(ImQ LS, )
= {f € (1 L®(,, ,)); df fdt € L=(L,; L%(,, )},

where df /dt denotes the distributional derivative.
In the space H'(Qy, Tp+) we define the norm

1/2
lellpes = ( > !w!?p(xﬂra’h(s@,%t)) : (3.1)
KG’Thyt
Moreover, over df) we define the norm
1/2
-1 2 B 1/2
lunllpes = [ew > M) /F|UD| ds | = (F(up,up,t)) " (3:2)

Fe}‘}ﬁt

As was mentioned in Section 2.2.1, for each ¢ € [0, 7] we consider a system of
triangulations {7} he(O.F)" We assume that these systems are uniformly shape
regular. This means that there exists a positive constant cg, independent of Kt
and h such that

h _
K <ep forall KeThy he(0,R),t€ [tmi,tm); (3.3)
PK
Tm <7 €(0,7), m=1,..., M.
m—1
By (A} 1)~1 we denote the inverse to the mapping Ay . The symbols d %

Ay Ht
dx

m—1

and denote the Jacobian matrices of A}", D and ( It )~!, respectively.
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m—1
h,t
dXx

. . — —1y— . . . d
Since mappings A} ' and (A} 1) 7! are piecewise affine, the entries of

A4yt
dz
Moreover, we define the Jacobians J(X,t) = det

1 AR @)

J N z,t) = det—"t———

constant over ’7'h,tm71 and 7, respectively. The constant value of J on K e

7A'h,tm71 and of J™' on K € Ths will be denoted by J; and Jl}l, respectively. Of

course, these terms depend on t and, hence, J; = J;(t) and Jg' = J'(t).

In what follows, we assume that

and

are constant on every element K e 7'h,t and K € T, respectively.

dAT LX)
h(’ltiX, X € th—l? and

m—1

, v € Q. The Jacobians J and J~! are piecewise

APt e WLy, Wh(Qy,, ), m=1,...,M, h€(0,h) (3.4)

and

(At e WLy WH()), m=1,...M, h e (0,h). (3.5)
Obviously, we have J € WL (L,; L®(, ), J~1 € WLeo(I,,; L>(€)). Since
m—1

hi._, is the identical mapping and, hence, J(X,t, 1) = 1, we assume that
there exist constants C';, CF > 0 such that the Jacobians satisfy the conditions

C;<JX,t)y<Cf, Xe, ,,tel,, m=1,...,M, he (0,h), (3.6)
CHP< T e, ) <(O))™, 2eQy, tel,, m=1,....M, he(0,h).
Finally, there exist constants C';,C%, c; > 0 such that

dA N (X)
dX

<C{,XeQ, ,,tel, m=1,...,M, he(0,h), (3.7)

dAm_l -1 . o —
H(h,td)(‘%) SC,Z;.TEQM tejma mzlu-"?Mv h€(07h>7 <38>
x

/ o0J - _
| T = aTK <cy, KeTtel, m=1..,M he(0,h), (3.9)
where || - || is the matrix norm induced by the Euclidean norm |- | in R

The above assumptions imply the following properties of the domain velocity:
There exists a constant ¢, > 0 such that

|z(x,t)|, |divz(z,t)| <ec, forxzeQy te(0,T). (3.10)

In what follows, for the sake of simplicity, we use the notation A; for the ALE
mapping defined in U_, I,, so that

A(X) = A7H(X) for X €y, ,, t€T,, m=1,...,M, he(0,h). (3.11)

The symbol A;! will denote the inverse to A;. This means that A;' : Q, 2%
Q. fortel,, m=1,...,M.

Under assumption (3.3), the multiplicative trace inequality and the inverse
inequality hold: There exist constants cj;,c; > 0 independent of v, h,t and K
such that

lo1200) < enr (lellzage (ol oy + Bt ol ) - (3.12)
ve H(K), K €Ty, he(0,h), te]0,T],
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and
|U|H1(K) S Cr h]_(IHUHLZ(K)y v € PP(K)’ K e 771,157 h € (O,E), t e [O,T] (313)

If we use ¢ := U as a test function in (2.32), we get the basic identity
/ (DU, U)g, + AU, U.t) + 0 (U, U ) +d(U, U, )) dt - (3.14)

(U1 U e, = [ (U 0)dt.

Im

3.2 Important estimates

In what follows we need to estimate each term in (3.14). These estimates can be
found in Lemmas 1 - 6. Their proofs are mainly based on the multiplicative trace
inequality (3.12), inverse inequality (3.13), Young’s inequality and assumptions
(2.5) of function f.

3.2.1 Coercivity of the diffusion and penalty term

For a sufficiently large constant cy, we obtain the coercivity of the diffusion and
penalty terms.

Lemma 1. Let

cw > gch(cI +1) for ©=—1(NIPG), (3.15)

0
cw > g vm(cr+1)  for © =0 (IIPG), (3.16)

0

1637
cw > ?CM(C[ +1) for © =1 (SIPG). (3.17)
0
Then
| (@000 + 8 (V.U ) at (3.18)
50 Bo

“UHDtht ||UD||2DGB,tdt'

_2 2

Proof. 1) Let © = —1. Then from the definition of the forms we get

ap(U, U, t) + Bo Jn(U, U, t)
= Y [ BOVU VU~ 3 [ BE)VU mrundS + 6 (U U)

K€Tnt rer?,

Using assumption (2.5) and the definition of the || - || pg+-norm, we have

an(U,U,t) + Bo Ju(U, U 1) > BollUlBes — B S0 /\VUHuDde (3.19)

rery,
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Now we have to estimate the last term on the right-hand side of (3.19). Using
Young’s inequality and the relation h(I') < h ), for each ¢ > 0 we get
r

> [1VU jup| as
FefB
618 Z / 1|uD| dS—|—— Z /hK(L)|VU| ds.
rerp, Fe]—‘B
If we use the definition of the form J#, we obtain
> [ IVUl Jup| ds
Fe]—‘B
< @J B(y 2y / VU ds.
CW h D? (L) K(L)

Fe]—‘B

Now we express the first term on the right-hand side with the aid of the definition
of the || - || pgs+norm and to the second term we apply the multiplicative trace
inequality (3.12) and the inverse inequality (3.13). We get

B S [IVU up| S (3.20)
rerp,
< b A
Cl lunllben, + 5 cmler+1) 32 IVUIZa.

Ken,t

If we use the inequality Y xer, , [VU|72x) < Ul Wwhich obviously follows

from the definition of the || - || pg-norm, we get
B 3 [IVUl up| S (3.21)
rerp,
ﬁ

1€ A
||UD||DGBt + g emler+ DUl b

Substituting back to (3.19), implies that
ah(U7 Ua t) + 50 Jh(U7 Ua t)

b pie
> (0= Jhewler + 1) Wi, ~ o lunlfhose

If we set ¢ = 21 CM(C[ + 1), we get the inequality
ah(U7 Ua t) + 50 Jh(U7 Ua t)

Biear(cr + 1)
= EHUHDG,t - WHUDWDGB,#

Finally, this inequality, assumption (3.15) and integration over the interval I,,
imply (3.18), what we wanted to prove.
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2) Let © = 0. From (2.24), assumption (2.5) and the definition of the ||.|| pe -
norm, we get

CLh(U Ut)—f—ﬁ() Jh(U Ut) (3 22)
> BlUNe, — A 3 [1(VU)-nrUllds -5 Y [ IVU-nevlds
rer;, rerp,

> BollUl1Des
VU] + |vo
61( VU |2| rgjas+ 3 /VUUdS)
FE}—I e ]:B

Now applying Young’s inequality with § > 0 separately to the first and the second
term above in round brackets and using the inequality (a +b)?* < 2(a® + b?) valid
for a,b € R, we obtain

(L)
/'VUF ';'VUF 1 \wjas + > [Ivullds (3.23)
Feff rerg,
() (B)
1 h(T") (|VUI‘ |+ [VUr ) 5CW P
<5 2 Z Ull*ds
FE]—'I /F(SCW 4 F ]_-I /
/56 VU as + Z /5CW|U| ds
2.8 7B, W 28 eFP,
|VUEL>|2+!VUF 2
2(5CW FZ / 2 ds
5
25CW Z /hK(L) (L)‘ ds + = Jh(UUt)
I'e

Using the inequality h(F) < hg for I' C OK we get

\VUéL)IQ + VU
> e

d 24
)
+2(5CW Z /h " VUéL’ dS+ 5 Jh(UUt)
re
1
- 450 /( K(L)‘VUF ’2+hK(R)’VUF | ) ds
)
250W Z /hK(L> VUF ’ dsS + - Jh(UUt)
< e 2 / hacl VU2 dS + 20U, U, 1)
B 2(SCW KeTn, K K 2 h s Uyl

The multiplicative trace inequality and the inverse inequality imply that
/M hic| VU2 AS = hic|[VU|B2ore, (3.25)
< en(L+en) VU a0y = enr(1+ en)|U 2 -
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Now, summarizing (3.23)-(3.25) yields

VU + VU
2
> ; wias+ ¥ [IvUllujas  (326)

rerf, rerp,

1

)
> [ bl VUt (U U )

)
> U + §Jh(U, U,t).

This and (3.22) imply that
ah(U, U,t) +50 Jh<U, U,t) (327)

Brem (1 +cr) 516
> BollUll e, — BT > Ul — TJh,t<U7 U t).
14 KeTh

If we set 0 = %, we find that

ah(U, U,t)—i—ﬁo Jh(U, U,t) (328)

Biep(1+ crp) I5;
> BollUlI D — DY Ul ) — (U, ULB).
2BOCW KETh.t 2

Using assumption (3.16) for the constant ¢y and the definition (3.1) of the ||| pa.+-
norm, we find that

w(U.U.0) + o (U.U.1) 2 2 U3, (3.20)
Integrating both sides over the interval I,,,, we finally get (3.18).

3) Let © = 1. From assumption (2.5) and the definition of the || - || pg-norm,
we get

ah(U, U, t) + 50 Jh(U, U, t) (330)
> BollUllDe
28, /!(VU>-nF[U]]dS—261 > /WU.HFUMS
rer], " rerp, 't
D /\VU~npuD|dS
Fe]—‘,ﬁt r
> BOHU”QDG,t
vui| + VU
=260 > /' : |2| 1 )jas + > /|VU]|U|dS
rerl, " rere, 't

-6 3 [ IVUllup|as.

Fe]—‘,ft

Expression in round brackets has already been estimated in (3.26). It follows
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from (3.30) and (3.26) that

Clh<U, U, t) + 50 Jh<U, U, t) (331)
c(l+c
> o0~ P S ) — B0, U )
w K€7—h,t
-6 % [IVU]fup|as.
rerp?,

The last term on the right-hand side has been estimated in (3.21) with arbitrary
e > 0. Substituting it into (3.31), we obtain

Clh<U, U,t) +50 Jh<U, U,t) (332)
Srem(er + 1
> ol PO S 0 ) — (0,0
w K€7—h,t
b P

1€
QCW“ DHDGBt m(cr + 1)||U”2DG,t-

If we set § := 22 and ¢ := 451 Lea(er + 1), we find that

461
(Zh(U, U7 t) +60 Jh(Ua U, t) (333)
46261\4(0[ + 1) B
> BollUNBe, — =3 U — = n(U, UL
BOCW K€7—h,t 4

2
0
—cu(er+ Dllunlbene = L NUNbe.r

B
Bocw

Using assumption (3.17) for the constant ¢y implies that

an(U, U, t) + Bo Ju(U, U, t) (3.34)

f s
ZﬂOHUHZDG,t_ZO Yo U ) — OJ (U, U,t)
KE’Th,t

B

2 lunllben,: = HUHDG,t

Bo
> 5HUHDG¢ 5 lunlbes,

Finally, integrating over the interval I,,,, we get (3.18). O

3.2.2 Estimates of the convective terms
Further, we estimate the convective terms by, (U, U, t) and dy, (U, U, ).

Lemma 2. For each ky > 0 there exists a constant ¢, > 0 such that for the
approximate solution U of problem (2.11)-(2.13) we have the inequality

/ b (U, U, )| dt < BO/ HUH%Gidt—Fcb/I U, dt. (3.35)

The constant ¢, depends on ki, namely, ¢, = 2E- where ¢; > 0 is independent
1 8o

Of]i]l.)
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Proof. By (2.28),

(U0 =~ 3 | > fS(U)ggZ do (3.36)

KEITh,t

=01

+ Y /FH(U#),U@,nF) UlrdS+ 3 /FH(UﬁL),UF(L),nF)U\FdS.

Fe}‘,{,t Fe]—‘}?’t

1=09

Then from the Lipschitz-continuity of the functions f,, s = 1,...,d, with the
modul L; > 0, assumption that f,(0) = 0 and the Cauchy inequality, we obtain

ol < X[ 310 - 1013

KeTy .

dz (3.37)

oU
ox

s

de < LV |Ul|z20) Ul ,.7.0)-

<y y [

KeTy .

Now we shall estimate 3. From the relation f,(0) = 0, s = 1,...,d, and the
consistency of property (H2) of the numerical flux H we have H(0,0,nr) = 0.
Then we can use the Lipschitz-continuity of H and get

ol < L X [ (U + 10D U]l ds

Fe]—‘,{,t
L L L
+ L X [0+ 0P i) as.
5 /T
rer,

Using that UéR) = UéL) for I' € F?,, Cauchy inequality, and the relation (") <
hi, if I' C 0K, we obtain

ool < Lu X [ (U + U)o as (3.38)

rer;, r

+Lu Y [ (U110 ol as

Fe]—‘ffz r
(L) (L) V2
Ln ARl ARl
< w aS+ew 3 [ ds
Vew FGZ:]_% r h(l) F;}ft r h(l)

1/2
x ( > () [ (UR1+ rUéR’Dzds)

Fth,t
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1/2
L
< \/iJh (U, U, )" ( S 2m(T / |2+|U§R>|2)ds)

w TEFn,
< Ly Jo(U, U, t)/?

1/2
h / UL 1248 + b / UB2as
(5 0 g S 4 g [ 8
1/2
<LHJh(UUt1/2( > / hK\U|2dS)
KeTh

1/2
_LHJh(UUtl/Q( > hK”UHL2(8K)> :

KeTht

Substituting (3.37) and (3.38) into (3.36), using the Cauchy inequality and the
definition of the || - || pg-norm, we find that

b, (U, U, t)|

1/2
< LV U |Ulwr(0u7.0) + L Jn(U. U, t) 1/2( > hgllUl72 aK)

Ke7—ht

1/2
1/2
s(ﬁdmeJ% z:hmwmmm) (100,750 + (U, U 1))

K€7~h¢

1/2
<cllUllpa: | U]l + ( > hKHUH%?(aK)) 7

KeTh,

1/2
where ¢ = (maX{L? d, L%I}) ? Furthermore, the multiplicative trace inequality
and the inverse inequality imply that

> hellUlzeor) < e Do hi (||U||L2(K)|U|H1(K) + hl_(an”%?(K))

Ke'Th,t KE'Th,t

< culer+1) 3 Ul = euler + DU

KeTh,t

Hence, from this relation and Young’s inequality we get

1/2
b (U, U, t)| < c||U|lpgs | IUl + ( > hK||U||%2(aK)>

KeTh,

0
< alUlpe: U] < ”U”DGt_'_ a3 ||U||2 1||U||3)G,t+cb”UH27

where ¢; = c(1+/cp(er + 1)),k > 0and ¢, = 13 ’“ . Integrating over the interval
I,,,, we finally have (3.35). O

Lemma 3. For every ko > 0 there exists a constant cq > 0 such that for the
approzimate solution U of problem (2.11)-(2.13) we have the inequality

B
[l U]t < 2 [ Ulgd+ g Ul A (3389
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Proof. By (2.29), (3.10) and the Cauchy and Young’s inequalities,

J Ul < e |3 /Z!U!

"’KETh
< Cz/[ 1Ule, Ul a1 7., dt
< e [ Ul Ul dt

16} 2k
< o J 1Ulbeedt+ 52 |-

2]{?2 Im
which is (3.39) with ¢g = Zks. O

U115, dt,

3.2.3 Estimate of the right-hand side form

Now we continue with the estimate of the right-hand side form 1,(U, t).

Lemma 4. For the approximate solution U of problem (2.11)-(2.13) and any
ks > 0 we have

/] (U, )] dt (3.40)
1 p

<5 [ lsl,+ W0I3,) e+ ok [ Nuplidende+ 52 [ [0, dt
2 Inl kg 'm

Proof. 1t follows from (2.30) that

(U, )] = (9, U) + Boew S h(I)™! /F uple Ulrds).

rerp,

After using the Cauchy inequality for the first term on the right-hand side and
applying Young’s inequality with k3 > 0 for the second term, we find that

(9, U) + Boew Y, h<F)_1/FUD|FU|FdS|

rery,
1
< 5 (gl + NUI3,) + Boks ew 3= bl [ fuplel*ds
rerp, 1T
:HuDH%GB,t
PP ew X iy [l as.
3 Fe]—'B

SJh( Ut)< HUHDG t

Hence,
< 1 2 2 2 Po 2
(U D) < 5 (lglle, + 1Ulla,) + Boksllup[bess + 11U Ibe.e
from which we get (3.40) by integrating both sides over the interval I,,. O
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3.2.4 Estimates of the ALE derivative

Finally we need to estimate the term with the ALE derivative. In the proof we
will use the Reynolds transport theorem.

Lemma 5. (Reynolds transport theorem) Let A € W'*°(0,T; Wh>(Q,)) be an
ALE-mapping with domain velocity z(x,t) defined in (2.8). For any t € [0,T]
and v(z,t) € WH=(Q,) it holds

e e :/ (Dyo(z,t) + v(z, 1) div 2(z, 1)) da, (3.41)
dt Qt Qt
where the derivative Dyv is defined in (2.9).

Proof. See, e.g. [41] or [1]. O
Lemma 6. It holds that

1
| (o 0)e,at =5 (100, ~ WU, —c [ VIR, d). (3.42)

m

(U 1, Ui, (3.43)

m—1
1 _
=3 (Il + Tl = Uil )

m—1
/ (DU, U)g, dt + ({Ubm-r, Ui ) (3.44)
Im th 1
1, . 1 _
> 10l + 1Tl = 5 [ 10T~ (Vo Vi),
Proof. We start with the first inequality. We have
/ (DU, D)o, dt = [ S (DU, U)g dt. (3.45)
m Im KeT,

By virtue of relation (2.15), the Reynolds transport theorem (3.41) and relation
(2.10), we get

Cft /K U(x,t) dz (3.46)

_ /K <3U6<’f’t) + z(z,t) - V(U?(z, 1)) + Uz(:c,t)divz(x,t)> dx

_/ <2U <8Ué t) + z(z,t) - VU(x,t)) + U?(x, t)div z(a:,t)) dz
=2(D,U,U)g + (U?,div 2)k.

Expressing (D,U, U), summing over K € 7, and integrating over I,,, together
with assumption (3.10) and using Fubini’s theorem yield

1/ d 1
D = - =/ v _7/ 2 di A4
/1m< U, U)q, dt 3 ) @ ), Utdedt =5 | (UF divz)e i (3.47)

1, 1
= 5IUalé,, - *||U+_1||?ztw1

1, Cz
> S0, — 51Vl =5 [ W01, d,

|
—f/ (U2, div 2)g, dt
2 )1,
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which gives (3.42).
Further, we find that
2(Up—1 = Upo1s U)o

m—1»“m—1

= (U;;—1 - Un_z—la U:n_—l)th_l + (U;—l - Uﬁ—p U;;—1)Qt

= HUnt_ll\?ztm_l - (U, U+—1)Qt

m—1»~m

m—1

m—1

me1 + (Unt—l - U;—la Unt—1>Qt

= HU:;—lH?ztm_l — Uy U:n_—l)ﬂtm_l + (Ui = Uy U — Un-1)e,,
+(Upo1 = Unpet, Upet)e,,

= HUnt_ll\?ztm_l - (Un;—bU'rJnr—l)th_l + H{U}mle?)tm_
+(Unt—17 Uﬁ—l)ﬂtm_l - HU’I’;—].H?%

= 1Unallen,, , + H{U malla,,

m—1

1

m—1

— U,

1 m—1

which immediately implies (3.43).
Concerning inequality (3.44), from (3.47) we get

/Im(DtU, D)t + ({Ukn-1, U1,

1
= ; . c?t 0 U?dzdt — ;/Im(UQ, div z)q,dt + (Unt_l -U,, 4, U,J,g_l)%%1
= 51Ul = IV, — 5 [ (@ divz)adr

+”U£71||sz,l - (Ur:th U;71>th,1
> 5 (102, + 10, = e [ VIR = (U Uiss),
which proves the lemma. O

3.3 Discrete characteristic function

In our further considerations, the concept of a discrete characteristic function
generalized to time-dependent domains will play an important role. The discrete
characteristic function was introduced in [23] in the framework of the time dis-
continuous Galerkin method combined with conforming finite elements applied to
a linear parabolic problem. The discrete characteristic function was generalized
in connection with the STDGM for nonlinear parabolic problems in [9], [20], [31].
Here it is generalized to time-dependent domains.

3.3.1 Definition of the discrete characteristic function
For m=1,..., M we use the following notation:

U=U(zt), € tel, (3.48)

will denote the approximate solution in €2;, and

U=U(X,t)=U(A(X),t), XeQ, , tel, (3.49)
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denotes the approximate solution transformed to the reference domain €2 _,

For s € I, by Uy = U, (X,t), X € Q, .t € I,, we denote the discrete
characteristic function to U at a point s € I,,,. It is defined as U, € PI(1,,; SP™ 1)
such that

| @, at = [ (O, dt Vee P LSE), (350)
U X, t14) = UX, tma+), X €Q, . (3.51)

The existence and uniqueness of the discrete characteristic function satisfying
(3.50)—(3.51) is proved in the monograph [31].

