


Flux-Corrected Transport



Scientific Computation

Editorial Board

J.-J. Chattot, Davis, CA, USA
P. Colella, Berkeley, CA, USA
R. Glowinski, Houston, TX, USA
Y. Hussaini, Tallahassee, FL, USA
P. Joly, Le Chesnay, France
J.E. Marsden, Pasadena, CA, USA
D.I. Meiron, Pasadena, CA, USA
O. Pironneau, Paris, France
A. Quarteroni, Lausanne, Switzerland

and Politecnico of Milan, Milan, Italy
J. Rappaz, Lausanne, Switzerland
R. Rosner, Chicago, IL, USA
P. Sagaut, Paris, France
J.H. Seinfeld, Pasadena, CA, USA
A. Szepessy, Stockholm, Sweden
M.F. Wheeler, Austin, TX, USA

For further volumes:
www.springer.com/series/718



Dmitri Kuzmin � Rainald Löhner � Stefan Turek
Editors

Flux-Corrected
Transport

Principles, Algorithms, and Applications

Second Edition



Editors
Prof. Dmitri Kuzmin
Institute of Applied Mathematics III
University of Erlangen-Nuremberg
Erlangen
Germany

Prof. Rainald Löhner
School of Computational Sciences
George Mason University
Fairfax, VA
USA

Prof. Stefan Turek
Institute of Applied Mathematics, LS III
Dortmund University of Technology
Dortmund
Germany

ISSN 1434-8322 Scientific Computation
ISBN 978-94-007-4037-2 ISBN 978-94-007-4038-9 (eBook)
DOI 10.1007/978-94-007-4038-9
Springer Dordrecht Heidelberg New York London

Library of Congress Control Number: 2012935964

© Springer Science+Business Media Dordrecht 2005, 2012
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy


Participants of the Workshop 30 years of FCT

From left to right: G. Patnaik, R. Löhner, S.T. Zalesak,

D.L. Book, S. Turek, M. Möller, and D. Kuzmin



To SHASTA, ‘a fluid transport algorithm that
works’



Foreword

Jay P. Boris

Flux-Corrected Transport (FCT) was invented more than 32 years ago to improve
the quality of numerical convection algorithms. The key word here is quality. Tasked
to improve the quality of strong, multidimensional shock computations for an impor-
tant new research program at NRL, we all knew that the traditional Computational
Fluid Dynamics (CFD) approaches were not faring well, even qualitatively, because
fluid quantities such as mass density and chemical species number densities would
become negative—a physical impossibility. Given the importance of dynamic, high
Mach-number shocks in many fields, a number of talented people were working on
this problem throughout the world. Flux-Corrected Transport, NRL’s qualitatively
better solution, broke new ground in 1971. People often ask me how the idea for
the nonlinear flux limiter arose and what were the considerations that led to the
statement of the underlying principle—“The antidiffusion stage should generate no
new maxima or minima in the solution, nor should it accentuate already existing
extrema”. Here is how it happened.

In the winter of 1968 I was finishing my PhD at the Plasma Physics Labora-
tory in Princeton when Dr. Keith Roberts, the Director of the Culham Laboratory
in England, visited us. Before I knew what had happened, Keith, John Green (my
advisor), and Klaus Hain, also visiting from NRL to discuss progress on CFD with
Keith, had arranged a post-doctoral appointment at Culham Laboratory for me, to
be executed in the coming year under Keith Robert’s tutelage. During that year
Keith became my mentor and friend and gave me a firm inventive foundation in
CFD to go with my plasma physics and astrophysics training. Our work ranged
over just about every computational topic imaginable during the year. However, to-
ward year’s end, I began preparing to move to Washington, DC to participate in
a large theoretical/computational project that Professor John Dawson of Princeton
had arranged with NRL. Thus Keith and I began looking at ways to improve mul-
tidimensional CFD—as we had promised Klaus. During some particularly discour-
aging tests, Keith introduced me to Godunov’s 1959 “theorem” —that second- and
higher-order algorithms could not preserve the physical positivity property. It was
certainly clear that high-order schemes were not necessarily bringing greater accu-
racy so physics would have to step in to shore up the failing numerics.
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x Foreword

At NRL in September of 1969 everyone was in a rush. Plasma physics, MHD,
and CFD simulation techniques were all being pursued simultaneously for the big
program. The strong, fluid-dynamic shock problem had become the number one
computational roadblock by the fall of 1970 so I was urged to concentrate on the
problem full time, finally developing the FCT convection algorithm in the winter.
Called SHASTA (Sharp and Smooth Transport Algorithm), this continuity-equation
solver was developed over weekends on computers at Princeton and Oak Ridge Lab-
oratory. The results were sufficiently astonishing that both Keith and Klaus urged
me to present the new capability at the conference/workshop “Computing as a Lan-
guage of Physics,” held in Trieste, Italy in the summer of 1971. This first paper
“A fluid transport algorithm that works” was published by the organizers in book
form through the IAEA.

In 1971 David Book joined the NRL melting pot and began working with me
on FCT to extend the continuity equation solver to treat sets of coupled fluid dy-
namic equations and to generalize the formulation. Our 1973 article in the Journal
of Computational Physics (submitted in November 1971) extended the Trieste pa-
per to include strong shocks and other fluid flows. This first journal article in the
FCT series of three was reprinted as the most cited article up to that time in the 25th
Anniversary Issue of the JCP. This article was also acknowledged as the most cited
NRL publication at the NRL 75th Anniversary Celebration a year later.

SHASTA was constructed as a layered set of corrections, each layer being added
to mitigate the problems introduced by the previous layer. This general approach sel-
dom works, as I have subsequently discovered (repeatedly), but this particular time
it did. The starting point was general dissatisfaction with the negative densities and
nonphysical wiggles near sharp gradients observed in leapfrog and Lax-Wendroff
convection and a deep suspicion of the excess diffusion introduced in first order
donor-cell algorithms. I also decided to work on a single, general continuity equa-
tion, trusting to earlier work with Keith that a numerical model for any set of fluid
equations could be built up with such a building block.

Impressed by the potential of Arbitrary Lagrangian-Eulerian (ALE) algorithms,
the first layer of SHASTA is a conservative Lagrangian displacement and compres-
sion of linear trapezoids of fluid. It is local, positive, and easy to program but leads
to jagged sequences of mismatched trapezoids that quickly spawn most of the prob-
lems of a fully Lagrangian approach. The second layer of SHASTA, therefore, was
a conservative Eulerian remap of the displaced, distorted trapezoids of fluid back
onto the original fixed grid. This introduced a zero-order numerical diffusion whose
coefficient, 1/8, was generally worse than donor cell diffusion! As a result, the third
layer of SHASTA was an explicit, linear antidiffusion to subtract the excess diffu-
sion introduced by the remap. Of course this resulted in solutions just as bad as the
second-order Lax-Wendroff and leapfrog algorithms.

