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Abstract: The automation of document processing is gaining recent attention
due to the great potential to reduce manual work through improved methods
and hardware. In this area, neural networks have been applied before – even
though they have been trained only on relatively small datasets with hundreds
of documents so far. To successfully explore deep learning techniques and im-
prove the information extraction results, a dataset with more than twenty-five
thousand documents (pro forma invoices, invoices and debit note documents) has
been compiled, anonymized and is published as a complement of this work. In
the first part of the research, we will examine the documents from the point of
view of table detection, present a survey on table detection methods and ulti-
mately rephrase the table detection as a text box labelling problem to optimize
micro F1 score of per-word classification. We will show that we can extract spe-
cific information from structurally different tables or table-like structures with
one trainable model that features a comprehensive representation of a page us-
ing graph over word-boxes, positional embeddings and trainable textual features.
The first part is concluded with a novel neural network model that beats mul-
tiple baselines and achieves strong, practical results on the presented dataset.
Analysis of the model’s performance is presented and verified, that convolutions,
graph convolutions and self-attention layers can work together and exploit all the
information present in a structured document. To validate the importance of the
dataset and the next steps, an expert-knowledge based generative model is briefly
explored. To take the fully trainable method one step further, we will ultimately
design and examine various approaches to using siamese networks, concepts of
similarity, one-shot learning and context/memory awareness. The results verify
the hypothesis that trainable access to a similar (yet still different) page together
with its already known target information improves the information extraction re-
sults. Furthermore, the experiments confirm that all proposed architecture parts
(siamese networks, employing class information, query-answer attention module
and skip connections to a similar page) are all required to beat the previous
results. The best model inspired by a query answer architectures improves the
results of the first part and achieves state-of-the-art results of 92.90 micro F1
score. Qualitative analysis is provided to verify that the new model performs
better for all target classes. Additionally, multiple structural observations about
the causes of the underperformance of some architectures are revealed. All the
source codes, parameters and implementation details are published together with
the dataset in the hope to push the research boundaries since all the techniques
used in this work are not problem-specific and can be generalized for other tasks
and contexts.
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1. Introduction
This text presents original research on a unique task that connects the fields of
natural language processing and computer vision on a dataset that allows the use
of deep learning methods.

The dissertation is split into this introductory overview and three more parts,
where each one of them presents a research of relevant and inspirative studies
and an important step towards the final state-of-the-art results.

Parts II and IV both contain a full copy of previously published articles Hole-
cek et al. [2019] and Holeček [2021], the intermediate part III contains previously
unpublished research in the form of a technical report (that assumes prior knowl-
edge of the first article).

The published full source codes (approximately 12 000 lines of python code)
and datasets (of more than 25 000 anonymized documents) Holecek [2020, 2019]
are an important complement of this research. To understand the research, it
is not obligatory to go through the codes (or explore the dataset) though, but
for a precise and very high level of detail, and/or reproducing the results and
implementation details, the reader is kindly referred to the source codes and the
accompanying comments.

Ultimately, in the appendix, there are copies of three additional past texts
(Holecek [2018d,a,b]) from the author to provide some more connected informa-
tion about the research, but since they do not present any significant contribu-
tions, they are omitted from the main text.

1.1 Background
The dissertation is motivated by both theoretical and practical reasons based
on a unique opportunity, that have appeared recently. To fully understand the
opportunity we need to take into account all the factors included since they are
all equally important and have enabled the exploration:

• The development of advanced methods that were able to resume the sci-
entific advance of artificial intelligence (from the previous so-called “AI
winter” Newquist [2018]).

• Hardware improvements – driven by consumer demand for high-quality
graphics – also enabled linear algebra and scientific computation paral-
lelization in novel GPU architectures.

• The pure fact that best practice in the software engineering industry re-
quires storing lots of historical data ultimately gave rise to access to bigger
datasets.

• The rising opportunity of automatization of more and more tasks, fueled
by the need for efficient work by both big companies and individuals.

The resulting steep rise of so-called “deep learning” Dargan et al. [2019] was spun
up by the discovery, that methods trained on sufficiently big datasets surpass all
previous expert models and even carefully tinkered features.
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Apart from providing this brief background, it is impossible to provide any
valuable and meaningful survey on the topic and history of machine learning and
deep learning in the scope of this work - considering the field’s sheer magnitude
and the number of existing surveys. (Moreover, this field is taking over all other
research fields where previously the crafted invariants and approximate methods
dominated, such as computer vision - O’ Mahony [2020])

Therefore we will resort to citing just all the relevant research in the respective
parts and otherwise referencing here only Dargan et al. [2019], Newquist [2018]
and (for existing industry best-practices) Burkov [2020].

Specifically - in the problem of information extraction - this work was only
able to grow thanks to the access to datasets of unmatched size. The huge
datasets allowed using deep learning in information extraction with the foreseen
opportunity for automatization of business document processing. The task of
invoice processing was, for example, previously solved only by hand (either on a
per-document basis or per-template basis).
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2. Overview of the articles
The research and implementation try to follow the best practices of a long ex-
plorative, research and development path, that all successful studies, researches
and deep learning models have done in other fields. Document processing and
information extraction Cowie and Lehnert [1996] is most interesting from a theo-
retical perspective since it combines both the fields of computer vision and natural
language processing.

The dissertation features two published articles (Holecek et al. [2019] and
Holeček [2021]) and one intermediate previously unpublished research, that helps
motivate the problem.

The following chapter contains a short overview of all the following parts
of the dissertation. To keep this overview brief, all in-depth explanations, exact
definitions and citations are done in the parts themselves and not in this overview.

2.1 Overview of “Table understanding in struc-
tured documents”

In the first article Holecek et al. [2019] (in II) the research is carried out on a
smaller subset of the whole available dataset and focuses on establishing a well
defined structural approach to desired information extraction and specific table
detection.

Working with just a subset of the dataset was decided for practical reasons -
to have the annotations done faster and to quickly iterate in case of need. The
focus on table detection methods was based on observing how humans approach
the problem.

In detail - the importance of the first article is as follows. If the system would
be successful in just finding any table but could not be trained to detect just
one specific table type in a presented document and - at the same time - extract
just some information from other tables, its practical usage would be useless.
The reason is that in business documents and invoices especially, everything is
structured in (sometimes even nested) tables and so older expert table detection
based methods are useless for the task at hand. The older methods would either
find all tables or just get confused and fail.

The metric, losses, structure of inputs and outputs and all other factors were
held as close to the best practices in literature (see section 2 of II).

The experimental design was motivated by a study on how humans try to
decipher business documents. Every person introduced to the task looks at the
document as a whole and then tries to read it as a text document. They discover,
that it can be done only in some parts of some documents and elsewhere they
need to look at the local clusters of words.

These three steps translate (respectively) to global self-attention module, con-
volution over sequence and graph convolution.

To feed as much information as is possible to the said layers, the designed
neural network was given all possible features that are present in the document
- all textual information up to individual characters in words; positions of all
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the words including features from geometrical algorithms; graph of neighbouring
words; whole image of a page and crops of the image around each word. Moreover,
features from named entity recognition are used, since business documents contain
a lot of named entities and we desired the network to learn them without a need
for specific tokenization techniques.

The experimental results have shown that this design was a success. Moreover,
it was verified, that:

• There was no redundancy - all the modules were needed for achieving a
higher score.

• The tasks of “specific whole table detection” and “extracting just a single
piece of information from other parts of the document” did boost each other.

• The model was able to generalize to completely unknown layouts.

• The model was able to scale to the whole dataset (∼ 10× bigger than the
initial small variant.)

• All the inputs are of importance as the score drops if each of them is omitted.

2.1.1 Overview of an intermediate technical report on
generated documents based on expert knowledge

The second part III presents small research in the form of a technical report. This
small research was carried out but unpublished previously due to the absence of
positive results and significant findings. But since it helps to give another insight
tino the problem and dataset, it is included here.

Its motivation is as follows. Given the domain knowledge of the business
documents and the annotation process difficulty, a series of experiments was
carried out to see if automatically created artificial documents would be of any
practical use. Or if they at least could speed up the process of training the neural
network.

A stochastic generator of a document was defined and implemented that would
allow to create an artificial dataset just by sampling from the generator. Both
a new simple convolutional architecture and the model from the first part II
were trained and tested on multiple settings with the artificial dataset. The
experimental results have shown, that:

• The original task cannot be easily approximated by a rule-based stochastic
system. This finding has thus verified the value of a curated dataset.

• There are deeper relations in the dataset, that the model (from the first
part) successfully exploits.

• The simple convolutional baseline is better on the simple simulated data,
possibly because the model (from the first part) is tuned for harder prob-
lems.

No results from this experiment are of any practical use, but it does mark the
next direction to not focus on generative models and instead to focus on using
as much as possible from the real dataset. That direction is realized by the last
part by exploring single-shot learning techniques.
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2.1.2 Overview of “Learning from similarity and informa-
tion extraction from structured documents”

The last part IV focuses on advanced pieces of deep learning from the general
research areas of “single shot learning” and “similarity”. The exploration of these
highly advanced and resource-hungry methods is well motivated by the previous
parts:

• All structural information from one document’s page was used in the first
article.

• At the same time, the model researched in the first article is shown to scale
to the whole dataset.

• The second part tells us, that the dataset contains non-trivial (in the mean-
ing of not easily modelled) relationships and hidden rules.

Therefore the central research question of the last part is: “Does there exist an
architecture that uses the concept of similarity and can reduce the error even
more? If so, which one?”

Since we would like to measure the contribution of the similarity concept
alone over the score known from the first article, everything in the experimental
design is kept as close as possible to the first article’s setting, except to the table
detection target. In this part, we would focus only on single word classification,
not table detection (also because it would present some difficulties to annotate
the tables of the whole big dataset in time).

Now the main difficulty lies in using the methods of similarity in a brute-force
approach would take an incredible amount of resources in terms of computation
time, complexity and memory.

A typical page contains 300 words, running a system with the complexity
of O(N2) (for each word against all other words in a dataset of tens of thou-
sands of documents) would mean running a computation for the magnitude of
approximately 108 inputs (per each epoch).

To tackle this problem in a better way than a naive random sub-sampling, we
introduce a requirement for all the presented methods to use only 1 page from a
database of known pages and to process all word-boxes at once.

The one page is found by a fixed nearest neighbour search in an embedding
space of all the pages (that is manually verified to indeed group visually similar
pages).

Based on these specifications, 3 new different architectures featuring siamese
networks and 4 more baselines related to similarity approaches are designed from
scratch in a novel approach.

The model from the first part is used as a siamese network at the input part of
all the new architectures. The models are all trained from scratch and no transfer
learning is used.

The following architectures are designed:

• Triplet loss variants - extend the canonical triplet loss for computing the
loss for all word-boxes from both the known and reference page at once,
thus saving the computational time.
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• Pairwise classification - this architecture tries to directly predict the out-
come without trying to directly manage the embeddings in a triplet-loss
induced space.

• Query answer architecture - this architecture is a different approach to
similarity and tries to utilize a self-attention layer to answer a question
about the input unknown page using the known page.

The experimental results of the baselines show, that:

• The documents in our dataset are different enough and so the task is not
trivial

• Just a similarity search alone and a templating mechanic is not enough,
even if we would fine-tune the nearest neighbour search.

• A simple linear model performs poorly, which motivates the usage of more
advanced ones.

The experimental results show, that the query answer architecture performs the
best and beats the results from the first part. By ablation analysis, we verify, that
all the parts of the query answer architecture are important. Therefore the most
probable reason for the triplet loss and pairwise classification under-performance
is the absence of direct connections (in the means of information flow in neural
networks) to the unknown and known page. Finally, qualitative analysis reveals,
that the query answer architecture performs better over the results from the
first article in all the target classes and significantly improves the scores of the
previously most under-performing classes.

Ultimately the computational optimality was also reached as the whole train-
ing takes just 1 consumer-grade GPU and 4 days of training time with just one
CPU process.
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Table understanding in structured documents
Martin Holeček∗†, Antonín Hoskovec†, Petr Baudiš†, Pavel Klinger†

∗Faculty of Mathematics and Physics, Charles University, Department of Numerical Mathematics
†Rossum

Abstract—Table detection and extraction has been studied in
the context of documents like reports, where tables are clearly
outlined and stand out from the document structure visually. We
study this topic in a rather more challenging domain of layout-
heavy business documents, particularly invoices. Invoices present
the novel challenges of tables being often without outlines - either
in the form of borders or surrounding text flow - with ragged
columns and widely varying data content. We will also show, that
we can extract specific information from structurally different
tables or table-like structures with one model. We present a
comprehensive representation of a page using graph over word
boxes, positional embeddings, trainable textual features and
rephrase the table detection as a text box labeling problem. We
will work on our newly presented dataset of pro forma invoices,
invoices and debit note documents using this representation and
propose multiple baselines to solve this labeling problem. We
then propose a novel neural network model that achieves strong,
practical results on the presented dataset and analyze the model
performance and effects of graph convolutions and self-attention
in detail.

Index Terms—table detection; neural networks; invoices;
graph convolution; attention

I. INTRODUCTION

Table detection and table extraction problems were already
introduced in a competition ICDAR 2013, where the goal was
to detect tables and extract cell structures from a dataset of
mostly scientific documents [1]. Table can be defined as a set
of content cells organized in a self-describing manner into such
a structure, that groups cells into rows and columns. This was
reflected in the metric defined in the competition, that scores
tables based on the relations successfully extracted. Similarly,
structured documents do have a self-describing structure, that
often looks table-like.

We have decided to investigate the problem on business
documents such as invoices, pro forma invoices and debit notes
(referred for simplicity as invoices or invoice-type documents
later in this text), where the aim is different. Namely - even
table detection needs to be thought of in the context of
document understanding, because invoices are inherently doc-
uments with textual information structured into more tables.
Graphical borders and edges are sometimes present, however,
they cannot be used for detection, because there is no general
layout and very often there are no borders at all. Another
obstacle for traditional methods is the fact, that the data can
span over multiple lines of text which holds true also for the
table cells.

Moreover, we require our model to ’understand’ the docu-
ment in a way that it could classify tables and tabular structures
based on their content. In practice the goal is to detect the

whole table with the so-called ’line-items’ (detailed items
of the total amount to pay) and, at the same time, extract
only a specific information from the other tables (to find a
’field’). Simply said, not every table inside an invoice should
be detected and reported as whole (see example invoice on
figure 1 on page 3). Usually in commercial applications this
problem is tackled using a layout system that detects the layout
and extracts the table (or a field) from a position where it
usually happens to be; or employing another classification
module, which selects the right table from several proposals.
That increases the number of modules in the architecture and
requires manual layout setups, while our goal is to have a
trainable system that could leverage the commonalities present
in the data without ongoing human support. To verify that, we
will ensure that proper generalization of models predictions is
evaluated on new layouts.

II. PREVIOUS WORK

The plethora of methods that have been previously used
for the task is hard to summarize or compare since all the
algorithms have been used/evaluated on different datasets and
each have their strengths, weak spots and quirks. However, we
found none of them well suited for working with structured
documents (like invoices), since they in general have no fixed
layout, language, captions, delimiters, fonts... For example,
invoices vary in countries, companies and departments and
changes in time. In order to retrieve any information from a
structured document, you need to understand it.

In literature there are examples of table detection using
heuristics [2], using layouts [3], regular expressions [4], or
leveraging the presence of lines in tables [5], [6], [7], [8], or
using clustering [9]. A great survey can be found in [10].