Further, we introduce the discrete characteristic function U, = Us(x,t), = €
Qi,t € I, to U € S)'7 at a point s € Iy:

U(z,t) =U (AN (2),1), 2 €Q, t € I, (3.52)
Hence, in view of (2.20), U, € S;? and for X € €, _, we have

Us(X, tino1+) = U(X, b1 +). (3.53)

3.3.2 Continuity of the discrete characteristic function

In what follows, we prove some important properties of the discrete characteristic
function. Namely, we prove that the discrete characteristic function mapping
U — U, is continuous with respect to the norms || - ||z2(q,) and || - | pa,. In the
proof we use a result from [9] for the discrete characteristic function on a reference
domain:

There exists a constant 5(01}{ > 0 depending on ¢ only such that

J R, at < @y [ 1013, dn (3.54)

1

forallm=1,...,M and h € (0,h).

Lemma 7. There exist constants Cy,, Cir > 0 such that
Cr (D)™ < W(I)™' < Cpr (D)™ (3.55)
forallT € Fry, T = A(D) € Fry and allt € Ty, m=1,..., M, h e (0,h).

Proof. We use the relation between I' and I' and the properties (3. 7) and (3.8)

of the _mappings A; and A;'. We also take into account that [' ¢ K for some

K e ’Th i1y I C K = A(K ) € Tp, and that the Jacobian matrices %g and

d . .
“3; are constant on K and K , respectively. Then we can write

(') = diam(T) = max |z — 2" = max |A(X) — A(X™)]
el X, X*el
dA(X)
o

<

max | X — X*| < C} max X — X*| = CL (D).
X,X*€

Xel’ X, X*el
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Similarly, we get

A

AMI) = diam(l') = max |[X — X*| = max A () — A7 ()]

X,X*el @€l
dA; () _ _
< | < — 2| = .
Sl e LT
These inequalities immediately imply (3.55) with constants C}., = (C})~! and
Cit = 5. O
Theorem 1. There exist constants c‘g}[, cgl)q > 0, such that
J Il ar < el U1, dt (3.56)
J Nt <l [ U (3.57)

forall s € I,, m=1,...,M and h € (0,h).
Proof. We begin with the proof of the first inequality. We have

O, = | U P de = [ (AT @), 0] da

_/ 0.(X, )2 (X, t)ngCj/Q 0,(X, )2 dX

tm—1

= le\us( e,
Integrating over I,,, and using (3.54), (3.49) and (3.6), we obtain
| @l a < cr [, d (3.58)
<

Cieth [ 10, d
= Cj (CIH/I <~/Qt
= it [ ([, a0, ax) a

= crel) [ (/Q |U(x,t)|2J‘1(x,t)dx> dt
Im t
< cjag}p;/ (/ |U(:z:,t)|2d:c) dt
m Qt

= CreonCy | U@, at

Setting ch = C’Jc yC7, we get (3.56).
Now we pay our attention to the proof of the second inequality in the theorem.
From the definition of the DG-norm we have

|U(X,t)|2dX> dt

| kb, at (3.59)
—/ S, |H1K)dt+/ /[us]st at
’"KET e ]:I ) r
Cw 2
+ —/ U2 ds | at,
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where Fj, = {A}, YD) T e Fi. .} and similarly FP, = {Ath_l(f‘); I e

‘F/‘LBtm_l }
Further, we estimate each term on the right-hand side of (3.59). From [31],
relation (6.161), it follows that

3 / Oy dt <22 Y / (O dt, (3.60)

KET}L tm KETh tn

with a constant 6(02}, > ( depending on ¢ only. For simplicity let us denote

AR @)
dax '

dAy(X)

Bt:Bt<X): dx )

(3.61)
Then it follows from (3.7) and (3.8) that || B,|| < C{ and || B;'|| < Cy.
Now, for K € Thy, K = Ay(K) with K € T, using that || B| ;|| and || B; |||

are constant, we have

m—17

Yo Uy = D /|VLI (z,t)]*dx (3.62)
KeTh KeTh
2

— [ % [V@A7 @) ) da

KeTh
</ S UB kP Va0 T dx

KGThz
S (CA) OJ Z |Z;{s(t)|i]1(f<)-

Keli-h,tm_l

Integrating over I,,, using (3.60), (3.49), (3.6), Fubini’s and the substitution
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theorem we find that

[ ht) e (3.63)

™ KeTht
< (C7)*C / S )P
KEThtm 1
Ciel | Z r ()2 1)
KETht
=(Cpresedy [ | X [ IvoPax |d
m KeThfm L
—cerl [ |2 / V(U(AX), )P X | dt
m KEThz
< (Carcsedy [ / IBIPIVU (@, D5 @ t)dx) at

Im Kent

< (Ch)PCfedy(Ch(Cy) /m( > / IVU(x,t) |2d$)

KETM

(CA) CJ CH(CA) CJ / Z ’Hl (K) d

Im KETht

= ¢ [ 10,7 dt

where CCH = (CA)2C:}_CCH(CA) (Gl
Now we turn our attention to the term

/Im ( 3 hC(VIZ) /F [usPds) dt.

rerf,

First, we assume that d = 2. We will use the analogy to estimate (6.162) from
[31]. This implies that

/ > [ ast| at (3.64)
I rer!, hT) /T
<) CW 0)2dst | at.
fm Fe]—'I

Here dST denotes the element of the arc . Similarly we use the notation dS L
Now we consider the relation I' = Ay(I'),I" € F[, . and introduce a

parametrization of I

—1

D=8 ,([0,1]) = {X =B, (v);ve0,1]}.
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Then an element of ' can be expressed as

ST =|(BL_))(v)|dv, v e0,1].

These relations imply that

T = {z = A(BL,_,(v));v € [0,1]}
dA;

a5 Bra)(BL ) W) dv, v e 0,1

dst =

The term (B _,)'(v) is a tangent vector to I' at the point BL | (v). It follows
from the properties of the mapping A; that the values of

d'At I I /
O Brnoa (0))(Bry)'(v)

are identical from the sides of both elements Kr and K adjacent to I'. Then
we can use the above relations, inequalities (3.55), (3.7), ‘and write

/h (Jrast (3.65)
r 2 d'At r r /
-/ r[“s%(lgm_l(v»)] (B () (B, (0)|
< [ s B o) B >>||\<B};_1>'<u>| av
<Cc}
SCA/Fh( )[~ J2dst

From (3.64) and (3.65) we get

/m ( 3 hc(vli) /F [us]QdSF) dt (3.66)

Fe]—‘[ht

sk Cw 712 r
< ¢ &l C' C / E — / Ul*ds" | dt.
CH L7 - f‘ef’it h(F) f[ ]

Further, for T' = A,(T"), where I' Fiy._,» we consider the parametrization
I ={z =B} (v);vel01]}
S" = |(BY)| dv,

[={X=A47"(B/(v));v e [0,1]},

as" = \dg‘ (B () (B (v)] d

v.
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Then, by (3.8),

A 6y ()] d

v

Jiopast = [ A srm)P?

(U8B ()2

[ @)

dAt

IA

(BF (v H\BF )| dv

<cy
— ! T 2 1IN}
< C5 [ W )PIB) W) dv
— — 2 d 1—‘.
o /F ]2 dS
Substituting back to (3.66) and using (3.55), we find that

/m ( 3 hC(VIZ) /F [us]stF) dt (3.67)

rerf,

< &,CiC(Ciy) O /IW(Z W) [U]?dS) dt

Fefg’t
] (

where CCH = CHCXCZ?(CE) 'Cy.
Similarly we can prove the inequality

(3 o) wsenf (=

Fe}‘,fft

F[U]2 dS) dt,

rer,

C&K) /F U2dS> dt. (3.68)

rery,

Finally, (3.63), (3.67) and (3.68) imply (3.57) with 2}, = max{C%,, %), CL)}.
The proof of (3.67) and (3.68) in case of d = 3 is much more complicated. I
am grateful to Zuzana Vlasakova for her advice.
We introduce a parametrization of I. Let A2 be a reference simplex in R2
(with one vertex being the origin and all of the other vertices have only one
non-zero coordinate equal to 1). Now

r=A((I), Te T s
D=8l (A% = {X =BL_,(v); v e A%},

: oB~ OB},

r m—1 m—1 1 2 2
dst = Do (v) x D2 (v)|| dz” da®, v e A®,

I = {z=A(B, (v);veA?,

r _ dA; op 6671?1—1 dA; op 8871;—1 1 3,2 2
ds' = % (B,,_1(v)) Do (v) x e —(B,,_;(v)) 2 (v)|| dz* dz*, v € A%
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P

By the symbol x we denote the vector product. The terms 8[; ~L(v) are tangent
vectors to I at the point B 4 (v). It follows from the properties of the mapping
A; that the values of 44t (ZS’F (v ))

—L(v) are identical from the sides of both

elements K . and K r adjacent to I
Then we can write

/h 2 48"
M(F)[ (B )P

dAt T 8671:1_1 dAt i -1
LB () S (0) LB L (o) S 0)

) R .
oBL oBL
ox! ~(v) ox? ()

< [ OB |

<@ hc;f) 0.2 ds".

dz!' dz?

Hence,

/m ( 3 hC(VIZ) /F 0,2 dSF> dt (3.69)

Fe}‘,{ﬁt

<&@ (o2 / CW 02 dst | .

™ \Te ]-‘1
Further for T' = A,(), T' € Fi..._,» we consider the parametrization

I ={z =B (v);ve A’}
[={X =AY (B');veA?},

r T
Hagﬂil ag;_l(v)‘ dv, veA?

C|ldAT OB dA;7Y L 0B )

—|| B ) 22 1) M4 (1) 2 )| v, e
Then
/f[ff]2 ds’ (3.70)

- dA;! 0B} dA ! 0B}
= [ T B @) | ST (B ) 5 () x S (B ) 52t (a)H do' da?
dA; ! ?|oBr oBr

< [ 0B )| ST B 0| | S ) x ale(z})H do' da?

< (Cx)? [ UP as”.
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Together we get

/m <r§ hC(VIZ) /F 0,2 dSF) dt

< @W(CHCCi TN CR) [ ( A dSF) dt,

Fe]—‘{b’t

which is the 3D version of (3.67). Similarly we prove (3.68) in the 3D case. [

3.4 Proof of the unconditional stability

Now we can apply estimates from Section 3.2 to the basic identity (3.14). These
estimates, apart from another, produce a problematic term [; [|U||3,d¢, which
we will need to estimate in terms of data. To overcome this difficulty we use the
generalized discrete characteristic function in time-dependent domains.

3.4.1 Estimates of the basic idientity

Theorem 2. There exists a constant Cry > 0 such that

_ Bo
UG, = 1Umi I, + HU mallg,  + 5

<On ([ Nolaat+ [ Muplhngde+ [ uUngtdt)-

Proof. From (3.14) we get

U D edt (3.71)

/(DtU,U)Qth—/ AU, Ut dt+ [ by(U, U 1) dt

m m Im

o1 a2 o3

+/ GWUU )+ (U, Uf) = [ LU0
Im,

th—l Im

g4 o5 06

By virtue of (3.42), (3.18), (3.35), (3.39), (3.43) and (3.40), we find that

1, 1
o 2 WUl — 510, — 5 [ 101,
b
o = B[ U - 2 /ImnanDcB,tdt
o < 5“/ 0+ e |00
Bo
o < 2, J 0t + 5o [ IR

7 = 2 (”UmleQt"H1 + H{U}m—lth 1 HU”;*lH?)t 1)

1 503 ﬂO
5 (gl + 10IR) dt+ 252 [ uplfhpdt+ 5 [ UGt

IA

06
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The above relations imply that

Sl - 1T, 5 [ oI
2 [0t - i? oo
+QM%4%%1+QMUMA%%1—1MQA%%1
< [ 0Bt | IR+ S [ UG
o [ IR+ [ Lol [ Ui
8 [ uplbsd+ 2 [0

After multiplying by two and rearranging, we get
1T, = 10mille,, + H{U b llg,

1 1 1
- — = / U2, dt
+5 < I k3> . Ul De.s

< [ Ngla,at+ 5ot + ks) [ lunllhes e +

m

C,
(cz+ - +20b>/ U2, dt.
Bo I'm

Hence, choosing ki = ko = k3 = 6, we get (3.71) with Cry = max{1,75,c, + 1+
ca/Bo + 2¢p}. [

Theorem 3. There exist constants Crs,Crg > 0 such that for any 61 > 0 we
have

1

_ Bo
07, + 105l + 2 [ 0 (3.72)

< Cra [ W+ Cr [ (ol + ool )
2
F Ul + 1000, -

Proof. From (3.14), by virtue of (3.44), (3.18), (3.35), (3.39) and (3.40), we get

/(DtU D)ot + ({Ubnor Uf ), + [ AWU.U 1) at

m m—1 Im

o1 o2

+ bh(U,U,t)dH—/ dh(U,U,t)dt:/ (U, 1) dt,

o3 04 o5
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where

o 2 MUl + IV, — S [ VIR = (U Uin),
mwz 2 umbcﬂt‘ﬁﬁmwm%mﬁa
agg%|w%mw+%/nm@w

2k ’ I ‘
o < L [0+ S [ iR

= 2% 250 t

o = 5 [ (ol + 101, )ae+ 222 [ un e+ 5 [ 01t

2 Jr, ¢ ¢ 2 JIn 2ks ’

We remind that ¢, = c?k1/5y and cq = k.
After rearranging we have

1, 1 Cy —
Ul + N0 lR,, = S IUIE A = (U, Ui,

-1 m—1

BO 60

+ [M0edt =3 [ Junlpasdt
< 50/ Ut + o [ UG+ S5 [ U
- 2]’{:1 DG7t [‘"L Qt 2k DG’t

1
o nmma+2jnm@&+zﬁJWMAt
ﬁOkS 50
5 | ”uDHDGB Wt + —— ks ||UH2DG,tdt'

Hence,

1 1 1
[Vl + 10l 40 (1= = =) [ WUt

< [ gl at +Bo(L+ks) [ lupliben t

m

Cd 2 _
+<1+cz+20b+50) /Im 10113, d +2(U 1. U3 4)

m—1

Using Young’s inequality for the term 2(U,,_;,U,"_;) and setting ki = ky = k3 =

6, we get (3.72), where Crs = 1+ ¢, + 2¢, + cq/Bo and Cfy = max{1,75,}. O

3.4.2 Estimates with the discrete characteristic function

In this section we derive key estimates, which will help us to estimate the prob-

lematic term [, [|U||3,dt in terms of data. In Lemmas 9 - 13 we will estimate

similar terms as in Section 3.2, but the test function (second variable) will be

replaced by the generalized discrete characteristic function.
We introduce the following notation:

tm—l—i—l/q = tmfl—i_ng’

Um71+l/q - U(tm71+l/q)7 [ = O7 o q.
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Lemma 8. There exist constants Ly, My > 0 such that for m = 1,..., M we

have
q ) L*
_ > dt, .
;wﬂwmww__%me (3.73)
M*
105, < == [ IUlEae (3.74)

Proof. Using the equivalence of norms in the space of polynomials of degree < g,
for p(t) = U(X,t), t € I, and any fixed X € €, , we have

NP 2 Lq > 2
Z]UX T | — 0P,
=0 m m
2 M -
(X )| < | 0P,

where the constants L,, M, > 0 were introduced in [31], Section 6.2.3.2. Inte-
grating over ), . and using Fubini’s theorem, we get

m—1

Kl ~ L

S [ 10 (Xotry) PAX = 2 5 (/Im|U(X,t)|2dt> X

=0 tm—1 Tm m—1

_ L /
T i Q.

U(X, t)]2dX> dt.

-1
Analogously we find that

[, oGrao)rac<ey (1

m—1

\U(X, t)\de> dt.

m—1

Now the substitution X = A;'(z), where X € @, ,, € €, the relation
U(A; Y (z),t) = U(z,t) and (3.6) imply that

q
S Unrsizallt,

1=0 1+i/q
>Cy Z/ Uz tm—1+z/q)|2J_1(x,tm_1+l/q) dzx
tn— 1+l/q
q ~
07y /Q 1U(X, by 141q)[PAX
=0 tm—1

|U(X,t)|2dX> dt

I
> C7 /
B Tm ! ( th 1
_ (/ T (A (), ) 2T (a:,t)d:z:) dt
Tm Im

> a((Jj)—lcg /Im (/Q |U(x,t)\2dx> dt

L P
= 4oy [ vk

Tm

Hence, we get (3.73) with L} = L,(C7)~'C7.
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Further, since z = A, (X) = X for X € Q,,,_, and, thus, U(X,t,,_1+) =
U(z,tm—_1+), using the substitution theorem and (3.6), we obtain

2 _ F 2
Vs + 13, = /th 1\U(X,tm1 +)]Pdx
M -
< Y </ (X, t)|2dX> dt
Tm JIm Q1
M, e 41 2 7-1
- % ( TA (@), 07T (2, ) dx) dt
Tm I'm Qt
M,
< —(Cy)” / (/ \U(x t)|2d:c> dt
Tm m
< Ullg, dt,
< 2= [ i,
where M = M, (C7)~". O
In what follows, because of simplicity, we use the notation U = ' %—g and do
not write the arguments X and ¢ in integrals.
Lemma 9. There exists a constant Crg > 0 such that
| (DUUa, dt+ (U Ut )e, (3.75)

1
> 5 (W06, + 10 ) R, )
~Cuo [ 0N, dt = (U1, Uz a, -

forany s € I,, m=1,....,M and h € (0,h).

Proof. By virtue of the definition of the ALE derivative (2.9), the definitions

(3.49), (3.50)-(3.51), (3.52) of functions U, U, U, the fact that U'isa polynomial
of degree < ¢ — 1 in time and the substitution theorem for any s € I,, we can
write

| owear= [ (0'a4.), (3.76)
(

/S (DtUUQ,dtJr/ (. oa-p), a

tm—1

+ (U,L{S(J—l))ﬂt dt.

Im

m—1

Now we estimate the second and third term on the right-hand side. We begin
with the third term. The fact that J is constant on each K &€ T4, , and the
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substitution theorem imply that
| Gi-1) (/ o', dX> dt
m K

f(e,?—h»tm—l

/ (U’,ZZ!S(J—l))thldt‘: 3

m

-
< ¥ 52?5|JK—1|/M </R|UUS|dX> dt.

keﬁﬁh,tm_l

Using the relation Jj(t,—1) = 1, we have
tm
/ |l dt < 7,

m—1

- — 1] <
max | — 1l <

where ¢; > 0 is a constant independent of h, 7,,, m. Then we find that

3 maX\JK—H/ /|ﬁ’asdedt
I, JK

- t€Lm
KETh,tm,1
<e; Y Tm/ (/ yU’zZS|dX)dt
RETh,tm71 m K

= CjTm Z ﬁ (/ ’U/Z;[s|dt> dX

IA(E'?—}htm_l K Im

iy \ 12 N

<o Y (/ lid dt) (/ | dt) X,

IA(GIj—h,tmil K Im L

Now we apply the inverse inequality in time: There exists a constant ¢; such

iy 1/2 & - 1/2
(/ (X, t)|2dt> < (/ (X, t)]th> (3.77)
Inm T \JI,
holds for every X € Q. |, 7, € (0,7) and m = 1,..., M.
This inequality, Young’s inequality, Fubini’s theorem, inequality (3.54), the

that
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substitution theorem and assumption (3.6) imply that

T S /((/ |U'|2dt>1/2(/Im|l;ls|2dt>1/2> dx

Ke Tht

/2 _ 1/2

<@ ( |U|2dt> (/ |Z/ls|2dt) X
KTht fm

<7 ( (10 +124,7) d )dx
KETht

-3 X /( (10 + .J7) ax ) a
KETht "

C ~ ~

-2(/ ||Uuétm_1dt+ |z, )

¢

<Grag) [ 100,

:51 +~8H/ 3 / (102dx) d

KeTh

m—1

A

= 2+ / (/ UPJ 1d:c>dt
< [ Ui,
I'IYL

where ¢* = (C7)~'e(1+ 6(01;{) /2. Summarizing the obtained results, we see that
we have proved the inequality

/ (0,07 - 1)) dt‘gc*cj/ U3, dt. (3.78)
Im th—l [m

Similarly as above we can estimate the second term on the right-hand side
of (3.76):

/s (000 -1),, dt‘

tm—1 m—1
< v /1— 7 ([ 00 ax)a
Ke Thz " K
< ¥ Eg%xu— K\/I7,L/R|UU|dth
KETht
< CiTm Z //|UU|dth
KET}Lt
— e Y / (/ |l7/l7|dt)dX
KETht
/2 ~ 1/2
<crm Y /((/ |U|2dt> (/ |U|2dt> >dX:: RHS.
KETht Im
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Now the inverse inequality in time, Young’s inequality, Fubini’s theorem and (3.6)
yield the inequality

_ 1/2 _ 1/2
RHS < ¢ ¥ /(/ |U|2dt) (/ |U|2dt> dx
- K \JIn, Im

KEThyt
< Y /(/ ]U[2+|(7]2dt>dX

NN K Im

KET}LJ
< U12dX dt < / /Uzj’ld dt
_C/Imz/[(’| _C] ZKH .

KeTh, " KETh

< c/ (/ |U|2dX)dt:c/ U3, dt.
Im (o Im

From above estimates we find that

/s (0. 0a-1),

tm—1 m—1

<a [ U3t (3.79)
I’m

where ¢; = ¢;(C7)7'¢;/2.
Finally, from (3.76), (3.78), (3.79) and analogy to (3.44), (3.53) putting ¢y =
c*cy + ¢; we find that

/ (DU, U)o, dt + ({U 1, Us (b))

m

> [ (DU dt+ U, = U Ul = [ U1t

tm—1

1 (d ) L

T2 (dt /Qt U (x>t)d$> dt — 2/tm1 (U div, Z)Qtdt
HITE R, = Un U e, — cg/l U2, dt
1 "

= 5 (06N, + 1005, ) -5 [

o [ VIRt = Uy, Uiy

U], dt

which implies (3.75) with Crg = ¢,/2 + ¢s. O

In the following lemmas, for simplicity we use the notation U and Z;l; for
the discrete characteristic functions to U and U, respectively at the time instant
tm—1+l/q7 [ = 07 - g

Lemma 10. There exists a constant Cri0 > 0 such that
lan(U, U7 1) + BoJu(U, Uy, 1) < Crao (101D + U7 s + lunlbas,) (3.80)

forallte l,,m=1,....,.M,1=0,...,q, h € (0,h).