Rather than resign myself to adding a strong numerical viscosity based on deriva-
tives that would be essentially meaningless near discontinuities and sharp gradients,
I began looking in detail at the physics of the local profiles of the density profile
being convected — before and after antidiffusion. In each specific case it was clear
just how much of the antidiffusive correction flux could be used at each interface
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and how much had to be thrown away to prevent a particular cell value from being
pushed past the monotonicity limits imposed by the neighboring values. However,
the expression of this “flux correction,” now usually called a flux limiter or slope
limiter, was different in every case. Finally recognizing that the sign function of
the density difference across a cell interface could be used to collapse the behavior
near maxima and near minima into a single formula, the pivotal max-min expres-
sion emerged after a couple of days of fooling around during a marathon computing
session at Oak Ridge in March 1971.

David recognized that the underlying linear convection algorithm could be just
about anything; the SHASTA algorithm in the first working FCT code was just a ve-
hicle and maybe not even a particularly good one. We tried variants of Lax-Wendroff
and the other simple linear algorithms, resulting in a set of three papers in the Jour-
nal of Computational Physics, the second with Klaus Hain. Making the zeroth-order
diffusion coefficient even larger, 1/6, reduced the phase error in the convection from
second order to fourth order with improved retention of profile structure. We found
that the initial density profile could be made to emerge unscathed, when the inter-
face velocities are zero, despite the diffusion and antidiffusion stages. David called
this “Phoenical” FCT and we use this trick today. David also forced some mathe-
matical rigor into the mix. Stung by a public criticism from Conrad Longmire and
Greg Canavan at his first major FCT presentation that the results were faked, he did
much experimentation and analysis to understand why FCT was working so well
and insisted on a steady stream of peer-reviewed publications. Perhaps the best of
these, if not the most cited, was the chapter “Solution of Continuity Equations by
the Method of Flux-Corrected Transport” in volume 6 of Methods in Computational
Physics. David recalls these early days in Chap. 1 below.

Many of NRL’s fluid dynamicists made significant contributions in the 1970s.
Steve Zalesak invented the multidimensional limiter, one of the main breakthroughs
for FCT, and this was modified and extended by Rick DeVore to include MHD flows
where ∇ · B = 0 is an important consideration. Steve characteristically understates
his own contributions in Chap. 2 below. Ed MacDonald showed us that FCT could
be added to spectral algorithms, spawning an FFT FCT and a (linearly) reversible
FCT algorithm. Elaine Oran and John Gardner contributed significantly to refine-
ment of the time- and direction-split LCPFCT software package described in detail
in the first and second editions of the book Numerical Simulation of Reactive Flow.
This simple toolbox now has had tens of thousands of copies distributed worldwide.
Kailas Kailasanath introduced boundary layer considerations for his ground break-
ing work on acoustic-vortex interactions and combustion instabilities. Ted Young,
Niels Winsor, Sandy Landsberg, and Charles Lind played a major role in vectoriz-
ing and then parallelizing FCT, leading directly to NRL’s current FAST3D general-
geometry CFD models. Rainald Löhner took the lead in carrying FCT into the Finite
Element world with a practical general-geometry formulation that also provided a
basis for adaptive meshing and moving geometry considerations. He and Joseph
Baum consider the status and direction of FCT over the last thirty years in Chap. 5,
focussing somewhat on blast and shock problems. Gopal Patnaik first extended FCT
to an implicit formulation called BICFCT for slow but fully compressible reacting
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flows in performing the world’s first dynamical, multidimensional flame simula-
tions. A computer manufacturer, Texas Instruments, Inc. even got into the act. They
added pairwise vector min, max and sign operations to the pipeline instruction space
of their parallel processing Advanced Scientific Computer (ASC) at NRL’s request
so that the Flux-Corrected Transport in FAST3D would be even faster.

In the chapters following you will also see some of the other things done with
these simple ideas in the ensuing three decades. My own focus at the Naval Research
Laboratory has been on large-scale urban transport of contaminants. Chapter 4 by
Gopal Patnaik, Jay Boris, Fernando Grinstein, and John Iselin considers this very
important application, showing how to reduce the numerical dissipation still fur-
ther for detailed urban and building airflows. 3D turbulence, the source of contam-
inant dispersion in these urban problems, is treated by Monotone Integrated Large
Eddy Simulation (MILES), an LES formulation based implicitly on the monotonic-
ity properties of FCT with stochastic backscatter in a 4th-order phase, time-accurate,
finite volume model for detailed building and city aerodynamics. In retrospect, it
should not be surprising that an algorithm designed for treating sharp gradients and
discontinuities in compressible flow should work equally well for rotational flows.
Nevertheless, it has taken fifteen years since its explanation in 1989 for the com-
munity to acknowledge the benefits of monotone (in our case FCT) algorithms for
the treatment of turbulence. Chapter 3, by Fernando Grinstein and Christer Fureby,
considers this originally unintended but greatly appreciated byproduct of FCT.

Chapters 6, 7 and 8, by Dmitri Kuzmin, Matthias Möller, and Stefan Turek
complete the book, presenting a unified theoretical foundation for “Algebraic Flux-
Correction” from the Finite Element perspective. This approach is intrinsically mul-
tidimensional and unifies FCT and TVD variants of monotonicity-preserving algo-
rithms. The authors retrace the original progression of developments, beginning with
scalar conservation laws, extending to the hyperbolic compressible Euler equations,
and finishing with a methodology for treating incompressible flow problems.1

U.S. Naval Research Laboratory, Washington, DC, USA

1The unreferenced Chaps. 9, 10 and 11 were added in the second edition of this book.



Preface

By a remarkable coincidence, the second edition of this book will appear in the year
that marks the 40th anniversary of Flux-Corrected Transport (FCT). The first decade
of the 21st century has witnessed a renewed interest in applications of FCT to the
equations of fluid dynamics. The first edition of the book has found many readers
who used it to improve existing and design new FCT algorithms. Other readers rec-
ognized the advantages of FCT and applied it to challenging new problems. A recent
comparative study of shock-capturing techniques for unsteady transport equations
[16] has made FCT more popular in the finite element community. Being the old-
est design tool for nonlinear high-resolution schemes, FCT is still superior to many
modern methods when it comes to solving problems with steep gradients.

The revised and expanded second edition summarizes many recent advances
in the field of FCT. Chapters 3–8 have been updated to reflect the current state
of the art. Moreover, the second edition features three new chapters describ-
ing FCT-constrained data transfer in Arbitrary Lagrangian-Eulerian methods, an
optimization-based approach to flux correction, and the implementation of an FCT
algorithm for high-speed flows on structured overlapping grids. The research pre-
sented in the new chapters was done at three U.S. National Laboratories.

The Editors would like to thank all authors for their contributions that make this
book the most complete source of information on modern FCT methods. The ini-
tiative of the Springer Verlag to publish the second edition is also gratefully ac-
knowledged. Special thanks go to Tobias Schwaibold and Kirsten Theunissen who
coordinated the review of the new book proposal and the publication process.

Dmitri Kuzmin
Rainald Löhner

Stefan Turek

Erlangen, Germany
Fairfax, VA, USA
Dortmund, Germany
November 2011
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Preface to the First Edition

In 1973, in the eighth year of its youth, the Journal of Computational Physics pub-
lished the classic Boris and Book paper describing flux-corrected transport (FCT)
[1]. Almost all of the monotonicity-preserving and non-oscillatory fluid transport
algorithms of today trace their origins, ultimately, to ideas that first appeared in this
paper.