Tables were searched for also in HTML [11], [12], free text
[13] or scientific articles with a method based on matching
captions with content [14].

Machine learning methods and deep neural networks were
also employed in several papers. The work [15] aims at
scientific documents using fine tailored methods stacked atop
each other. Reference [16] uses Fast R-CNN architecture with
a novel idea of Euclidean distance feature to detect tables
(which was compared to Tesseract). Reference [17] also uses
(pretrained) Fast R-CNN and FCN semantic segmentation
model for table extraction problem. In [8] work has been done
on detection problem bottom up using the Hough transform,
and extraction was solved with Markov networks and features
from the cell positions. Reference [18] uses convolutions over
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the number (and sizes) of spaces in a line. A deep CNN ap-
proach was being investigated in [19], which combined CNNs
for detecting row and columns, dilated convolutions, CRFs
and saliency maps, they have also developed a webcrawler to
extend their dataset. We tried and failed to get working results
using the YOLO architecture [20] with textual datasets. (We
have experimented with YOLO because some works aimed at
table detection do use the family of R-CNNs, Fast R-CNNs
and Mask R-CNNs, that preceded the development of YOLO.)

For document understanding, a graph representation of a
document was examined in [21], [22], finding similar docu-
ments and reusing their goldstandards was done in [23].

III. METHODOLOGY

We would like to define our target as creating a model
for tabular or structured data understanding with relevant
information detection and classification. The basic unit of
information will be a word in a document’s page with its
placement and possibly other features such as style (see PDF
format text data organization [24] for example). In this text,
we will be calling them simply as wordboxes.

With table understanding we mean a joint task of line-
item table detection and information extraction from other
tables. The information to be extracted is defined by the
document use-case or semantics, for line-item table it is the
whole table (’table detection’ task as defined in [1]), while for
other structures it is just a specific infomation (’information
extraction’ task). No other constraints apply, i.e. the data
can span over multiple lines. So the model is required to
understand a type of table internally and we hope, that the
two tasks will boost the learning process for each other.

With line-item table detection method, we will understand
a model, that could classify each wordbox in a document as
being a part of a line-item content or not (which basically
identifies the table itself, because all line-items tables happen
to be well separated, so no instance segmentation is needed).
Same classification approach will be used for other classes
representing other types of content. The classes are acquired
from expert annotations and, as it turns out, we are dealing
with a multilabel problem, i.e. 35 classes in total, examples
being the total amount or recipient address. Also, not every
document contains instances of every class.

A. Metrics and evaluation

We will observe the scores at validation and test splits, the
test being composed not only of different data, but also of
different layouts and invoice types, thus allowing us to observe
the system scalability. The scores are:

• F1 scores on line-item wordbox classification averaged
from both positive classes and negative classes.
At [1] a content oriented metric was defined for table
detection on character level - each character being either
in the table or out of the table. For us the basic unit is a
wordbox, hence we will define our metric similarily to be
the F1 score of table body wordbox class classification.

• For other classes we will be looking at micro F1 scores
(only from positive classes, because the counts of positive
samples are outnumbered by the negative samples - in
total, the dataset contains 1.2% positive classes).

We chose micro metric aggregation rule, because it gives
higher importance to bigger documents (in the number of
wordboxes) which we consider being more difficult for both
human and machine.

We present our research as a novel approach, because refer-
enced papers or commercial solutions cannot be customized to
fit our aim. So we will compare only against baseline logistic
regression over the model features.

B. The data and their acquisition process

The data were acquired as a result of work of annotation
and review teams together with automated preprocessing and
error-finding algorithms, that reported errors in nearly 3% of
the annotation labels. Classes were annotated in our annotation
apps by drawing a rectangle over the area with the target
text. Manual inspection has revealed, that the annotations
can erroneously overlap portions of neighbouring words, so
for ground truth generation we have decided to select only
the wordboxes that are being overlapped by the annotation
rectangle by more than 20% of their area.

Datasets: We have a dataset with 3554 PDF invoice
files consisting of 4848 pages in total. The documents are of
various vendors, layouts and languages, annotated with line-
item table header and table body together with other structural
information. And we also have a bigger dataset of 25071
PDF files of 35880 pages with just structural information
without line-items (datasets are noted as ’small’ and ’big’ in
the results).

The documents are standard PDF files, not scanned doc-
uments or documents captured by a digital camera. This
decision will not impact the robustness of our model - given
a process to extract bounding boxes and text, we can use our
method in a straightforward manner.

Validation split is chosen to be 1/4 the size. The validation
set measures adaptation, because it could contain similar
invoice types from similar vendors. So in addition, we have
created another testing set of 83 documents, that have different
invoice layouts and types to those in the training set to measure
generalization.

Since this newly compiled dataset was never explored and
made accessible before, we have published an anonymized
version of the small dataset, that contains only the positions
and sizes of wordboxes and annotations, no picture infor-
mation and no readable text information – only a subset
of some textual features. The dataset is to be found at
https://github.com/rossumai/flying-rectangles

C. Our approach

We want to operate based on the principle of reflecting the
structure of the data in the model’s architecture, as Machine
learning algorithms tend to perform better that way.
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What will be the structured information at the input? The
number of wordboxes per page can vary and so we have
decided to perceive the input as an ordered sequence (see
below).

In addition we will teach the network to not only detect
line-item table in general, but also to detect a header in the
table, because that could provide a meaningful information -
the headers are always different from the contents.

The features of each wordbox are:

• Geometrical:
– By geometrical algorithms we can construct a neigh-

bourhood graph over the boxes, which can then be
used by a graph CNN if we bound the number of
neighbours on each edge of the box by a constant.
Neighbours are generated for each wordbox (W ) as
follows - every other box is assigned to an edge of
W , that has it in its field of view (being fair 90°),
then the closest (center to center Euclidian distance)
n neighbours are chosen for that edge. For example
with n = 1 see figure 1. The relation does not need to
be symmetrical, but when higher number of closest
neighbours will be used, the sets would have bigger
overlap.

– We can define a ’reading order of wordboxes’. In
particular, based on the idea that if two boxes do
overlap in a projection to y axis by more than a
given threshold, set to 50% in our experiments, they
should be regarded to be in the same line for a
human reader. This not only defines an order of the
boxes in which they will be given as sequence to the
network, but also assigns a line number and order-in-
line number to each box. To get more information,
we can run this algorithm again on a 90° rotated
version of the document. These integers are then
subject to a positional embedding. Note, that the
exact ordering/reading direction (left to right and top
to bottom or vice versa) should not matter in the
neural network design, thus giving us the freedom
to process any language.

– Each box has 4 normalized coordinates (left, top,
right, bottom) that should be presented to the net-
work also by positional embedding.

• Textual:
– Each word can be presented using any fixed size

representation, in our case we will use tailored
features common in other NLP tasks (e.g. authorship
attribution [25], named entity recognition [26], and
sentiment analysis [27]). The features per wordbox
are the counts of all characters, the counts of first two
and last two characters, length of a word, number
of uppercase and lowercase letters, number of text
characters and number of digits. And finally, if the
word is in fact a number, then the number scaled and
cropped against different scales, zeroes for other text.
The reason behind these features is that in an invoice

there would be a larger number of named entities, ids
and numbers, which are not easily embedded.

– Trainable word features are employed as well, using
convolutional architecture over sequence of one hot
encoded, deaccented, lowercase characters (only al-
phabet, numeric characters and special characters “
,.-+:/%?$£C#()&’”, all others are discarded).

• Image features:
– Each wordbox has its corresponding crop in the

original PDF file, where it is rendered using some
font settings and also background, which could be
crucial to line-item table (or header) detection, if it
contains lines, for example, or different background
color or gradient. So the network receives a crop
from the original image, offsetted outwards to be
bigger than the text area to see also the surroundings.

Each presented feature can be augmented, we have decided
to do a random 1% percent perturbation on coordinates and
textual features representation.

Fig. 1. Sample invoice with edges defining neighbourhood wordboxes. Only
the closest neighbour is connected for each wordbox. Green area is the line-
item table. Note that above it lies a smaller table of payment terms and due
date, from which only some information should be extracted and the table
should not be reported. This invoice is artificially created for presentation and
does not represent the invoices in our dataset.

D. The architecture

As can be seen in Figure 2 on the following page and as we
have stated before, the model uses 5 inputs - downsampled pic-
ture of the whole document (620× 877), grayscaled; features
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of the wordboxes, including their boundingbox coordinates;
on-hot characters with 40 one-hot encoded characters per each
wordbox; neighbour ids - integers that define the neighbouring
wordboxes on each side of the wordbox; and finally integer
positions of each field defined by the geometrical ordering.

The positions are embedded by positional embeddings (de-
fined and used in [28], [29], we use embedding size equal to 4
dimensions for sin and 4 for cos, with divisor constant being
10000) and then concatenated with other field features.

The picture is reduced by classical stacked convolution and
maxpooling approach and then from its inner representation,
field coordinates (left, top, right, bottom) are used to get a crop
of a slightly bigger area (using morphological dilation) which
is then appended to the field. Finally we have decided to give
the model a grasp of the image as whole - a connection to the
whole image flattened and then processed to 32 float features,
which are also appended to each field’s features.

Before attention, dense, or graph convolution layers are
used, all the input features are concatenated.

Our implementation of the graph convolution mechanism
gathers features from the neighbouring wordboxes, concate-
nates them and feeds into a Dense layer. To note, our graph has
a regularity that allows us to simplify the graph convolution -
there does exist an upper bound on the number of edges for
each node, so we do not need to use any general form graph
convolutions as in [30], [31].

We have also employed a convolution layer over the order-
ing dimension (called convolution over sequence later in this
text).

The rest of the network handles images and crops. The final
output branch has an attention transformer module (from [28])
to be able to compare pairwise all the fields in hope that denser
and regular areas (of texts in a table grid) can be detected
better. Our attention transformer unit does not use causality,
nor query masking and has 64 units and 8 heads.

Finally, the output is a multilabel problem, so sigmoidal
layers are deployed together with binary crossentropy as the
loss function.

The optimizer was chosen to be Adam. Model selected in
each experimental run was always the one that performed best
on the validation set (of the small dataset) in terms of loss,
while the patience constant was 10 epochs. Batched data were
padded by zeros per batch (with zero sample weights). Class
weights in our multi-task classification problem were chosen
based on positive class occurrences. The network has 867k
trainable parameters in total.

IV. EXPERIMENTS

The approach was tested on different data settings and
different architectures. There are 4 groups of experiments:

1) Comparing logistic regression baseline against the neural
network.
To note, logistic regression baselines use all the in-
puts except the picture and trainable word embeddings.
To inspect the importance of neighbouring boxes, we
have compared the baseline without neighbours and the

Fig. 2. The model architecture. All features are concatenated together before
the self attention mechanism and final layers. The cropping of the picture,
embeddings and graph convolution all happen inside the network. Note that
Conv1D(1) can be also called a time distributed dense layer.

baseline with included information about one or more
neighbours at each side (if present).

2) The importance and effect of each block of layers and
each input and other parameters.
The choice of modules to test was ’convolution with
dropout after attention’ to test the dropout layer, ’con-
volution over sequence’ for the importance of input
ordering and attention. Experiments dropping the graph
convolution were done in variation of neighbours. Exper-
iments on anonymized dataset fall also into this category.
We have also tested the focal loss function [32], note
that we do not vary final activations in our experiments
here and use only sigmoidal, because they had best
performance in earlier development process.

3) Specialization on a task where only line-items were
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classified and specialization on a task with all but line-
items.

4) Evaluating the model’s adaptation performance on the
big dataset (without line-items).

We will not be optimizing the number of neurons in the layers.
The training was done on a single GPU and ran approximately
in 23 epochs for 5 hours per experiment on small dataset.

A. Results

Table I on the next page summarizes experiments comparing
the model against the logistic regression baseline, both with
varying number of neighbours (more than 2 not shown,
because the results were not improving with the number of
neighbours). The logistic regression baselines did improve
with more neighbours, but failed to generalize. We can notice
the big difference between line-item table detection and other
classes coming from a possible observation that sometimes the
table is the biggest one. The results also do reflect the nature
of a specialized structured document, which invoices indeed
are - to classify all the structured information is not easy for
a person not working with invoices.

On the other hand, the optimal number of neighbours for the
final architecture was 1, but we can notice, that 2 neighbours
do help line-item table body detections. We have designed the
algorithm with more than one neighbour in mind (with a single
neighbour, the relation is not symmetrical), so other positional
features are possibly being exploited more efficiently.

Table II on the following page shows, that the multihead
attention module helps with generalization to unseen layouts,
omitting the module makes the network prioritize adaptation
on already seen layouts. Also without attention, the number of
training epochs was twice (27) as much as with attention (13).
Focal loss, prioritizing rare classes, does help line-item header
detection, but is a cause for the decrease of the nonline-item
score micro metric, as rare classes contribute less.

The importance of the convolutional layer over the sequence
might come from our initial guess that this would give more
importance to beginnings and endings of lines of words.

Table III on the next page compares different inputs and
dataset choices. Although the architecture was optimized on
the small dataset, the results imply that the model has the
capacity to adapt and generalize also on bigger datasets.
Looking at the anonymized version of datasets, without some
inputs, it can be concluded that the network can learn to
detect tight areas of evenly spaced words, being the line-item
table. Also even base text features help the model generalize
well. Overall the score on anonymized dataset means that the
positional information is passed correctly and embedded in a
right way for the network.

In table IV on the following page there can be seen that
the tasks of finding line-items and other structural information
do boost each other, with one exception being the header
detection - it does help adaptation, but when omitted, the
generalization score is higher.

The architecture provided on Figure 2 on the previous page
is the ’complete model’, that uses binary crossentropy, all

inputs and all modules and a single neighbour at each side
of each box. Its generalization performance on unseen invoice
types was 93% on detecting line-items and 66% for other
classes (87% on similar layouts). To verify what the line-item
detection scores mean in practice, we have run the prediction
on the sample invoices (Figure 1 on page 3), where our
algorithm correctly detected the line-item table up to 2 false
positive words, which are easily filtered out (heuristic filtering
results are not reported).

V. CONCLUSIONS

We have found a fully trainable method for table detection
and content understanding in structured documents, that is
able to detect a specific line-item table and extract only some
information from other tables even in the presence of im-
balanced classes and multiple layouts, languages and invoice
types. Anonymized version of our dataset was published, as
no similar dataset has been publicly available to date.

Trying to detect line-item headers in a single model did
lead the model to underperform, with a hint to use focal loss
for such task. Also, we have discovered, that attention module
was important to generalization for new invoice types, while
using only close neighbours did lead to better adaptation on
already seen layouts.

The system’s ability to correctly scale to completely new
invoice types is successfully verified for the line-item table
detection task at 93% and measured to be 66% on 35 ’other’
classes.

Future work can include line-item table extractions, archi-
tecture and hyperparameter tuning for bigger datasets, experi-
ments with the usage of different text features or embeddings
and image augmentations. It could be also measured how many
annotations are needed for the ’other’ classes to adapt onto
new invoice types.
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Part III

Expert knowledge and artificial
document generation - a

technical report
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Figure 8.1: Example of templates in business documents.

To present more comprehensive research, it is important to try to use all the
domain knowledge about the task and dataset that we have gathered during years
of working with the dataset and exploring it.

This technical report is meant as an accompanying text to the experimental
code, that is present here Holecek [2019].

The chosen approach greatly complements our existing research by shifting
the point of view as much as it could be done. Therefore the chosen way to
approach the problem is to use a generative approach (instead of classification)
based on domain knowledge assumptions (as contrary to it being fully trainable).