Proof. Using the definition of the form ay, the property of the function [, the
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Cauchy inequality and Young’s inequality, we get

|an (U, U, 1)) (3.81)
<p ¥ / (IVUP + V2 P) de
KeTh
h(L') 2 c #12

+54 FGZ}‘I / ( |VUF 24 |vul®) )+ WMI:) U] ) ds

2 % cw 2
+51F€ZF / ( IV U)W+ v ) )+ hD) [U] ) ds

2 4 Cw 2

+51F§B /( IVU|* + WD) 47| ) ds

+8 ¥ /( VU + (WF)|U|2> ds

Fe]—‘B

B X[ 190 fup| ds.

Fe]—‘B

The last term can be estimated using Young’s inequality and the relation

h(I) < h ), for each € > 0 in the following way:
I

Y /|VL{Z | up| dS

Fe}‘f‘t
615 1
< 2E oy / lup|? dS+— 3 /hK(L>\vu,\ s
Fe]—‘B Fe]—‘B
< Bng (uD uD _’_7 Z / (L) |VZ/{| ds.
o QCw h ’ (L K !

Fe]—‘B

Now we express the first term on the right-hand side of this inequality with the
aid of the definition of the || - || pgp +norm (3.2) and to the second term we apply
the multiplicative trace inequality (3.12) and the inverse inequality (3.13). We
get

B

5 B .
Bi Y /!VUM lupl d5< : |’uDHDGBt+2€ mler + DU [ Das- (3.82)

FefB
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Setting ¢ = %CM(CI + 1) in (3.82) and substituting back to (3.81) we get

an(UU D < B Y /K(|VU|2+|VUZ*|2> dz

KETt

+h Y / |VU5”|2+|VU§ B)ds+5 Y / —IVU|2dS

FG.FI Fe]:B
Y / (9@ e+ @) as

Feff

st 51 2

+h Y !vul| + g—cnler + Dlupllhes,

Fe]—‘B 5 w

+?0||UZ*H%)G,1S'
From the definition (2.25) and Young’s inequality we find that
T (U U 1) < J(U, U, ) + Jo(Us U ). (3.83)

Using the inequality h(I") < hg for I' C 0K and (3.83), we have

|an (U, U}, 1)] (3.84)
<t > [ (IVUP+ V) do

K€Th,t

Lo /( [ VU P+ by | VUL y)ds

CW rer,

Lo /hK<L>|VU| s

CW rerp,

P8 S [ (TP + g [V P) s

CW rerl,

LB bt

=30 [ g VU PAS + ge(er + 1)un o,

CW rerp,

+?OHUZ*H2DG¢ + ﬁl Jh(ul*aul*a t) + ﬁl Jh(U7 Ua t)

CM(CI+1)||UD||%GB¢+?”ul*n%e,r

_l’_
2Bocw

Now, applying the multiplicative inequality and the inverse inequality, we can
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obtain the estimate

S [ (IVUP + 98 ) s (3.85)

KeTh

= > i (IVU 220y + IV 720x))

KeTh,t

<en Y h(IVUlzgo  [VUlma  +hE VU720
KeTh ¢
" Sc;h;{1||VUHL2(K)

+em Z hK(HVUI*HL?(K) |Vuz*|H1(K) +hf_(1||vul*||%2(l<))
KeThs .
<erhi VU 2 k)

<emler+1) Y (HVUH%Z(K) + ”VUZ*H%%K))

KGE,t

KG’Th,t
From (3.84), (3.85), the definition of the ||| pg-norm, using the inequality (3.83)

and putting Cp 10 = max{Sy + 1 + Siem(cr + 1) Jew, fiem(cr + 1)/ (2Boew) }, we
finally get

an (UL} 1) + o Jn(U. 0 1) < (51 e+ 1)) VB
w

+(Bo + 1) (U, U, t) + (51 + io + C%/CM(CI + 1)> |ul*|%11(9t,771,t)

ki
2B0cw
< CrLio <||U||§)G,t + U e + ||uDH2DGB,t) :

+(Bo + Br) Jn (U U t) + cu(er + 1)HUDH2DGB,t

]

Lemma 11. For each ki > 0 there exists a constant c; > 0 such that for the
approzimate solution U and the discrete characteristic function U we have the
inequality

[ g vlae < 2o [ gt e [ 0IRAL (356)
Proof. By (2.28),
. d aul*
(UU ) =— 3 /Zfs(U)a do (3.87)
KeTy . K s=1 Ls

=01

+ /F HOUE UP np) ]rdS + Y /F HUS, UW np)u; ds.

rerl, rer?,

=09

Then from the Lipschitz-continuity of the functions fs, s = 1,...,d, with the
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modul Ly > 0, assumption that f;(0) = 0 and the Cauchy inequality, we obtain

ou;
o] < > / Z!fs Lld (3.88)
KeTh
82/{1 \/_ *
<Ly [ Zrm Az < LVa | Ulloy U i 07,00
KeTh
Now we shall estimate oo. From the relation f;(0) = 0, s = 1,...,d, and

the consistency property (H2) of the numerical flux H we have H(0,0,nr) = 0.
Then we can use the Lipschitz-continuity of H and get

ool < Lu ¥ [ U+ 107 ]S
rer,

+Ln ¥ [0+ 0D 1@ as.

rery,

Using the fact that UlgR) = UlgL) for I' € FP,, the Cauchy inequality and the
relation h(I') < hg, if ' C 0K, we obtain

|0 (3.89)
<Lo 3 [0+ Uf) 1g]) ds

rer;,
Ly X [ QU1+ 1060 @) ds

rerp,

2

9 1/2
<\§JC_(WF§]_-1/ )dS+cWZ/ )dS)

Fe]—‘B

1/2
(Z w(r) [ (U] + o) ds)
TeFn

1/2
Ly U )2 (L)}2 (R)|2

<

< T DU ST b [ (0P + U P) ds

FG]‘-ht

< = Jh(ul*aul*a t)l/Q

L
Jew
1/2
(L)2 (R))2
(Fgfj o | N LR /| (o O] dS)

1/2
LH 12 2
< o U U ) / (Z / h|U2dS
V KeTy .
Ly

V KeTh

Substituting (3.88) and (3.89) into (3.87), using the Cauchy inequality and the

1/2
= Jh(ul 7ul ) 1/2 ( Z hKH[]HL2 BK)) :
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definition of the || - || pg-norm, we find that

|bh(U>Ul*’t)| < Lf\/EHUHQt ’ul*‘Hl(Quﬁ,t) (390>

1/2
LH 1/2
+ Tn (U Uy )Y > hillU] 720k
e = (OK)

I 1/2
< (L2d||UHQt+ > kU7 aK)
‘w KeTh
*|2 * * 1/2
X (|uz |H1(Qt,77m) + Jn (U Y, vt>)
1/2
< clltIpcs | 1Ule, + ( > hK||U||%2(aK)> ,

KeTht

1/2
where ¢ = (maX{L% d, L% /Cw}) ? Furthermore, the multiplicative trace in-
equality and the inverse inequality imply that

Yo hkllUlzery < em Y. b (||U||L2(K)|U|H1(K) + hI_(IHUH%?(K))
KeTh KeTht
< emler+1) Y U2y = earler + DU,
KG’Th,t

Hence, from this relation, (3.90) and Young’s inequality we get

* 5 kT
(U U 1) < e U e U e, < 52 04 e, + € 95, —UIS,

- Qk*
Bo
o 124 ([ + ¢ 1U NG,
where ¢; = ¢(1 + y/ep(er +1)), kf > 0 and ¢ = 2k} /B,. Integrating over the
interval I,,,, we finally have (3.86). O

Lemma 12. For each k3 > 0 there exists a constant ¢ > 0 such that the approz-
imate solution U and the discrete characteristic function U] satisfy the inequality

B & ]
J lanUagnldr< 8 [ U de+ gt [, 3.91)
k2 260 I,

m

Proof. By (2.29), (3.10) and the Cauchy and Young’s inequalities,

/Z|ul|

< Cz/[ 14 N, |U a1 0,75, dt

< e [ 10 U e

50/
<
< g o Wlbesdr+ 5

[ @ < e[S
Im 1

™ KeTht

2 *
25
which is (3.91) with ¢ = c2kZ. O

Huz 1§, dt,
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Lemma 13. For the approximate solution U, the discrete characteristic function
U and any ks > 0 we have

* 1 *
J @ nlde < o [ (lall o+ 10413,) d (3.92)
ﬁk B ]
+75° [ lunlipesedt+ 5 [ 14 Basdt

Proof. From (2.30), using the Cauchy and Young’s inequality with k3 > 0, we
find that

(9. U) + Boew > h(D)™! /FuDZ/{l*dS]

rerp,

Boks
(lgli3, + 113) + =52 ew 3= (D)™ [ jupf?ds

2 rerp,

[\D\»—t

=lunBasp,

TP ST /F|u;|2ds,

2
ks rerp,

<Jn (uz* ’ul*’t)g Huz* HQDG,t

from which we get (3.92) by integrating both sides over the interval I,,,. O

3.4.3 Estimate of the term [; ||U]3, dt

Using Lemmas 9 - 13 and properties of the discrete characteristic function proved
in Theorem 1, we can finally estimate the problematic term [; ||U]|§,d¢ in terms
of data.

Theorem 4. There exist constants Cry, Cry > 0 such that

[ 1010t < Crarn (100, + [ (lgl, + lunlbes,)dt) — (3:98)

provided 0 < 7, < CFy.

Proof. For ¢ = 1, the proof is contained in [6]. Let us assume that ¢ > 2

le{l,...,q—1}.
From the definition of the approximate solution (2.32)—(2.33) for ¢ := U;" we
get

/ (DU o, dt + ({Udn 1.0, (3.94)

tm—1

_/ —an(UUE ) = Bodn(U, U 1) — bu(U,UE 1)) dt

(—dn (U U5 t) + 1, (U] 1)) dt.

Im
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This relation and Lemma 9 imply that

(H m— 1+l/q

g/I |ah(U,L{l*,t)+60Jh(U,ul*,t)|dt+/f by (U, U7, 1) dt

+ Uil ) (3.95)
14+1/q

[l o1+ [ el
(Ut Uir), +Cio [ UJ3, dt = RES.
th,1 I

Now we need to estimate the right-hand side of (3.95) from above. Using (3.80),
(3.86), (3.91), (3.92) with ky = ko = k3 = 1, (3.75) and Young’s inequality with
any 0, > 0, we get

RHS < Cuuo [ (|rUH%G,t+Hu,*u%g,ﬁHuDH%GBt)dt

m

B

2 10 gt + o [ 0100+ 52 0
toa / e e+ 5 [ (gl + a1, )

BO 50 *

+2 HanDGBthQ 124 s

Ul

et 0y |U R, + oo [ U1,
2 ]m,

Hence,
RHS < 1 [ (10, + 10 W + 104, + U1, + lgll3, + lunlibes,) dt

WUl

Ul

where ¢; = max{Cpri0+ Bo+ ca/(260) +1/2,c, + Cro}. Now we apply Theorem 1
on the continuity of the discrete characteristic function:

J N lade < el [ 10IRaL | et < e [ 1Vl

Hence,

RHS < ca [ (Ul + 10N, + ol + lunlibe,) dt

m

HUT’:_1||82-2’577L71
L
with ¢; = ¢; max{1 + 0(01}1, 1+ Cg}{} Then it follows from (3.95) that
1 _ 2 )
5 <HUm—1+l/qHth_1+l/q + HUﬂ—i:b—IHth_l) (396)

<o [ (10 + 10N, + gl + lunlas,) dt

WUl

) o [
2

m—1"
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Further, multiplying (3.96) by %, summing over [ = 1,...,¢— 1 and adding
0 (3.72), we find that

qg—1
—|12 P 2
10, + 507 =1 ; il ..,

B b
# (g +1) W0kl + ) 10T
<P

8
</ |wmma+<°+&3j|w%ﬂ
50 * 2 2

1+ Cis) | (lalle, + lluplbes,) dt

6 2 Bod:
+ -2 Un_i M3, + (52 400 ) UL B,
252 m—1 4 m—1

Setting c3 := min {Sc ?q“ oL 8560 + 1} and rearranging, we get

q—1 5
_ 0
o 10, + Z Nl Wil )+ [ 10T

_ q 2
=> 0 ”Um71+l/qHQt C14i/q

5 Bo .
<f+6h oo+ (5 ci) [ (lol,+ Tl d

o, 2 od
(ot ) W0l + (22 a0 ) Il

It follows from inequalities (3.73) and (3.74) that

c3ly Bo
0 [ U+ U

O M* 461 M*
< (50 24V + 1 _|_BO—|—CT3>/I ||UH522tdt

4coTm, T 4
60 * 2 2 BO 2 — 2
#(ven) [ (olho+ ol s (2 + 2 ) 10,
Setting d; = 1063]\2, 0y = Cgcf\f , Cyq 452052 + %, Cy 1= % + Cfy we get

CgL ﬁ 5
<2Tm 40_CT3>/ U1, dt + 7 /m U1 ,dt (3.97)

<cs [ (lgllg, + lunlban,) dt + eall Uz 3,

mfl‘

If the condition 0 < 7, < CF, := ﬂggi is satisfied, then
4(2+Cx,)
C3LZ 60 CgL>k
=0 > q
2Tom (4 * T3>— A7,
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and from (3.97) we obtain the estimate

csLy Bo
o[ ORde+T [U e de

47, 4 J1,
<cs [ (lolls, + lupliban,) dt +eallUz 11,

17

which implies (3.93). O

3.4.4 Main theorem

The stability analysis will be finished by the application of the following auxiliary
lemma.

Lemma 14. (Discrete Gronwall inequality) Let z,,, ap, by and y,,, where

m =1,2,..., be non-negative sequences and let the sequence a,, be nondecreasing.
Then, if
Zo + Yo < ap,
m—1
T+ Ym < apy + Z bjx; for m>1,
j=0
we have

m—1
T + Y < Gy, H (1+b;) for m>0.
j=0

The proof can be carried out by induction, see [31].
Now, if (3.93) is substituted into (3.71), an inequality is obtained, which is a
basis of the proof of our main result about the stability:

_ - Bo
UG, = U5l + KUl + % [ [UlDe, dt (3.98)
m—1 m—1 2 Im

< (Cr2+ Cr4 Tm)/l (lglld, + lunllbap.s) At + CraCra mn | Uy 1 113,

m

m—1

Theorem 5. Let 0 < 7,, < O}, form =1,..., M. Then there exists a constant
Crs > 0 such that

B m 6 m
UG, + 22 U} —ll6,, | + 50 > /1 101D, dt (3.99)
j=1 j=1"4j

< CT5 (HUO_”SQ)tO +Z/I Rt7jdt) , M= 1,...,M, h e (O,E),
Jj=1"%

where Ry j = (Crz + Cra7y) (I9ll3, + luplbap,) fort € 1.
Proof. Writing j instead of m in (3.98), we obtain
_ _ Bo
105116, = 10Nl + U6, + 5/1_ U5, dt

< /I Rt,j dt + CT2CT4 TjHU_y:1||?ltj7 :
J

1
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Let m > 1. The summation over all j = 1,...,m yields the inequality

1l + MOl + 53 [ 101Gt
j=1 j=1"4i

m—1 m
<N I3, + CroCra Y- 7allU5 W, + 3 [ Rugt
=0 j=1714

The use of the discrete Gronwall inequality form Lemma 14 with setting

Tg = Qg = HUO_H?%: Yo = 0,

T = [UnllS,,

b = SO lh, + 3 [ U,
j=1 j=1"4i

an = Usla, + X [ Rt
=11
bj = CTQCT4Tj+1, ij,l,...,m—l,

yields

- - Bo &
U, + S MUYl + 53 [ 10edt (3.100)
Jj=1 j=1"4j

m m—1
S (”U()_Hézo + Z /] Rt,j dt) H (1 + OTQOT4 Tj+1).
7j=1 7=0

Finally (3.100) and the inequality 1+0 < exp(o) valid for any ¢ > 0 immediately
yield (3.99) with the constant Crs := exp(CroCryT). O

In virtue of Theorem 5, the approximate solution obtained by the ALE-
STDGM (2.32) - (2.33) is bounded by a constant depending on data of the
problem, namely the functions from the initial and boundary conditions and
right-hand side of the solved differential equation (2.1). This constant is inde-
pendent of the time step 7,,, < T', which means that the method is unconditionally
stable.
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4. Error estimation

In what follows we shall be concerned with the analysis of error estimates for
the ALE-STDGM. To this end, we consider the form a; defined by (2.24) as
depending on four variables, namely v, w, ¢, t:

an(v,w,0,t) = > / B)Vw - Ve dx (4.1)
KeTh,.
-2 /F(<6(U)Vw> nr ] + 0 (B(0)Ve) - nr [w]) dS
rer,
~ ¥ [ (Be)Ve nro+08(0)Ve npw - 05(u)Vi - nrup) dS.
rery,

Then the approximate solution of problem (2.11)-(2.13) is defined as U € S}7
satisfying

/I ((DtUa SO)Qt + ah(U7 Ua ¥, t) + BOJh(Uv ¥, t) + bh(Ua ¥, t) + dh(Ua ¥, t)) de (42)
+({U}m—1> Spj_n—l)ﬂtm_l = /I lh(gpvt) dt Ve e Sﬁ:g, m=1,..., M,
UO_ € Sﬁ’o, (UO_ — UO, Uh)QO =0 Vo, € Sﬁ’o. (43)
The regular exact solution u of problem (2.11)—(2.13) satifies the identity
/ ((Dtu7 @)Qt + ah(“: u, @, t) + ﬁOJh(u> ©; t) + bh(ua ¥, t) + dh(u> ¥, t)) de (44)

Wt oo, = [ Wle)dt Vo e SPL m=1,.., M.

Of course, ({t}m-1,¢m_1)a, , = 0.
In the further sections, if it is not mentioned we consider m = 1,..., M.
4.1 Important estimates

We are interested in the estimation of the error e = U — u. It will be expressed
in the form

e=§+mn, where{=U—nmue Syl andn=mu—u. (4.5)

Here 7 is a projection into the space Sﬁﬁ. It will be defined later in Section 4.3.
Subtracting (4.4) from (4.2), for every ¢ € Sp’Z, we find that

/I (D€, ), + an(U, Uy p,) — an(u, 1, 0, £) + Bon(E, 0,1) (4.6)
(&) dt+ ({Ehnoii),

- (bh(u7 ©, t) - bh(U? 2 t)) dt — z (Dtna Sp)ﬂt dt — 50/ Jh(77’ 2 t) dt

Im m I’m

~ [ dno. 0t = ({nhe i),

tom—

93



Using the identity

ah<U7 U7 @, t) - ah(ua u, @, t) (47)
= ap(U, U, ¢, t) — ap(U, mu, ¢, t) + ap(U, Tu, @, t)
— ap(u, mu, o, t) + ap(u, Tu, o, t) — ap(u, u, @, t)

and setting o = ¢ in (4.6) we get
/I (D)o, + an(U.U.E,0) = (U, £,1)) (4.8)
(B €0 + (. 6.1) dt 4 ({€hnor. )
- /I (U, €0)  anmu,€ 1) = an (o, 7,6, 0) + an(u, w6 1))
£ G 0) = b(U.E8) — (1.6, = du(n. 1)) dt

— [ (Do dt = ({h,1E5),

th 1

tm—1

In what follows, we need to estimate all of the individual terms appearing in
(4.8). We shall use the following notation:

Ri(n) = lInlpee + Inlle, + = (1l + Riclnlie) » (4.9)
KeTh
Ri(m) = Inlbe,+ X (Wklnliew) < Re(n). (4.10)
KEIT}L,t

4.1.1 Estimates of the diffusion and penalty term
Lemma 15. Let

cw > 0, for ©=—1 (NIPG), (4.11)
48\
cw > <Bl> Cyur for©=1 (SIPG), (4.12)
0
26\’
cw > 2 <51> Cur for ®=0 (IIPG), (4.13)
0

where Cyrp = ceyr(er +1). Then, fort € I,, m=1,..., M,

B
ah<U7 U7 57 t) - ah(U7 u, 57 t) + BOJh(€7 57 t) > ?0||£||2DG,7$ (414>
Proof. For the proof see Lemma 6.37 in the monograph [31]. O

Lemma 16. There exists a constant C, > 0 independent of U,u,h,1,t € I,,, M
and m such that

an(U, U, ¢,t) = an(U, wu, o, t) + BoJn(&, 9. 1) < Callléll e + @lbee)  (415)
forany o € S;L andm =1,..., M.
Proof. For the proof see Lemma 6.39 in [31]. O
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We continue with other useful estimates of the diffusion form ay,.