Boris and Book’s new and far-reaching idea was to locally replace formal trun-
cation error considerations with conservative monotonicity enforcement in those
places in the flow where the formal truncation error had lost its meaning, i.e., where
the solution was not smooth and where formally high order methods would violate
physically-motivated upper and lower bounds on the solution. This is today still the
fundamental principle underlying the great bulk of the monotonicity-preserving and
non-oscillatory algorithms that have appeared in more recent times. Occasionally
this bit of history is lost in some of the more recent literature, in part due to the fact
that the paper is now more than 30 years old (and the original publication [2] older
still).

In [1], the authors applied this fundamental idea to a specific algorithm they
termed SHASTA. They were able to show not only sharp monotone advection of
linear discontinuities, but also sharp non-oscillatory gas dynamic shock waves. In-
cluded in [1] was a SHASTA calculation of a shock tube problem much more dif-
ficult than that used by Sod five years later [3], with nearly monotone results, and
with no knowledge of the solution (e.g., Riemann solvers) built in to the algorithm.
All of these calculations were the first of their kind with monotonicity-preserving
algorithms of greater than first order accuracy. It was also in this paper that the term
“flux-limiting” [1, p. 50] appeared in print for the first time.

In the years following 1973, Boris and Book and colleagues published two more
FCT papers in the Journal of Computational Physics [4, 5], followed by a chapter in
the Methods in Computational Physics book series [6] that summarized their work
up through 1976. These works refined their ideas, generalizing the algorithms to a
larger class of which SHASTA was just one member. Their emphasis was on the
continuity equation as a scalar representative of systems of conservations laws, and
upon advective phase error as a primary culprit in the elimination of the errors that

xv



xvi Preface to the First Edition

remained after non-oscillatory behavior was eliminated via flux limiting. A more
recent summary of FCT is given in the book by Oran and Boris [7].

Work on FCT algorithms has also thrived elsewhere in publications far too nu-
merous to reference here. Two notable examples are the extension of FCT to fully
multidimensional form by Zalesak in 1979 [8], and the generalization of FCT to
finite element discretizations on unstructured grids (e.g., triangles and tetrahedra in
two and three dimensions respectively) by Parrott and Christie in 1986 [9]. A gen-
eral FEM-FCT methodology for the Euler and Navier-Stokes equations of fluid dy-
namics was introduced by Löhner et al. [10]. One of the consequences of this last
development has been the ability to perform FCT calculations in extremely com-
plex geometries. An example is the remarkable simulation of the 1993 World Trade
Center blast which modeled in detail the garage of the building including all of the
parked cars [11].

The response of the scientific computing community to FCT was and still is
remarkably strong. Many new publications have emerged during the 1990s and
early 2000s. The recent advances include but are not limited to: the use of FCT as
an implicit subgrid scale model for Monotonically Integrated Large Eddy Simula-
tion (MILES) [12], ‘iterative and synchronous flux-correction’ [13], monotonicity-
preserving ‘prelimiting’ [14] as well as implicit FEM-FCT schemes based on a gen-
eralization of Zalesak’s limiter [15]. Clearly the impact of the original paper [1] is
still being felt long after its original publication. This impact is seen in an astound-
ing number of citations and application of FCT to virtually every area of science,
from aerodynamics and shock physics to atmospheric and ocean constituent trans-
port, magnetohydrodynamics, kinetic and fluid plasma physics, astrophysics, and
computational biology.

Most of the contributions compiled in the present volume are based on talks given
at the Workshop “High-Resolution Schemes for Convection-Dominated Flows:
30 Years of FCT” which was held in September 2003 at the University of Dort-
mund, Germany. It was intended to provide a forum for discussion of the progress
made in the development of numerical methods for fluid dynamics during the three
decades that elapsed since the birth of FCT. The high caliber of the presented re-
sults and many fruitful discussions have made this informal meeting a remarkably
successful one. This has led us to unite our efforts and describe the state of the art in
this book. The Editors would like to express their sincere gratitude to Prof. Roland
Glowinski (University of Houston) for the expert review of the manuscript and thank
Prof. Wolf Beiglböck (Springer-Verlag Heidelberg) for the prompt publication.

Dortmund, August 2004 The authors
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The Conception, Gestation, Birth, and Infancy
of FCT

David L. Book

Abstract How Flux-Corrected Transport came to be, as recalled by one of the
innovators: recollections of how FCT was developed and of the individuals respon-
sible.

1 Conception

In 1970 there was essentially no reliable way to solve fluid equations numerically.
By 1971 there was one. Flux-Corrected Transport (FCT) was the first method de-
veloped that yielded physically acceptable results for such equations. The present
paper describes how Jay Boris and I developed FCT, with what I hope is an ac-
curate account of our thinking at the time, the path we followed in the course of
the development, including the missteps and blind alleys, and the roles of the other
individuals who were involved.

Fluid or hydrodynamic equations are partial differential equations dominated by
convective motion, that is, equations in which convective derivative terms of the
form

∂f

∂t
+ v · ∇f

play a decisive role, where f is one of the dependent fluid variables (density of mass,
momentum, energy, or charge; pressure, entropy, species concentration, etc.), t is
time, v is the flow velocity, ∇ ≡ ∂

∂r , and r is position. Examples are the continuity
equation for a compressible medium with mass density ρ,

∂ρ

∂t
+∇ · ρv= 0,

the Euler (momentum) equation in the presence of a scalar pressure p and a constant
gravitational acceleration g, which can be written

∂(ρv)
∂t
+∇ · ρvv+∇p+ ρg= 0,

D.L. Book (�)
Enigmatics, Inc., P.O. Box 8610, Monterey, CA 93943, USA
e-mail: davidbook@enigmatics.com

D. Kuzmin et al. (eds.), Flux-Corrected Transport, Scientific Computation,
DOI 10.1007/978-94-007-4038-9_1, © Springer Science+Business Media Dordrecht 2012
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2 D.L. Book

and the Navier–Stokes equation (the Euler equation with the inclusion of viscosity),

ρ
∂v
∂t
+ ρv · ∇v+∇p = μ∇2v.

Such equations are also called convective or hyperbolic, although strictly speak-
ing the Navier–Stokes equation is parabolic in regions where the Laplacian term
dominates. In general, the equation expressing the transport of any continuously
distributed quantity, together with terms describing sources and losses, is of this
form. This category includes all of the familiar conservation laws.

A third of a century ago computer resources were meager by comparison with
today’s technology, but most of the general computational approaches in use today
were known, at least in broad outline, and the first steps had already been taken to-
ward applying them. Finite differences and finite elements (the distinction between
them then was somewhat blurred, though now people usually associate these terms
with differencing schemes on structured and unstructured grids, respectively), char-
acteristics, quasiparticles, and spectral methods had all been invented, and all of
these tools were being applied to the problem of finding computational solutions to
fluid equations. Dozens of Fortran codes based on each of these methods, or com-
binations of several of them, were in existence. They all fell short of what I feel is
the goal of any numerical treatment of evolution equations: using limited, i.e., dis-
cretized, information about the dependent variables in order to predict the values of
those variables at a later time with the same accuracy or level of confidence.