The added value we get from this exploration is the investigation of the value
of the annotation process. As stated before, to build a training set, each document
was reviewed by two different expert annotators to mitigate the error (and push
it under 3 %). A simplification of the process or a verification of the workload
should be of research value.

Note that there are plenty of manual online resources that would help with
creating any (even fake) business documents - being it invoice, receipt or anything;
and they all would offer lots of templates. These resources and tools are of limited
use to us since we would have zero control over the parameters of layouts, which
we would desire to be stochastic.

8.1 The insight from a domain knowledge
The extracted information always consists of one or more word-boxes together
with their respective classes while uninteresting (unlabeled) data are ignored (not
extracted).

By reviewing a large sample of documents, we gathered the insight, that the
information we want to extract is usually located:

• Near the explaining text that implicitly or explicitly defines the class

• In the same column that defines its class

• In the same usual place on a page (e.g. page numbers)
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As an example of these rules - column headers can tell us that the texts in one
column are amounts to be paid and the texts in another column are vendor postal
addresses.

Generally speaking, every target text comes with several data items (“ex-
plaining texts”) that collectively define the meaning (class) of the data we want
to identify and extract.

Since the data (word-boxes) we want to extract and classify are sparsely lo-
cated in the document, we add a final observation:

• We can omit most of the texts we usually see in the documents (if they are
not the important explaining texts).

All these observations were verified manually and also through:

• statistical queries and

• feature and input importance methods on various working models

The former was done simply by erasing the supposed “explaining” texts and
observing the influence on model predictions.

We kindly ask the reader to consider the observations more of a manual ex-
ploration, since this statement covers just the results of the analysis, but more
details will not be shared here due to privacy, data protection and proprietary
know-how policies.

8.1.1 The construction of the simulated documents
Based on these assumptions, how would the simulated documents be constructed?
Each word-box has a specific size and is located at a specific location on the
page. As texts are usually presented to the neural networks as embeddings,
the simulated word-boxes will also be assigned a sampled vector from a given
distribution.

As a next step, we need to define a rule for the observations mentioned above.
Let’s define a new term “concept” that we will use to describe the random gen-
erator. In this context, a concept is a set of target word-boxes of a known class
that are to be extracted and classified together with other explaining non-target
word-boxes.

Every property of every word-box in a concept is also a random variable and
can come from any given probability distribution.

A page of our artificial document is then constructed by sampling a reasonable
amount of concepts.

Ultimately we will also add some “noise” word-boxes that are not important
for the extraction or for assessing the meaning of the extracted texts. But adding
noise helps neural networks regularize to real-world data since the real-world data
do contain lots of the noise from our experience. The noise word-boxes may also
appear with some probability in a random number of cases.

In the sample simulated document page (8.2), the blue word-boxes contain the
target data that we would want to extract and classify. Red word-boxes represent
the explaining neighbours and they define the classes of the blue word-boxes to
which they are connected by dashed lines.
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Figure 8.2: An example of a generated “document”.
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8.2 Experiments and results
At this point, we have a parameterizable generator that represents the important
information in business documents to our best knowledge and we can set up this
generator and sample from it.

The ultimate goal is to use this generator to enhance the training of our neural
network from the previous part. To explore and verify everything in depth, we
will now take small steps in terms of model and generator complexity towards
this target.

A note on how to read this section This section briefly summarizes all
the experimental steps with their respective results. For in-depth explanations,
details and constants, please see the accompanying code Holecek [2019] ( greyed
in the text).

8.2.1 First initial experiment - small architecture and fixed
positions/distances

In the first experiment (see concepts test.py ) we have featured only a small
convolutional architecture and let the generator generate only problems, where
the class to be extracted depends on fixed position or distance only. This has
been designed only as a trivial problem and the simple network proved to be
sufficient.

8.2.2 Second batch of experiments - realistic generator
and model with cheating information

In the second experiment, we moved to a more realistic generator configured based
on our experience and visual inspection. We let the network explicitly know which
boxes should be grouped (which is making the problem simpler, since no such
information is present in the real world) and tuned the network’s size to predict
the target values with more than 0.9 F1 score (see

run experiments.py: fixed known borders, fixed known borders bigger ).

8.2.3 Third batch of experiments - realistic generator,
shuffling and non-interesting boxes

In the third step, we added some random shuffling of the order of boxes inside
each group and made the network predict also non-interesting boxes
( fixed known borders all boxes noshuffle ,
fixed known borders bigger all boxes noshuffle ,
fixed known borders all boxes shuffle ), the score stayed similar at 0.88 F1.

8.2.4 Final experiments - realistic generator and deep ex-
traction model versus a simple one

In this step, no (cheating) group information is present to the network and all
the information is passed in a text reading order on a page - exactly as in the
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first article II. All the other features are passed in the same way too (including
neighbours for each box).

Now by comparing two models - the model from the previous article and the
simple baseline from the previous batch of experiments
( articlemodel, baseline rendered ), the results showed (even after simplifying the
generated problems and tuning the class weights) the simple baseline performing
better than the article model (0.86 vs 0.67 F1).

After more systematic data inspection, we have tuned our generators
( realistic experiment articlemodel local ) to produce a greater amount of local
dependencies, which made the article model perform better - 0.81 F1 score, which
still did not beat the baseline.

8.3 The conclusion
We have created an experimental environment, that allows for a quick experi-
ment setup. We tried to emulate invoice documents based on human-gathered
assumptions on the data (observation about the data being close to 8.1).

The reasoning about the dependent “explaining” boxes is quite trivial for some
cases, as the example text “amount total: 100$” shows.

For the experiments, we have created an artificial set of information extrac-
tion problems of gradually increasing difficulty. These artificial problems were
designed to be similar to the original one and simplified to be easily generated.
The simple convolutional baseline was able to solve them up to 0.86 micro F1
score.

We have also observed, that all the model’s variants, that are stronger on the
original dataset failed and scored below the simple baseline.

Therefore what are the key takeaways from these experiments? The
created problem of simulated documents is indeed harder for the original model
and so the model’s bias is most probably the focus on the hidden dependencies,
that were not captured by our initial assumptions.

Therefore the models that are stronger on business documents seem better in
exploiting the structures, similarities and bonds concerning the word-boxes, that
are not easily visible for the human eye.

On the other hand, our experiments proved, that a well-curated and annotated
training dataset is invaluable and cannot be replaced by a simpler approximation.
And if a method for generating invoices would be desired, it cannot be as simple
as in these experiments here and would need to feature a more complex generative
model to capture all the dependencies.

Ultimately, the direction for improving the results (as from II) would be to
help the models exploit the relations unseen to the human eye (as is done in the
next part IV) instead of relying on expert knowledge with generative models.
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Part IV

Learning from similarity and
information extraction from

structured documents
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Abstract
The automation of document processing has recently gained attention owing to its great potential to reduce manual work.
Any improvement in information extraction systems or reduction in their error rates aids companies working with business
documents because lowering reliance on cost-heavy and error-prone human work significantly improves the revenue. Neural
networks have been applied to this area before, but they have been trained only on relatively small datasets with hundreds
of documents so far. To successfully explore deep learning techniques and improve information extraction, we compiled a
dataset with more than 25,000 documents. We expand on our previous work in which we proved that convolutions, graph
convolutions, and self-attention can work together and exploit all the information within a structured document. Taking the
fully trainable method one step further, we now design and examine various approaches to using Siamese networks, concepts
of similarity, one-shot learning, and context/memory awareness. The aim is to improve micro F1 of per-word classification in
the huge real-world document dataset. The results verify that trainable access to a similar (yet still different) page, together
with its already known target information, improves the information extraction. The experiments confirm that all proposed
architecture parts (Siamese networks, employing class information, query-answer attention module and skip connections to a
similar page) are all required to beat the previous results. The best model yields an 8.25% gain in the F1 score over the previous
state-of-the-art results. Qualitative analysis verifies that the new model performs better for all target classes. Additionally,
multiple structural observations about the causes of the underperformance of some architectures are revealed, since all the
techniques used in this work are not problem-specific and can be generalized for other tasks and contexts.

Keywords One-shot learning · Information extraction · Siamese networks · Similarity · Attention

1 Introduction

The challenge of information extraction is not a new prob-
lem. The task has been defined as the transformation of an
array of texts into information that can bemore readily under-
stood and analyzed. It isolates relevant pieces of text, derives
information from them, and then compiles the targeted infor-
mation into a coherent whole [9].

The explicit category of business documents varies. Exist-
ing works on information extraction [25,32,46,49] define
them as either “visually rich documents” or “structured”
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or “semi-structured” documents. In this work, we use the
term “structured documents” since the structure of the doc-
uments is clear and understandable to a person working in
the relevant field, even though the specific structure varies.
Moreover, the documents are machine-readable in terms of
individual words and pictures (including their positions) on
a page, although not “understandable” for a machine with
respect to extracting important information.

Classifying all of the information in the financial/acc-
ounting industry is important for the “users” of the docu-
ments. For example, they may need to know the payment
details, amount to be paid, and the issuer information from a
collection of documents. In this setting, the input is a docu-
ment’s page, and the ultimate goal is to identify and output
all the words and entities from that page and to classify them
by category.

We aim to improve information extraction from business
documents and to generally contribute to the field of auto-
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mated document processing. Our proposed approach yields
a higher success metric compared with previous work and
reduces the manual work involved in data entry and/or anno-
tation in the financial/accounting industry.

We focus on the text of business documents including
invoices, pro forma invoices, and debit notes, among others.
In particular, we target the information that helps in automat-
ing various business processes, such as payment on invoices.
The typical user of our method would be a medium-sized
or larger company that is spending significant time on docu-
ment processing owing to its size. Although details are scarce
in referenced and peer-reviewed works because companies
tend to keep their spending information secret, approxima-
tions from unofficial (nonscientific) sources (e.g., [34] and
[50]) enable estimating company savings. As a hypothetical
example, a typical medium-sized company can have approx-
imately 25,000 invoices per month and an improvement of
even 1% roughly translates to a savings of more than $500
monthly, which scales with the company size. This poten-
tial saving has motivated the topic of information extraction
specially in business documents.

1.1 Details and overview

Figure reffig:Example presents one example of an input
invoice and output extraction. The documents are clearly not
easily understandable inputs. In contrast, an example of triv-
ial inputs would be found in an XML document that has
the desired target classes incorporated in a machine-readable
way.

With this study, we aim to expand our previous work
([21], referenced as “previous”), in which we showed that
neural networks can succeed in the task of extracting impor-
tant information and even identifying whole, highly specific
tables.

The current research question focuses on a “similarity”-
based mechanism with various model implementations, and
whether they can improve on the existing solution [21]. We
hypothesize that a model incorporating similarity techniques
will significantly improve the results compared with the
existing solution. Moreover, since the presented mechanism
is theoretically applicable beyond the scope of document pro-
cessing, it can be utilized more broadly, whenever it makes
sense to include similar known data and apply the query-
answer technique.

Ultimately, we present a model along with its source code
[22] that outperforms the previous state-of-the-art model. An
anonymized version of the dataset is included as an open-
source resource, and it represents a notable contribution since
its size exceeds that of any other similar dataset to date.

Fig. 1 An example of an invoice and an extraction system together
with its output. This example also illustrates why invoices are called
“structured documents.” When the various pieces of information in the
document are visually grouped together, it usually signals that it belongs
together. There is a heading “Invoice,” under which segments of infor-
mation about the invoice are written next to their explanations. Some
rectangular areas do not have these explanations, and to determine what
rectangular area indicates about the sender and supplier, it is necessary
to look for a small “Bill To”: heading. These rules apply only to this spe-
cific example, and other invoices are notably different. (Online image
source [47])

2 Related works

In this subsection,we focus onpreviousworks and approaches
in the field of information extraction. The content is heavily
based on the text from [21].

A plethora of methods have historically been used for
general information extraction. A complete review of these
methods, much less comparisons between them, is beyond
the scope of the current paper. In general, however, these
methods were developed for and evaluated on fundamentally
different datasets.

Furthermore, we determined that none of these previous
methods is well-suited for working with structured docu-
ments (e.g., invoices) because such documents generally do
not have any fixed layout, language, caption set, delimiters,
fonts, and so forth. For example, invoices vary between coun-
tries, companies, and departments, and they change over
time. In order to retrieve any information from a structured
document, it must first be understood. Our criterion for a
reference method is that no human-controlled preprocessing
such as template specification or layout fixing is required; we
aim for a fully automated and general solution. Therefore, no
historical method can serve as a baseline.

Nevertheless, a significant number of recent works do
successfully use a graph representation of a document
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[8,11,26,32,33,46] and use graph neural networks. Also, a
key idea close to the one-shot principle [24,53] in informa-
tion extraction is used and examined, for example, in [20] and
[12]. Both works use notions of finding similar documents
and reusing their gold standards (such as already annotated
target classes). The latter [12] applies the principle in the
form of template matching without the need for any learn-
able parameters.

2.1 Broader inspiration

More broadly, our approach draws on several research
streams pertaining to deep network architectures.

2.1.1 One-shot learning and similarity

A design concept that aims to improve how models contend
with new data without retraining of the network is presented
in [24,53].

Typically, a classification model is trained to recognize a
specific set of classes. In one-shot learning, it is usually pos-
sible to correctly identify classes by comparing them with
alreadyknowndata. In contrast to traditionalmulti-class clas-
sification, one-shot learning allows attaining better scores,
even with surprisingly low numbers of samples [14]. Some-
times it can even work for classes that are not present in the
training set [53].

This concept can help in areas ranging from computer
vision variants—from omniglot challenge [28] (also strokes
similarity [27]) to object detection [55], finding similar
images [57], face detection [51], autonomous vision [19],
and speech [13]—and also in the NLP (Natural Language
Processing) area [10,29,58].

Among the methods that enable one-shot learning, the
most fundamental one utilizes the concept of similarity. Sim-
ilarity relies on two types of data—“unknown” and “known.”
The target values of the known data are already recognized
by the method and/or the model. To classify any unknown
input, the usual practice is to assign it to the same class as
the most similar known input.

Technically speaking, the architecture (typically) contains
a “Siamese” part. In particular, both inputs (unknown and
known) are passed to the same network architecture with
tied weights. We draw inspiration from this basic principle,
and we leave more advanced methods of one-shot learning
(e.g., GANs [35]) for further research.

For performance reasons, the model is usually not asked
to compare new inputs to every other known input—only to
a subset. Therefore, a prior pruning technique needs to be
incorporated, for example, in the form of a nearest-neighbor
search in embedding space, as in [17]. Another option would
be to incorporate a memory concept [6] (even in the form of
neural Turing machines [48]).

The loss used for similarity learning is called triplet loss
because it is applied on a triplet of classes (R reference, P
positive, N negative) for each data point:

L(R, P, N ) = max(� f (A) − f (P)�2
− � f (A) − f (N )�2 + α, 0)

where α is a margin between positive and negative classes,
and f is the model function mapping inputs to embedding
space (with euclidean norm).

Generally speaking, one-shot learning can be classified as
a meta-learning technique. For more on meta-learning, we
suggest a recent study, like [44] (or just a compiled bibli-
ography online at [36]). Taking the concept one step further
yields a concept called “zero-shot learning” [15,37,43].