Lemma 17. For arbitrary k.,kq > 0 there exist constants C. = Ce.(k.), Cq =
Ca(kq) > 0 independent of U,u, h,,t € L,, M and m such that for each ¢ € Sp"!
the following estimates hold:

B
lan(U, u, @,1) = an(u, mu, 0,1)| < Cllelba, + Colllgl, + Bi(m).  (4.16)
p ]
|an(u, mu, 0, ) — an(u, u, ¢, )] < éll@ll%a,t + CaRy (n), (4.17)

where Ry and Ry are defined in (4.9) and (4.10).
Proof. For the proof see Lemma 6.40 in the monograph [31]. O

Lemma 18. There exists a constant 6 > 0 such that the following inequality
holds

o

b 1nenlde < 53 ROt 2ms [ felbe,dr (418)

Proof. From the definition of the form Jj,, using the Cauchy and Young’s inequal-
ity and the definition of the || - || pg-norm, we get

|Jh(777£7t)| S Jh(n7n7t>1/2<]h(£7£7t>1/2
S i<]h(777n7t)—|_26Jh(€7€7t)

20
1
< —Ri(n) + 25H£H2DG¢-
20
Multiplying by (3, and integrating over I, we get (4.18). O

4.1.2 Estimates of the convective terms

Lemma 19. For every k, > 0 there exists a constant C, > 0 independent of
U,u,h,7,t € I,, M and m such that for each o € S;?

|bh(U><P7t) - bh(“?(pat)| (4.19)

Po
SE)”SO”zDG,t_‘"Cb 1616, + Imlle, + > Pilnlan | -

KE’Th,t
Proof. See Lemma 6.36 in [31]. O

Lemma 20. For every k. > 0 there exists a constant ¢, > 0 such that the
following inequalities hold

Bo 2 Ce 2
A6, 6.0 dt < dt —/ at,  (4.20
[ wneeniar < o [ lelboeat+ o5 [ el an (420
BO 2 Ce 2
dy(n. &, 1) dt < dt 7/ dt. (421
[ vnnenar < S8 [ nlbeodt+ge [ el o (420
Proof. 1t can be proved similarly as Lemma 3 and Lemma 12. O]
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4.1.3 Estimates of the ALE derivative term

Lemma 21. Let § € Sp'%. Then we have

1
> 2 (6, — lghalia,, , — e [ Nl at).
({hmr &), (4.23)
1
=5 (Ihalla,,, + I maalle,,, ~ll6nills,, )
/ (Do, dt+ ({Ehnr ), (4.24)
1 2
> 5 (Il + 1Hehanlid,, , ~l&alia,, ) =5 [ lela d

| (DOt + (€humr 60, (4.25)

m—1

1, s 1 9 Cs 9 _
> sl +Sleila, =5 /) lelaat = (G gin),,

m—1

Proof. We start with the first inequality. We have

/Im(tha o dt = ) /m(Dtg» §)k dt, (4.26)

KeTh

where of course K depends on ¢. By virtue of assumption (2.15), the Reynolds
transport theorem (3.41) and relation (2.10), we get

;t / £2(z,t) dx (4.27)

- <852 (z, 1) (x,t)~V(§2(x,t))+§2(x,t)divz(a;,t)> dz

= /K <2§(x,t) < (8:? t) + z(z,t) - V{(x,t)) +§2(x,t)divz(x,t)> dz
= 2(Dy&, ) i + (€2, div 2)k.

Expressing (D€, €)x, summing over K € T, and integrating over I, together
with assumption (3.10) yield

1

_ d 2 1 2 .
/Im(Dtg,g)Qt a =5/ 5 /th da dt — Z/Im(g div 2)q, dt (4.28)

1, 1 1 .
= Sl&al, — 5l6hlE, , — 5 ) (€ diva)ed
1, 0 1 9 Cs 9
Sl = et al, =5 [ lels, at

v

which is (4.22).
By a simple manipulation we obtain (4.23), which together with (4.22) implies
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(4.24). Concerning inequality (4.25), by virtue of (4.28) we have
J (D&&adt+ ({&hnrntin),,

1, 1
— Sl — g3,
1
21,

1 _ .
> 2 (16l + 165l = [ I6IBt) = (Grns6i)y,

m—1

tm—1

m—1

(527 div Z)Qtdt + ||§7—;_1||522tm71 - ( ;L—l’ Srtz—l)th_l

which proves the lemma. O

Let us consider the functions ¢ and 7, defined by (4.5), in the interval [t,,_1, t,,]
and set

7~7(X’ t) = n(At(X)>t)a S(X’ t) = g(At(X)>t)7 (4'29)
r=AX) = AN X), X €y, €Dy, t E [tm1,timl.

Lemma 22. There exists a constant C,, > 0 independent of w,U, h,7,m, M such
that

[ (D ©adt+ ({nbnrs &, (4.30)
o7’
<c, (w2 [ 5] ae+ [ JelEa
<q, (m 3 e ) e
L,
+00|{Em-1ll, .+ 5*0||77m_1||?ztw1
holds for every oy > 0.
Proof. By (2.9) and (4.29) we have
0 .
Din(a1) = DR(XD), o= A(X). (4.31)

Using the substitution theorem, we get

/I"L<Dt777§)gtdt = /1 (/Qt Din(x,t) &(x,t) dx) dt (4.32)
= /Im < /Q aﬁgj Dex, 1) (. 1) dX> dt.

tm—1

Here J(X,t) is the Jacobian defined in Section 3.1. Using the fact, that

J(X, tm—l) = 1,
we shall rewrite (4.32) in the following way:
| (D, €.t (4:33)
87](X7 t) P
= X, t)dX | dt
5 (/Qm e

71

+ I, </Q (Wg(X’t)(‘](X>t)_J(Xatm_ﬂ)dX) dt.

tim—1

V2
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By virtue of (3.4), J € WbY>(I,,; L>(€,,_,)) and, thus, since J is constant on
each K and satisfies (3.9), we have

— <
ngll?f_l |[J(X,t) — J( X, tm1)| < cjTm- (4.34)
t€lm

From (4.34), Young’s inequality and the substitution theorem we get the estimate

on |’
hal < G [ G e [N, a (4:35)
~ (12
= C?]TTQ”/ on dt+/ / |E(X, )2 dX dt
I || O Q. m I
~ (|2
= 0372/ o1 dt+/ / &(z, 1) T, ) do dt
" In. || Ot g, I J2 ’ ’
~ |12
< a2 [ D arr et [ el a
= Ll ot o I I ’
tm—1

Now we shall estimate expression ;. The integration by parts implies that

- . 0%
1= o = B, — [ (15) @ @

tm—1

Since g§ is a polynom in t of degree < ¢ — 1, by the definition of 7, the last term

on the right-hand side of (4.36) is zero (cf. [31] (6.90)). Moreover, the first term
on the right-hand side is also zero. Since A+ . = Id, we have {m L =&0 | and

it 1 =mnt_,. Hence, taking into account these considerations, we have

- o
M= _<n2717§m71)9tm,1 = _(77:17175;71)9%,1' (437)
To prove (4.30) it remains to estimate
1+ (o1 6o, (4.38)

m—1

= _(n:l—bé;z—l)ﬂtm_l + <777J7r1—1 - 777;0—1>€;L—1)Q
= - (7777_@—175:5—1)9

m—1

m—1

Similarly as (ﬁ;,g;)gtm = 0, we have (7~7;1_1,g,;_1)gtm_2 = 0 and we need to

prove that

—1

D15 Em—1)e,,_, =0 (4.39)
If we set x := Ahm,;f_l(X) with X €, , and x € ), ,, we can write

[/ 5;1—1)9%_1 | = (4.40)

/Q 77(33>tm—1—)5($>tm—1—) d.ﬁl?

m—1

m—2

/Q 77( z;j,1<X)atmfl_>€( Zl,tmzl(X)atml_)J(Xatml_>dX|

<Cf

/Q ﬁ(X,tml—)E(X,tml—)dX‘

m—2

= Cj(ﬁnglag;mfﬁﬁtmﬁ =0.
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Hence (4.39) holds and thus

(77;1—17572—1)9%,1 = (N1, :1—1 - ;1—1)9%,1 = (M1, {f}m—l)th,1~ (4.41)
Finally, this together with (4.33), (4.35), (4.38) and Young’s inequality imply
(4.30). O

4.2 Abstract error estimate

Lemma 23. There exist constants Cy, Cy, C3 > 0 independent of w, U, h, 7, m, M
such that

Bo

_ 1 _
l€al3,, + 5 1€kl —I6nailid,  + 3 [ lelbeiat  (442)
8ﬁm2
< el at+C [ Ramar+ s [Tt i,
Inm Im In || Ot ||, m—1

Proof. From (4.8) and Lemmas 15 - 22 we have

| (D&.8)a, dt+ ({€hn1,601),,

m m—1

i /zm(a"(U’ U,g,:) —an(U,mu, &, 1) + Bo (€, €, 1) dt
_ _/I (an(U, 7u, £,1) —ah(z mu, &, 1)) dt
- /Im (ah(u,ﬂu,f,t)fah(%u;fat)) d
+ /Im(bh(u,f,t) - bZZU,S,t)) dt—/lm BoJn(n, €, 1) dt—/lm dn(n, €, t) dt

05 06 a7

- (/Im(Dtnaf)Qt dt + <{77}m71 76:1—1)th1> _/Im dp(€,€,t) dt,

o8 g9
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where

1 _ _ Cz
or 2 5 (6l + Il — Nt ) =5 [ el at
B
oy 2 20 I1€e, dt,
B
o < / I€liba dt+C. [ (e, + Rum) at
Bo ;
or < [ lelibasdi+Co | Ri)
B
o< P / I€liba dt+Co [ (Ueli3, +Inlla, + 3> Bl o)
b K€Th,t
oo < 0L Rul)dt 42608 [ elfhe
— 201, 1, PG

Bo 2 Ce 2
dt —/ dt,
o7 ok, Jr. 171 De, At + 260 /1., €11,

C,7<73n/1m L

on
+50||{§}m_1||?2t

IN

IA

ot

08

at+ [ el o)
—1 m

1"“*”77;1—1”52% o

o0 < o2 [ Nt + o [ elR,

Rearranging we get

1
(1613, , + 1H€hm-il,, 1—||f;l_1||%2tm1) l 3 [} el at (4.43)

< <<2 +C.+C+Cp+ >||§||Qf

Im

Bo  Bo  Bo  Bo
(R B 25 el

o B 5
H(Cet CRm) + Ca R ) + 5 Reln) + S Inllb, ) d

i )
R A s I S [ N~ [

m—1

Now multiplying by two, putting 6y = 1/4, 6 = 1/16 ky = k. = kg = 32,
k. = 16 and taking into account that 0 < R;(n) < Ry(n), we obtain (4.42). [

In our further analysis we need the following modification of Lemma 23.

Lemma 24. We have

_ B
Il + 165115, _, + 5 [ el (4.44)
) . [ ||
< [ Neladt+C [ Rpde+Gyr [\ ar
In Im In || O ||,

tm—1

2.
el + 48000,

m—1

+00l{€}m-1ll5,,, +5*0H%71||?ztm

-1 -1
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for arbitrary g, 01 > 0, where Cy, Cy, C5 are constants from (4.42).

Proof. From (4.8) and Lemmas 15 - 22 we have

/Imwtg,g)m A+ ({ o)y,

4 /Im(ah(U, U,f,atl) — an(U, mu, &, t) + BoJn(€, €, 1) dt
— _/Im (an(U, 7u, &, 1) —ah(j,wu,f,t)> dt

_ /I (ah(u,wu,é,t)fah(u,u7§at)) dt

04

+ /Im<bh<u7£at) - bh(U7£7t)) dt_/lm 60Jh(777§7t) dt — /Im dh(n7€7t) dt

o5 g6 a7
- </ (Dtnag)ﬂt dt+ <{n}m—17£7—;fl)9 >_/ dh(é?fvt) dt?
]m tm—1 Im
o8 g9
where
1, 9 1 L 2 C, 9 _ I
or 2 Sllald,, +sleala, , —5 [ el - (Gngin),
o
oy > 5/, 1€l dt,
B
on < 12 [ lelibo dt+Co [ (el + Riw) at,
p ,
or < [ lelibagdi+Co | Rit)
B
o5 < 12 [ Nelbo, dt+Co [ (el + Inlls, + 3 Binfinge) d,
b JIm I K€Th,t
g
0w < 53 [ Rim)at+260 [ el
Bo Ce
or < g | Ilbagdt+ge [ el ar
~ |12
o< a2 [ 2] are [ e, )
- K m InL at th_l Im tm
2 1 — 2
+50H{§}m71|’gztm_1 +5*0H77m—1Hth_17
So 2 Ce 2
< at+ = | dt.
o9 < ok 1. 1§11 Da. +250 . €116,
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Rearranging we get

Bo

1, 1
e, + gl 2 [ el at (1.45)
Bo, Bo, Bo, Bo ) 2

<

— Jin <(2 + O+ Ce+ G+ >||§||Qt (kb SRS R rer
p o[
0 * il

H(Cot G+ )R + CuRi () + 5 2 il ) b + Cy |5 o

m—1

Fool{etmllt,, , + el (G €h),,

m—1

Now multiplying by two, putting § = 1/16, k, = k. = kg = 32, k. = 16,
using Young’s inequality to the term (f,;_l, 5:,;_1)9 with constant 6; > 0 and

m—1

taking into account that 0 < R;(n) < Ry(n), we obtain (4.44). O

The further goal is the estimation of expressions containing £ in terms of 7.
To this end, it is necessary to estimate the expression [; [|€[|3,dt in a suitable
way. The analysis of this problem will be divided into two parts. First we assume
that piecewise linear approximation in time is used, i.e. ¢ = 1.

4.2.1 Abstract error estimate for linear approximation in
time

Similarly as in Lemma 8 for ¢ = 1, we find that there exist L}, M; > 0 such that
form=1,..., M we have

2 19 Ly d
t, 4.46
&l +l6alt, = 25 ) Nl (4.46)
M*
&, <=2 [ lel,a (447)

Theorem 6. There exist constants Cy > 0 and C* > 0 independent of h, T,,, m
u, U such that

[ leltde < Coma( [ Rtz [

+00l{€}m-1l5,,

ifo<7,<C*, m=1,..., M.

@ 2

Al dt (4.48)

m—1

]_ _ 2 — 2
gl + 6, )

Proof. 1t follows from (4.44), (4.46) and (4.47) that

L 3 AMS
S Neliar+ 5 [ Neloca < (o0 RN [ el ar

o7 2
+Cy [ R+ Cord [ S at+dol{gdnal?,
Im I || Ot o m—1
m—1
2
_ 2 — 2
+5*0|’77m71||9tm71 571H£m71||9tm717

62



which after neglecting the positive second term on the left-hand side, multiplying
by 7,, and rearranging can be written as

@ 2

dt
ot |,

(L —Cle—ZlM{k(sl)/ I€]12, dt < CZTm/ Ri(n) dt+0373/1

m m

tm—1
T 27’m
+5onH{£}m71H?ztm_1+5*0H?7m_1H?zt +—— Hfm o, s

m—1 -1

Let L7 —4M;, = 3L* and C7,, < iL’{, which means that we set §; = 1;% and
1
assume that

L*
0<71,<C*:=—"L 4.49
< Ty < ic (4.49)
Then we find that
L ol
||g||Q dt < C’ng/ Ri(n) dt+037;31/ an dt
2 ¢ I, I || Ot 0
™ 32M:1,,
+00Tml{Ema1lld,  + —lmmille, =l lla,
m—1 50 m—1 Ll m—1
from which we get estimate (4.48) with
Cy = max{2Cy/L},2Cs/ L}, 2/ L%, 64M; Cy /(LT)?}.
Il

Theorem 7. There exists a constant C 4 > 0 such that the error e = U — u
satisfies the following estimate

ez, +7 2 Hetill,  + 53 [ lelbodt (150
4:3 -t 25
< Can(lg 13, + C5( X+ 1) [ Rmde+ X r2em) [ |5
j=1 J 7j=1

ti—1

DS unj_luéjl))

+2nalle,, + 5 ZH{'rzb 1l +ﬁo /Ilnllpatdt
j 1

form=1,..., M.

Proof. Substituting (4.48) into (4.42) we have the estimate

_ 1 - B
160, + (5= €1 Catotn) €} marllt, | = Wil + 5 [ et
o7 2
< (Ot ) [ Rimar+ @+ sy [ |91 at
Im In || Ot ||, »

m—l.

_ 1 _
+Cimmllm il | + (Cammg + )11 11,
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Using the estimate 7,,, < T and choosing dy so that C Cy 6T = i we find that

o

. 1 .
[&alle,, + 7 1 mlls, = I&nallen, , +5 HfHDtht (4.51)
o 2
< (CyCatn +Ca) [ Rim) dt + (Car, + o) / 20 ar
I'm In || Ot ||, »

+CiTnllEm 1 llg,, , + (4C1 CET? + 4)|In,, 415,

m—1

Further, writing j instead of m in (4.51), summing the result over j from 1 to
m and setting C5 = max{max{C,Cy, Cy}, max{Cs, Cy}, Cy, max{4C; C?,4}} we
obtain

B 1 m B m

613, + 7 3 Hehmallh, | + 53 [ Nl at (452)
4j:1 j—1 2 j:1 Ij

< C'5(i(7’» + 1)/ Ri(n) dt—l—irg(l +75) o dt

- = ! I i 775, || ot

tio1
m—1 m
£ Tl R, + ) R, ) + TR,
J=0 =1
Using the discrete Gronwall inequality from Lemma 14 with the following setting

rg = Qo= ||§0_||?zt07 Yo =0,

S

1 & Bo
b = 72 Ml + 3 [ Nl at,
4j:1 it 2 =171

an = 165 B, +Cs(X(ry+ 1) [ Rutmat
=1 j

on N
Sl @)Y Il ),
j=1

—|—ZTj2<1 +75)

7=1 I; Qtj—l
bj = Cs1j41, J=0,1,...,m,
imply that
_ 1z By
el + 7 2 IHEkl8,  + 5 [ lelbea (4.53)
4j:1 it 2 7=1 Ij
m m 877 2
< (I, + & (Em+0 [ Rlpar+ Soam [ |5 a
j=1 j = ; o,

m—1

D Il )) L0+ G
j=1 =0

Now (4.53) and the inequality 1 + 0 < expo valid for any ¢ > 0 immediately
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yield

Jenl,, + 5SSl + 23 [ el
=1 J =171

B m m 8"’ 2
< CAE(HEO 16, + 05(Z(Tj + 1)/ Ri(n)dt +> (1 + rj)/ 8—77 dt
= I = I; || Ot %
HT+ DY Inald, L)),
j=1
with constant Cyp = exp C5T.
Finally, using the relation e = £ + 7 and the standard inequalities
lenl, < 2(I&lR,, + I3,
lel2e: < 2 (I€l3e. + i) -
Hehieilt, < 2 (il + bl )
we obtain the abstract error estimate (4.50) for ¢ = 1. It follows from the
definition of &, that £, = 0. Hence, the error e is bounded only by expressions
depending on n and 7. O]

4.2.2 Discrete characteristic function

In our further considerations, the concept of a discrete characteristic function will
play an important role.

Let m € {1,...,M}. For s € I, we denote J, = {95(X,t), Xe, ,,tel,,
the discrete characteristic function to € at a point s € I,,. It is defined as
J, € P(I,,; Sﬁ’mfl) such that

| @ua, dt = [ (€ e, dt Voe PTULSETT, (454)

V(X tmo1+) = (X, tmort), X €Q,_,. (4.55)

Further, we introduce the discrete characteristic function 9, = ¥,(x,t), z € Q4 t €
I, to & € Spl at a point s € Ly

Dy(z,t) = V(A7 (), 1), € Q, t € Iy, (4.56)
Hence, in view of (2.20), ¥, € Sp’f and for X € @, _, we have
Vo( X, tm1+) = E(X, to1+). (4.57)

In what follows, we prove some important properties of the discrete char-
acteristic function. Namely, we prove that the discrete characteristic function
mapping  — 1, is continuous with respect of the norms || - ||2(q,) and || - || pa.:-
In the proof we use a result from [9] for the discrete characteristic function on
a reference domain: There exists a constant &8}1 > 0 depending on ¢ only such
that

| WE,, ae < d [ OlEns,, | (458)

forallm=1,...,M and h € (0, h).
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Theorem 8. There exist constants c(oll)q, cgl)q > 0, such that

1

ool e < el [ e, at (459)
2

| bt < ey [ lelbe,at (4:60)

forall s € I,, m=1,...,M and h € (0,h).

Proof. 1t is analogous to the proof of Theorem 1. O
In what follows, because of simplicity, we use the notation S' = ?)t and do not
write the arguments X and ¢ in integrals.
Lemma 25. There exists a constant Cros > 0 such that
| (D& 90,0t + ({€hno, sltmr+)a, (4.61)

1
> 5 (IR, + 16t )
~Cua [ 1€l At = (& 16, -

forany s € I,, m=1,....,M and h € (0,h).

Proof. By virtue of the definition of the ALE derivative (2.9), the definitions
(4.29), (4.54), (4.55) and (4.56) of £, 9, and ¥, the fact that ¢ is a polynomial
of degree < g — 1 in time and the substitution theorem, we can write

/I (D€, Us)q,dt = /I (€.9.7), (4.62)

m—1

Now we estimate the second and third term in the last line of (4.62). We
begin with the third term. The fact that .J is constant on each K € T, 4, and
the substitution theorem imply that

/Ln(g’,{asu dt’— T / (/K E'f?st)dt

KET}L tim

< ¥ mli-1f (f \wsrdx) dt

f(ETh,t

m—1
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Using the relation Jj(t,—1) = 1 and inequality (3.9), we have

t7n
— < A < .
?el?xu 1 _/tm_1|JK|dt_cJTm

Then we find that

2 grel?fwk—llflm/f{lfﬁsld)(dt

KGTh,tm_l
<c; > Tm/ (/ |g/1~95|dX)dt
Kefn, , I VK

— )T Z /( / ’g/fés|dt> dx

Ke 'Thfm 1

1/2 _ 1/2

<errm Y / ((/ I3 |2dt> (/ |19s|2dt> )dX.