The presence of convective derivatives is what makes fluid equations difficult to
solve numerically. Because of them the characteristics, the space–time trajectories
along which the values of the fluid variables are constant, slope. In order to predict
the values at a position r of the fluid variables at a time t ′ later than a time t for
which their values are known, it is necessary to use information from the points
through which the characteristics passed at time t , which are in general different
from r. Thus, to predict the values of the fluid variables at a particular point on, e.g.,
a finite-difference grid may require knowing their values at an earlier time from a
location that was not on the grid.

In thinking about the implications of sloping characteristics I like to use an anal-
ogy with what I call the window problem. Suppose you are in a room with several
windows looking out onto a nearby railroad track. When a train comes by each car
in succession appears at a given window. Let’s say that the train is moving from
your left to your right. If you want to know what car is going to appear next at the
window in front of you, you can look out the window to the left of it. You don’t have
to keep a continuous watch; it suffices to glance over at the second window at in-
tervals, which correspond to the discrete timesteps in a finite-difference scheme. Of
course, if the windows are too widely spaced, or if you are too close to them, there
may be several cars hidden out of sight between the two windows. This is analogous
to using too coarse a mesh in your difference scheme. Likewise, you may miss a car
if the intervals between glances are too long, which corresponds to using too long a
timestep Δt .

But the information you get is limited in another way, because the window is
narrow and you can’t see a whole railroad car at one time. In order to make good
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Fig. 1 Pathological railcars

predictions you have to know something about the kinds of railroad cars that the
train is allowed to have. A glimpse may be all you need to know that a car is a
boxcar or a tank car or a flat car, but what if it’s a car of a type you’ve never seen
before, say, one carrying a crane to lift up wrecks? Or one with unusual dimensions
or proportions (Fig. 1)? Your prediction is implicitly based on a bias or prejudice in
favor of the kinds of cars you expect to see.

In the same way, a numerical technique must contain a built-in bias about the
form solutions can take, because the available information is limited by discretiza-
tion. No technique can handle all situations. Each one must be tailored to fit a par-
ticular class of problems.

The problems Jay and I were interested in were time-dependent fluid problems,
especially those involving supersonic flow, and more generally, systems with dis-
continuities or steep gradients. These include not just shocks (which can occur only
when there is supersonic flow), but also contact and tangential discontinuities and
abrupt changes in temperature, species concentration, etc. We opted to employ a
finite-difference approach because it simplified coding, particularly in multidimen-
sions and at boundaries, and because that was what we were most comfortable with.

The naïve approach to finding a finite-difference approximation to differential
equations on a mesh with a uniform spacing Δx is to expand the derivatives in
Taylor series:

f (x ±Δx)= f (x)± ∂f

∂x
Δx + 1

2

∂2f

∂x2
(Δx)2 ± · · · .

Thus,

f (x +Δx)− f (x −Δx)= 2
∂f

∂x
Δx +O(Δx)3

or
∂f (x, t)

∂x
= 1

2Δx

[
f (x +Δx, t)− f (x −Δx, t)

]+O(Δx)2,

and similarly

∂f (x, t)

∂t
= 1

2Δt

[
f (x, t +Δt)− f (x, t −Δt)

]+O(Δt)2.
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Hence a straightforward finite-difference approximation to the 1-D passive advec-
tion equation

∂ρ

∂t
+ u

∂ρ

∂x
= 0

is

ρ(x, t +Δt)= ρ(x, t −Δt)− ε
[
ρ(x +Δx, t)− ρ(x −Δx, t)

]
,

where ε = uΔt/Δx is the Courant number. The resulting finite-difference approxi-
mation is of course just second-order leapfrog, a useful scheme that has been widely
adopted.

The Taylor-series approach has a number of strengths. It yields difference
schemes (such as leapfrog) that are accurate for problems with slowly varying pro-
files, i.e., those in which discontinuities are absent. Also, it facilitates the analysis
of amplitude and phase errors. Thus, assume a sinusoidal density profile

ρ0
j = ρ0 exp(2πijκ/N),

where jΔx is position, κ is the mode number and N is the number of mesh points.
If

ρ1
j = ρ1 exp(2πijκ/N)

is the corresponding profile found after one timestep, then the amplification fac-
tor is Aκ = |ρ1/ρ0| and the relative phase error (the error in the speed with
which features are advected numerically, divided by the correct speed) is Rκ =
(κε)−1 tan−1(Imρ1/Reρ0)− 1.

But the Taylor-series expansion approach also has some notable deficiencies. It
works only when “order” makes sense, i.e., when the scale of variation is large
compared with the mesh spacing, so that the neglect of higher-order terms (“trun-
cation errors”) is justified. Consequently, it breaks down at discontinuities, where
“dispersive” ripples make their appearance. (The finite-interval Gibbs effect, the
analog for discrete Fourier transforms of the well-known Gibbs phenomenon, can
also contribute to errors in the vicinity of a discontinuity. I will return to this topic
below.)

The key insight (which to the best of my knowledge originated with Jay) is that
the Taylor-series approach fails because it does not enforce positivity, a property
sometimes called monotonicity. For physical reasons some variables can only take
on positive values. Examples are mass and energy density (but not charge or mo-
mentum density), temperature, and pressure. Nothing in the Taylor-series approach
ensures this. Positivity violations are found to be worst near discontinuities. At dis-
continuities formal high-order accuracy is less important than maintaining positiv-
ity.

This may be an appropriate time to try to spell out what is meant by the term
“discontinuity.” Shocks, contact discontinuities, and slip lines (tangential disconti-
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nuities) would be physically discontinuous in the absence of dissipation. Because
dissipation can never be totally absent, however, no physical quantity is ever truly
discontinuous, at least in classical physics. There are no discontinuities in nature.

In finite-difference approximations, on the other hand, all changes are discontin-
uous, but some are more discontinuous than others. A criterion is needed to deter-
mine when a discontinuity is “real.” This criterion may involve calculating whether
the relative or absolute change in a variable exceeds some threshold value, or it may
be more complicated. The exact definition, as always, depends on the nature of the
problem and one’s expectations about the solution being sought.

In the absence of a specific criterion a finite-difference scheme will not be able
to distinguish a weak physical discontinuity from a smooth feature or from noise.
As I will show, there are several reasons why a profile that should be smoothly
varying might develop ripples or “bumps” in a computational treatment. Hence in
any scheme susceptible to such errors nonphysical features will be treated just like
physical ones. The trick is to avoid, as much as possible, developing them in the first
place.

The simplest system of equations that models shocks is that of ideal hydrody-
namics. This consists of the continuity and Euler equations and an equation for the
energy density

E = 1

2
ρv2 + p

γ − 1
.

The energy equation follows from the adiabatic law (pressure equation) in the form

∂p

∂t
+ v · ∇p+ γp∇ · v= 0,

where γ is the ratio of specific heats.
These three equations express the conservation of mass, momentum, and en-

ergy. That they are conservative is important; if the adiabatic law is used instead
of the formally equivalent energy equation, then pressure remains positive but the
Rankine–Hugoniot (jump) conditions are violated. If the energy equation is chosen
as one of the fundamental evolution equations, then energy is conserved and shocks
obey the Rankine–Hugoniot conditions, but pressure is a derived quantity which can
become negative. The Rankine–Hugoniot conditions imply that the jump in entropy
varies as (M− 1)3, where M is the Mach number. Using the adiabatic law means
that only weak shocks (M→ 1) are calculated correctly. This dilemma confronts all
finite-difference schemes.