2.1.2 Other sources of inspiration

Several other sources of inspiration are also meaningfully
close to one-shot learning. Sincewe ask “what labels are sim-
ilar in the new data,” we need to consider a “query-answer”
approach. Recently, the attention principle (i.e., transformer
architecture) successfully helped to pave the way to a state-
of-the-art performance in language models [45]. It is not
uncommon to use attention in one-shot approaches [54] and
also in settings related to query answer [16,40,56].

The task of similarity can also be approached as pairwise
classification, or even dissimilarity [30].

3 Methodology overview

As we previously argued, every incremental improvement
matters. In the current work, we focus on improving the met-
rics (established by our previous work) by selecting relevant
techniques from the field of deep learning. A classical heuris-
ticway to generally improve a targetmetric is to providemore
relevant information to the network. Previous implementa-
tions have featured various well-performing techniques that
have used the information present in a single invoice, and
here we focus on techniques related to similarity.

Since the idea of providing more information is funda-
mental even for simpler templating techniques [12], we need
to stress that, due to the nature of our dataset (available as an
anonymized version at [22]), our problem cannot be solved
by using templates.

It is important to clarify here the differences between other
works and our stream of research (meaning this work and the
previous [21]).

Themost important difference comes from the dataset that
is at our disposal. The dataset explored here is far larger than
the datasets used elsewhere and allows for exploring deeper
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models as opposed to only using graph neural networks.
Indeed, in our previous paper, we proved that graph neural
networks work in synergy with additional convolution-over-
sequence layers and even global self-attention.Moreover, the
dataset quality allowed us to discover (in our previous work)
that information extraction and line-item table detection tar-
gets do in fact boost each other.

As the current research is focused on deeper models, we
will not be using any of the other works as baselines and the
commonly used graph neural networks will be incorporated
only as one layer amidst many, with no special focus.

We will explore models that could benefit from access to
a known similar document’s page. We hope that the model
can exploit similarities between documents, even if they do
not have similar templates.

In addition, wewant to explore the added effect of similar-
ity while keeping everything as close to the previous setting
as possible to make sure no other effect intervenes.

The following description mirrors that provided in pre-
vious work (in sections 3.3 and 3.4 of [21]). Note that the
previouswork did not use anymeans of “similarity” or “near-
est pages,” which are introduced in the current work.

3.1 Definition of concepts

The main unit of our scope is every individual word on
every individual page of each document. Note that other
works (e.g., [32]) use the notion of “text segments” instead of
“words.” For this work, we define a “word” as a text segment
that is separated from the rest of the text by (at least) onewhite
space, and we do not consider any other text segmentation.
In general, our approach can also be called “word classifica-
tion” approach aswritten in [42], a workwhere an end-to-end
architecture with a concept of memory is explored.

3.1.1 Inputs and outputs

Conceptually, the whole page of a document is considered
to be the input to the whole system. Specifically, the inputs
are the document’s rendered image, the words on the page,
and the bounding boxes of the words. As PDF files are con-
sidered, any possible library for reading PDF files can be
used for reading the files and getting the inputs. Note that
by using any standardized OCR technique, the method could
also theoretically be applied to scanned images. (Measuring
the effect of OCR errors on the extraction quality is not done
here.)

These inputs then undergo feature engineering, as des-
cribed in 3.2.1, and become inputs for a neural network
model.

Each word, together with its positional information, con-
stitutes a “word-box” that is to be classified into zero, one,
or more target classes as the output. We are contending with

a multi-label problem with 35 possible classes in total. The
classes include the “total amount,” tax information, banking
information, issuer, and recipient information, among others.
(The full set is defined in the code [22].) To obtain a ground
truth, the classes were manually annotated by expert human
annotators. Interestingly, they had a roughly 3% error rate,
which was eliminated by a second annotation round.

3.1.2 The dataset and the metric

Overall, we have a dataset with 25, 071 documents as PDF
files totaling 35, 880 pages. The documents are from vari-
ous vendors and have differing layouts and languages. We
split the documents into training, validation, and test sets at
random (80%/10%/10%).

The validation set is used for model selection and early
stopping. The metric used is computed first by calculating
all the F1 scores of all the classes. It is then aggregated by
micro-metric principle (more can be found for example in
[39]) over all the word-boxes, over all the pages. We then
observe and report the scores of the testing set.

The metric choice is inspired by the work [18] in which
a content-oriented metric was defined on a character level.
In our setting, the smallest unit is a word-box. The choice of
the F1 score is based on the observation that the counts of
positive samples are outnumbered by the negative samples.
In total, the dataset contains 1.2% positive classes.

3.2 Shared architecture parts

In the current work, we refer to the architecture from our
previous work as a “simple data extraction model.” It serves
as one of the baselines here. The architecture of the current
model is the same as in the previous work, with the exception
of a minor manual parameter tuning. A notable part of the
current model, called the “basic building block,” is used in all
the new models (defined in Sect. 3.4). Both the simple data
extraction model and the basic building block are depicted
in Fig. 3.

Since the goal of the overall task and the whole basic
building block architecture are shared across all models,
by describing the “simple data extraction model,” we also
describe all the shared and inherited parts—notably the input
and output requirements. We use the full geometrical, visual,
and textual information as the input, and the model outputs
a multi-class classification for each word-box.

3.2.1 Detailed feature engineering of the inputs

We operate based on the principle of reflecting the structure
of the data in the model’s architecture, as machine learning
algorithms tend to perform better with this approach.
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Fig. 2 Asample invoicewith edges definingneighborhoodword-boxes.
Only one closest neighbor is connected to each word-box’s edge. The
resulting graph is directional, and so each word-box has four outbound
arrows—one (n = 1) for each side of the box—but the number of
inbound arrows is not bounded (this invoicewas created for presentation
and does not represent the invoices in the dataset)

The structured information at the input is an ordered
sequence of all the word-boxes present on a page. This num-
ber can vary by page.

Each word-box has the following features:

– Geometrical:

– Using a geometrical algorithm, we can construct a
directed neighborhood graph over the boxes, which
can then be used by a graph CNN (see 3.2.2).
Neighbors are generated for each word-box (W ) by
formally assigning every other box to an edge of
W that has it in its field of view (being the same
90◦). Then, the closest (center-to-center Euclidean
distance) n neighbors are chosen for each side of the
box. Our previous results indicated that the optimal
number is n = 1, and so this number is used in the
experiments here. For an example of the constructed
directed graph, see Fig. 2. Internally, the graph is
saved and passed only as integer indexes denoting
the position of each neighbor in a global sequence of
word-boxes.

– We can define a “reading order of word-boxes.” In
particular, based on the idea that if two boxes over-

lap in a projection to the y axis by more than a given
threshold (set to 50% in the experiments), they should
be regarded as being in the same line from the per-
spective of a human reader. This not only defines
the sequence in which the boxes will be given to
the network, but it also assigns a line number and
order-in-line number to each box. To get more infor-
mation, this algorithm can be run again on a 90◦
rotated version of the document. Note that the exact
ordering/reading direction (left to right and top to
bottom or vice versa) does not matter in the neural
network design, thus giving us the freedom to pro-
cess any language.

– Each box has four normalized coordinates (left, top,
right, bottom) that should bepresented to the network.

– Textual:

– Each word can be presented using any fixed-size rep-
resentation. Here, we use tailored features common
in other NLP tasks (e.g., authorship attribution [7],
named entity recognition [38] and sentiment analy-
sis [2]). The features per word-box are the counts
of all characters, the counts of the first two and last
two characters, length of a word, number of upper-
case and lowercase letters, number of text characters,
and number of digits. Finally, another feature is engi-
neered to determine whether the word is a number
or amount. This feature is produced by scaling and
min/maxing the amount by different ranges. (If the
word is not a number, this feature is set to zero.)
We chose all these features because invoices usually
include a large number of entities, IDs, and numbers
that the network needs to be able to use.

– Trainable word features are employed as well, using
convolutional architecture over a sequence of one-
hot encoded, de-accented, and lowercase characters
(only alphanumeric characters and special characters
“ ,.−+:/%?$£e#()&’”; all others are discarded). We
expect these trainable features to learn the represen-
tations of common words that are not named entities.

– Images:

– Each word-box has its corresponding crop in the
original PDF file, where the word is rendered using
particular font settings and also has a background.
This could be crucial to detect a header or heading,
for example, if it contains lines or a different back-
ground color or gradient. So for each word-box, the
network receives a crop from the original image, off-
set outwards to be bigger than the text area so the
surroundings can also be detected.
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Fig. 3 Simple data extraction model. Formally, the whole model con-
sists of two parts: a basic building block and a final classification layer.
The basic building block will be used (as a Siamese network) in other
models. By removing the final classification layer, we hope to get the
best feature representation for each word-box

Each presented feature can be augmented, and we present a
random 1% perturbation on coordinates and textual features
to regularize the problem and help with generalization.

3.2.2 Simple data extraction model details

To summarize the document’s features described in the pre-
vious section, we now explain how they are processed by the
model (as Fig. 3 shows). In total, we have five inputs that the
neural networks will use:

– Down-sampled picture of the whole document (620 ×
877), gray-scaled

– Features of all word-boxes (as defined in the previous
section), including their coordinates

– Text as first 40 one-hot encoded characters per eachword-
box

– Neighbor ids, which are look-up indexes that define the
neighboringword-box on each side of theword-box (only
one closest neighbor per side is used)

– The integer positions of each word-box defined by the
geometrical ordering

In the simple data extraction model, the positions are embed-
ded by positional embeddings (as defined in [31,52]. An
embedding size equal to four dimensions for sin and cos,
with a divisor constant of 10, 000, is used. The embedded
positions are then concatenated with other word-box fea-
tures.

The image input is reduced by a classical stacked convo-
lution andmax-pooling approach. Theword-box coordinates
(left, top, right, bottom) are not only used as a feature, but also
to crop the inner representation of the picture input (see “mor-

phological dilation” in Fig. 3). Finally, we give the model the
ability to grasp the image as a whole and supply a connection
to the said inner representation, which is flattened and then
processed to 32 float features.

Before attention, dense, or graph convolution layers are
used, all the features are simply concatenated. To supplement
this description, equations and network definitions are given
in[22].

As shown in our previous work, all three means of assess-
ing relations between word-boxes are used:

– Graph convolution (also denoted as “GCN”) over the geo-
metrical neighbors of word-boxes is employed to exploit
any form of local context. (Details are provided at the end
of this section in graph convolution mechanism details.)

– A convolution over sequence layer is a dense layer (or
equivalently a 1D convolution layer) applied over the
word-boxes ordered by the reading order and allows the
network to follow any natural text flow. Implementation-
wise, all the word-boxes are ordered in the second
dimension at the input (all dimensions being [batch,
ordering, feature space]).

– The attention transformer module (from [52]) allows the
network to relate word-boxes across the page. Our atten-
tion transformer unit does not use causality or query
masking.

After these layers are applied, the basic building block
definition ends with each word-box embedded in a feature
space of a specified dimension, which is 640 unless stated
otherwise. The following layer, for the simple data extrac-
tion model, is a sigmoidal layer with binary cross-entropy
as the loss function. This is a standard setting, since the out-
put of this model is meant to solve a multi-class multi-label
problem.

To note implementation detail, batched data fed to the
model are padded by zeros per batch (with zero sample
weights). Class weights in the multi-task classification prob-
lem were chosen (and manually tuned) based on positive
class occurrences.

Graph convolution mechanism details The word-box
graph (with word-boxes as nodes and neighborhood relation
as edges, as depicted in Fig. 2) has a regularity that allows
simplifying the graph convolution. First, a small upper bound
exists on the number of edges for each node, and second, we
do not use any edge classification or specific edge features,
in contrast to other works (e.g., [46]). Therefore, we use a
simpler implementation than the general form graph convo-
lutions (as in [23,41]).

More specifically, the implementation uses the generic
simplicity present in convolutions at the cost of an additional
input. Even a classical convolutional layer over regular pic-
ture data can be represented by two basic operations. First, a
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gather operation (using tf.gather_nd function from [1]) pre-
pares the data to a regular array (matrix of size number of data
pointsmultipliedby thenumber of data points in one convolu-
tional operation). The second operation is a time-distributed
dense layer (equivalently called Conv1D) that simulates the
weights of such convolution.

The gather operation needs additional input for each point
(pixel or graph node) that specifies the integer indexes of its
neighbors (and the node itself). These integer indexes are
constructed exactly as stated in 3.2.1.

3.2.3 Differences from the previous setting

Just as we have noted the differences from existing research
in 2, it is also important to note some detailed differences
from our previous work.

The novelty of this work with regard to the previous set-
tingOur previous work [21] did not use any nearest-neighbor
search or any models that used the notion of similarity or
allowed more than one input page at once. In short, our pre-
viouswork simply laid the fundamental principles of the data,
task, andmetric and introduced the basic building block (with
ablation analysis). Everything that follows this point is new.

Details changed from the previous setting Unlike the pre-
vious setting, here we do not classify the line-item tabular
structures, but only extract (above mentioned) information
from the page. In doing so, we demonstrate that the model,
despite being optimized on line-item table detection, is ver-
satile. Hence, we make only minor tweaks in the model’s
architecture (results of the modifications depicted in Fig. 3).

Previously, two datasets were used for training and
validation—“small” (published) and “big” (previously unpu-
blished). Themodels were tuned on the small dataset, and the
big dataset was only used in two experiments to validate that
the model scales. In this work, we use the same big dataset.
Its previous validation set is split into a new validation set
and a new test set to make the test set larger and properly
address generalization.

Multiple baselines are employed to prove that the new test
set contains documents with layers that are sufficiently dif-
ferent. (The previous work’s test set was small and manually
selected.)

3.2.4 Differences from one-shot learning

As stated in the introduction, we want to boost the model’s
performance for existing target classes by giving the network
access to known data (documents) in ways similar to one-
shot learning. The main difference is that we are utilizing
experiments and architectures that include a fixed selection
of classes and/or class information (from the nearest page).
Clarifying this detail is important because usually in one-shot
learning, no classes are explicitly present in the model—the

aim is to generalize to those classes. Our aim, by contrast, is
to generalize the model to different and unseen documents
with different layouts (instead of classes) that still feature
those word-box classes.

3.3 The learning framework

The easiest step to boost predictions of an unknown page is
to add one more page that is similar and includes word-box
classes (annotation) that are already known to the system.
That annotation information can then be used in a trained
model.

Overall the method works as follows:

– The system needs to keep a notion of already known doc-
uments in a reasonably sized set. We call them “known”
because their classes/annotations should be ready to use.

– When a “new” or “unknown” page is presented to the
system, it searches for the page that is most similar to the
“known” pages (given any reasonable algorithm).

– Themodel is allowed to use all the information from both
pages (and “learn from similarity”) to make the predic-
tion.

The system can then even present the predictions to a human
for verification and then add the page to the existing database
of known pages. However, we do not explore the database
size effects here.

Beforemaking predictions, the incorporatedmodel should
be trained on pairs of pages to simulate this behavior.

In this process, there are multiple points to be examined,
but we posit that the most interesting research question is the
following:

Holding all other factors fixed (meaning the train/test/
validation split, evaluation metrics, data format, and method
for searching for a similar page), what approach and what
neural network architecture are able to raise the test score
the most?

We argue that this is the right question to ask since all
other factors usually have a known effect on the result if best
practices are followed. As an example, we note that bigger
datasets typically yield better scores; the presence of more
“nearest neighbors” typically has a boosting effect similar to
ensembling, and so on.

Further, from a practical point of view, only two pages can
fit into a single GPU memory with all the features described
before.