Ke Tht Tm

Now we apply the inverse inequality in time: There exists a constant ¢; such

that y v ~ o
(/1 € (X, t)l2dt) < (/1 (X, t)|2dt) (4.63)

holds for every X € Q;, |, 7, € (0,7) and m = 1,..., M.
This inequality, Young’s inequality, Fubini’s theorem, (4.58), substitution the-
orem and (3.6) imply that

o £ (R () )" o
() (] ) o
(.
Ol

(1€ +10.°) dt> dx

I/\
MMM

/
)
/ (1€ + 19.[) dX> dt

Ke 'Th
_ G Z112 3012
-3 ( /| ||s||gtm*1dt + [ 100, at)
=) 112
< 2<1+ W[ e, d
AT OR / 3 / (1€[2ax)

Ke Tht
=3 (1+~(” )/ ( |§|2J_1dx) dt < c*/ €115, dt.
Inm, Q I,

where ¢* = (C7)~'er(1+ 68;{) /2. Summarizing the obtained results, we see that
we have proved the inequality

[ @0 =), e | ek, (160
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Similarly as above we can estimate the second term on the right-hand side

of (4.62):

dt

/tm (£.ca-) . dif < /Im\@’,g(l_J»QtM

< _ 7.
< ). max]l JKI/Imfklﬁéldth
KET}L,tm71

<emn Y[ [ E@axa

f(e’?‘h,tmil

—etm 3 /K</]m yé’;fydt) X

Ke7~h,t,m71

o £ (L R ) o

f(e’?dh,tmil

Now the inverse inequality (4.63) in time, Young’s inequality, Fubini’s theorem,
(4.58) and (3.6) yield the inequality

[ (E&a-n), dt| <o [l at. (165)

tm—1

with Ccl = CJ(C;)_I&[/Q.
From (4.62), (4.64) and (4.65) we find that

| (D b0, at= [ (D acdt—(ces+er) [ el dt (460)
m m—1 m
Similarly as in the proof of Lemma 21, by (4.28), we get
| (Do (467)
m—1
Ly (d o, 1 s
= < fde)at— 2 [ (€ divz)g, dt
L (G ewnas)a- g [ @ ava,
1 1 .
=5 (€GN, — gt ) =5 ) (€% divz)o dt.

Now, if we set co = ¢*c; + ¢, from (4.66), (4.67), (4.57) and (3.10) we obtain the
inequality

‘/I (Dtéu ﬁs)Qt dt + ({g}m—h ﬁS(tm—l—i_))th,l (468>

1 _
> 5 (e, + g1, ) = /24 e) [l dt = (6 &ha, o
which is (461) with CL24 = CZ/Q + Co. L]

4.2.3 Abstract error estimate for higher order approxima-
tion in time

In the following part of this chapter we shall consider higher order approximation
in time. This means that we assume ¢ > 2. For every m = 1,..., M on the
interval I,,, we introduce the following notation:
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[
tm-1+i/q = tm-1+ Tma Em—1= f(tmfl‘i‘)v Em = f(tm_>7

bntitg = Eltmotiy)s 1=0,..0q.

Lemma 26. There exist constants Ly, M; > 0 such that form =1,..., M we
have
- 2 Ly 2
S len-tells, ., = 2t /Tl (4.69)
M*
l&ialE, , < == lelkae (4.70)
m Tm J1Im
Proof. See proof of Lemma 8.
O

In the following lemmas, for simplicity we shall use the notation ¥; and {97 for
discrete characteristic functions to € and &, respectively, at time instant bn—141/q-
This means that ] = ﬁtm71+l/q, 1~97 = 1~9tm71+l/q.

Now we prove an auxiliary result similar to Lemma 22.

Lemma 27. There exists a constant C,, > 0 independent of w,U, h,7,m, M such
that

[ D)t + (s 0D e, (4.71)
on||*
<Gl [ 5] ar+ [ et
<c, (m G, ] e,
1, _
JF(S*S||77n»L71H?ztm71 +aslénlla,,
holds for every 63 > 0.
Proof. Similarly as in (4.33), we get
[ (D, 07),t (472)
OnN(X,t) ~«
= ——9, (X, t)dX | dt
Im </th_1 ot (X 1) >
7
0, (X,1) -
(P a0 - St ) ax ) ar
Im \J, _, ot
72
By (4.35) and (4.59) we have
o712
el < 2 [ ats e [ g ae @73
In || Ot ||, » Im
< C (7'2/ on 2 dt+/ €118 dt)
- M\ || ot L )
tm—1
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where C,, = max{c%, (C7)"Lci),}.
Further, we pay attention to ;. Integration by parts implies

*

R . ~ 0
7= e @~ s @i, - [ (n5E)  a a

m—1

Since 8;5 — 1, the last expressmn is zero. We also
have (nm7(197)m)9tm,1 =0 (Cf [31]7 (690))7 nm—l - T]m—la (19;>7J7r1—1 - (ﬁ?)m—l
and thus,

Nt (s O5ct)g, == (s O0)m) (4.75)

This, the relation (7)) | = &, and Young’s inequality with constant 6y > 0
imply that

* 1 —
e (T e I = [/ M) S

m—1 1

O
Theorem 9. Let ¢ > 2. There exist constants Crg, Cq > 0 such that
2 * 2 aﬁ ’
[ et < Croma( [ (R + Biyde+ 2 [\ ar (476)
m m th—l

_ 1 _
gl + 8ol + (o 5 ) Il )

provided 0 < 7, < Chg.

Proof. Let | € {1,...,q — 1}. Setting ¢ := ¥; in (4.6) and using identity (4.7),
we get

| (D00, at + (k1 0)in), (4.77)
Im tm—1
= ( ah(U U7 ﬁivt) +ah(U,7TU,?97,t> _BOJh<€71977t)) dt
—i—/ —ap (U, mu, 07, t) + ap(u, mu, 97, t)) dt
/ —ap(u, mu, 97, t) + ap(u, u, 9}, t) — BoJn(n, 97, t)) dt
+/ (b (0, 07, ) — (U, 07, 1)) dt
] (dnle 07,0 = du(n.97.1)) i

_ /1 (Dm, ﬁl )Qt dt — ({n}m—h (197)7—;_1)9

m tm—1
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This relation and Lemma 25 imply that

1 B 2
5 (”£m1+l/q Q

S /I | - (lh(U, Ua ﬁzkat) + ah(Uv Tu, 19?70 - BOJh(Sv 192: t)| dt

+ H£$1|!?ztm_1) (4.78)
tm—1+1/q

+/[ | — an(U, mu, 97, t) + ap(u, mu, 97, t)| dt

= anlon e 97,0) + an 9, 0] + (0,97, )
+/1m b (s 07, ) — by(U, 07, 0)| e

[ (€97 0)]+ L, 07, 1))
+ﬂ/<Dmﬁnmdw+amquwm;Jm

+’ —1:&m 1 a, ‘+CL24/I ||§||?2t dt = RHS.

m—1

Now we need to estimate the right-hand side of (4.78) from above. Using Lemmas
16, 17, 18, 19, 20, 27 with k, = k. = kg = 1, k. = 1/2 and Young’s inequality
with any 5 > 0, we have

RS < [ (Colllelbes + 19 W) + Gollf o + ClElR, +Coftla))

* * /6 *
v (%W%ﬁm¢+ch&()+2g&()+2%&WA%QJ(ﬂ

[ (Bllvi 2, + Culells, + CoRiln))
+/<&mmm+ W1, + Sl + 0718, ) a

+@<ﬁﬁ &+Arm&&>

1, _
=il + Sl
3

I

ot

thfl

—1

I€m—1l1%
o 20, Cra [l

Rearranging we get

RHS < o [ (Il + 197De, + 10713, + €13, + Re() + Ri(n)) dt

on|?
+C,LLT31 /[\ E
m Q

=

+ (03 + 202) 1€ 4115,

L.,
S e
3

m—1

—1 m—1

1
0o ’
where ¢; = max{C, + By, C, + 280 + 2609, Bo + ¢/ 5o, Cc + Cy + Cp + Cras, Ce +
Bo/26 + Cyp + Po, Cyq}. Now applying (4.57) and the result from Theorem 8 about
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the continuity of the discrete characteristic function, i.e.,

J il < i [ leliBa,
[ Wil < e [ lelipa

we get

RIS < e [ (1600 + 6B + R0+ BE) devCur [ |5 ae
mfl
1 _ Hé;z—l”?)t 1
il + Gt 20265, +
53 m—1 m—1 52

with ¢y = ¢; max{1l + cg}{, 1+ 0(2) 1} Then it follows from this inequality and

(4.78) that

(G NS = (4.79)
<c

o (Hsnm 16+ R + Ri(n) d
+C, 72 /

0+ 200) 5 13,

o7
ot

-1

L,
At + s,
3

tm—l

lmal3,
+ - @ -
n—1 52 ’

Further, multiplying (4.79) by 4C Ta(e Ty Summing over [ = 1,..., ¢ —1 and adding
to (4.44), we find that

Bo Bo
€l + 5ot =T zusm Bt (2241 gl

L

+2 [ el

<0 [ eliee+ (B ) [ et

N (540 i 02> / Ri(n)dt + io Ry (n)dt

. (ﬂigu . 03> 2l ?Z o

' (42052 + 52) 6B+ BolEbmalB,

(i D)l (v m) 40 e,
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Setting c3 := min {1, 862(55_1), SBCO + 1} and rearranging, we get

q—1 ﬁ
_ _ 0
s (el + S N6ranall, ., + 1650, )+ 52 [ et
=1

_\¢ 2
—leo ”f'mflﬂLl/l;{”Q75 —1+1/q

<(Fra) [ ana () [ nma

@2
ot |,

50 . BoCl
+5 Rt(n)dt+< +03> /m

dt
4C2

tm—1

Bo 2 e ,
+ <4C252 + 61 ’|§m*1||ﬂtm71 + 60||{§}m_1||9t7

n—1

1
n (4505 + . ) H no_ 1||Qf » + (50 (53 + 252) +451> ”5:1—1”?%

It follows from inequalities (4.69) and (4.70) that

mfl‘

CgL*

B
L R e

5y 20)MF 4B
< (Dl 2My M B o) [ el
4C2Tm Tm 4 Im t

(i‘) + cg) /1 Rin)di

640 Rf(n)dt+<ﬁ00 +C3> /m

4 462

m

@2
ot |,

dt

tm—1

Bo 2 . )
* (40252 5 | Iemaallen,, -, + Sl {€}m-allc,

60 1 — 2
+Q%%+%H%1mw,

m—1

. cac3L} 2coc3 L}
Sett1ng§1: (52: 222 53_ 292

_ B _ 5
24M*’ 380M; 0 93 = BEoa; o G4 T 7O s = S+ G,
Co = 75, T E’ Ccr = 4i063 we get
csly  Bo Bo 2
(25 -20) [ tears 2 [ o (4.80
<c / (Ri(n) + Ri(n))dt + ¢ 72/ i dt
m—1
_ 1 _
tesllgnally,, + 00 mallh,, + (e + 5 ) Il -
If the condition 0 < 7,,, < Cfyg = Bociiizc is satisfied, then ﬂo + Cy > c‘fn and
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from (4.80) we obtain the estimate

*
Cqu

2 @ 2
o[ el [ el

2

n

dt
ot

< /I (Bu(n) + Ry () dt + es7,, /Im

th—l

- 1 _
bl il + ol bl + (e + 5 ) Iomallh,

which implies (4.76) with Crg :=

oL max{cy, s, Cg, 1} ]

The error analysis will be finished by the application of the discrete Gronwall
inequality. If (4.76) is substituted into (4.42), an inequality is obtained, which is
a basis of the proof of our main result about the abstract error estimate:

_ _ 1 Bo
161, — 16mlla, | + §H{$}m—1H?ztm_ +5 | Elbg, At (4.81)

v 2 Jn,
o
<0 [ s meae [ |2
m m th_l

_ 1 _
gl + 8ol + (e 5 ) Il )

+G [ Rdt+ i [Tt R,
Im I at m—1

2
Qi

m—1

<(Co+ CLCr)(1+1) [ (Buln)+ R (m)) dt

m

2

on

dt
ot

th,1

+(Cl CTQ Tm + Cg) 7'31/[

_ 1 —
+C1 Cro Ty, ||§m_1||?2tm71 + C1 Cry (07 + 50) Tm ||77m—1||?2tm71
+C1 Crg Tim 00 H{f}m—l“?ztm_l

— 1 -
< C1Crg Ty Hfm—ngztm_l + C1 Cry (07 + 50) T |1 [,

O Cro b I{Ehmollh,, | +C" [ K at,

m—1

where

C* = maX{Cg + Cl CTg, Cl CTg T+ 03} (482)
is a constant independent on 7, and

@ 2

Kim(n) = (14 7)) (Bi(n) + Bi () + 70, | =

th,1

for t € I,,,.
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Theorem 10. Let 0 < 7,, < CFg form =1,..., M. Then there exists a constant
Cri0 > 0 such that

- 1 m 6 m
&l + 1 I lE,  + 2 [ €l (18)
j=1 Jj=1""
< CTlO(HﬁJH?ztO + Z/I C Ky () dt
j=1"1i
+C1 Crg (7 +4C, Cp T) ZTj H%‘l“?ztjl)a m=1,...,M, he (O,E),
j=1

where C* was defined in (4.82) and

@2

o (4.84)

Kij(n) = (1+75)(Re(n) + Ry (n) + 7}

Q,

fortel;, j=1,...,m

Proof. Writing j instead of m in (4.81), we obtain
165 1, = €2l + 5IHEL -l + % [ elho.dt
< Ci1Cryy ”5{—1”?2%.71 +C1Cry <c7 + 510> 7i Hnj_—lH?thﬂ
O om0 €Dl + O f Ko
< CiCromy Nl , +CiCro (er+ 51) 5 gl
+C1 Crg T 6o ||{£}5- 1HQt +C*/ K j(n)d

Setting g = m we have

_ 1 Bo
€5 I, = Nallon,_, + 714 -1, + 5 [ lelhe, e
< Ci 01 llg5 A ll6,,, +C1Cro (er +4C1 Cro T) 75 a6,

o /] RFOLE

Let m > 1. The summation over all 7 = 1,...,m yields the inequality
-2 1 & 2 Bo & 2
Iealf,, + 3 1 lh,, + 5 3 ) el
<N IR+ CiCrn Sl IR, + Z [, € Kausto)de

7=0

+Cl CTg (07 + 401 CTg T) z Tj ||’I7j__1||étj_1 .
j=1
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The use of the discrete Gronwall inequality from Lemma 14 with the following
setting

Ty = aU:‘ygaH?)t()a yOZOa
tm = €l
1 & 2 Bo 2
b = 7L lE, |+ 2D [ el at
=1 ! j=1"1i
an = NI, +3 [ C K at
j=1"1

+C1 Crg (c7 +4C, Cro T

m
— 2
ZTj ||77j—1||Qtj_17

)
7=1
bj = ClCTgTjJrl, j:O,l,...,m,

yield
-2 1 & 2 50 < 2
61, + 7 = Hehalid, , + 33 [ N, e (4:85)
jil j:l J
< (6513, + 2 [ € Kuym) a
j=1
m m—1
+C1 Crg (c7 +4C1 Cro T) > 75 H%1H?ztjl> 11 (1 +C1Crgcy Tj+1)-
j=1 7=0

Finally (4.85) and the inequality 1+ ¢ < exp(o) valid for any o > 0 immediately

yield (4.83) with the constant Crig := exp(Cy Crg ey T). O
Theorem 11. Let 0 < 7,, < CFg form =1,..., M. Then there exists a constant
Car > 0 such that
— 2 1 & 2 Bo < 2
lezalles,, + 7 22 Hehiala,, + 5 22 | llellbg dt (4.86)
j=1 j=1"1i

< Cas (16, + 22 | € Kism)at
j=1"1i
+Cy Crg (7 +4C1 Cro T) Z Tj ||7]j1||?1tj1> + 2H77;1H?2tm
j=1

1 & m _
+§Z||{n}j_1||?ltj_1 +BOZ/I ||n||2DG’,tdt7 m = 17"'7M7 h e (O) h’)?
j=1 j=1""4

where C* and K, j(n) was defined in (4.82) and (4.84), respectively.

Proof. From (4.83) using the relation e = £ + 7 and the standard inequalities
2(I& 13, + 713, -

2 (136, + Ile.)

Hehimilt, < 2(IEhil, |, + Ikl )

we obtain the abstract error estimate (4.86). O

IN

lenll5,,

IN

lelDe
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Taking into account the definition of ¢, and (2.33), we see that £; = 0. Hence,
(4.86) represents the estimate of the error e in terms of expressions depending on
the interpolation error 7. This is the basis for the derivation of the error estimate
in terms of 7 and h.

4.3 Interpolation and space-time projection op-
erator

In this section a suitable S,’;’m_l—interpolation and a space-time projection oper-
ator will be defined with respect to the error analysis of the numerical method
proposed in Chapter 2. Space S?" ! was defined in Section 2.2.2 by (2.17).

At first we introduce the Sﬁ’m_l—interpolation I}, ;-1 defined for all functions
w e L2(y,, ) as

Mpm1w € SP™Y (Mpmo1w —w, @), =0 YpeSpm (4.87)

Hence, I, is the L?(Q,,_,)-projection on the space SP™ ",

Before defining the space-time projection operation we remind some important
spaces from Section 2.2.2. By P9([,,; Sﬁ’m_l) we denote the space of mappings of
the time interval I,, into the space S,’z’m_l which are polynomials of degree < ¢
in time (p, ¢ > 1 are integers). Then the space of piecewise polynomial functions
in space and time S;’? was defined by 2.20.

Now we define space SZ’j as
S={e;¢lr, € CIp; L*(,,_,), m=1,...,M}. (4.88)

By [31], Section 6.1.4, we define the space-time projection operator

A

7.8 — S in the following way:
Ifwes , then

Tw e Sy, (4.89)
(F) (X, tn—) = Ty 1 @(X, ), X €O ., m=1,.. M,  (490)
/ (i — @, p)a, |, dt=0, YpeSPI m=1,. M, (4.91)

m

where the operator Iy, is defined by (4.87). We can see, that condition
(4.91) means, that the interpolation error 7w — w is orthogonal to polynomials
of degree ¢ — 1 on I,,. The lower degree of test functions ¢ is compensated by
the condition (4.90).

Hence, if v = v(x,t) for & € O, t € I,,, then © = §(X, t) = v(Ay; ' (X), ) for

X ey t € 1,, and we can define the space-time projection operator 7 as

(mv) (2, t) = (FO) (A7) N2),t), zeQtel,,m=1,....M (492

provided the expressions in (4.92) make sense.
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4.4 Error estimates in terms of h and 7

Error estimates in terms of h (size of the space mesh) and 7 (size of the time
mesh) can be derived using the abstract error estimate (4.86), where we take into
account that &5 = 0, as it is mentioned at the end of Section 4.2.3. Moreover, in
this analysis we come to the difficult open problem how to estimate the expression
[{n}j-1lle,,_,- Therefore, we omit the expression I H{e}j_l\%%l in the
estimate (4.86), which will be replaced by the following relation:

- Bo &
el + 53 [ el at (4.93)
25375
< CAE(Z/I C*Kyj(n)dt + C1 Crg (c7 +4C1 Cro T) Y 7 ||77{_1||521t._1)
j=1"14 j=1 !
2|, + 603 [ Inlibe,dt, m= 1. M, he (0,R),
j=1"1

As in the previous sections, we assume, that u and U denote the exact and the
approximate solutions satisfying (4.4) and (4.2) - (4.3), respectively. According
to (4.5) the error can be written in the form

e(z,t) = Ul(x,t) —u(x,t) (4.94)
= (U(zx,t) — mu(x,t)) + (ru(z, t) — u(z,t)).
£(z,t) n(z,t)

Terms u(z,t), n(z,t) and {(z,t) can be transferred to the reference domain using
the ALE-mapping .Ath_l, see (4.29):

a(X, 1) = u(A N (X), 1), (X t) =n(A H(X),1), (X, 1) = (AR, (X)), 1),

T = ;Ln,;l(X>7X€th—17x€Qtat€ [tmflatm]-

Using the definition of the space-time projector operators 7 and 7 (see (4.89)-
(4.91) and (4.92), respectively) we can write 7j(X, ) in the following form:

NX 1) = (AR (X)) = mu(A7 (X)) — (AR (X), 1) (4.95)

a((Apy )T ARTH XD ) = w(ARTH(X), 1)
= Fa(X,t) — a(X, ).

N

Now we express term 77 = (X, t) as

i, = (Fa—a)|5, =7 +99, m=1,..., M, (4.96)

where operators 7 and Il ,,—; are given by (4.89)-(4.91) and (4.87), respectively.
In (4.96) we used the fact, that (Il ,,—1%)|r, = 7|5, m = 1,..., M, which
follows from Theorem 6.9. in [31].

Assumption on the regularity of u: We consider p,q > 1 (p and ¢ denote
polynomial degree in space and time, respectively), assume that the functions u
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and @ are sufficiently regular so that 4; has continuous time derivative of order
g+ 1and

u € HY0,T]; H' () N CH([0,T); H* (%)), (4.97)
|, € HUY Ly HY QY NNC I H(Q,, ), m=1,...,M, (4.98)

where s > 2 is an integer. As usual we set © = min(p + 1, s).

4.4.1 Estimates for 7

Now we summarize results from [31] for the term 7.

Lemma 28. There exists a constant Cras > 0 such that the following estimates

hold:

170115, < Clas h™1a(0) [, ). (4.99)
”77;1—1”?1%_1 < Clos h2#‘a(tmfl_)|12ﬁm(gtm_l), (4.100)
J N gy < Chasi g, iy (4101
/Im 170 At < Chas W Plulags, iy (4.102)
Vi /zm 1N At < Chas W PlulZags, iy (4.103)

forf( € 7A-h7m,1, m=1,...,M.
Proof. These results are consequence of Lemma 6.17 from [31]. ]

Lemma 29. There exists constant Crag > 0 such that the following estimates
hold:

| D Ragiey dt < Cuao 2Nl sy, agiy (4104
/I Hf](Q)HiIl(f() dt < CL29ng(ﬁl)|ﬂ|§{q+1(lm;H1(K))’ (4.105)
h%(/l 179 iy At < Crao ™ VNl a1, a1 iy (4:106)

forf( € 7A'h7m,1, m=1,...,M.
Proof. 1t follows from Lemma 6.18 from [31]. O

Finally, we shall be concerned with the estimation of [; J(7,7,t) dt. We
have

Jh(ﬁa 77]7 t) < Q(Jh(ﬁ(1)7 77(1)7 t) + Jh(f]@)a 77](2)7 t)) (4107)
From identity (6.115) of the monograph [31] we have
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Lemma 30. Let the Dirichlet data up = up(x,t) have the behaviour in t as a
polynomial of degree < q:

q .
=Y i(x)t, (4.109)
j=0
where 1; € HV2(0Q) for j =0,...,q. Then there exists C4y > 0 such that
[ B 020 dt < (Cha) R il mnia, e (4110

m=1,..., M.