Physically, viscous dissipation is responsible for creating entropy at a shock
front. This is what allows shocks to satisfy the Rankine–Hugoniot conditions. The
equations of ideal hydrodynamics in conservative form contain no explicit viscos-
ity terms, but nevertheless admit solutions that satisfy the Rankine–Hugoniot con-
ditions. These so-called weak solutions represent a zero-viscosity limit. Physical
shocks in systems with nonzero viscosity differ in having nonzero thickness; that is,
the jump takes place over a region of finite extent.
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Any numerical scheme must include some dissipation if it is going to allow the
jump conditions to be satisfied. Before the invention of FCT the most successful
finite-difference treatments of supersonic flow, developed at Los Alamos and widely
employed elsewhere, introduced an artificial viscosity term, typically in the form of
a velocity-dependent coefficient multiplying the second difference of the velocity.
This forced the production of entropy at places where the velocity underwent abrupt
change and allowed the Rankine–Hugoniot conditions to hold.

The trouble with this approach was that in order to generate enough entropy the
coefficient had to be large. This in turn caused the shock to be spread out over sev-
eral or many mesh spaces. That was fine if the physical viscosity in the problem was
large, i.e., if the Reynolds number Re was of order unity. But for realistic problems
of high-Reynolds-number flow—say, Re > 100—it was hopelessly inaccurate. To
reduce the shock thickness to reasonable values would require being able to deter-
mine where shocks were located or were about to form or introducing thousands
of grid points in each coordinate direction, which would have been prohibitively
expensive. (Remember, this was in 1970.)

There is another downside to using artificial viscosity. The timestep limit in
finite-difference problems arises because information can travel no faster than one
mesh space per timestep (assuming three-point difference schemes), which means
that the Courant number must not exceed unity. Violating this condition in explicit
finite-difference treatments of the ideal hydrodynamic equations leads to catas-
trophic numerical instability. If the spatial mesh in a calculation is refined the
timestep must shrink proportionately to stay within safe limits. But when diffu-
sion terms of the form μ∇2v dominate, then the timestep scales with the square
of the mesh space. Consequently, in methods using artificial viscosity even re-
fining the mesh locally near the shocks becomes much more expensive if the
diffusion terms are differenced explicitly. (Implicit differencing has problems of
its own.)

A shock wave heats the medium through which it is traveling, which causes the
speed of sound to increase. Hence information propagates faster, so that signals in
the region behind a shock tend to catch up with the shock. This means that shocks
are self-steepening. Other discontinuities, such as contact surfaces, are not. As a
result, shear surfaces and interfaces between two different media or between two
regions in the same medium with different properties tend to be smeared out by
numerical diffusion and are more difficult to model than shocks.

The passive advection equation models advection and propagates contact dis-
continuities, but in contrast to the system of hydrodynamic equations it has no
self-steepening mechanism. Consequently, it is a more stringent test of numerical
fluid-equation solvers. In addition it is simpler to work with than a set of nonlinear
equations. Thus, it was natural for us to choose it as our test bench instead of the
full set of hydrodynamic equations. We felt that if we could do a good job solving
this equation numerically we could solve most fluid problems.

For our basic test problem we chose to propagate a square wave 20 mesh spaces
in width across a grid 100 mesh spaces wide (Fig. 2) for 800 timesteps with a con-
stant Courant number ε = 0.2, using periodic boundary conditions in order to al-
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Fig. 2 Initial conditions for
the square-wave test

Fig. 3 Square-wave test of
donor cell (first-order
accuracy)

low the profile to reenter the system. As a quantitative figure of merit we used the
average absolute value of the error (the L1 norm), abbreviated A.E. This test prob-
lem subsequently became a kind of universal standard in the computational physics
community.

When various numerical methods are evaluated using this problem one can read-
ily discern their strengths and shortcomings. Those that are inaccurate to zeroth or-
der in terms of Taylor-series expansions in kΔx, the nondimensionalized wavenum-
ber, fail to track the analytical solution correctly, yielding profiles that move either
too fast or too slow. Those that are first-order accurate, such as donor-cell (upwind
differencing), yield profiles that move at the right speed and maintain positivity, i.e.,
ρ(x) > 0 everywhere, but become smeared out over an ever-increasing portion of
the grid (Fig. 3). In other words, they are highly diffusive.

Methods that are second-order accurate, such as leapfrog or Lax–Wendroff, yield
profiles that develop multiple ripples (Fig. 4). These arise because the various
Fourier harmonics that make up the square wave propagate at different speeds. The
long-wavelength components propagate at nearly the right speed, while the short-
wavelengths usually lag behind. In other words, the errors are dispersive. The rip-
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Fig. 4 Square-wave test of
leapfrog (second-order
accuracy)

ples grow in amplitude until the profile can become negative in some places. Thus,
second-order algorithms do not maintain positivity. Notice that introducing a small
amount of smoothing (ν = 0.01) not only eliminates these negative values but also
reduces the A.E. The optimum choice of the smoothing coefficient ν is, however,
problem-dependent.

It is difficult to say which is worse, diffusive or dispersive errors, Scylla or
Charybdis. Going to higher than second order doesn’t solve the problem. Every
technique that can be expressed in terms of linear finite-difference operations on
the dependent variable—including every finite-difference treatment of the passive
advection equation and its hydrodynamic kin in existence prior to the invention of
FCT—suffers from one or the other failing.

2 Gestation

FCT was the first nonlinear finite-difference technique. In my view there were three
main steps in our thinking that led to its development: expressing all operations in
terms of fluxes, certainly not a new idea at the time; a transport algorithm called
SHASTA, which is highly diffusive even in the limit of zero velocity, suggesting
the use of “antidiffusion” to cancel out the diffusive errors; and the idea of correct-
ing (limiting) the antidiffusive fluxes in order to maintain positivity (the nonlinear
ingredient).

Fluxes are quantities of an extensive variable (e.g., mass, momentum, energy)
that pass from one cell or grid point to another. If a finite-difference algorithm can be
expressed entirely in terms of fluxes then it is guaranteed to be conservative, because
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Fig. 5 Finite-difference
approximation represented by
rectangles and by trapezoids

what is removed from one place reappears in another. Thus, advection (transport
only) can be approximated using transportative fluxes:

ρT
j = ρj − φT

j+1/2 + φT
j−1/2,

where

φT
j+1/2 = εj+1/2ρj+1/2,

with εj+1/2 = uj+1/2Δt/Δxj+1/2 and ρj+1/2 defined on the cell boundary,
xj+1/2 = 1

2 (xj + xj+1), and Δxj+1/2 = xj+1 − xj .
Similarly, diffusion can be expressed in terms of diffusive fluxes:

ρD
j = ρj + φD

j+1/2 − φD
j−1/2,

where

φD
j+1/2 = νj+1/2(ρj+1 − ρj ).

In both instances what is subtracted from one cell is added to its neighbor, so the
total “mass” is conserved.

The second ingredient, SHASTA, was Jay’s idea. He devised it by means of a ge-
ometric approach. Imagine a finite-difference approximation ρj to some continuous
variable ρ(x), represented by histograms or rectangles (the broken lines in Fig. 5).
Connect the points denoting the values of ρj with straight lines to form trapezoids.
The area contained in the resulting trapezoids is the same as that contained in the
rectangles.