As already stated earlier, we draw inspiration from the
one-shot learning framework. For predicting an unknown
page, we define away to search for one “nearest” known page
and allow the model access to its annotations as known tar-
get classes. Note that not all explored models use the nearest
known page. In addition to the simple data extraction model,
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we consider some baselines that do not require the nearest
page to verify the assumptions.

3.3.1 Nearest-neighbor definition

For one-shot learning to work on a new and unknown page
(sometimes denoted as the “reference”), the system always
needs to have a known (also denoted as “similar” or “near-
est”) document with known annotations at its disposal. Since
focusing on that task properly is beyond the scope of the
current paper, we have used the nearest-neighbor search in
the space of the page’s embeddings to select only one closest
page of a different invoice document.

The embeddings were created through a process similar to
a standard one, as described in [5].We used a different model
(older and proprietary) that was trained to extract informa-
tion from a page. To change the classification model into an
embedding model, we removed its latest layer and added a
simple pooling layer. This modified themodel to output 4850
float features based only on image input. These features were
then assigned to each page as its embedding.

We then manually verified that the system would group
similar, or at least partially similar, pages near each other in
the embedded space.

These embeddings were held fixed during training and
inference and computed only once in advance.

3.3.2 Constraints of nearest-neighbor search

Wewant the trainedmodel to behave as close to the realworld
as possible, so the nearest page search process needs to be
constrained. Each document’s page can select the nearest
annotated page only from the previous documents in a given
order. As in a real service, we can only see the received and
processed documents.

In addition, we want the method to be robust, so before
each epoch, the order of all pages is shuffled and only the
previous pages (in the given order) from a different document
are allowed to be selected.

This holds for all sets (training, validation, and test) sep-
arately. To verify the consistency of this strategy, some
experiments are tweaked by the following variations:

– Allowed to additionally use the training set as a data
source for the “nearest annotated” input. We expect the
performance to rise.

– Made “blind” by selecting a random document’s page as
the nearest known input. We expect the performance to
fall.

3.3.3 Baselines

To challenge our approach from all possible viewpoints, we
consider multiple baselines:

1. To use only the simple data extraction model (Sect. 3.2
and Fig. 3) without any access to the nearest known page.

2. “Copypaste” baseline. This model will only take the
target classes from the nearest page’s word-boxes and
overlay them on the new page’s word-boxes (where pos-
sible). We expect a low score since the documents in
the dataset are different, and this operation will not copy
anything from any nearest page’s word-box that does not
intersect with a newpage’sword-box. This approach uses
no trainableweights and is the simplest example of a tem-
plated approach that does not have hard-coded classes.

3. “Oracle” baseline. This model will always correctly pre-
dict all classes that are present in the nearest page. We
use this model to measure the quality of the nearest-page
embeddings to gain additional insight into the dataset’s
properties. The metric used for this model is not F1, but
a percentage of all word-boxes that can be classified cor-
rectly. The score is expected to be only moderately good,
as the embeddings are created in a rather unsupervised
manner (regarding their usage). We want to explore a
different influence than that already explored by existing
works aimed at finding the best helping pages [12]. Ulti-
mately, we want to present a model that can work even if
the quality of the embeddings is just moderate.

4. Fully linear model with access to concatenated features
from both new and known pages. This model does not
feature picture data.

The choice of baselines (and ablations later in experiments)
helps to verify and demonstrate multiple claims:

– The newly proposed models can beat the previous results
(which is achieved if the simple data extraction model is
beaten).

– The documents are different enough.
– A similarity search alone is not enough, even if the
embeddings havebetter-than-moderate qualitywith regard
to the similarity.

– To justify the complexity of models presented in the fol-
lowing section, 3.4.

All baselines and all models presented in the current work
will have the same desired output—they will provide the
multi-class classification for each word-box.
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3.4 Model architectures

We have described the basic information extraction block
that aims to output the best trained latent features for each
word-box. All the model architectures incorporate this block
used as a Siamese network for the inputs of both unknown
and known pages. Each architecture is trained as a whole,
no pre-training or transfer learning takes place, and every
model is always implemented as a single computation graph
in Tensorflow.

We explore multiple different architectural designs for
predicting the targets (at their outputs) by using the closest
nearest page from already annotated documents.

1. “Triplet Loss architecture”—using Siamese networks
“canonically” with triplet loss.

2. “Pairwise classification”—using a trainable classifier
pairwise over all combinations ofword-box features from
reference and nearest page.

3. “Query-answer architecture” (or “QA” for short)—using
the attention transformer as an answering machine to a
question of “which word-box class is the most similar.”

The copypaste baseline represents a reasonable basic coun-
terpart for triplet loss and pairwise classification. The fully
linear model represents the simplest counterpart for the
query-answer approach, which also has all the classes hard-
coded.

There is a slight distinction between the first two archi-
tectures and the third. In QA architecture the class is a
direct prediction of the network for each word-box. In triplet
loss and pairwise classification, the models predict (for each
unknown word-box) all the similarities to all the word-boxes
from the known page. All the similarity values then collec-
tively determine the target class for the word-box.

Since the embeddings used to search for the nearest page
are not ideal, the models may not be able to predict some
classes. To assess these methods fairly, we scale the metrics
used to measure the success by the performance of the corre-
sponding oracle baseline (defined in refsubsec:Baselines). Or
put differently, we do not count errors that the model cannot
predict correctly owing to some classes being absent from
the nearest page. This reflects our aim to explore the effects
of the models that can operate with the nearest page.

In reality, if these (triplet loss and pairwise classification)
methods prove to be the most efficient, the hyperparameters,
such as the quality of the embeddings (or the number of the
nearest pages), would need to be addressed to overcome the
score of the previous results. A perfect performance of the
scaled metric means that the extraction is only as good as the
oracle baseline.

In the experimental result Sect. 4, we include a test of
triplet loss and pairwise classification models that makes
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Fig. 4 The triplet loss architecture. The Siamese part at the input is
represented by the arrows (they denote the basic building block from
Fig. 3), and it processes the document and its nearest similar counterpart.
The network construct pairs of (extracted features of) all theword-boxes
from the document and the nearest one and computes the distances. The
nearest page’s word-boxes are filtered to feature only word-boxes with
any positive class. If we want to add class information from the nearest
page, the green dashed version is used (colour figure online)

them predict a different and possibly easier target. Instead
of “do these two word-boxes have the same target class,”
the easier testing target is “do these two word-boxes have
the same length of text inside.” This test is meant to show
that the method is well-grounded and usable for any other
reasonable target definition.

In comparison,QAarchitecture has the classes hard-coded
in the design, which means it can predict a class not present
in the nearest page. Therefore, no metric scaling is necessary
in the evaluation of the QA model.

3.4.1 Triplet loss architecture

Since our data point is a word-box, strictly adhering to the
use of triplets of word-boxes for triplet loss would mean
executing the model for each word-box pair once. To avoid
impairing the performance (as there can be as many as 300
word-boxes per page) and/or losing in-page dependencies,
the proposed architecture (see Fig. 4) features a mechanism
of tiling and filtering to pass all combinations of word-boxes
at once.

The filtering mechanism filters out all but the anno-
tated word-boxes from the nearest page. It eliminates most
of the unused information and, in doing so, saves mem-
ory and computation time. The tiling mechanism takes
two sequences—first, the sequence of reference page word-
boxes, and second, the sequence of nearest page filtered
word-boxes. It subsequently produces a bipartite matrix. The
model is then able to compute pairwise distances between the
same and different classes. These distances are then used for
triplet loss computation (see mathematical definition in the
section below).

Additionally, we can include a single classification layer
to be automatically calibrated on the distances, which adds
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a binary cross-entropy term to the loss. The loss is averaged
over all the word-boxes to account for the fact that no word-
box is ever alone on a page.

We rely on the (manually verified) fact that during training
each page has more than one class annotated. Consequently,
there are always positive and negative samples present, as
there should be in the triplet loss.

There are three possible modifications to explore:

– Adding annotated class information to the nearest page’s
features.

– Using a “loss-less triplet loss,” which is a loss similar to
the triplet loss but without the min–max functions (see
definition below).

– Modifying the distance and/or loss computations by
means of constants or by using cosine similarity instead
of Euclidean space.

3.4.2 Triplet-loss inspired losses

The purpose of this model is to use the triplet loss in the most
straightforward manner in our setting. The only mathemati-
cally interesting description to be given here is the triplet loss
and “loss-less triplet loss” defined over word-boxes since all
trainable layers in this model (and binary cross-entropy loss)
are defined in referenced works.

In traditional triplet loss, positive, negative, and reference
samples are necessary. Since we need to account for a whole
page full of word-boxes, we must compute all combinations
at once.

We denote the quantity truth_similar(i, j) to indicate if
the word-boxes i, j (i-th being from the unknown page, j-th
being in the nearest page) share the same ground truth class
(1.0 = yes, 0.0 otherwise). Next we define pred_dist(i, j)
as the predicted distances between the feature spaces of the
word-boxes by the model. Then, we can calculate two loss
variants (“triplet_like” and “loss-less”) inspired by triplet
loss as follows:

pos_disti, j = truth_similar(i, j) · pred_dist(i, j)
neg_disti, j = (1.0 − truth_similar(i, j)) · pred_dist(i, j)
triplet_like = maxi, j (0, α + max(pos_disti, j )

+ mini, j (−neg_disti, j ))

lossless =
�

i, j

pos_disti, j −
�

i, j

neg_disti, j

(The equations are present in a form to be most similar to
the source code, i.e., not simplified.) The quantities pos_dist
and neg_dist are just helper variables to reveal the similarity
with the original triplet loss, and α is a parameter of the same
meaning as in the original triplet loss. The two new losses
represent two different approaches used in the reduction from
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Fig. 5 Pairwise classification architecture with an optional refinement
module. The same principle as in the triplet loss is used; that is, the
Siamese part at the input is represented by the arrows (they denote
the basic building block in Fig. 3). The network constructs pairs of
(extracted features of) all theword-boxes from the document andfiltered
word-boxes from the nearest document and then performs a classifi-
cation layer over the paired features. To experiment with the model
complexity, an optional global refinement module (denoted with blue
arrows) could be employed (colour figure online)

a matrix to a single number. We can either take the largest
positive and negative values and use them in the triplet loss
equation, or we can sum all the positive and negative terms.
The real difference is how the gradients are propagated; vari-
ants withmin/max always propagate fewer gradients than the
former per gradient-update step in the training phase. All the
losses can be used at once with a simple summation.

The name “loss-less” comes from the idea described in [3].
To our knowledge, it does not occur in any other scientific
work beyond this online article.

Finally, we present different options for the loss terms.
Sincewe focus on different architectures and not on hyperpa-
rameters, we omit from this description the specific constants
used to sum the terms. In the experiment Sect. 4, we present
the best results that we were able to achieve by manual
hyperparameter tuning. The results of the tuning and vari-
ous options are clearly defined in the accompanying code
[22] together with all the specific hyperparameters.

3.4.3 Pairwise classification

Pairwise classification architecture (see Fig. 5) uses the same
tiling and filtering mechanism as described in 3.4.1. But
instead of being projected into a specific feature space to
compute distances, the data points are simply “classified” by
using a traditional approach of sigmoidal activation function
and binary cross-entropy loss.

As in our previous model, we have the option of adding
annotated class information to the nearest page’s features.
We have also explored various sample weight options and
an optional “global refinement” section. The optional refine-
ment pools information from each word-box uses a global
transformer and propagates the information back to each ref-
erence word-box.
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Fig. 6 The QA architecture. The centerpiece of this model is the trans-
formermodule, which allows eachword-box to be pairedwithmatching
information (in the means of attention) from either only the nearest doc-
ument (red arrow only) or both the nearest document and the reference
document (red dashed arrow used). The class information is merged
with the features of the nearest document’s word-boxes and can be
directly passed to the transformer (green arrow) or filtered to contain
only positively annotated word-boxes (green dashed arrow). The part
of the model with blue arrows allows the “field of view” information
flow (colour figure online)

3.4.4 Query-answer architecture

In the heart of the QA architecture (see Fig. 6) lies the fact
that the transformer module with three inputs can be used as
a query-answer machine.

More variants could be explored here:

– “Query all”: Does it help if the transformer can query not
only the nearest page’s word-boxes, but also those of the
new page itself?

– “Skip connection”: Would a skip connection to the base
information extraction block improve the performance?

– “Filter”: Should it filter only annotated word-boxes from
the nearest page (as in the two previous approaches)?

– “Field of view”:Would adding afield of view information
flow from the new page’s word-boxes to the nearest page
make a difference?

Technically a field of view is realized by providing indexes, in
which word-boxes would be close to each other by geometri-
cally projecting eachword-box from the reference page to the
annotated page and selecting a fixed number of Euclidean-
closest word-boxes. The limits for the distances were chosen
based on average distances between word-boxes of the same
class on different documents. The loss used for this model is
classical binary cross-entropy.

Themain idea of this architecture is a query-answermech-
anism and so it can be applied in any different setting with
Siamese networks.

4 Experiments and results

In this section, we present the results for each group of exper-
iments. An Adam optimizer was used together with an early

Table 1 Simple data extraction model experimental results

Previous state of the art, re-tuned Test
(and possible notable tweaks, see Sect. 4) micro

F1 score

2x attention layer, feature space 640 0.6220

1x attention layer, feature space 640 0.8081

1x attention layer, feature space 64 0.8465

1x attention layer, f. space 64, fully anonymized 0.6128

1x attention layer, f. space 64, only text features 0.7505

The bold number indicates the best achievable results of our previous
work alone, therefore it is the score we aim to beat in this article

stopping parameter of 20 epochs (to maximally 200 epochs).
The average time was 40 min per epoch on a single GPU.
The baseline needed only 10 min per epoch (since it did not
need any “nearest” page mechanism). The model selected in
each experimental run was always the one that performed the
best on the validation set in terms of loss.

The basic building blocks present in every architecture
were usually set to produce feature space of dimensionality
640 (unless noted otherwise in the tables as “feature space
n”).

Additionally, experiments on the anonymized dataset
were performed on the best architecture and the baseline
model. The anonymized dataset does not include picture
information, and each character in any textual information
is replaced by the letter “a” (e.g., a word such as “amount”
would be replaced with “aaaaaa”). Moreover, some features
in some documents are randomly adjusted in various ways
to prevent mapping the anonymized documents to reality.

Someexperimentswith architecture variations are included
to show how the model’s variance affects the score—for that
reason, we have slightly varied the number of the transformer
layers—(“1x attention layer” marks single layer, “2x atten-
tion layer” marks two consecutive layers being used), as that
is the single most complex layer present.

4.1 Baseline results

We report some variations of architecture parameters for the
simple data extraction model (introduced in Sect. 3.2) in
Table 1. The goal is to show how sensitive the basic model
is to various changes and to tune the baseline for extracting
the classes.

The results could be interpreted as the model reaching its
maximal reasonable complexity at one transformer layer and
smaller feature space. As we will see, this does not apply to
the Siamese settings as the gradients propagate differently
when parts of the architecture have tied weights.
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Table 2 Copypaste baseline
results

Experiments architecture Test
(and possible notable tweaks, see Sect. 4) micro

F1 score

Nearest page by embeddings and from validation set (standard) 0.0582

Nearest page search from validation and train set 0.0599

Nearest page set to random 0.0552

Table 3 Oracle results. The
metric “Hits” denotes the
percentage of word-boxes that
have their corresponding class in
the nearest page

Oracle setting Hits (%)

Nearest page by embeddings and from validation set (standard) 59.52

Nearest page search from validation and train set 60.43

Nearest page set to random 60.84

To beat our previous state-of-the-art results, we need to
improve the F1 score to exceed 0.8465, which is the best
score for the simple data extraction model.