For general data up, if there exists a constant C > 0 such that
T < éhk(rm

for all Ie ]A:f,tm_w m=1,...,M, h € (0,h), then there exists constant Cy%, > 0
such that

/ J@® 7@ 1) dt < (Cra)?, q(mﬁf‘?“(lm;L?(szil)) (4.111)

m

+‘a’Hq+l([m;H1(th_1))), m = 1, NN 7]\4'.

Proof. See Lemma 6.19 from [31]. O

From Lemma 30 we immediately have the following conclusion:
If up is defined by (4.109), we put v = 1. Otherwise, if up has a general
behaviour, we set v = 0. Then

[ @5, 0) at (4.112)
Im

< Clao T2 (|1 1,120

m:1,...,M.

oy e g, )

Lemma 31. Let the exact solution u satisfy the reqularity condition (4.98). Then
there exists a constant C'rzy > 0 independent of h,t,,, m, M and u such that

/1 17lBe, dt - < CL31(hQ(M_l)|a’2L2(Im;H“(th_l)) (4.113)

+7—31(q+7)(|ﬂ|%{q+1(lm;L2(thil)) + Wﬁ{qﬂ([m;ﬂl(mml))))

m=1,..., M.
The choice of the parameter v =0 or v =1 is specified before identity (4.112).

Proof. See Lemma 6.22 from [31]. O
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4.4.2 Estimates for 7

Now we need to prove some auxiliary lemmas.

Lemma 32. The following estimates hold:
I8, < CTllaMla, (4.114)

m—1

nlinm < CTCO A0 k) (4.115)
i@ < CHCO A0 k) (4.116)
where K = Ay N (K), K €y, t € L, m=1,...,M.

Proof. Inequality (4.114) can be proved using the definition of the ALE-mapping
(2.14), the substitution theorem and (3.6):

@I, = [ menkar= [ @A 0.0 aX

m—1

< Cof [ X HPAx = Cilal,

m—1

m—1

Using (4.29) and (3.61) we can prove inequality (4.115) in the following way:

Ol = [ V@ ))Pde= [ V@A @), 0)F
< [ B kP IVAX O PI(X 1) dX

[ iy

< (CRPCt [IVIXORAX = (€205 I

Similarly, because Ay’ !'is affine, which means that second derivatives with re-

spect to X are zero, we get (4.116). O
Lemma 33. The following estimates hold:

s, < Cillinal, . m=1,...,M, (4117)

Il € Chlnal?, . m=2..., M.  (4118)

Form =1 we setn,,_ =ny := M ou’ —u®. Similarly we set 7j_, := T, ou® — u®.

Proof. Inequality (4.117) can be proved using the definition of the ALE-mapping
(2.14), the substitution theorem and (3.6):

I, = [ I tn=)Pde = [ (AR (OO, ) PIX, to) X

Q
< [ Xt )PAX = CF o,

m—1

m—1
m—1

Inequality (4.118) can be proved similarly:

L et )P

m—1

- /Qt (A2 (X)), o) PI(X, o) X

m—2

[ 9

IN

CF [ N, tu2) PAX = C [l

m—2

m—2 ’
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Lemma 34. The following estimate hold:
Ju(n,n,t) < CLRCX Jn(7), 1, 1). (4.119)
Proof. From the definition of the form J, (2.25) we have

Tamnt) =cw S (T / 2dS+ew Y A(T /nQdS.

rer/, rerp,

Analogously as in the proof of Lemma 7 and (3.65) we prove inequalities

(
-1 2 T K%k Y M —1 ~12 T
WD)~ [[nfds” < GO )™ [lPas”,

for I € Fj . I'e Fhe f = (Am_l)*l(l") and
/ PdSt < O / Pdst,

where I' € F,ft, [ e Fh,tm_ = (A} H=HD).
Thus, we have

hnnt) < ewCizCh X hD)™ [[fast
rer;,

tewCirCh S (D / idst

Fe]—‘B

< CRCh Ju(m,n,t).

O
Lemma 35. There exists a constant Cpg > 0 such that
||77||2DG,t < Cpa ||77||2DGt (4-120)
Proof. From (3.1), (4.115) and (4.119) we find that
Inllbe, = > ling + Jaln,n,t)
Ken,z
< CHCDE Y B + CiCE n(, 0, )
Ref}l’tmil
< Cocllillbe.
where Cpg = max{C}(Cy)?, C;:CL}. O

Now we are ready to estimate all terms on the right-hand side of (4.93) in
terms of h and 7.

Lemma 36. There exists a constant Crzg > 0 such that

i /I O Ky () dt (4.121)

2

ot
< Clsg Z <h2 H 1)|U|L2 LiHE () + Y 7—72 ot
= L2(Ij;HM Q)
+
_Hj(q ) (|U|Hq+1 L2, ) y T |u|Hq+1 I HY (S 1)))
ot
+TJ 2a+1) au )
t Ha(Ij;HY (R4 _,))
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where choice of the parameter v =0 or v =1 is specified before identity (4.112).
Proof. From (4.84) we have

377

), tel,j=1,...,M,

Kij(n) = (1+7;)(Re(n) + Ry (n)) +

7—1

where Ry(n) and R;(n) was defined in (4.9) and (4.10), respectively. Using esti-
mates (4.120), (4.114), (4.115) and (4.116) we find that

2 2 2
Ri(n) = Inllba, + Inle, + X (Ilin e + Hinlie )

KEITh,t
< Cpe llillpe, + CHlnlls,,

+Cr (€)Y (1B + Pl

KETh’tj71

and

Ri(n) = Inlbes+ 2 (Milnlieao)
KeTh,
< Cpg [lilba, + CTC?* 3 WliPe,

Ke%h,tj

which in total gives
> [ crsmdt < Y [ (14 m)(2C06 lillbe, + Cllk,

FOHCRP S (il + Wil ) d

KGT}L tj_1

dt.

+C’*Z/ 7']2 —
j=1"1i

Concerning term H H , from (4.98) we have

on
ot

and from (4.102) and (4.105) we obtain

€ H(Iny H' (Q,,_,)) N C(L; H* (M,,.,)),

o7 |* Ly |oaf
7731/ gt dt < 0%28 h?{w Y 731 (% )
m L2(K) L2(I; He (K))
~(2) 2
™ / o dt < Cpas7iltth ) ;
mil Ot i Ot garars (i)

forf(e’?'h,m,l,mzl,...,]\/[.
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Now we can apply results from (4.113), (4.101), (4.104), (4.102), (4.105),
(4.103), (4.106) and obtain the following estimate in terms of h and 7:

Z /I C*Kt,j(n) dt
j=171

< 2C* Cpa Crs1 Y (1 +75) <h2(u_1)|ﬂ|%2(1j%H“(Qtj1))

j=1
2(q+7) (1712
+Tj <|u’Hq+1(]j;L2(Qt _'_‘u’Hq‘H(I Hl(QtJ 1)))
+C* CF Z(l +75) Z (CL28 h? |u|L2 1;;He(K))
j=1 [A(E'?—ht-_

+C' L£29 T; 2at )‘ ’Hq+l I; LQ(K)))

Lo (O (L) Y (Cm B2
7j=1

| ‘L2(Ij;H“(K))
Keffhz-_

+CrogT q+ )‘u]HqH 9 Hl(K))>

120 CHCEY (1t Y (cm pAe
7=1

| |L2(1 sHH(K))
KE?’ht-_

+C .29 7‘ 2(g+1 )|u’H‘1+1(I Hl(K))>
> ou’

* 2(p—1
1Y X (Chahir

1 s
J KeTh,tj,l

L2(1j;Hr(K))

oul?
+Cros T T; 2a+1) En )
Ha(I;;HY (K))
- 1)~ o’
< OL36Z (hZ(“ 1)|u|%2(lj§H”(Qt +h2“ K 2 8t
j=1

2(1; H#(Q 1)

2(¢+7) /1~ i
+7; X 7)(‘u|%1’1+1(1j;L2(Qtj—1)) + ’uﬁ{qH(IﬁHl(Q%ﬂ)))
ou|?
2(q+1)
t ot ’

HI(IjHY ()
where we used that hx < h for all K € ’7-h,tj71, jg=1,...,M and

Crss = max {2C"CpgCrs (1+7T),
C*CT (14 T) max{C?,, Cra},
2C" OJ‘L (CZ>2 (1+7) maX{C[Q,gga Cras},
C* max{CFas, Crao}},
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for vy =1 and

Crss = max {2C"CpgCrs (1+1T1),
C*CT (14 T) max{C}., T Crao},
2C* CF (C1)* (1 + T) max{C%., T Crao},
C* max{Clsg, Crao}},

for v = 0. [

Lemma 37. The following estimates hold:

m m

domilmi-ille, . < CF Clysh™ Y milultio—)lu,, ) (4122)
=2 =2
Hﬂ%”?}tm < Cj 0%128 hZHW(tmfl_)’%#(th_l)' (4.123)
Proof. From (4.118) and (4.100) we have
Srlnaild, < Ol
j=2 Jj=2
2 o 2
< Cj Clog h™ ZTj’a(tj—Q_ﬂHu(QtH)-
j=2
Moreover from (4.117) and (4.100) we get
g, < CHlim-ilé,,
< Cj 0228 h2#|a(tm—1_>|§{u(§ztm71)'
0
Lemma 38. The following estimate holds:
Z/I Inllbe,dt < CpaCra Yy (hm_n|ﬂ|%2<zj;Hu(Qtj_1)> (4.124)
=171 j=1
2(g+7) /| ~ -
+7; (e V)(|U|§1rq+1(fj;m(gtj_l)) + |u|§{q+1(1j;H1(Qt]._1)))>'

The choice of the parameter v =0 or v =1 is specified before identity (4.112).
Proof. From (4.120) and (4.113) we get

S [ nlheedt < Coa > [ il
j=1"1i =171

m

< CpaCra Y, (hz(“UW\%%Q;HM(WN))
i=1
2(q+7) /)~ ~
—|-7'j (a 7)(‘U/|%_Iq+1([j;L2(Qtj71)) + ’u‘?{q-&-l(lj;Hl(ﬂtjl))))'
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4.4.3 Main result

Now we can formulate our main theorem about the error estimate in terms of A
and T:

Theorem 12. There exists a constant Crio > 0 such that

2 B
lemlia, + 52 [ Nelfba dt (1125)
j=1"1
m o 2
< Cria( X (W il e,y + 1207 o,
= I HH (2 1>>
i

2(a+1)

)

+7—2(q+7)(’a‘%q+1(1j§L2(Qtj,1)) + |ﬂﬁ{q+1(1j§H1(Qtj71))) 815
Ha( 1; Hl(Q 1))

thZﬂu (tj—a— |H“ _2) +h2u|ﬂ(tm_1_)|%{“(gtml)>'

The choice of the parameter v =0 or v =1 is specified before identity (4.112).

Proof. From (4.93), (4.121), (4.123), (4.122) and (4.124) we get

_ Bo <
lenlle,,, +5 > | llellbe,dt
2 =171

,|oal?
at|,

< OAECL%Z <h2(u b |U|L2 (LsHm () T pPe s
=1 2(1;:HP ()
2(q47) /( ~ N
+7; (g+7) (’u|§_]q+1([j;L2(Qtj_1)) + |U|qu+1(1j;H1(Qtj_1)))

oul?
ot

2(q+1)
+7;

HI(I;HY Q) )

+CapCi Crg (67 +4C, Cry ) C+ CL28 h2# Z ij(tjfZ_)ﬁIu(Qtj,Q)

j=2
+2C7 Clog D [u(tm—1-) iu ()
+580Cpc Cra1 Y (h%u1)|ﬂ|%2(1j;Hﬂ(sz1))
j=1

2(q+7) (|~ 1
+ D (e 2,y |“|%”“<fj%Hl<Qtj1”))'

Setting CT12 = maX{C’AECL36, CAEC’1 CTg (07 + 401 CTg T) C:}_ 0%287 20:}_ 0%287
BoCpe Crsi} and using 7 = max;_; a7, we obtain (4.125). O
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5. Applications of STDGM

Let us now focus our attention on applications of STDGM to the solution of the
compressible Navier-Stokes equations (written in the conservative ALE form) in a
time-dependent domain coupled with linear or nonlinear elasticity. The developed
method is applied to the numerical simulation of air flow in a simplified model of
human vocal tract and flow induced vocal folds vibrations.

5.1 Formulation of the continuous problem

In Chapter 1 we introduced the formulation of a nonstationary viscous compress-
ible flow in a time-dependent domain €2;. Now we reformulate this problem with
the aid of the ALE method.

5.1.1 Compressible Navier-Stokes equations in the ALE
form

The system describing compressible flow, consisting of the continuity equation,
the Navier-Stokes equations and the energy equation, can be written in the form

ow  EOf,(w) & IOR(w, Vw)
PR 2R i S

s=1 s=1

(5.1)

where w is the state vector, f,(w) represents the inviscid fluxes and R(w, Vw)
denotes the viscous terms, see (1.7).

Then, introducing a regular one-to-one ALE mapping (2.7) we can define the
domain velocity z in (2.8) and the ALE derivative of a function w; = w;(z,1t),
r€eQ tel0,T],i=1,...,4as

2 ( t)_a@/i
Dt VT Ty

where w;(X,t) = w;(Ay(X),t), X € Qp, and = = A,(X) € Q.
Using the chain rule we can rewrite this formula to the following form

(X, ), (5.2)

— -YVw,;, = — + ) —w; div z =1,....,4. .
; = n +z (v ; div (sz) w; dl s ] s s (5 3)

Finally, introducing g,(w) = f,(w) — zw, s = 1,2 and using (5.3) we can
write system (5.1) in the ALE form

Dw & 9g,(w) _ 2 OR,(w, Vw)
Tt+z Or, —l—’u}dIVZ—Z oz,

s=1 s=1

. (5.4)

5.1.2 Dynamic elasticity system

We assume that the elastic body is represented by a bounded polygonal domain
Qb C R? with boundary 99" = T'Y, UT%;, where I'%, NT% = 0. On I'%, and '}, we
prescribe the Dirichlet and the Neumann boundary condition, respectively. The
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deformation of the body is described by the displacement w : Qb x [0,T] — R?
and the deformation mapping

(X, 1) =X +u(X,t), X Qb tec|0T]. (5.5)

Further, we introduce the deformation gradient, the Jacobian and the cofactor
Cof F' of the matrix F"

F=Vy, J=detF >0, CofF=J(F™7"). (5.6)

Here F~7 = (F~1)". If we set F' = (F};)7,_,, then F}; = gfj and

T
T 1 Fyy  —Fiy _ 1 Fyy —Fy
det F \—F>y Fn det F \—Fio Fiy )~

Now, we introduce the first Piola-Kirchhoff stress tensor P = P(F'),

PH(F) Plg(F)

Its form depends on the chosen elasticity model (cf. [25]). Moreover we denote
the divergence of the first Piola-Kirchhoff stress tensor P as

OPL(F) | OPu(F)
divP(F) = | 34%r L ortey | -
8CE1 8x2

The general dynamic elasticity problem is formulated in the following way:
Find a displacement function w : Qb x [0, 7] — R? such that

0%u ou .
pbﬁ + Cﬁ’wpba —divP(F)=f inQ°x[0,7], (5.7)
w=wup inTY x[0,T], (5.8)
P(F)n=gy inT% x[0,7], (5.9)
u(-,0) = uy, ‘Z‘;(-, 0) = 2z in Q°, (5.10)

where f: Q° x [0,7] — R? is the density of the acting volume force, gy : T'% X
[0, 7] — R? is the surface traction, up : I'Y, x [0,7] — R? is the prescribed
displacement, ug : 2° — R? is the initial displacement, zg : 2° — R? is the initial
deformation velocity, p® > 0 is the material density and C%, > 0 is the damping
coefficient.

In the stationary case (static problem) we seek w : Q° — R? such that

—divP(F) = f in Q, (5.11)
u=up onl%, P(F)n=gy onl%. (5.12)

Linear elasticity

In case of linear elasticity the stress tensor P(F') is denoted as o(w), which
depends linearly on the strain tensor e(u) = (Vu + Vu®)/2 according to the
relation

P(F) :=o(u) =\ tr(e(u))l + 2u’e(u). (5.13)
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Here \* and p® are the Lamé parameters that can be expressed with the aid of
the Young modulus E° and the Poisson ratio

Eb
2(1+ b))

/\b B Ebyb -
Tty M T

(5.14)

If we set e(w) = (ey;(w))?;_,, then e;;(u) = §(5% + 52) and
2 2 o
tr(e(u)) => ex(u) = 3 L = divu.
i=1 i=1 i

Nonlinear elasticity

In the nonlinear case we consider two elasticity models. First, the neo-Hookean
model with Piola-Kirchhoff stress tensor

P(F) = p"(F — F7") + \log(det F)F~". (5.15)

Moreover we consider the nonlinear St. Venant-Kirchhoff model, which is re-
lated to the linear elasticity model by using the nonlinear Green strain tensor E
instead of the linearized strain tensor e. The first Piola-Kirchhoff stress tensor is
then defined as

P(F)=FX%, (5.16)
where
Y = \tr(E) + 2u°E (5.17)
and ]
E=; (F'"F 1), E= (B}, (5.18)
is the second Piola-Kirchhoff stress tensor with components
2
Ei-=;<gZ;+gZZ)+ ;,;Zzljgz . (5.19)
eij—linear part Ey—nonlinear part

Writing 3(u) = (X;)7 -, we get

2 0ul 1 2 <8uk>2
i = AP — 4= — |4 5.20
J (l:l le 2 ;1; al'l J ( )
ou;  Ou; 2. Ouy, Ou
b 7 7 k;ik

For a detailed description we can refer the reader to monographs [25] and [13].
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5.1.3 Fluid-structure coupling

In the FSI problem the coupling of the discrete flow problem and the structural
problem is realized via the transmission conditions representing the continuity of
the velocity and normal stress on the common boundary th between fluid and
structure. We assume that

Ty, = {z €R% = X +u(X ), X €Th} Iy, (5.21)

Then we use the following transmission conditions:
a) For linear elasticity we assume that

ou(X,)n(X)=1/(z, t)n(X), wv(x,t)= 8’11(8)75(,15) (5.22)
b) For nonlinear elasticity we use the following conditions:
P(F(X,t))n(X) =1/(x,t)Cof(F(X,t))n(X), v(x,t)= &Li})f,zf) (5.23)

In the above relations, € = X +u(X,t), X € 'y, = € th, v is the flow velocity,
expression 7/ = {7/}?,_; = {—pdi;+7}}2,_, represents the acrodynamical stress
tensor and n(X) is the unit outward normal to 9Q° on I'}; (by d;; we denote the
Kronecker symbol).

5.1.4 Determination of the ALE mapping

The ALE mapping A; is determined with the aid of an artificial stationary linear
elasticity problem proposed in [80]. We seck d = (d,ds) defined in €Q,.f as a
solution of the elastic static system

2 o (d)

> =0in Qep, i=1,2, (5.24)
o 0X;
where 7% are the components of the artificial stress tensor 7/ = d;;A"divd +
2pel;(d), ef(d) =3 (86;", + %) , 1 =1,2. The Lamé coefficients A\* and u® are
J 7

related to the artificial Young modulus E* and the artificial Poisson number *
similarly as in Section 5.1.2. The boundary conditions for d are prescribed by

dlr,ure =0, dlp, =0, d(X,t) =u(X,t), X €Ty (5.25)

(for the definition of the boundary parts see Chapter 1 and 5. 1.2). The solution
of the problem (5.24)-(5.25) gives us the ALE mapping of €,.; onto € in the
form

A(X) =X +d(X,t), X € Qy, (5.26)

for each time instant ¢.

For simplicity we set €2,y = () for all time steps, but it is possible to pro-
ceed in such a way as in the previous sections, i.e. define the reference domain
separately for each time interval [t,, 1, t,,].
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5.2 Discrete problem

The following section is devoted to the description of the STDGM discretization
of the flow and structural problems.

5.2.1 Discretization of the flow problem

We describe the discretization as it is carried out in the program system used
in our practical computations. We assume that €2, is a polygonal domain for
every t € [0,7]. We denote by Ty; a partition of the closure €2; into a finite
number of closed triangles with disjoint interiors satisfying standard properties
(3.3). We suppose that 7, is an image of Tp,o under the regular mapping "t — A;”.
Moreover, we assume that the ALE mapping A; is continuous and piecewise affine
in Q.

By F we denote the system of all faces of all elements K € 7Tj;. Further,
we introduce the set of boundary faces F® = {TI'e F; T' C 94}, the set of
“Dirichlet” boundary faces FP = {I' € F?; a Dirichlet condition is prescribed
on I'} and the set of inner faces F/ = F \ F5. Each I' € F is associated with a
unit normal vector np to I'. For I' € F? the normal nr has the same orientation
as the outer normal to 0€);.

For each T' € F! there exist two neighbouring elements K §L) , KFR) € The such
that I' C 8K1£R) N 8K1£L). We use the convention that KIQR) lies in the direction
of nr and KﬁL) lies in the opposite direction to nr. If I' € FP, then the element
adjacent to I' will be denoted by KﬁL).

Now we introduce the space of piecewise polynomial functions

ro=[Sr]*  with Sp, = {v;v|x € P"(K) VK € Tn}, (5.27)

where r > 0 is an integer and P"(K) denotes the space of all polynomials on K
of degree < r. It is possible to see that S}, = {v;v = A(0), ¥ € S;,}. A function
@ € S}, is, in general, discontinuous on interfaces I' € F!. If ¢ is a function
defined on KﬁL) U KﬁR), then by cp(FL) and <p(FR) we denote the values of ¢ on I'
considered from the interior of K IQL) and K IQR), respectively, and set

(er = (e +ei)/2,
_ L) ()
[plr = @ —er”.