If this profile is then transported across the grid with some velocity u(x), in gen-
eral each trapezoidal packet of fluid undergoes advection together with compression
or expansion. Each mesh point xj moves to a new location x′j . In one timestep the
two vertical sides xj and xj+1 of a trapezoid thus move in general by different dis-
tances, causing it to be deformed as well as translated. The condition x′j < x′j+1,
which is necessary to ensure positivity, imposes the limitation ε < 0.5. At the end
of each timestep the mass contained in the trapezoid is reassigned to the two rectan-
gles it straddles: the portion to the left of the boundary between two cells is assigned
to the left-hand cell and the portion to the right is assigned to the right-hand cell
(Fig. 6).
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Fig. 6 SHASTA contains a
zeroth-order diffusion

It is easy to see that the process of creating trapezoids and reassigning their mass
is highly diffusive. In fact, in the limit when the velocity is identically zero the new
value of ρj equals the old value plus a second difference with coefficient of 0.125:

ρn+1
j = ρn

j +
1

8

(
ρn
j+1 − 2ρn

j − ρn
j−1

)
.

Since this algorithm is diffusive, the natural thing to do is to subtract the excess dif-
fusion, or to put it another way, to apply antidiffusion. Antidiffusion is just diffusion
with a negative coefficient:

∂ρ

∂t
=−A∂2ρ

∂x2
, A > 0.

Whereas diffusion erodes features, antidiffusion steepens them. Discontinuities be-
come sharper and new extrema can occur. If this process is sufficiently drastic it can
violate positivity (Fig. 7).
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Fig. 7 Antidiffusion can
violate positivity

One way to look at this is to recognize that diffusion converts a second-order
algorithm like Lax–Wendroff or leapfrog that has wiggles into one that is first-order
like donor cell. Hence taking out the excess diffusion changes it back into a second-
order algorithm and restores the wiggles.

Jay recognized that by correcting or limiting the antidiffusive fluxes before they
are applied he could avoid restoring the wiggles. A flux large enough to push a point
j down below its neighbors will create a new minimum that might go negative, so
it is necessary to reduce the size of this flux. If the profile already has a minimum
at j , then allowing it to be pushed further down is dangerous, so it is necessary
to zero any flux that tends to do so. Likewise, it is necessary to avoid enhancing
maxima on negative profiles. The two rules can be combined into one: replace the
“raw” antidiffusive fluxes with fluxes “corrected” so that no new extrema can form
and existing extrema cannot grow. Figure 8 illustrates the four different situations a
limiter can face when dealing with the flux between the points j and j+1, assuming
the gradient is positive there: (a) no pre-existing extrema; (b) a maximum present at
j + 1; (c) a minimum present at j ; or (d) both.

This was the first flux limiter that gave satisfactory results. We eventually realized
that there are other workable variants, but this one, in which each flux is corrected
without reference to others, is arguably the simplest. Because its action sometimes
amounts to overkill (in ways I will describe shortly) I called it “strong” flux limiting.

The idea of using a flux limiter was the crucial ingredient in FCT. Some of the
credit for it should go to the late Klaus Hain, our colleague at the Naval Research
Laboratory. At the time Klaus was also trying to develop an algorithm to solve con-
vective equations. I believe he was the first to recognize that some sort of adjustment
or correction in the fluxes was needed, but he had not yet found the right formula-
tion. Jay picked up the idea from him and made it work.

In some ways we were Klaus’s competitors more than his collaborators. Klaus
was an extremely able numericist, and Jay clearly wanted to be the first to find a
successful algorithm. Jay and I worked closely together, but Klaus worked almost
entirely alone. I thought it was because Klaus, German-born and about two decades
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Fig. 8 Possible actions of a
“strong” flux limiter on a
positive flux

older than us, had trouble speaking and writing English. His wife Gertie, however,
assured everyone that he was uncommunicative in German too.

3 Birth

By mid-1971 we had a working one-dimensional flux-corrected version of SHASTA.
The name SHASTA supposedly came not from the famous mountain, but from the
nom de guerre of a topless dancer. (I cannot confirm this from my own experi-
ence.) Possibly because he thought this lacking in dignity Jay contrived the acronym
“SHarp And Smooth Transport Algorithm,” which is how we presented it to the
world.

Initially Jay had been unwilling to reveal the secret of FCT to outsiders, but one
day he said to me, “Here comes Super-Klaus!” He suspected that Klaus was writing
up his work for publication, and that was what changed his mind. We decided that
one paper was not enough. Instead there would be a series, which became the cel-
ebrated FCT-1, FCT-2, and FCT-3. Jay was the obvious choice as the senior author
of the first paper, most of which he drafted, but he must have felt a little guilty about
scooping Klaus, because he suggested that the subsequent papers should bear the
names of all three of us. Each of us would write the first draft of one of them; Klaus
would be lead author of one and I would be lead author of the other. In the event
though, Klaus—true to form—never did write anything, and his name appeared only
on the second paper.



The Conception, Gestation, Birth, and Infancy of FCT 13

Actually, the first publications describing FCT appeared not in 1973, but two
years earlier. (Hence the workshop for which I prepared the present paper should
properly be called FCT-32, which is a more computational-sounding name than
FCT-30 anyway.) I wrote the first journal article, which closely followed the manu-
script we were preparing for submission to the Journal of Computational Physics at
the time. It appeared in the November issue of NRL Reports of Progress, a house
organ read by almost nobody. The only reason I wrote it was because I was then
serving on a committee set up in order to make the Reports of Progress more rele-
vant and better known.

But our very first publication was oral and never found its way into print. The
application for which FCT was intended was modeling the atmospheric nuclear ex-
plosions that would have resulted from the infamous antiballistic missile program.
The 1971 Symposium on High-Altitude Nuclear Effects (HANE), held at Stanford
in August, was the first exposure of FCT to the computational community at large.
The meeting was attended by government and private contractors funded by the De-
fense Atomic Support Agency, which that year became the Defense Nuclear Agency
(DNA), afterward called the Defense Special Weapons Agency, and currently the
Defense Threat Reduction Agency.

Several people from NRL were there, presenting results on various aspects of
HANE. The attendees from other organizations were of course competing with us
for DNA support. We wanted to impress them and our sponsor, but not to tell them
too much. I gave the talk on the design of FCT. Jay was very insistent that I not
reveal any secrets, and I didn’t. I showed the results of the square-wave tests, I de-
scribed SHASTA, but I didn’t explain how the flux limiter worked, nor did I mention
an embellishment called a “steepener.” A lot of what I said was sheer doubletalk.
I have a vivid recollection of a frustrated Greg Canavan from the Air Force Weapons
Laboratory standing in the audience, asking question after question, trying to pin me
down. Finally he said, “You keep saying, ‘Another way to look at it is so-and-so.’
Just tell us how it works!”

The meeting was a triumph for FCT and for our group at NRL. Our co-authors on
that initial publication, Carl Wagner and Ed McDonald, were among the first users
of SHASTA. Carl later worked on controlled fusion in private industry; Ed, who is
still at NRL, changed fields and is now widely known for his work modeling sound
propagation in the ocean. Jay and I both began applying SHASTA to a variety of
problems, as did at least half a dozen of our colleagues in the Plasma Dynamics
Branch. Many of these led to plasma and ionospheric physics papers.