4.1.1 Copypaste baselines

Table 2 shows the fairly low score of those simple baselines.
Such a low score illustrates the complexity of the task and
variability in the dataset. Simply put, it is not enough to just
overlay a different similar known page on the unknown page
because the dataset does not contain completely identical
layouts.

We can also see that an important consistency principle
holds for the nearest neighbors:

– Selecting a random page decreases the score.
– Using a bigger search space for the nearest page increases
the score.

4.1.2 Oracle baseline

Table 3 displays the “moderate quality” of the embeddings.
Specifically, only roughly 60% of word-boxes have their
counterpart (class-wise) found in the nearest page.

When the nearest-neighbor search is replaced with a com-
pletely random pick, an interesting property of the dataset
emerges in that the number of word-boxes that have a similar
class on the randompage increases a little. This is because the
distribution of class presence in the pages is skewed, which
is explained by vendors usually wanting to incorporate more
information into their business documents.

4.1.3 Linear baseline

The linear model has attained 0.3085 test micro F1 score.
Its performance justifies the progress from the basic copy-
paste model toward trainable architectures with similarity.

Table 4 Experimental results of triplet loss architectures

Experiments architecture Test
(and possible notable tweaks, see Sect. 4) micro

F1 score

1x attention layer, loss-less variant 0.0619

2x attention layer, loss-less variant 0.0909

1x attention layer 0.1409

2x attention layer 0.1464

Table 5 Experimental results of pairwise architectures

Experiments architecture Test
(and possible notable tweaks, see Sect. 4) micro

F1 score

2x attention layer + refine section 0.2080

2x attention layer 0.2658

1x attention layer 0.2605

But since it does not beat the previous baseline results, we
find that the similarity principle alone does not help, and thus,
the design of more complicated models is justified.

4.2 Results of architectures with similarity

In this section, we consider all the designed architectures that
compete with the baselines.

The results for triplet loss architecture are presented in
Table 4, and the results for pairwise classification are in
Table 5.

Both pure triplet loss approaches and pairwise classifica-
tion performed better than simple copypaste, but still worse
than linear architecture. We suggest two possible reasons for
this outcome:

– The existence and great prevalence of unclassified (unin-
teresting) data in the documents.
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Table 6 Experimental results of QA architecture

Experiments architecture Test
(and possible notable tweaks, see Sect. 3.4.4) micro

F1 score

All QA improvements in place 0.9290

Fully anonymized dataset 0.7078

Only text features 0.8726

Nearest page set to random 0.8555

Without field of view 0.8957

Without query all 0.7997

Without skip connection 0.9002

Without filtering 0.8788

This reason is supported by the fact that all methods with
hard-coded class information (including simple linear
baseline) scored better. Unfortunately, this phenomenon
could be specific to the dataset.We could not replicate the
suboptimal results by modeling this situation in an exist-
ing and otherwise successful task (omniglot challenge)
by adding non-classifiable types and by increasing the
percentage of negative pairs.

– Missing connections to the unknown page.
Table 6 shows how the score drops in QA architecture
when we switch to the variant “without query all.” We
conclude that even the best architecture needs ameaning-
ful information flow from the reference page itself and
not only from the nearest page. That information flow is
missing in triplet loss and pairwise classification.

To gain more insight, we tested the architectures on a dif-
ferent target value, which was defined as “does the text in
these word-boxes have the same length.” In this setting, the
architectures achieved a significantly higher score of 0.7886.
This supports our theory that the unclassified data (see above)
was responsible for the underperformance of triplet loss and
pairwise classification, since all data in the document were
useful for the text lengths target.

4.2.1 Query answer

The query-answer architecture scored the best, with a micro
F1 score of 0.9290with all the proposed architectural variants
employed at once. In Table 6, we present an ablation study,
showing that each of the components (field of view, query
all, skip connection, filter, nearest search as defined in 3.4.4)
related to QA architecture is clearly needed, as the score
drops if any single one is turned off.

Compared with the previous model Table 1, an improve-
ment of 0.0825 in the F1 score is achieved. Also, the
experiment on the anonymized dataset and the dataset with
only text features shows that the architecture is versatile

Fig. 7 Best classification result of the QA model—only true positives
and true negatives can be seen (green = true positive; yellow = true
negative) (colour figure online)

enough to not fail the task and to show similar improvement
in the score on the anonymized dataset (by 0.0950). It also
verifies that all the visual, geometric, and textual features are
important for good quality results.

4.2.2 Qualitative comparison

We conclude with more qualitative analysis, specifically, a
comparison of the best QAmodel and the simple data extrac-
tion model.

To start, we select pages from a random subset of the test
set and present example visualizations in Figs. 7, 8 and 9
to illustrate a manual inspection of prediction visualizations.
They show the best prediction from the query-answer model
(Fig. 7), the worst prediction from the query-answer model
(Fig. 8), and finally the worst prediction of the simple data
extractionmodel (Fig. 9). A successfully classifiedword-box
is a true positive, while successfully classified unimportant
text is a true negative. Misclassifications of true positives
(“miss”) and true negatives (“extra”) are also indicated.

Both the simple data extraction model and the QA model
have examples of pages that look like results in Fig. 7 and are
100% perfectly extracted (or classified). However, the results
vary in the worst cases, which is why examples from both
models are presented in Figs. 8 and 9.

Motivated by this difference, we can look at which classes
both models extract best and worst. Those scores are pre-
sented in Table 7.
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Fig. 8 Worst result of the QA model. Each blue and red area denotes
a mistake (blue = misclassified as true negative; red = misclassified as
true positive) (colour figure online)

Fig. 9 Worst result of the simple data extraction model. Note the min-
imal count of true positive areas and the dominance of errors (green
= true positive; yellow = true negative; blue = misclassified as true
negative; red = misclassified as true positive) (colour figure online)

This detailed inspection shows that both models excel at
classes that usually appear together (but not in any fixed lay-
out or order) in business documents. Those classes are all
the recipient information (DIC, IC, Spec symbol) and the
sender information. Moreover, recipient information is usu-
ally required information on an invoice, and thus, it is the
most frequent class and the network easily excels at detect-
ing it.

Interestingly, page numbering could be seen as an easy
class to classify, but the previous model actually classified it
with a very low score. The score jumps to a very high value
whenwe switch to theQAmodel though.Onepossible reason
for this improvement is that the page number usually appears
alone somewhere near an edge of the page. Thus, its nearest
word-boxes are random and might cause confusion for the
GCN module and for convolution over the sequence as well.
When a similar page is presented to the model, the score

Table 7 Best and worst classes performance of QA model and simple
data extraction model

Best- and worst-
performing fields
(and their scores)

Simple—test
micro F1
score

QA—test
micro F1
score

Worst classes of simple data extraction model

Page current 0.30 0.90

Page total 0.35 0.88

Terms 0.62 0.78

Best classes of simple data extraction model

Recipient DIC 0.94 0.96

Recipient IC 0.94 0.97

Spec symbol 0.94 0.96

Worst classes of QA

Order ID 0.65 0.75

Terms 0.62 0.78

Customer ID 0.75 0.83

Best classes of QA

Sender IC 0.93 0.96

Spec symbol 0.94 0.96

Recipient IC 0.94 0.97

jumps higher possibly because the nearest page might have
page numbering in a similar position.

The QA model, as a possible improvement from our pre-
vious results, holds an important property we desire. In
particular, we have verified that the score for all classes has
increased uniformly by at least 0.02 points (median gain
being 0.04), even for the previously best-performing classes.
This property is important to verify, since the QA architec-
ture incorporates the simple data extraction model, and we
expect it to “fall back” to it when the nearest page does not
provide enough information. If this fallback does not happen,
some gradients would not be propagated correctly.

The improvement of some fields by only roughly 2%may
be seen as a small improvement. But in reality (as stated in the
introduction), the 2% improvement translates into less time
and effort for companies processing more than 500 invoices
per month. This reduced time and effort translates to more
than $1000 of savings per month as well as a reduction in the
company’s carbon footprint.

5 Conclusions

Multiple baselines were provided and evaluated to gain more
knowledge about the data and establish the need for bigger
and more complicated models.

We have designed multiple ways to incorporate similarity
and memory—in terms of access to existing data—into the
existing data extraction model, and we studied the gains of
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various models in a fixed setting. The successful gain was an
8.25% increase in the F1 score compared with our previous
results by using “query-answer” inspired architecture. By the
referenced heuristics, this improvement translates roughly
into $4000 dollars savings of manual work per month for a
medium-sized company.

We have verified that all possible parts of the architecture
are needed in the training and prediction of the QA model to
achieve the highest score. Moreover, the improvement holds
even in the case of the anonymized dataset.

In a qualitative analysis of the results, we showed that
the score improvement is meaningful across all the classes.
Furthermore, the solution was shown to significantly boost
the previously most-problematic classes.

For the other models that underperform (as triplet loss and
pairwise classification), we have identified the possible cause
as most words on the page not belonging to any class, and
we supported the hypothesis with an additional experiment.

Further work could incorporate a way to create some arti-
ficial classes and measure the supposed increase in score for
the triplet and pairwise classification models.

From a quantitative point of view, an opportunity exists
to explore and improve extraction scores by tuning all the
possible parameters of the system, namely the number of the
nearest pages used and the quality of the page embeddings.
The page embeddings can possibly be jointly trained with
the word-box classifier.

Qualitatively, we identify some possible new research
questions:

– What is the effect of the size of the datasets? By exploring
the effect of the size of the training dataset and/or the
search space for the nearest pages, we could ask if (and
when) the model needs to be retrained and what a sample
of a difficult-to-extract document looks like.

– How to improve the means of generalization? Currently,
the method generalizes to unseen documents. In theory,
we could desire a method to generalize to new classes of
words because in the current approach, the model needs
to be retrained if a new class is desired to be detected and
extracted.

In practice, our solution has a particular strength that trans-
forms these two points from potential hurdles to interesting
research questions. Themodel can fit into just one consumer-
grade GPU and trains from scratch within 4 days at most
using only one CPU process. Compared with recent state-of-
the-art NLP methods that take ample resources to train (such
as [4]), our model can be retrained and/or fine-tuned for any
particular use-case quickly and effectively (even more with
transfer learning techniques). Thus, any assortment of prob-
lems are solved by the industrial standards [5].

As a part of this work, the dataset and source codes are
published in [22]. This resource should enablewider research
of deep learningmodels for information extraction because it
was previously impossible for researchers to collect a dataset
of this size and quality.

Acknowledgements The Rossum.ai team deserves thanks for provid-
ing the data and background that enabled the development and growth
of this work.

Author Contributions The principal author is responsible for the study
concept and design, execution, coding, and research. The rest of the
Rossum team is responsible for data acquisition, annotation, and storage
and for the creation of a working product and environment that enabled
a scientific study of this scope.

Funding This work was supported by the Grant SVV-2020-260583.
Partial financial support was received from Rossum and Charles Uni-
versity.

Data availability Ananonymizedversionof the dataset is publicly avail-
able at [22], together with all the codes. The improvement on previous
results can be reproduced using the anonymized data without disclosing
any sensitive information.

Code availability The source codes are publicly available from a
GitHub repository [22].

Declarations

Conflict of interest The author (Martin Holeček) has received finan-
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A method that lies in the hearth of information extraction for automatization
of business documents processing was developed by taking well motivated and
scientifically-grounded small steps. During the journey, it was shown that no
other previously published method and/or dataset is suitable for the task and
that all the parts and bits of the model, the data and the training and validation
process are highly important for the state-of-the-art success in the task.

The main high-level concepts that have worked for reaching the goal were:

• Emulating the problem-solving approach of humans using neural networks.

• Giving the trainable model full access to all features and modalities of the
data and dataset.

• Grouping relevant sub-tasks.

An anonymized dataset and full source codes were published to allow the exact
reproducibility of the results and to assist in solving newly created open questions.

The side goal of computational efficiency was successfully met, as the system
and the experiments allow for running on consumer-grade hardware without the
need for transfer learning – as opposed to other recent state-of-the-art NLP and
computer vision models.
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A. Attachments - related,
co-authored and non-peer
reviewed texts
The following sections contains copies of blog-posts (Holecek [2018d,a,b]) - texts
that I have authored or co-authored while working on topics related to informa-
tion extraction, table detection and/or table extraction and are included here to
provide the full context of the research, to inform about other approaches (that
did not ultimately yield results and so were omitted from the main text) and
ultimately as another source of interesting and related information.
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A.1 Update on Rossum’s line item extraction
from invoices

At Rossum, we have been hard at work researching line item extraction from
invoices. It is a daunting task, but we are not afraid. We know you have been
waiting patiently to hear from us, so we have put together a brief update of what
has been going on in research, as well as some conclusions we have made from
the results thus far. There is still more to learn – but we now know we are on the
right path! Usually, for automatic processing, line item extraction from invoices
is needed. For starters, it could be connected to a personal database of expenses,
serve as an automatic ending step for storage systems, or even simplify the hard
work of auditors needing to pair orders and invoices. In the scientific world,
this problem translates to table detection and table extraction or understanding.
During a competition called ICDAR 2013 Göbel et al. [2013], that compared
submissions with commercial products, originated table extractions from HTML
Kosala et al. [2002] or pure texts Ng et al. [1999]. The goal was to extract a
table from a scientific, or any other type of article. Usually, the first algorithms
used only heuristics Mac and Ragel [2014], getting to an 80% success rate only on
specific types of tables (eg. tables with lines). From another point of view, there
was recently a big boom of object detection algorithms (for example, for AI driven
automatic cars), one of the most successful being YOLO Redmon and Farhadi
[2018]. How did these algorithms fare on our data set, where an invoice is, from
a perspective, a schematic layout of tabular structures? We were not happy with
the results of heuristics and even with YOLO, at first. Even on simple tables,
the imagined success was not achieved. So we need to dig into more experiments,
trying to teach the neural network to paint where the table resides and connect
rows and columns (aiming to extract simple tables at the beginning). From first
glance, it seems we are on the right track – the algorithm can detect whole tables
and even identify individual rows as shown below:

In parallel, we also work on hybrid methods (a combination of the older meth-
ods mentioned above and artificial intelligence). Here are some examples of col-
umn search, based on custom image-processing features and learned 1D dilated
segmentation.

For a simple insight, these images show how we want to decide on the positions
of columns from the image features shown in blue (some of them can be thought
of as a position histogram of all ink used in the image). The orange line is a
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learned decision, from which, if we select its peaks, we get the nice column splits
as shown on the images of tables.
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Universal table extraction from invoices without templates is still an unsolved
problem across all data capture software. But from the moment we gave it as the
main research focus here at Rossum, we have already seen huge progress towards
the goal, some of which we wanted to share above. Right now, we are fitting the
last missing pieces of the end-to-end extraction pipeline, as well as experimenting
with ways to make our neural networks even more accurate. While our current
focus is perfectly extracting information from simpler tables, for longer term work,
we have our sights set on complex cases like overlapping columns or nested tables.

A.2 Inside line items: Our progress and evalu-
ation techniques

The gist of the story, short & sweet, is that users of the Rossum verification
interface can now enjoy dramatic quality improvement in the semi-automatic line
item capture we offer, and fully automatic table extraction is now available in
our Data Extraction API as an experimental feature.