The discrete problem is derived in the following way: We multiply system (5.4)
by a test function ¢, € S},, integrate over K € Ty, apply Green’s theorem, sum
over all elements K € 7Ty;, use the concept of the numerical flux and introduce
suitable terms mutually vanishing for a regular exact solution and linearize the
resulting forms on the basis of properties (1.11), (1.12) of the functions f, and
R,. Tt is a generalization of approaches from [29], [22] and [31]. In this way we
get the following forms (followed by the explanation of symbols appearing in their
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definitions):

2 2 ow, 0
(W, Wiy Py t) = ) / > > Kow(wh) 87: (;;h dz (5.28)

rerf, =" s=1 \k=l1
: ey,
-0 > /ZZK{,S(ih)T("F)s wy, dS,
rerp T s=1k=1 Lk
d(wn @ t) = 3 [ (wi- @) divz do, (5.29)
KeTht K
C
In(wp, @p,t) = > /” Y iwy] - [,] dS + > /—wh p, dS, (5.30)
rer], rerp
pCw
U (W, wp, Py, t) = /7103 p, dS (5.31)
rerp

- © Z /ZZKkswh P (nF)S'wB ds,
rerp /T s=1k=1 Oy

~

bh(mhvwhacpln ) = (532)

w dpp(x)
= Y[ (@) - ) Dw () R dr
+ Z /(P;(<wh>r nr)'wh +IP’ (<wh>F np)ng)).[soh] ds

reFi,

+ > / (]P’;r <wh> np)wg )4 P, (<wh> np)w,(L )) @, dS.
NS
Weset © =1, 0 =0 or © = —1 and get the so-called symmetric (SIPG), in-
complete (IIPG) or nonsymmetric (NIPG) version, respectively, of the discretiza-
tion of viscous terms. In (5.30) and (5.31), Cy denotes a positive sufficiently
large constant.
In the form (5.32) we follow the ideas from [76]. The symbols P¥(w,n) and
P_ (w,n) denote the “positive” and “negative” parts of the matrix Py(w,n) =
2_ (As(w) — z])n, defined in the following way. By [41], this matrix is diago-
nalizable. It means that there exists a nonsingular matrix T = T(w, n) such that

P, = TAT ', I =diag(\y,...,\s), (5.33)

where \; = \;(w, n) are eigenvalues of the matrix P,. Now we define the “posi-
tive” and “negative” parts of the matrix Py by

= TA*T!, NF =diag(\F, ..., \)), (5.34)
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where AT = max(\,0), A~ = min(A,0).
The boundary state wp is defined on the basis of the Dirichlet boundary
conditions (1.8), (1.9), (1.10)

1
wp = (pp, PDUD1, PDUD2, CvPDe(rL) + ~pplvpl’) on Ty, (5.35)

2
wp = 'w(FL) on I'p, (5.36)

1
wi = (08, o 21, ot 2pa, coptD O + 2Pr zpf) onTw. (537

Here quantities QFL , 'wr and pF are obtained by extrapolation For I' ¢ FP
we set (wy,)r = (wr: 4w 'wF )/2 and the boundary state 'wF is defined with the
aid of the solution of the 1D linearized initial-boundary Riemann problem as in
[39].

In order to avoid spurious oscillations in the approximate solution in the
vicinity of discontinuities or steep gradients, we apply artificial viscosity forms.
They are based on the discontinuity indicator

! / 7,2 dS, K € Tp, (5.38)
K

9(K) = 3R Jo

introduced in [33]. By [p,] we denote the jump of the function 5, on the boundary
OK and |K| denotes the area of the element K. Then we define the discrete
discontinuity indicator G¢(K) =0 if ¢.(K) <1, G¢(K) =1 if ¢(K) > 1, and
the artificial viscosity forms (see [45])

Bu(@n,wn ppt) =11 Y hiGy(K) / V- Ve, dr, (5.39)
Keﬁn

T wpnt) = v Y 3 (GUKED) + GUEE) [l fp,] ds.
Fe]—'f

with parameters vy, vs = O(1).
Because of the time discretization we consider a partition

0=t < thh < ... <ty=T

of the time interval [0,T] and denote I, = (tm—1,tm)s Im = [tm-1,tm|, Tm =
tm — tm_1, for m=1,..., M.

We define the space S;? = (5;%)*, where S;? is defined in a similar way as in
(2.20), (2.21),

Syt (5.40)
{ : Zt’@ , i €Sy, t €Ly, v, m _1,...,M},

with integers r,q > 1. For ¢ € S;? we introduce one-sided limits and jump at
time instant t,, as

P = p(t) = lim @(t), {Phn =@~ Pu (5.41)

t—tm
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In order to bind the solution on intervals [,,,_; and I,,,, we augment the resulting
identity by the penalty expression ({wnr }m-1, s, (tm-1+)), _ . The initial state

wy, (0—) € S, is defined as the L*(Q0)-projection of w® on Sj,, i.e.
(wh-(0-), SOh)QtO = (woa ‘Ph)Q Yoy, € Sho- (5.42)
to

Moreover, we introduce the prolongation wy,,(t) of wy,|;, _, on time interval I,
(the space-time DG technique with prolongation was analyzed theoretically in
[78] on a scalar model problem with a domain 2 independent of time ).

In what follows we denote

(a,b), = /w ab dz, (5.43)

for functions a, b defined in a set w C R2.
Now the space-time DG approximate solution of the flow problem is defined

as a function wy, € S’ satisfying (5.42) and the following relation for m =
1,..., M:

DAw),, .
/ <<l)tha cPh‘r) + ah(wh‘ra Whry Phrs t)) de (544>
m Q

+ I (l;h(whﬂ Whr, Phrs t) + ']h('wh‘r? Phrs t) + dh<wh77 Phrs t)) di

+ /]_ (Bh(EhTy wh‘l‘7 (P]W? t) + :\]h<th7 th7 (Ph7'7 t)) dt

+{wnrfm-1, @pr(tm-14))en, , = ’ Ch(Whre, Wp, Py, 1) AL, Vep,, € S}
Remark 1. In the derivation of the discrete problem, the approximate solution
and the test functions are considered as elements of the space S;1. In practical
computations, integrals appearing in the definitions of the forms ay, Bh, dp, Jy, Th
and Bh and also the time integrals over I,,, are evaluated with the aid of quadrature
formulas using values of the approrimate solution at discrete points of intervals
I,,. Therefore, the space S,1 is finite dimensional and the discrete problem is
equivalent with a finite algebraic system for every m =1,..., M.

5.2.2 Discretization of the elasticity problem

In the discretization of the structural problem we consider the displacement u

and the deformation velocity y and split the basic system into two systems of

first-order in time
Jy

p' 5+ cup'y — divP(F) = f,

)
(,%f— —0  mx[0,7], (545
5.46
5.47

5.48

w=up inTY x[0,T],
P(F)n=gy inT% x[0,7],

)
)
)
u(-,0) =ug, ¥y(-,0)=1yo in Q. )

(
(
(
(

We construct a partition 7 of Q" into a finite number of closed triangles
K with mutually disjoint interiors satisfying standard properties formulated in
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previous sections. The approximate solution at every time instant ¢ € [0, 7] will
be sought in the finite-dimensional space

Spe = {v e L(Q)svlx € PU(K), K e TR} (5.49)

where s > 0 is an integer and P*(K) denotes the space of polynomials of de-
gree not greater than s on K. By F? we denote the system of all faces of all
elements K € 7 and distinguish there sets of boundary, “Dirichlet”, “Neu-
mann” and inner faces: F,?’B = {F € FihT C 89”}, f}?’D = {F € FhT C Flj)},
FolN = {I‘ e Fi;l C Fl]’\,} and F'' = FO\FP. Triangulation 7 is of course

. =b =b . .
constructed in such a way that the set I'), NI'y is formed by vertices of elements
laying on 9Q. For each I' € F, we define a unit normal vector np. We assume
that for I' € .7-'2’3 the normal nmp has the same orientation as the outer normal

to Q. By h(T') we denote the length of T'. For ¢ € Sp* symbols cp%L) and cp%R)
denote the traces of ¢ on I' from the sides of elements K IQL) and K. IQR) adjacent to

I'. We assume that np is the outer normal to K IQL). In integrals over I', instead

of nr we write only n. Further, (¢)r denotes the average of the traces on I" and

[plp =t — cpl(aR) is the jump of ¢ on T.

If a = (a;;); -,,b = (bw)f] , are tensors, then we set @ : b= Y7 ., a;;b;;.
The DG discretization in space is formulated with the use of the following
forms.

Linear elasticity form:

Z/ yde— 3 / [l A4S (5.50)

KeTp 1"_7:171
. / ) dS—© Z/ ) [u] dS
rerFy? rery!

—o Y / ‘u dS,
rerp? r

where o (u) is defined by (5.13). Here the parameter © is chosen as 1,0, —1 for
SIPG, IIPG, NIPG, respectively, version of the linear elasticity form.
Nonlinear IIPG elasticity form (© = 0):

.S / P(F): Vo di— Y / )-l] dS (5.51)

Kerrb re ]_-bI
S /(P(F)n)-go ds.
rertn T

h

Penalty form:

T (u, ) = Z/ u - [¢] d5+2/7u @ ds. (5.52)

F]:I F]:D

Here CY, > 0 is a sufficiently large constant.
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Right-hand side form:

Z/f wdx+2/gzv - dS (5.53)

KETb F]:bN
-0 % [ Cup(t dS+Z/h )@ dS.
rerFy?

In the nonlinear case, it is not clear how to define the SIPG and NIPG versions
of the elasticity forms so that the form a? is linear with respect to the test function
. For this reason we will consider only the ITPG version (5.51) of a}.

STDGM for the structural problem

An approximate solution of problem (5.45)—(5.48), i.e., the approximations of
the functions w, y will be sought in the space of piecewise polynomial vector
functions Sy =[Sy ]2, where

Vo= Spt (5.54)
q*
= {v € L*(Q° x (0,7));v|1,, = Y t'p; with ¢; € SV m = 1,...,M} :
i=0

By s and ¢* we denote positive integers representing the degrees of polynomial
approximations in space and time in the discretization of the structural problem.
We introduce the one-sided limits and jump of a function ¢ € [SV*?]2 at time ¢,
similarly as in (5.41). Now, the approximate STDG solution of problem (5.45)—
(5.48) is defined as a couple wy,, yn, € Sv*9 such that

ayh/?'
/Im (Pb( ot a<PhT)Qb + b, (Pbyfm <PhT>Qb> + ab (upr, Phr) (5.55)

+J}Iz(uhﬂ ‘th)) dt + ({yh‘r}mfla <PhT(tm71+>>Qb

= [ Bl dt Vi, € ST

ouy,,
/ (( ath 790h7> _(yhﬂQOhT)Qb) dt (5.56)
m Qb

+({uh7’}m717 Lph7<tmfl+))(2b = OJ v‘Ph-r € Szfq*a m = 17 s 7M'
Similarly as in (5.42) we define the initial states w,(0—), yx(0—) € S° by

(uh(o_)a Qoh)ﬂb = (u07 Soh)ﬂb Ve, € 52757 (557)
(yn(0-), n)ar = (4%, on)er Vepn € Sp°.

5.2.3 Coupling procedure

In the solution of the complete coupled FSI problem it is necessary to apply
a suitable coupling procedure. See, e.g. [5] for a general framework. Here we
apply the following algorithm, in which we proceed successively from one time
interval [t,,_1,t,,] to the next interval [t,,,,,11] using an iterative process with
few subiterations. The approximate solutions obtained during the subiterations
are denoted with the index I, i.e. wpl,, up;, Q. 0, Ae, s 207
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1. Assume that the approximate solution wj: of the flow problem in time
interval I,, = [t,n_1, %] and the displacement of the structure u}’ at time
instant ¢,, are known.

2. Set uZLTjLol :=uy., [ :=1 and apply the iterative process:

(a) Interpolate uj;™; on the common boundary between the fluid and

the structure domain - in order to get a continuous function on this
interface.

(b) The approximation €Y, ., ; of the fluid domain €, , is determined by
the interpolated displacement of the moving part of the fluid domain
boundary.

(c) Determine the ALE mapping A, ., and approximate the domain ve-

locity 2.

(d) Solve the flow problem in the domain €, ., ; to obtain the approximate

solution w}™ ! in time interval I, 1 = [tm, tmi1)-

(e) Compute the stress tensor and the aerodynamical force acting on the
structure and transform it to the interface I'%.

olve the elasticity problem, compute the displacement u at time
f) Solve the elasticity probl te the displ tuph' at ti
b1
€ variation o € displacement |uw — Uy ;_1| 1S larger an a
g) If th iation of the displ t upht —wphly | is larger th

prescribed tolerance, set | := [ + 1 and go to (a), else, continue with
(h).
(h) Set wp*' =", wpt := wit', m:=m+ 1 and go to step 2.
This algorithm represents the so-called strong coupling. If in the step (g) we
set m := m + 1 and go to (2) already in the case when [ = 1, then we get the
weak (loose) coupling.

5.3 Algorithmization and numerical realization
of the coupled problem

The linear algebraic systems equivalent to (5.42) and (5.44) are solved either by
the direct solver UMFPACK ([27]) or by the GMRES ([68]) method with block
diagonal preconditioning. These methods are also used for the solution of the
structure problem (5.55)—(5.56). In the case of nonlinear elasticity on each time
level the nonlinear system is solved by the Newton method.

5.3.1 Newton method

In case of nonlinear elasticity model, the form a?(u, ¢) is linear with respect to
0, but nonlinear in u. As a consequence, the STDGM discrete scheme results in
systems of nonlinear algebraic equations. For their solution we apply the Newton
method (see [28]), which was applied in, e.g., [48] and [67], where incompressible
flow model and conforming finite element discretization were employed.
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Let f: RY — RY. We seck a solution @ € RY such that f(a) = 0. The
Newton method to obtain a solution can be described in the following way: let
a'® be an initial guess of the sought solution and let € > 0 be a given tolerance.
For ¢ > 0 iterate:

1. Evaluate the residual »@ = f (a(i)).

< g, stop iterations

2. If the residual is smaller then the given tolerance: Hr(i)

and set a := oV,

3. If the residual is greater then the given tolerance, compute da from a system
of linear algebraic equations

Vof (a(i)) boe = 7. (5.58)
4. Update o™V := a® — §a, set i :== i + 1 and go to step 1.

5.3.2 Application of the Newton method

Now we shall explain the application of the Newton method from Section 5.3.1
to the discretization of the nonlinear elasticity problem.

Let ¢;, i=1,...,N =dimV, be a basis of V. The approximate solution
of our problem can be expressed as a linear combination of basis functions of the
space [V]:

2N
Upr = Upr (@) = Zoﬁ@, (5.59)
=1

where a = (az)fivl are the coefficients and ¢; = (¢;,0) for 1 < i < N and
¢; = (0,¢;_n) for N < i < 2N form the basis of [V]Q.

That one may apply the Newton method to the discretization of the nonlinear
elasticity problem, it is necessary to differentiate the form af (us, (), ), defined
by (5.51), and thereafter the tensor P(F') with respect to the coefficients a. In
what follows, Vx and V., will denote the gradient with respect to X and a,

respectively. We have

0

a T = iaoa 1§kSNa:k7
8akuh (¢,0) t
9 = (0.4), N<k<2N, i=k—N,
80%

and

N N
Vxup =Y &;Vx (¥;,0)+ > o nVix (0,1) =
i=1

=1

N o, N o,
_( Shiaigy Qi
5[1111‘ :

i=1 i 8%
D1 QigN ) D1 QN s

By (5.5) and (5.6),
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Taking into account that Vx (X)) is the constant unit matrix I, we introduce the
notation )
P(Vxu) =PI+ Vxu). (5.61)

Now the gradient of the form a’ can be expressed as

Vaah (up ( Z/ P (Vxuy, (a )):chp) dz (5.62)
KeT?
_ Z“/v ((P (Vxun () n-[¢]) dS
+ Z /v (P (Vxun(@)n-¢) ds.

Let P (Vxup(a)) = (P;); j=1, where for simplicity we shall not write the

dependence of P;; on Vxup, (), and let ¢ = (¢1, p2). From

- 0 0 0 0
P (Vxup (o)) : Vxep = Py 8901 + P 8¢2 + Py 8901 + Py 852 (5.63)
we find that
0 /- _ 0 01 0 0
oy (P (Vxtne(@) : Vxp) = 5o Pug ot 5o P
8 8g02 8 6g02
+ 80% P21 8951 + (‘hk P22 81’27
O (P (Vxun(@))n- [9]) = (o (Pa)m + o (Pra) s ) 1]
(‘)ak 8ak 0
0 0
+ Do, (Par) 1 + Ja, (Pa2) n2> 2] ,
0 /= 0 0
8% (P (quhr( ))" S") = (aakpn ni + @Pw n2> ¥1
0 0
+ (akpm ny + aikpm n2> P2.
Now for ¢ = (¢4,0) we have
~ 0 i 0 i
P (Vxup (o)) : Vxp = Pll@i + Pro ai, (5.64)
0 /= ' 0 O 0 o;
S (P (Vxun () : Vxop) S0 P50+ g Pegy, (5.65)
0 - 0 0
o (P (Tt 10) = (5o (P + g (P a) 6], (5:6)
i(13(vu (@)n- @) = 9 pym+ -2 pyn W (5.67)
Do xXUpr P)= Dok 111 9 12 N2 i)
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while for ¢ = (0,1);) we get

P (Vxup- () : Vxp = Py gfj + Py g;i (5.68)

aik (P (Vxun(@)) : Vxep) azk Pglgﬁ - aik Py gf;, (5.69)
o (P (T - [g]) = (o (P s+ o (P a) i) 570
aik (P (Vxup- () m- ) = ((;kam ny + aikpm n2> v;. (5.71)

It remains to express the derivatives of the tensor P for the neo-Hookean and for
the St. Venant-Kirchhoff material.

The Newton method is applied at each time step for the solution of the non-
linear discrete problem. Each iteration of the Newton method represents a linear
algebraic system and is solved by the direct solver UMFPACK (cf. [27]).

The next two sections 5.3.3 and 5.3.4 follows the work [60].

5.3.3 Neo-Hookean material - derivatives

Let P = P(Vxun (a)) = (P;)?,_; be the first Piola-Kirchhoff tensor of the

ij=1
neo-Hookean material, defined in (5.15). Let up, () = (ug, uz). From (5.6) and
(5.15) we get

8%1 auQ
Php=ub1+ = 1+ —= 5.72
11 = ( +85L’1>+Cl< +8x2>’ ( )
aul 8u2
Ppy=pl— —¢—= 5.73
12 = M O C1a$1, ( )
ou ou
b 2 1
= — —Cc1— .74
Py =p e C1ax27 (5 7 )
ou ou
b 2 1
P22 = U (1 + 81}2) + (1 + ax1> y (575)
where
Nlog(det F) — pb
C1 = det F (576)

Now let up (o) = (ug, uz) = 22N, apéy, where &, = (&,0) for 1 < k < N and
&= (0,&_n) for N < k < 2N.

At first we express the derivative of the determinant of F' with respect to the
coefficient ay,. If 1 < k < N and 7 := k, then

Bog 4 ) = 50 (a@ + 1) D 01 (5:77)
and for N < k <2N,i: =k — N:

— - L) - = .

aOék (det F) 5’x2 <8x1 * ) 8331 6’x2 <5 78)
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The derivatives of P(V xuy-(c)) with respect to the coefficient oy, are given as

follows: If 1 < k < N and 7 := k, then

) 0 0%

daPu=pg e aik det F) <1 gg) (5.79)
a‘zk = 1 gi ;k (det F) ng (5.80)
azk P, _clgi 0 aik (det F) gz; (5.81)
zﬁk Py ggl +eag— (det F) (1 + g;) (5.82)
where ¢; is as in (5.76),
orm T (5.8
and ;2 (det F) is expressed in (5.77).
Finally for N < k < 2 we set i = k — N and get
a(; Piy = gj; e aik (det F) (1 + 27;2) (5.84)
(;Zk Py = —, aai e aik (det F) gZ? (5.85)
ey = g g ) o
azkp -y gi + Qaik (det F) <1+g;‘1> (5.87)

where c; is as in (5.76), c; as in (5.83) and 57—
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5.3.4 St. Venant-Kirchhoff material - derivatives

Let P = P(Vxup(a)) = (Py)7 -1 be the first Piola-Kirchhoff tensor of the
St. Venant-Kirchoff material as defined in (5.16) - (5.20). Let up. () = (ug, uz).
Then we get

8u1 8U2 8uQ 8u1 ou 2 ?
Py = — +1 — | =— 41 —+1] -1 .
= 8902 (99(:1 ((%2 + ) * (89&1 + ) (<8$2 + ) ) <5 88)

) o) (3o 3 ) )
T R
(3 )3222(?Zf+(§§j+1)2+(§2+1)2_1),

M@ZZ )gﬁ (%*Q@?ﬁ@;‘;—) (5.90)

N\ Quy [OuE [ Ou (s )
b 2 2 1
— 1 —+1] -1
8u2 8u1 8u1 /\b a’UQ 8u1 2
Py = —+1 — | =—+1 1] —1 91
22 ,U (91'1 8%2 <8x1 + ) + ((9352 + ) ((8$1 + ) (5 9 )

A\ [ Ous oud  Oud Dus ?
1 1] —1
+<M+ )(8 2+ )(8x2+8x1+ 8x2+ ’
Now let up, () = (u,us) = 22V, apéy, where & = (§,0) for 1 <k < N
and & = (0,&_n) for N < k < 2N.