At the same time we continued to refine and extend the method while preparing
for publication in JCP. Some of the improvements resulted in making the code more
efficient. Jay found that the flux limiter, which originally required a nested sequence
of IF statements, could be expressed by a one-line formula:

φc
j+1/2 = σj+1/2 max

[
0,min(σj+1/2Δj−1/2, |φj+1/2|, σj+1/2Δj+3/2)

]
.

Here

Δj+1/2 = ρTD
j+1 − ρTD

j ,

φj+1/2 = μ
(
ρTD
j+1 − ρTD

j

)
or φj+1/2 = μ

(
ρT
j+1 − ρT

j

)
,
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Fig. 9 The effect of
introducing an artificial
steepener

where ρT
j is the transported density, ρTD

j is the transported diffused density, and

σj+1/2 = sign(φj+1/2).

The two versions given here for the raw antidiffusive flux both use the same dimen-
sionless coefficient μ, but the second version, which we called phoenical, has the
advantage that when the flow velocity u vanishes ρT

j → ρj . This permits the profile,
which has been smeared out by diffusion, to be restored “like a phoenix,” so that the
algorithm reduces to the identity operation.

There was one aspect of the early versions of FCT that I felt uneasy about, the
use of steepeners. In FCT-1 the antidiffusion coefficient μ was given as “1/8.” We
wrote “The quotation marks indicate that more exact cancellation of errors can be
achieved if one expends a small amount of computational effort by including at
least rough approximations to the velocity- and wavenumber-dependent corrections
[11].” Footnote 11 explained just what was meant by wavenumber dependence: The
antidiffusion coefficient was bigger than the diffusion coefficient by an amount that
depended on the size of the discontinuity. Naturally, this yielded very nice square
waves (Fig. 9). The drawback was that it turned every bump into a square wave!

The steepener was Jay’s idea. The rationale for it was that our tests produced
profiles that were actually less sharp than shocks calculated with FCT because,
as I mentioned earlier, the passive advection equation has no mechanism for self-
steepening. The steepener was supposed to model this mechanism, but to me it
seemed an out-and-out kludge, and people who read footnote 11 apparently agreed.
In the event steepeners disappeared after FCT-1 and were never mentioned again.

4 Infancy

As we continued to improve and extend SHASTA we gradually realized that what
we had was more widely applicable and more general than a mere algorithm. Jay
insisted on using the name “flux-corrected transport,” but it was several years before
the rest of the community distinguished between FCT and SHASTA. (Jay also tried
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to reserve the term “scheme” for competing algorithms, while referring to FCT as
a “method” or “technique,” but that invidious distinction, not surprisingly, never
caught on. Neither did the term “Flux-Uncorrected Transport,” which he used once
in a talk.)

My first contribution to helping transform FCT from an algorithm into a method
was to derive a formula for the diffusive transport step of SHASTA, i.e., the result of
assigning mass to the trapezoids, transporting them, and reassigning it to the mesh.
(The original code simply followed the geometric construction.) This formula can
be expressed algebraically as

ρn+1
j = 1

2
Q2−

(
ρn
j − ρn

j−1

)+ 1

2
Q2+

(
ρn
j+1 − ρn

j

)+ (Q− +Q+)ρn
j ,

where

Qσ = 1/2− σujΔt/Δx

1+ σ(uj+σ − uj )Δt/Δx
, σ =±1.

For a uniform velocity field, uj = u, it reduces to

ρn+1
j = ρn

j −
ε

2

(
ρn
j+1 − ρn

j−1

)+
(

1

8
+ ε2

)(
ρn
j+1 − 2ρn

j + ρn
j−1

)
,

which is just Lax–Wendroff plus a zeroth-order (in ε) diffusion with coefficient 1/8.
So, Jay thought, why not use Lax–Wendroff as the transport algorithm even when
the flow field is nonuniform, adding diffusion to it and then applying antidiffusion?
This worked just as well as SHASTA.

We tried flux-correcting leapfrog, and that worked fine too. Initially we used a
diffusion/antidiffusion coefficient of 0.125 because that was what SHASTA used. It
turned out that the limit on the Courant number in order to ensure positivity, ε < 0.5,
is the same as for SHASTA, although the geometric interpretation no longer holds.
Why is 1/8 the best choice? Wouldn’t it be better to use less diffusion sometimes, es-
pecially when the flow velocity is very small and less is needed to ensure positivity?
I tried running our standard test using different values of the diffusion/antidiffusion
coefficient (Fig. 10). It is evident that the best results come from using 1/8, and that
using too much can be as bad as using too little.

We noticed that combining a velocity-dependent antidiffusion with donor cell
created a second-order-accurate algorithm formally identical to Lax–Wendroff. If
the antidiffusive fluxes are limited with the same prescription that was used in
SHASTA the result is a flux-corrected version of donor cell. In this algorithm the
diffusion and antidiffusion coefficients vanish when the flow velocity does. In fact,
for any value of u flux-corrected donor cell embodies the smallest diffusion coef-
ficient consistent with positivity. But when we tested the new algorithm on square
waves we found that the results were inferior to those obtained with flux-corrected
Lax–Wendroff or leapfrog. Evidently minimizing the diffusion does not produce the
best algorithm.

Jay found the explanation: phase accuracy is more important than amplitude ac-
curacy. This is because the cumulative residual diffusion due to flux limiting results
from mashing down the short-wavelength harmonics, which always propagate too
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Fig. 10 Result of varying the diffusion/antidiffusion coefficient

slowly or too fast in a finite-difference algorithm. Minimizing the relative phase
error works better (because fewer harmonics need mashing) than making the am-
plification factor as close as possible to unity. In fact, the amplification factor must
go to zero for very short wavelengths, or else they wouldn’t get mashed. For good
results an FCT algorithm should have phase error that is at least second-order (i.e.,
proportional to k2 when expanded in powers of wavenumber).

Another lesson we learned from these experiments was that the diffusion and
antidiffusion coefficients can be velocity-dependent, provided that the diffusive and
antidiffusive fluxes cancel out. This gave us an extra degree of freedom, an addi-
tional knob to turn in fine-tuning algorithms.

While musing on an algorithm called hopscotch I had read about in JCP I
dreamed up “reversible FCT,” which is basically flux-corrected Crank–Nicolson.
It applies half the transport step to the old values and half to the new, together with
a diffusion/antidiffusion that is also symmetric between the old and new values:

ρT
j +

ε

4

(
ρT
j+1 − ρT

j−1

)+ ν
(
ρT
j+1 − 2ρT

j + ρT
j−1

)

= ρ0
j −

ε

4

(
ρ0
j+1 − ρ0

j−1

)+ ν
(
ρ0
j+1 − 2ρ0

j + ρ0
j−1

)
.



The Conception, Gestation, Birth, and Infancy of FCT 17

Fig. 11 Reversible FCT

The transported diffused density ρTD
j is found by adding ν(ρT

j+1 − 2ρT
j + ρT

j−1)

to ρT
j . Then the raw antidiffusive flux φj+1/2 = ν(ρT

j+1 − ρT
j ) is corrected with

respect to ρTD
j and reapplied. This algorithm is second-order for any choice of ν

because of symmetry. Setting ν = 1/6+ ε2/12 makes the phase error fourth-order.
With this choice the square-wave test yielded an A.E. of 0.033, the best we had yet
found (Fig. 11).