To follow up on our previous line items blog post, let us show you a
few examples. It simply works for many layouts already.
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One number to describe our precision Current industry and quality stan-
dards demand evaluated measurements on the quality of service – the days are
gone when ‘it works sometimes’ is better than having no service at all. Usually,
in the data science field, performance of an algorithm is evaluated using common
standard metrics Long [2018] that can be computed when we know the algo-
rithms’ output (predictions) and the truth value (gold standard or annotations).
A quick example would be to count the number of mistakes (in the text, referred
later as ‘bads’) and the number of correct outputs (referred to as ‘goods’).

When we look at two tables, it might not be clear what exactly to count. So,
what does the literature have to say? Usually, our problem is referred to as ‘table
detection’ and ‘table extraction’, where first we need to find the table and then
we need to extract the data from it. In the literature, there was a metric based
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on connections in the table, that was first used on ICDAR 2013 Göbel et al.
[2013] to evaluate heuristic table detection and extraction from scientific texts.
For table detection, they used a simple comparison of similarities of rectangles,
called ‘intersection over union’, where a ‘good’ detection is one with an IoU score
above 0.7, arguing that we do not need to draw the rectangle around the table
in an overly precise manner.

The ICDAR metric for table extraction is based on a simple idea – that tables
tell us about column-wise and row-wise relations where we can count how well
the relations are fulfilled. The metric is defined as follows: for each cell in the
table, let’s take the first non-empty (a cell that has a meaningful text) right-
hand neighbor and first bottom neighbor; record the two cells’ distance, texts
and direction, thus forming a record of four items. For the predicted and ground
truth table, we get two lists of records, which we can match against each other and
count common records (‘goods’), missed records and extra records. From these
integer values, the data science field commonly calculates metrics as precision,
recall and f1 score – so far so good.

Human-like numbers We have implemented the metric, used it a bit, and
found out that it is not the easiest to explain and also does not strictly follow
how a human would judge the table prediction against the gold standard. So,
we came out with our own metric that is trying to mimic how humans would
look at it. If I had two tables and had to say how similar they are, the first
problem I would face is that the tables can be of different sizes. To reduce our
problem, I would cut out rows and columns, so that the tables would be the same
(smaller) size. Which columns and rows should we cut? I would look for those
that have the craziest content, looking like nothing from the second table (from
implementation point of view, the keyword is edit distance). We would have two
tables of the same size and then I could look at each cell and decide if it matches
or not.

The numbers (good and bad), together with the number of cells cut from
both tables (meaning a miss or an extra, based on which table we cut it from),
can give nicely defined metrics. The algorithm for cutting out rows or columns
does not need to be overly clever, because as the user, I would not spend a lot of
time looking at all combinations. We want to capture the feeling in the metrics.
Validation is done, when we look at the table and it’s computed score and say
‘that looks like 60%, nodding our heads in wise agreement. The nice property
here is that if the prediction is perfect, we will get a perfect score regardless of
the used algorithm for deciding which rows/columns to cut (and similarly – no
table extraction would yield 0%).

An example: Let’s take this table:

Lets assume, it gets extracted as:

Then the number of rows (2) is the same in both tables, but the number of

52



columns differ (the algorithm merged some columns), so we would cut out the
worse columns from the original (specifically 3: quantity, tax, product total) and
we would end with statistics like this:

• good: 5, CODE, 1234, DESCRIPTION, CIRCUIT BR. . . ,

• bad: ORDERED SRKAITEY, UNIT PRICETAX PRODUCT TOTAL,
10.0050.00

and adding the number of cells we did cut out:

• miss: 6 (= 3 cols, each with 2 rows)

Final Note We get the score for each table in each document, and in our
development process we are averaging these numbers (f1 scores) into one final
score. This process is called ‘macro metrics’, as opposed to ‘micro metrics’,
which would first sum all the goods, bads, misses and extras and then compute
precision, recall, and f1 score from it.

We wanted to share our methodology of evaluation in a way that could inspire
others (not only data scientists), open a discussion and provide some links to the
literature that has inspired us. Keep your eyes peeled for more updates in the
near future as we continue our quest to solve line item extraction from invoices
and feel free to reach out and comment on the methodology (or implement it as
you wish).

A.3 Tensorflow for cropping and rendering
In tensorflow, there are many usable features for tasks besides just for learning.
One worth mentioning is the function for rendering framed rects for given bound-
ingboxes that can be used for fast evaluation of predictions of an image. But
what if we want to get fancy? We have recently faced a task, to crop given areas
from an image, process them into features and render them back onto the image.
This could be done in keras or tensorflow so that it can be fast and embedded in a
model. Or even possibly – overlay an image, not with framed boundingboxes, but
alphablend with filled rectangles. To note, we want a feature vector rendering,
not a full graphics renderer with tensorflow, which already exists (at least in the
form of this example Genova et al. [2018]).

Here we will be introducing the concepts with the code, but we have also pub-
lished the code Holecek [2018c] that should be able to run in ipython notebook.

1) Cropping There is a nice function tf.image.crop and resize in tensorflow,
that does the cropping almost exactly how we want it. It needs a bit of care
because the input types need an index to the batch of images provided. Our
original intent was to have bboxes saved per batch.

Below is the full code, along with a simple test, and an example on how to
use the function as a keras layer (we are using it that way).
import i t e r t o o l s
import t e n s o r f l o w as t f
import numpy as np
from k e r a s . l a y e r s import Lambda
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def t f c r o p a n d r e s i z e b a t c h e s o f a r r a y s ( image input , b o x e s i n p u t , c r o p s i z e
=(10 , 10) ) :
”””
The d imens ion o f boxes i s [ batch , maxnumperbatch , 4 ] # some can be j u s t a

bogus−zero − f i l l
The d imens ion o f the output s h o u l d be [ batch , maxnumperbatch , c rop 0 , c rop 1

, 1 ] c r o p s .
”””

b b o x e s p e r b a t c h = t f . shape ( b o x e s i n p u t ) [ 1 ]
b a t c h s i z e = t f . shape ( b o x e s i n p u t ) [ 0 ] # s h o u l d be the same as i m a g e i n p u t .

shape [ 0 ]

# the g o a l i s to c r e a t e a [ batch , maxnumperbatch ] f i e l d o f v a l u e s ,
# which a r e the same a c r o s s batch and e q u a l to the b a t c h i d
# and then to r e s h a p e i t i n the same way as we do r e s h a p e the b o x e s i n p u t to

j u s t t e l l t f about
# each bboxes batch ( and image ) .
i n d e x t o b a t c h = t f . t i l e ( t f . expand d ims ( t f . range ( b a t c h s i z e ) , −1) , (1 ,

b b o x e s p e r b a t c h ) )

# now both get r e shaped as t f wants i t :
b o x e s p r o c e s s e d = t f . r e s h a p e ( b o x e s i n p u t , (−1 , 4) )
b o x i n d p r o c e s s e d = t f . r e s h a p e ( i n d e x t o b a t c h , ( −1 ,) )

# the method wants boxes = [ num boxes , 4 ] , b o x i n d = [ num boxes ] to i n d e x
i n t o the batch

# the method r e t u r n s [ num boxes , c r o p h e i g h t , c rop w id th , depth ]

t f p r o d u c e d c r o p s = t f . image . c r o p a n d r e s i z e (
image input ,
b o x e s p r o c e s s e d ,
b o x i n d p r o c e s s e d ,
c r o p s i z e ,
method=’ b i l i n e a r ’ ,
e x t r a p o l a t i o n v a l u e =0,
name=None

)
new shape = t f . concat ( [ t f . s t a c k ( [ b a t c h s i z e , b b o x e s p e r b a t c h ] ) , t f . shape (

t f p r o d u c e d c r o p s ) [ 1 : ] ] , a x i s =0)
c r o p s r e s i z e d t o o r i g i n a l = t f . r e s h a p e ( t f p r o d u c e d c r o p s ,

new shape )
r e t u r n c r o p s r e s i z e d t o o r i g i n a l

def k e r a s c r o p a n d r e s i z e b a t c h e s o f a r r a y s ( image input , b o x e s i n p u t , c r o p s i z e
=(10 , 10) ) :
”””
A h e l p e r f u n c t i o n f o r t f c r o p a n d r e s i z e b a t c h e s o f a r r a y s ,

assuming , t h a t the c r o p s i z e would be a c o n s t a n t and not a t e n s o r f l o w
o p e r a t i o n .

”””

def f c r o p ( packed ) :
image , boxes = packed
r e t u r n t f c r o p a n d r e s i z e b a t c h e s o f a r r a y s ( image , boxes , c r o p s i z e )

r e t u r n Lambda ( f c r o p ) ( [ image input , b o x e s i n p u t ] )

def t e s t c r o p s ( ) :
# the i n t e n d e d usage :

c r o p s i z e = (10 , 10)

i m a g e i n p u t = np . ones ( ( 2 , 200 , 200 , 1) )
b o x e s i n p u t = np . a r r a y ( [ [ [ 0 . 0 , 0 . 0 , 0 . 5 , 0 . 5 ] , [ 0 . 0 , 0 . 0 , 0 . 5 , 0 . 5 ] , [ 0 . 0 ,

0 . 0 , 1 . 0 , 1 . 0 ] ] ,
[ [ 0 . 0 , 0 . 0 , 0 . 5 , 0 . 5 ] , [ 0 . 0 , 0 . 0 , 0 . 5 , 0 . 5 ] ,

[ 0 . 0 , 0 . 0 , 1 . 0 , 1 . 0 ] ] ] )

54



# the d imens ion o f boxes i s [ batch , maxnumperbatch , 4 ] # some can be j u s t a
bogus−zero − f i l l

with t f . S e s s i o n ( ) as s e s s :
i m a g e i n p u t p h = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , None , None , None ] )
b o x e s i n p u t p h = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , None , 4 ] )
c r o p r e s u l t = s e s s . run ( t f c r o p a n d r e s i z e b a t c h e s o f a r r a y s (

image input ph , b o x e s i n p u t p h , c r o p s i z e=c r o p s i z e ) ,
f e e d d i c t ={ i m a g e i n p u t p h : image input ,

b o x e s i n p u t p h : b o x e s i n p u t })
a s s e r t np . a l l ( c r o p r e s u l t == 1 . 0 ) , ”when c r o p p i n g image f u l l o f ones , we

s h o u l d ge t a l l ones too ! ”
a s s e r t c r o p r e s u l t . shape == ( b o x e s i n p u t . shape [ 0 ] , b o x e s i n p u t . shape [ 1 ] ,

c r o p s i z e [ 0 ] , c r o p s i z e [ 1 ] , i m a g e i n p u t .
shape [ −1])

2) Rendering rectangles In numpy, we would simply slice a tensor and assign
the values. But in tensorflow, assignment is not a valid operation on tensors.

So what options do we have?
modify variables use python operation over the numpy code and make it a

tensorflow op use custom kernels (which can be the fastest way, but will not
be covered here) we can process each bbox separately and then sum it over the
rendering plane we can process all bboxes at each pixel and ask if they belong
there we can use sparse to dense operation, or scatter nd which should be faster.

How would this work? We could produce lists of points that are inside of the
rectangles, but that is not easy to make parallel because each bbox would have a
different number of pixels inside.

Fortunately, we are also fans of computer graphics, so we know about spread-
ing filters (more in our beloved colleague’s thesis Zamecnik [2012] and in Kosloff
et al. [2009], Kosloff [2010]) that uses, for nearly the same goal, a cumulative sum
operation which is available in tensorflow. We will explain more in a moment.

Let’s imagine a 1d case with a 1d image, where we would need to fill intervals.
We cannot tell tensorflow directly to start at a specified left corner and then
start filling until the specified right corner is found. But, if we could mark all
left corners with +1 and all right corners with -1 and then use cumulative sum
(from the left), then at each pixel, we would know how many intervals cover it.
We can actually mark the edges/corners by using scatter nd. Even more, we can
also parallel the gathering of data for this function, because the number of edges
or corners is, unlike the area, the same.

How can we do it for 2d (or higher dimensions)? Step by step, dimension
after dimension – if we first generate the data for top and bottom edges, then we
can go with cumulative sum from top to bottom and we would have the whole
box filled. We only need to remember that the second phase of the process needs
pluses at the top and minuses at the bottom so that it would start at the top and
end at the bottom, as the asciiart picture shows:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . + . . − . . . . . . .++++. . . . . . .++++. . .
. . . . . . . . . . . −> . . . . . . . . . . . −> . . . .++++. . .
. . . . − . . + . . . . . . . − − − − . . . . . . .++++. . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
o r i g i n a l a f t e r cumsums :

( l e f t to r i g h t ) ( top to bottom )

And to produce the pluses and minuses like we want, we will iterate over the
corners in python using itertools.product and to alter the signs, so that the right
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+/- is produced. We will count the number of ones in the corner and index and
assign pluses to evens and minus to odds. Notice, that this design choice will make
the function produce boxes in any dimension. It is fixed before the tensorflow
graph is generated (at compile time) which should be sufficient. A test function
is provided in a simple form for only 2d. The whole code is presented below
together with a python operation and a test.
d e f r e n d e r b b o x e s p y f u n c 2 d ( elems , t a r g e t s h a p e ) :

”””
2d o n l y numpy + t f . p y f u n c r ep l a cement f o r r e n d e r n d b b o x e s t f s p r e a d i n g .
For t e s t i n g p u r p o s e s .
”””
# t a r g e t s h a p e = [ dimx , dimy , . . . . ]

d e f p y r e n d e r b o x e s 2 d ( x b o x e s d a t a , o u t sh ap e ) :
# x w i l l be a numpy a r r a y w i th the c o n t e n t s o f the p l a c e h o l d e r below
i f l e n ( x b o x e s d a t a . shape ) <= 2 :

r e s u l t = np . z e r o s ( l i s t ( ou t sh ap e ) + [ x b o x e s d a t a . shape [ −1] − 2 ∗
2 ] , dtype=np . f l o a t 3 2 )

f o r box i n x b o x e s d a t a :
r e s u l t [ box [ 0 ] : box [ 2 ] , box [ 1 ] : box [ 3 ] , : ] += box [ 4 : ]

e l s e : # a l s o batch d imens ion i s p r o v i d e d
r e s u l t = np . z e r o s ( [ x b o x e s d a t a . shape [ 0 ] ] + l i s t ( ou t sh ap e ) + [

x b o x e s d a t a . shape [ −1] − 2 ∗ 2 ] , dtype=np . f l o a t 3 2 )
f o r i , batch i n enumerate ( x b o x e s d a t a ) :

f o r box i n batch :
r e s u l t [ i , box [ 0 ] : box [ 2 ] , box [ 1 ] : box [ 3 ] , : ] += box [ 4 : ]

r e t u r n r e s u l t

r e t u r n t f . p y f u n c ( p y r e n d e r b o x e s 2 d , [ e lems , t a r g e t s h a p e ] , t f . f l o a t 3 2 )

d e f r e n d e r n d b b o x e s t f s p r e a d i n g ( elems , t a r g e t s h a p e , ndim=2) :
”””
e lems : t e n s o r o f s i z e [ . . . , n boxes , 2∗ ndim + v a l d i m ] , where i n the l a s t

d imens ion ,
t h e r e a r e packed edge c o o r d i n a t e s and v a l u e s ( o f v a l d i m ) to be f i l l e d i n

the s p e c i f i e d box .
t a r g e t s h a p e : l i s t / t u p l e o f ndim e n t r i e s .
r e t u r n s : r e n d e r e d image o f s i z e [ e l ems ( . . . ) , t a r g e t s h a p e . . . , v a l d i m ]
( ’ e l ems ( . . . ) ’ u s u a l l y means b a t c h s i z e )
”””
a s s e r t s h a p e n d i m = t f . A s s e r t ( t f . e q u a l ( t f . s i z e ( t a r g e t s h a p e ) , ndim ) , [

t a r g e t s h a p e ] )
a s s e r t n o n e m p t y d a t a = t f . A s s e r t ( t f . g r e a t e r ( t f . shape ( e lems ) [ −1] , 2∗ ndim ) , [

e l ems ] )

w i th t f . c o n t r o l d e p e n d e n c i e s ( [ a s s e r t s h a p e n d i m , a s s e r t n o n e m p t y d a t a ] ) :
’ ’ ’
I n 3d t h e r e must be ano the r w a l l o f minuses . l o o k i n g l i k e t h a t :

− +
. . . . .