The derivatives of P(V xus, () with respect to the coefficient ay are given
as follows: If 1 <k < N and 7 := k, then

B , 08 Ouy [ Ous A ag [ [ Ous 2

AN o0& [ ou? Oul Ouy 2
b N i 1 2 o
+ (M + ) 0ry (a’EQ + 0xy * (31‘1 * 1) !
(9u1 8u1 8& 8u1 (9&
2 1 1
+ (,U * ) (8 X1 + ) (8%2 8x2 + (83:1 + ) 8x1> ’

0 8& 61@ 6%2 )\b 8& ng
a2 =iy 871 <ag:2 + 1) S o e ! (5.93)

os [ [(ou 2 Ouy 2
1 —4+1] =1

AP 8u1 8u1 851 aul 851
+2<M + >6x2 <8x20x2+ 8$1+1 8:101 ’
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aikpm - (gzz + 1) SZ (ggi + 1) + b (gzz + 1) gz:gjl (5.94)
Abgzigga@i +2 (ub - A;) ng (ggi + 1) gfl
(;)kp22 gZ? gj; @;i + 1) + ubggjgzg}i (5.95)
+ A (gzz + 1) (ggi + 1) ng (ub + A;) (gzz + 1) gz; 8852
Finally for N < k < 2N we set i =k — N and get
aikp _y gz; gj’l @Z + 1) +ubgzgzj§§; (5.96)
+ A (gZJrl) (gzz-i-l) % ( ) (gZi—Fl) gzigi,
v e G N
Vom0 7) 3 (5 )
= s (G )+ 2o (50 ) 5%
+ (u + ) g:i (gzj - (gzi +1)2+ <g£+1>2 - 1)
w2y g (233 e, (a2 ) )
o (20 0) S0 (B )

A\ 0¢ [ Ou ou? Ous
b A\ 95 1 2 _
* ('M + ) 0xs (8:152 + 0xy * (0;52 + 1) 1)
)\ (%Q 81@ 8& 8“2 85@

5.4 Numerical experiments

Now we present numerical results to demonstrate the performance of the proposed
ALE-STDGM. Section 5.4.1 is devoted to the investigation of the Turek-Hron
nonlinear elasticity benchmark problem [75]. Here the STDGM is applied to
solve the motion of an elastic beam. Finally, in Section 5.4.2 the main attention

is paid to fluid-structure interaction, i.e. the modeling of flow induced
vibrations in a simplified human vocal tract.
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5.4.1 Nonlinear elasticity benchmark problem

We consider a 2D domain of an elastic beam attached to a rigid cylinder with
a radius 7 = 0.05 m. The beam is [ = 0.35 m long and h = 0.02 m high. We
will evaluate the displacement of the point A = A(t), which is defined in the
middle of the right-hand side end of the beam, see Figure 5.1. In the Turek-Hron
benchmark problem [75] the elastic beam is modelled with the aid of the St.
Venant-Kirchhoff material. In our computations we consider the neo-Hookean
material as well.

—

}A 1h

Figure 5.1: Setup of the benchmark problem: elastic beam attached to a rigid
cylinder.

The domain QP defined in the previous sections represents the elastic beam.
Homogenous Dirichlet boundary condition is prescribed on the part of the bound-
ary, where the beam is attached to the rigid cylinder

up=0 on T% x[0,T],

and on the rest of the boundary we prescribe Neumann boundary condition with
no surface traction
gN:O on Fl])VX[()?T]a

The initial condition for the time-dependent problem is given by
up =0, 2z,=0, in .
We also prescribe the acting body force density f by
f=p"b, where b=(0,-2)" [ms™2], p’"=1000 [kgm™®].

We set the damping coefficient C%, = 0, Young’s modulus E* = 1.4 - 10° and
Poisson ratio 1 = 0.4. The Lamé parameters are determined by relations (5.14).

In our computations we used three different computational meshes, see Fig-
ure 5.2, generated by the finite element grid generator Gmsh. Characteristics of
these meshes are summarized in Table 5.1.

The nonlinear benchmark problem was solved by the proposed STDGM (5.55)-
(5.57) in the space of piecewise polynomial vector functions S;’qu* defined by
(5.54). We used piecewise linear approximation in space (s = 1) and piecewise
constant (¢* = 0), linear (¢* = 1) and quadratic (¢* = 2) approximation in time
with a constant time step 7. For all computations we set Cf, = 6 - 10°.

In our computations we compare the time-dependent values of the displace-
ment of the point A, which are represented by the mean value, amplitude and
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Mesh 1:

Mesh 2:

Mesh 3:

Figure 5.2: Triangular computational meshes for the benchmark problem.

number of elements | mesh size [x1073]
Mesh 1 722 7.31
Mesh 2 1348 5.17
Mesh 3 2822 3.40

Table 5.1: Mesh statistics for the nonlinear elasticity benchmark problem.

frequency. The mean values and amplitudes are computed from the last period
of the oscillations by taking the maximum (max) and minimum (min) values.
Then mean value = 1/2(max 4 min), and amplitude = 1/2(max — min). The fre-
quency of the oscillations is computed by the fast Fourier transform (FFT) taking
the lowest significant frequency present in the spectrum. The data denoted by
“ref” represent results from [75] for the St. Venant-Kirchhoff material. For the
neo-Hookean material there are not available any reference results.

In Tables 5.2, 5.3 and 5.4 we summarize results obtained for the St. Venant-
Kirchhoff material for different time steps 7 on Mesh 1. It can be seen, that
in case of piecewise constant time approximation (¢* = 0) we need even smaller
time step to obtain satisfactory results. On the other hand results obtained by
the piecewise linear (¢* = 1) and quadratic (¢* = 2) approximation in time show
a very good agreement with computations from [75] for all time steps.

The evolution of the displacement of the point A for the St. Venant-Kirchhoff
material for different time steps is shown in Figures 5.3, 5.4 and 5.5, for piecewise
constant (¢* = 0), linear (¢* = 1) and quadratic (¢* = 2) approximation in time,
respectively. It can be seen that in case of ¢* = 1 and especially in case of ¢* = 2
the results for different time steps 7 are almost identical.

Finally in Table 5.5 we compare results for different computational meshes ob-
tained for the St. Venant-Kirchhoff material with piecewise linear approximation
in space and time for the time step 7 = 0.02.
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method 7 |y [x1079] uy [x 1073

ref —14.305 + 14.305 [1.0995] | —63.607 & 65.160 [1.0995]
STDGM | 0.04 | —7.203 £ 0.002 [1.0712] | —66.214 £0.011  [1.0725]
STDGM | 0.02 | —7.186 £0.175 [1.0800] | —66.130 £0.789  [1.0775]
STDGM | 0.01 | —7.200 £ 1.564 [1.0887] | —65.705 £ 7.079  [1.0862]
STDGM | 0.005 | —7.840 £ 4.708 [1.0920] | —65.409 + 21.393  [1.0900]

Table 5.2: Comparison of the displacement of the point A for STDGM with
s =1, ¢* = 0, St. Venant-Kirchhoff material and different time steps 7. The
values are written in the format “mean value £ amplitude [frequency/’”.

method T | uy [x1073) uy [x1073]

ref —14.305 £ 14.305 [1.0995] | —63.607 & 65.160 [1.0995]
STDGM | 0.04 | —14.072 4+ 14.043 [1.0925] | —66.374 + 61.499 [1.0925]
STDGM | 0.02 | —14.337 +14.316 [1.0925] | —66.456 + 62.556 [1.0925]
STDGM | 0.01 | —14.546 £ 14.526 [1.0950] | —66.580 = 62.994 [1.0950]
STDGM | 0.005 | —14.628 £ 14.608 [1.0930] | —66.623 £ 63.153 [1.0930]

Table 5.3: Comparison of the displacement of the point A for STDGM with
s =1, ¢* = 1, St. Venant-Kirchhoff material and different time steps 7. The
values are written in the format “mean value + amplitude [frequency/”.

method | 7 | uy[x1073] Uy [x 1073

ref 14305+ 14.305 [1.0995] | —63.607 + 65.160 [1.0995]
STDGM | 0.04 | —14.497 4+ 14.497 [1.0925] | —64.743 +64.748 [1.0925]
STDGM | 0.02 | —14.627 £+ 14.627 [1.0925] | —65.088 +64.711 [1.0925]
STDGM | 0.01 | —14.672 £ 14.672 [1.0950] | —64.879 + 65.025 [1.0900]

Table 5.4: Comparison of the displacement of the point A for STDGM with
s =1, ¢* = 2, St. Venant-Kirchhoff material and different time steps 7. The
values are written in the format “mean value + amplitude [frequency/”.

# elements | 7 | ug [x107?] uy [x 1073

ref T14.305+ 14.305 [1.0995] | —63.607 £ 65.160 [1.0995]
722 0.02 | —14.337 + 14.316 [1.0925] | —66.456 = 62.556 [1.0925]
1348 0.02 | —14.117 £ 14.112 [1.0962] | —64.508 £+ 63.514 [1.0962]
2822 0.02 | —14.113 £ 14.110 [1.0962] | —64.523 £+ 63.518 [1.0962]

Table 5.5: Comparison of the displacement of the point A for STDGM with
s =1, ¢* =1 for St. Venant-Kirchhoff material and different meshes. The values
are written in the format “mean value £ amplitude [frequency]”.
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Figure 5.3: St. Venant-Kirchhoff material - displacement of the point A for
STDGM with s =1, ¢* = 0 for different time steps 7.
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STDGM with s =1, ¢* = 1 for different time steps 7.
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In Tables 5.6, 5.7 and 5.8 we summarize results obtained for the neo-Hookean
material for different time steps 7 on Mesh 1. In this case we do not have reference
data, so we can compare these results only by the results for the St. Venant-
Kirchhoff material.

The evolution of the displacement of the point A for the neo-Hookean ma-
terial for different time steps is shown in Figure 5.6, 5.7 and 5.8, for piecewise
constant (¢* = 0), linear (¢* = 1) and quadratic (¢* = 2) approximation in time,
respectively. It can be seen that in case of ¢* = 1 and especially in case of ¢* = 2
the results for different time steps 7 are almost identical. In all cases we get very
similar computational results as for the St. Venant-Kirchhoff material.

method T up [x1073] Uy [x1073]
STDGM | 0.04 | —=7.176 £0.002 [1.0712] | —66.209 £ 0.011 1.0725
STDGM | 0.02 | —7.164 £0.174 [1.0800] | —66.149 £ 0.788 1.0775

(S| e il Pt}

[ ] [

[ ] [
STDGM | 0.01 | —7.174 £ 1.558 [1.0887] | —65.798 £7.078  [1.0862
STDGM | 0.005 | —7.813£4.690 [1.0920] | —65.414 £ 21.387 [1.0900

Table 5.6: Comparison of the displacement of the point A for STDGM with
s =1, ¢* = 0, neo-Hookean material and different time steps 7. The values are
written in the format “mean value £ amplitude [frequency]”.

method T | uy [x1073 uy [x1073]
STDGM | 0.04 | —14.027 +13.992 [1.0937] | —66.625 4+ 61.263 [1.0925
STDGM | 0.02 | —14.290 4+ 14.264 [1.0937] | —66.710 +62.311 [1.0925

[ ] [ ]
[ ] [ ]
STDGM | 0.01 | —14.505+ 14.480 [1.0937] | —66.824 + 62.277 [1.0925]
STDGM | 0.005 | —14.590 £ 14.566 [1.0930] | —66.863 £ 62.944 | ]

Table 5.7: Comparison of the displacement of the point A for STDGM with
s =1, ¢* = 1, neo-Hookean material and different time steps 7. The values are
written in the format “mean value = amplitude [frequency]”.

method | 7 | up[x1079 uy [x 1073

STDGM | 0.04 | —14.454 4+ 14.454 [1.0937] | —64.829 + 64.686 [1.0925]
STDGM | 0.02 | —14.587 £ 14.587 [1.0937] | —65.172 + 64.657 [1.0925]
STDGM | 0.01 | —14.596 £+ 14.595 [1.0937] | —65.227 + 64.634 [1.0925]

Table 5.8: Comparison of the displacement of the point A for STDGM with
s =1, ¢* = 2, neo-Hookean material and different time steps 7. The values are
written in the format “mean value = amplitude [frequency]”.
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Figure 5.6: Neo-Hookean material - displacement of the point A for STDGM with
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5.4.2 Flow induced vocal folds vibrations

Now we present our numerical results for a model of vocal folds in a simplified
human vocal tract. The geometry of the domain occupied by the fluid and its
size are given in Figure 5.9. On the right-hand side of the geometry a semicircle

subdomain with a radius 3.0 cm is added - it represents the outlet I'p.

We prescribe the inlet boundary conditions on I'; (left part of the bound-
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Figure 5.9: Geometry of the computational domain at time ¢ = 0 and the descrip-
tion of its size: L; = 20.0 mm, L, = 17.5 mm, Lo = 55.0 mm, H; = 25.5 mm,
Hp = 2.76 mm. The radius of the semicircle subdomain is 3.0 cm.

ary), the outlet boundary conditions on T'p (right part of the boundary, which
is a semicircle), and we prescribe boundary conditions on the impermeable fixed
walls I'y (including the vertical segments of the semicircle) and on the moving
impermeable walls denoted in Figure 5.9 by I'y,. The fluid flow problem is com-
puted on the triangulation with 17652 elements. Further, for the definition of the
fluid flow problem the following data are used:

magnitude of the inlet velocity v, =4 m s™1,

dynamic viscosity p=180-10"" kg m~*! s
inlet density pin = 1.225 kg m =3,

outlet pressure Pout = 97611 Pa,

Reynolds number Re = pivinHy/1n = 6941.7,
heat conduction coefficient k=2428 1072 kg m s73 K1,
specific heat cp = 721.428 m? s72 K71,
Poisson adiabatic constant v =14.

For the fluid solver we use the STDGM with polynomial approximation of
degree 2 in space and degree 1 in time. We employ the ITPG version of the DGM
with the penalization constant Cy, = 500 for inner faces and Cy, = 5000 for
boundary edges. The stabilization parameters v; and v, from (5.39) are set to
0.1. The time step 7 is set to 1.0 - 1076 s. For the first 1000 time steps the fluid
flow is computed with the fixed boundary. Then the part I'yy, of the boundary is
released and we solve the FSI problem.

We assume that the elastic bodies motivated by a cut of vocal folds are
isotropic with constant material density p® = 1040 kg m~3. The triangulation
used for the solution of the structure problem has 5118 elements, see Figure 5.10.

The division of the domain into 4 regions with different material characteristics is
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Figure 5.10: Computational mesh of vocal folds

illustrated in Figure 5.11 by the Lamé parameters and the setting of the material
characteristics is described in Table 5.9.

Figure 5.11: Nonhomogeneous model of vocal folds - layers with different Lamé
parameters.

Further, the initial displacement and the initial deformation velocity are set to
be zero. On the bottom, right and left straight parts of the boundary we prescribe
homogeneous Dirichlet boundary condition (5.8) and on the curved part of the
boundary the Neumann boundary condition (5.9). The damping coefficient c4; is
set to 1.0 s~1. For the solution of the dynamic elasticity problem we employ the
NIPG version of the DGM, where the penalization constant is set to C%, = 4-10°.

The ALE mapping is determined as described in Section 5.1.4. For the solution
of the static elasticity problem (5.24) we employ the NIPG version of the DGM,
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layer E® VP b W

1. layer (orange) | 12-10% | 0.4 | 17143 | 4285
2. layer (yellow) | 8-103 0.4 | 11430 | 2857
3. layer (blue) | 1-10° | 0.495 | 33110 | 335

1. Tayer (red) | 100-10° | 0.4 | 142857 | 35714

b

Table 5.9: Nonhomogeneous model of vocal folds - prescribed Young modulus,
Poisson ratio and Lamé parameters for different layers, ordered from the lower
layer to the upper layer. See Figure 5.11 for the visualization of the corresponding
subdomains.

where the penalization constant is set to Cf, = 103. Then the DG solution of the
ALE discrete problem (5.24) is interpolated to a continuous approximation.

We use the strong coupling algorithm described in Section 5.2.3 with the
prescribed tolerance 107°. Further, we use 5 coupling subiterations as the maxi-
mum, however the prescribed tolerance was usually reached after 2 — 3 coupling
subiterations.

In what follows we compare the linear strain tensor e and the nonlinear Green
strain tensor E € R**?, see [25], defined by (5.17) - (5.18).

In the case of the linear elasticity the stress tensor depends on the strain tensor
e = (eij)ij:l and in the case of nonlinear elasticity it depends on E = e + E*,
where E* = (E)7,_,.

The influence of the nonlinear part of the strain tensor is given by the ratio

poo el _ el
1B~ e+ B

(5.100)

If R ~ 1, then the nonlinear part of the strain tensor has no influence to
the computation (the linear elasticity model is sufficient), but if R a0, then the
nonlinear part strongly takes effect and it is necessary to use a nonlinear elasticity
model.

Comparing the linear and the neo-Hookean nonlinear elasticity model

Figure 5.12 shows numerical simulation of the vocal folds from the beginning
of the FSI computation at 12 time instants. Figure 5.13 shows in detail the
deformation of the vocal folds at 2 time instants for a maximal and minimal
glottal gap during vocal folds oscillations. In Figure 5.12 and Figure 5.13 case
R =~ 1 is depicted by white and case R ~ 0 by dark red color. It can be seen, that
nonlinear part of the strain tensor takes effect in elements near to the boundary,
therefore to correctly capture deformations of the vocal folds, it is necessary to
use a nonlinear model of elasticity.

Comparing the linear and the St. Venant-Kirchhoff nonlinear elasticity
model

Figure 5.14 shows numerical simulation of the vocal folds from the beginning
of the FSI computation at 12 time instants. Figure 5.15 shows in detail the
deformation of the vocal folds at 2 time instants for a maximal and minimal
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vocal fold

Figure 5.12: Deformation of vocal folds in dependence on time computed by the
neo-Hookean model and the ratios of the norms of the linear strain tensor and
the nonlinear Green strain tensor at different time instants.
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vocal fold

Figure 5.13: Deformation of vocal folds in dependence on time computed by the
neo-Hookean model and the ratios of the norms of the linear strain tensor and the
nonlinear Green strain tensor at different time instants - details for the smallest
and the largest glottal gap between the vocal folds.

glottal gap during vocal folds oscillations. In Figure 5.14 and Figure 5.15 case
R ~ 1 is depicted by gray and case R ~ 0 by dark red color. It can be seen, that
nonlinear part of the strain tensor takes effect in elements near to the boundary,
therefore to correctly capture deformations of the vocal folds, it is again necessary
to use a nonlinear model of elasticity.

Figure 5.16 shows velocity field in the glottal region at two time instants of the
vocal folds self-oscillation. In these time instants different jet declination behind
the channel construction, i.e. the Coanda effect can be observed.
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vocal fold

Figure 5.14: Deformation of vocal folds in dependence on time computed by the
St. Venant-Kirchhoff model and the ratios of the norms of the linear strain tensor
and the nonlinear Green strain tensor at different time instants.
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vocal fold

Figure 5.15: Deformation of vocal folds in dependence on time computed by the
St. Venant-Kirchhoff model and the ratios of the norms of the linear strain tensor
and the nonlinear Green strain tensor at different time instants - details for the
smallest and the largest glottal gap between the vocal folds.

r 2.3e+01

velocity Magnitude

Figure 5.16: Velocity field in the glottal region at two time instants of the vocal
folds self-oscillation.
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Conclusion

In the first four chapters of this thesis, we have formulated and theoretically
analyzed the space-time discontinuous Galerkin method for the solution of non-
stationary nonlinear convection-diffusion problem in time-dependent domains.
The problem was reformulated using the arbitrary Lagrangian-Eulerian (ALE)
method, where the ALE mapping is constructed successively from one time slab
to the next one. The problem is discretized with the aid of the ALE space-
time discontinuous Galerkin method (ALE-STDGM). In the formulation of the
numerical scheme we use the nonsymmetric, symmetric and incomplete versions
of the space discretization of the diffusion terms and an interior and boundary
penalty. The nonlinear convection terms are discretized with the aid of a numer-
ical flux. The discontinuous Galerkin discretization uses piecewise polynomial
approximation of degree p > 1 in space and ¢ > 1 in time.

Chapter 3 is devoted to the stability analysis of the ALE space-time discon-
tinuous Galerkin method. An important tool in this analysis was the discrete
characteristic function, which was generalized for problems in time-dependent
domains €);. The key requirement for this function was the continuity with re-
spect to the || - |2, and || - || pg norms, which has been also proved. On the
basis of a technical analysis we obtained unconditional stability of this method,
which means that the approximate solution is bounded by terms of data, without
any limitation of the time step in dependence on the size of the space mesh. For
further research we shall investigate the ALE-STDGM for nonlinear convection-
diffusion problems with prescribed Neumann or mixed boundary conditions in
a time-dependent domain. An interesting, but very difficult further extension
would be the stability analysis of the ALE-STDGM applied to singularly per-
turbed nonlinear problems.

In Chapter 4 we derived a priori error estimates for the ALE-STDGM, first
in terms of the interpolation error n and then in terms of A (mesh size) and 7
(time step). In the presented error analysis we used a simplification, namely
we omitted expression containing H{e}j,lﬂétjil, because it is not clear how to

estimate expression ||{77}j_1||gtj71 in terms of h and 7. Therefore further work
must be invested in the derivation of more accurate a priori error estimates.

In the last chapter, we presented some numerical results. At first we have ap-
plied the STDGM to the solution of the nonlinear elasticity benchmark problem,
which was proposed by Turek and Hron and originally was solved by the finite
element method (FEM). Our results show a very good agreement with compu-
tational results obtained by the FEM. From this comparison we can conclude,
that STDGM yields an accurate and robust method capable of solving elasticity
problems. In the next part of this chapter we were focused on fluid-structure
interaction in a time-dependent domain, namely on numerical solution of flow
induced vocal folds vibration in a simplified human vocal tract. The fluid flow
problem was described by the compressible Navier-Stokes equations in the con-
servative ALE form and it was coupled with the solution of the linear or nonlinear
elasticity problem. The elastic structure domain was split into four subdomains
with different material characteristics. The ALE mapping was determined on the
basis of an artificial static linear elasticity problem in the domain occupied by
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the fluid. Our main goal was to compare linear and nonlinear elasticity models
of vocal folds in the FSI simulation. From the obtained results we can conclude,
that linear elasticity model is not sufficient to correctly capture deformation of
the vocal folds and is better to use nonlinear elasticity models. There are many
possible extensions for the future work. The most challenging would be the simu-
lation of the complete closure of the channel between the vocal folds. This effect
takes place during the voice creation process in human vocal folds.
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