+ −

so when i n d e x i n g [ 0 , 1 ] to l t r b . . . p l u s e s a r e when t h e r e i s even number
o f 0 s i n c o r n e r index , minuses when odd .

’ ’ ’
e l n d i m = l e n ( e lems . shape )
# we do not a c c e s s t h i s p r o p e r t y i n t e n s o r f l o w runt ime , but i n ’ comp i l e

t ime ’ , because , w e l l , number o f d i m e n s i o n s
# s h o u l d be known b e f o r e

a s s e r t e l n d i m >= 2 and e l n d i m <= 3 , ” e l ement s s h ou l d be i n the form o f
[ batch , n , c o o r d i n a t e s ] o r [ n , c o o r d i n a t e s ] ”

i f e l n d i m == 3 : # we use b a t c h s i z e d imens ion a l s o !
b b o x e s p e r b a t c h = t f . shape ( e lems ) [ 1 ]
b a t c h s i z e = t f . shape ( e lems ) [ 0 ] # s h o u l d be the same as i m a g e i n p u t

. shape [ 0 ]
i n d e x t o b a t c h = t f . t i l e ( t f . expand d ims ( t f . range ( b a t c h s i z e ) , −1) ,

(1 , b b o x e s p e r b a t c h ) )
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i n d e x t o b a t c h = t f . r e s h a p e ( i n d e x t o b a t c h , (−1 , 1) )
e l s e :

i n d e x t o b a t c h = None

v a l v e c t o r s i z e = t f . shape ( e lems ) [ −1] − 2 ∗ ndim

c o r n e r i d s = l i s t ( i t e r t o o l s . p roduc t ( [ 0 , 1 ] , r e p e a t=ndim ) )
c o r n e r s l i s t s = [ ]
c o r n e r s v a l u e s = [ ]
f o r c o r n e r i n c o r n e r i d s :

p l u s = sum ( c o r n e r ) {86385
ef8c424def43c570938a9943967855f43526a201d16486274d8a74d2e91 } 2
== 0

i d f r o m c o r n e r = [ i + ndim ∗ c f o r i , c i n
enumerate ( c o r n e r ) ] # i n d e x e s a c o r n e r i n t o [ l e f t ,

top , r i g h t , bottom ] n o t a t i o n
c o r n e r c o o r d = t f . g a t h e r ( e lems [ . . . , 0 : 2 ∗ ndim ] , i d f r o m c o r n e r ,

a x i s =−1)
c o r n e r v a l u e = e lems [ . . . , 2 ∗ ndim : ] ∗ (1 i f p l u s e l s e −1) # l a s t

d imens ion i s == v a l v e c t o r s i z e
i f i n d e x t o b a t c h i s not None :

# i f the o p e r a t i o n i s c a l l e d i n batches , remember to rehape i t
a l l i n t o one l ong l i s t f o r s c a t t e r n d

# and add ( c o n c a t e n a t e ) the batch i d s
c o r n e r c o o r d = t f . concat ( [ i n d e x t o b a t c h , t f . r e s h a p e (

c o r n e r c o o r d , (−1 , 2) ) ] , a x i s =−1)
c o r n e r v a l u e = t f . r e s h a p e ( c o r n e r v a l u e , (−1 , v a l v e c t o r s i z e ) )

c o r n e r s l i s t s . append ( c o r n e r c o o r d )
c o r n e r s v a l u e s . append ( c o r n e r v a l u e )

i n d i c e s = t f . concat ( c o r n e r s l i s t s , a x i s =0)
updates = t f . concat ( c o r n e r s v a l u e s , a x i s =0)
shape = t f . concat ( [ t f . shape ( e lems ) [ : −2 ] , t a r g e t s h a p e , [ v a l v e c t o r s i z e

] ] , a x i s =0)

d e n s e o r i g = t f . s c a t t e r n d (
i n d i c e s ,
updates ,
shape=shape ,

)

dense = d e n s e o r i g
f o r dim i n range ( ndim ) :

# we want to s t a r t from the a x i s b e f o r e the l a s t one . The l a s t one
i s the v a l u e d imens ion , and

# the f i r s t d i m e n s i o n s might be the batched d i m e n s i o n s
dense = t f . cumsum( dense , a x i s=−2−dim , e x c l u s i v e=Fa l s e , r e v e r s e=Fa l s e

, name=None )

r e t u r n dense

d e f t e s t r e n d e r b b o x e s 2 d ( ) :
# t e s t w i thout b a t c h s i z e d imens ion
e lems = [ [ 0 , 1 , 3 , 10 , 1 ] , [ 1 , 13 , 4 , 17 , 1 ] , [ 0 , 1 , 3 , 10 , 1 ] ] + [ [ 8 , 9 ,

15 , 15 , 1 ] ] ∗ 1 0 0 0
t a r g e t s h a p e = [ 2 0 , 20 ]

w i th t f . S e s s i o n ( ) as s e s s :

e l ems ph = t f . p l a c e h o l d e r ( t f . i n t32 , [ None , None ] )
shape ph = t f . p l a c e h o l d e r ( t f . i n t32 , [ None ] )

s t a r t n p = t i m e r ( )
n p r e s u l t = s e s s . run ( r e n d e r b b o x e s p y f u n c 2 d ( e lems ph , shape ph ) ,

f e e d d i c t ={e l ems ph : e lems , shape ph : t a r g e t s h a p e })
end np = t i m e r ( )

e l ems ph2 = t f . p l a c e h o l d e r ( t f . i n t32 , [ None , None ] )
shape ph2 = t f . p l a c e h o l d e r ( t f . i n t32 , [ None ] )
s t a r t t f = t i m e r ( )
t f r e s u l t = s e s s . run ( r e n d e r n d b b o x e s t f s p r e a d i n g ( e lems ph2 , shape ph2 ,

ndim=2) ,
f e e d d i c t ={e l ems ph2 : e lems , shape ph2 :
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t a r g e t s h a p e }) # or a l i s t o f t h i n g s .
e n d t f = t i m e r ( )

a s s e r t np . a l l ( np . e q u a l ( n p r e s u l t , t f r e s u l t ) )
p r i n t ( ( end np−s t a r t n p , e n d t f − s t a r t t f ) )

d e f t e s t r e n d e r b b o x e s b a t c h 2 d ( ) :
# t e s t w i th the b a t c h s i z e d imens ion ( be i ng 2)
e lems = [ [ [ 0 , 1 , 3 , 10 , 1 ] , [ 1 , 13 , 4 , 17 , 1 ] , [ 0 , 1 , 3 , 10 , 1 ] ] ,

[ [ 0 , 2 , 3 , 10 , 1 ] , [ 1 , 14 , 4 , 17 , 1 ] , [ 0 , 2 , 3 , 10 , 1 ] ] ]
t a r g e t s h a p e = [ 2 0 , 20 ]

w i th t f . S e s s i o n ( ) as s e s s :

e l ems ph = t f . p l a c e h o l d e r ( t f . i n t32 , [ None , None , None ] )
shape ph = t f . p l a c e h o l d e r ( t f . i n t32 , [ None ] )

s t a r t n p = t i m e r ( )
n p r e s u l t = s e s s . run ( r e n d e r b b o x e s p y f u n c 2 d ( e lems ph , shape ph ) ,

f e e d d i c t ={e l ems ph : e lems , shape ph : t a r g e t s h a p e })
end np = t i m e r ( )

e l ems ph2 = t f . p l a c e h o l d e r ( t f . i n t32 , [ None , None , None ] )
shape ph2 = t f . p l a c e h o l d e r ( t f . i n t32 , [ None ] )
s t a r t t f = t i m e r ( )
t f r e s u l t = s e s s . run ( r e n d e r n d b b o x e s t f s p r e a d i n g ( e lems ph2 , shape ph2 ,

ndim=2) ,
f e e d d i c t ={e l ems ph2 : e lems , shape ph2 :

t a r g e t s h a p e }) # or a l i s t o f t h i n g s .
e n d t f = t i m e r ( )

a s s e r t t f r e s u l t . ndim == 4 , ” bboxes s h o u l d be a b l e to be r e n d e r e d i n t o
ba t che s o f images ”

a s s e r t t f r e s u l t . shape [ −1] == l e n ( e lems [ 0 ] [ 0 ] ) − 2∗2
a s s e r t n p r e s u l t . shape [ 0 ] == t f r e s u l t . shape [ 0 ] == l e n ( e lems ) , ”we have

p r o v i d e d a d i f f e r e n t number o f ba t che s ”
a s s e r t np . a l l ( np . e q u a l ( n p r e s u l t , t f r e s u l t ) )
p r i n t ( ( end np−s t a r t n p , e n d t f − s t a r t t f ) )

Conclusion and visualizations Note, that we have created two functions that
need differently scaled inputs (one needs floats, the second needs integers) because
we were preserving the format set by the original tensorflow functions. And for
the final visualization – here is the code that builds the computational graph,
loads a picture, displays crops, processes the crops (as a toy case, it multiplies
the original image with the mask) and outputs a picture:
from m a t p l o t l i b impor t p y p l o t as p l t
from PIL impor t Image
impor t r e q u e s t s

d e f t e s t w i t h l e n a ( ) :
p i c = np . a s a r r a y ( Image . open ( r e q u e s t s . ge t (” h t t p s : // up load . w ik imed ia . org /

w i k i p e d i a /en /7/7d/ Lenna {86385
ef8c424def43c570938a9943967855f43526a201d16486274d8a74d2e91 }28 t e s t i m a g e
{86385 ef8c424def43c570938a9943967855f43526a201d16486274d8a74d2e91 }29 . png
” , s t ream=True ) . raw ) )

b o x e s i n p u t = np . a r r a y ( [ [ [ 1 0 0 . 0 / p i c . shape [ 0 ] , 100 .0 / p i c . shape [ 1 ] , 200 .0
/ p i c . shape [ 0 ] , 200 .0 / p i c . shape [ 1 ] ] ] ] )

c r o p s i z e = (800 , 800)

w i th t f . S e s s i o n ( ) as s e s s :
i m a g e i n p u t p h = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , None , None , None ] )
b o x e s i n p u t p h = t f . p l a c e h o l d e r ( t f . f l o a t 3 2 , [ None , None , 4 ] )
b o x e s w i t h o n e s = t f . t o i n t 3 2 (
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t f . concat ( [ t f . m u l t i p l y ( b o x e s i n p u t p h , t f . t o f l o a t ( t f . concat ( [ t f .
shape ( i m a g e i n p u t p h ) [ 1 : 3 ] , t f . shape ( i m a g e i n p u t p h ) [ 1 : 3 ] ] , a x i s
=−1)) ) ,

t f . ones ( t f . concat ( [ t f . shape ( b o x e s i n p u t p h ) [ 0 : 2 ] , [ 1 ] ] ,
a x i s =−1)) ] ,

a x i s =−1))
shape ph = t f . shape ( i m a g e i n p u t p h ) [ 1 : 3 ]
c r o p r e s u l t , r e n d e r r e s u l t , o n l y b o x = s e s s . run (

[ t f c r o p a n d r e s i z e b a t c h e s o f a r r a y s ( image input ph , b o x e s i n p u t p h
, c r o p s i z e=c r o p s i z e ) ,

#t f . t i l e ( t f . t o f l o a t ( r e n d e r n d b b o x e s t f s p r e a d i n g ( b o x e s w i t h o n e s ,
shape ph , ndim=2) ) , [ 1 , 1 , 1 , 3 ] )

t f . m u l t i p l y ( t f . t o f l o a t ( r e n d e r n d b b o x e s t f s p r e a d i n g (
b o x e s w i t h o n e s , shape ph , ndim=2) ) ,

i m a g e i n p u t p h ) ,
t f . t i l e ( t f . t o f l o a t ( r e n d e r n d b b o x e s t f s p r e a d i n g ( b o x e s w i t h o n e s ,

shape ph , ndim=2) ) , [ 1 , 1 , 1 , 3 ] )
] ,

f e e d d i c t ={ i m a g e i n p u t p h : np . expand d ims ( p ic , 0) , b o x e s i n p u t p h :
b o x e s i n p u t })

f i g = p l t . f i g u r e ( f i g s i z e =(24 , 32) )
p l t . imshow ( np . a s a r r a y ( p i c ) . a s t y p e ( dtype =’B ’ ) )
p l t . t i c k p a r a m s ( l e f t =’ o f f ’ , bottom=’ o f f ’ , l a b e l l e f t =’ o f f ’ , l a b e l b o t t o m =’

o f f ’ )
l , t , r , b = [ 1 0 0 , 100 , 200 , 200 ]
p l t . gca ( ) . add patch ( p l t . R ec ta n g l e ( ( l , b ) , r − l , t − b , c o l o r =’b ’ , f i l l =

F a l s e ) )
p l t . s a v e f i g ( ’ p i c . png ’ )

f i g = p l t . f i g u r e ( f i g s i z e =(24 , 32) )
p l t . imshow ( np . a s a r r a y ( c r o p r e s u l t [ 0 , 0 , : , : , : ] ) . a s t y p e ( dtype =’B ’ ) )
p l t . t i c k p a r a m s ( l e f t =’ o f f ’ , bottom=’ o f f ’ , l a b e l l e f t =’ o f f ’ , l a b e l b o t t o m =’

o f f ’ )
p l t . s a v e f i g ( ’ c rop . png ’ )

f i g = p l t . f i g u r e ( f i g s i z e =(24 , 32) )
p l t . imshow ( np . a s a r r a y ( r e n d e r r e s u l t [ 0 , : , : , : ] ) . a s t y p e ( dtype =’B ’ ) )
p l t . t i c k p a r a m s ( l e f t =’ o f f ’ , bottom=’ o f f ’ , l a b e l l e f t =’ o f f ’ , l a b e l b o t t o m =’

o f f ’ )
p l t . s a v e f i g ( ’ r e n d e r . png ’ )

f i g = p l t . f i g u r e ( f i g s i z e =(24 , 32) )
p l t . imshow ( np . a s a r r a y ( o n l y b o x [ 0 , : , : , : ] ∗ 2 5 5 ) . a s t y p e ( dtype =’B ’ ) )
p l t . t i c k p a r a m s ( l e f t =’ o f f ’ , bottom=’ o f f ’ , l a b e l l e f t =’ o f f ’ , l a b e l b o t t o m =’

o f f ’ )
p l t . s a v e f i g ( ’ o n l y . png ’ )
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B. Datasets and source codes
As a tiny tribute to the environment, please find the complementary source codes
and datasets in the following open public repositories instead of on an attached
medium:

• https://github.com/Darthholi/similarity-models

• https://www.kaggle.com/martholi/anonymized-invoices

• https://github.com/Darthholi/DocumentConcepts
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