Even without flux correction the underlying transport routine in an FCT algo-
rithm gives better results than conventional algorithms. In a sense it should, be-
cause conventional algorithms are based on three-point stencils (they involve only
the mesh point in question and its two nearest neighbors), while the extra antidiffu-
sion step in FCT introduces information from next-nearest neighbors as well. Can
FCT algorithms be made even more accurate by using more complicated stencils?

Thinking about this led me to invent Fourier-transform FCT. Start by Fourier-
transforming the density ρ:

ρj =
N∑

κ=1

ρ̃κ exp(2πijκ/N).

(This is of course implies an N -point stencil, but with fast transforms the compu-
tational overhead is acceptable.) Advance each component according to the exact
solution of the transformed advection equation:

ρ̃κ (t +Δt)= ρ̃κ (t) exp(−2πiκuΔt/Δx).

Now transform back to x space. The resulting solution has no dissipation and no
phase error. On the face of it this algorithm should be error-free, at least for passive
advection with a uniform velocity. Indeed, if ε = uΔt/Δx is an integer the solution
reproduces the analytic solution exactly. There is no need for additional diffusion,
antidiffusion, or flux correction.
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Fig. 12 Continuous function
obtained from the discrete
Fourier transform of a jump

If uΔt/Δx is not an integer, however, the solution that results from inverting the
Fourier transform has ripples. Jay called this the finite-interval Gibbs effect. These
ripples are related to the “window problem,” i.e., the impossibility of knowing what
goes on between the mesh points. Plotting the inverse of the discrete Fourier trans-
form over the entire interval on which the original discrete function is defined yields
a continuous curve. This can be shown to be the smoothest function that passes
through the values of the function on the mesh. If the original function contains
a sharp discontinuity, this plot not only exhibits the usual Gibbs over- and under-
shoots at the top and bottom of the jump, but also has wiggles between the mesh
points (Fig. 12).

Translating the profile over a fraction of a mesh space exposes these wiggles to
view. The Fourier transform thinks a function should behave this way in order to
be as smooth as possible, whereas the physics favors one that has as few wiggles
as possible. But we know how to fix that: flux-correct it. In other words, add some
diffusion, then apply an equal amount of antidiffusion with a flux limiter. Nothing
dictates the choice of the coefficient, so we used μ= ν = 1/8. (Why not? It worked
in other algorithms.) The resulting value of 0.022 for the A.E. is the smallest one we
ever found (Fig. 13). Thus, at the cost of a higher operation count, Fourier-transform
FCT emerged as the optimum FCT algorithm, at least for this test problem.

The three JCP papers focused almost entirely on how FCT worked and on the
design of FCT algorithms. In 1976 we contributed an article to the series Methods
of Computational Physics. It appeared as a chapter in volume 16, which surveyed
numerical techniques for plasma physics problems. This article (which perhaps de-
serves to be designated FCT-4) reviewed our previously published work, but also
discussed some of the codes incorporating FCT and the problems to which we had
applied them.

When it came to real applications we found that FCT is not perfect. One source
of error is something than can be called residual diffusion, which results when an-
tidiffusion fails to completely cancel diffusion.
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Fig. 13 The optimum FCT
algorithm

Fig. 14 Result of 20
repetitions to profile (a) of
diffusion and (b) explicit;
(c) phoenical; (d) implicit
antidiffusion with strong flux
limiting, using coefficients
μ= ν = 0.2

The most dramatic manifestation of this is “clipping.” An extremum loses a little
bit of amplitude each timestep, even if it isn’t being advected across a grid, be-
cause diffusion squashes the extremum down and strong flux limiting doesn’t allow
the antidiffusion to push it back up. Ultimately the peak changes into a charac-
teristic flat-topped structure, which we called a plateau. For example, an initially
sharp maximum subjected to repeated diffusion and antidiffusion operations grad-
ually flattens out until it forms a plateau three points across (Fig. 14), which is
stable.

Figure 14 shows that this flattening is less severe with phoenical or implicit anti-
diffusion than with the original explicit form of antidiffusion, in which the raw flux
is calculated from the diffused profile. The reason is obvious. If T stands for the
transport operation, D stands for a three-point centered second difference with co-
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efficient ν, and A represents the same operation with coefficient μ=−ν, the three
versions of FCT can be represented symbolically as

Explicit: ρ1 = (1+A)ρTD = (1+A)(1+ T +D)ρ0;
Phoenical: ρ1 = [

(1+A)(1+ T )+D
]
ρ0;

Implicit: ρ1 = (1+D)−1ρTD = (1+D)−1(1+ T +D)ρ0.

It is clear that in the limit T → 0 phoenical and implicit FCT reduce to the identity
operation, or would except for the action of the flux limiter, but explicit FCT does
not. (This is of course why phoenical antidiffusion was invented.)

In an effort to eliminate clipping we tried a number of different flux limiters. One
of my early attempts was the one-sided flux limiter. This involved changing the flux
limiter so that maxima could grow on positive profiles but minima could not (and
vice-versa for negative profiles). The resulting algorithm preserved positivity, but
gave rise—unsurprisingly—to one-sided ripples.

Another idea of mine that didn’t work out was called “flux-limited diffusion.”
The innovation here was to apply diffusion only where needed to prevent extrema
from growing relative to their original values, rather than put it in everywhere and
remove it where it was not needed. The test results, however, were disappointing.
Square waves propagated using flux-limited diffusion were badly eroded. The trou-
ble with this approach was that it failed to ensure high phase accuracy in the under-
lying transport scheme. Ultimately we decided to stick with strong flux limiting. It
was easier to live with the symptoms of the disease than with the side effects of the
cures.

Another form of residual diffusion is more subtle. If the antidiffusion coefficient
is smaller than the diffusion coefficient, some residual diffusion is present even in
the absence of flux limiting. The algorithm with fourth-order phase accuracy de-
scribed in FCT-3 has an amplification factor that just barely—by less than 0.5%—
exceeds unity. (We didn’t know this until Phil Colella pointed it out years later.)
Because of this it was found that codes yielded the best results when the antidif-
fusion coefficient was reduced slightly by multiplying by a factor called a “mask.”
(The name arose because the correction was applied using MASK, a Fortran IV
bit-manipulating instruction.)

An annoying but fairly innocuous departure from realism arises because the flux
limiter stops dispersive ripples from growing on the slopes of hills or valleys only
when they are about to form new extrema. This leaves flat “terraces” on the slopes,
which I like to think of as the ghosts of departed ripples. Improving the phase ac-
curacy of the algorithm helps reduce terracing, but the only real cure is to use a
more elaborate form of flux limiting that takes into account second derivatives of
the profile.

When we started using FCT for two-dimensional problems a new and much more
serious question arose: How could we generalize the flux limiter to multidimen-
sions? Should all the fluxes be corrected in one sweep? In applying antidiffusive
fluxes in, say, the x direction, should we worry about extrema only along that axis,
or should we look at all points in the neighborhood? The coding was tortuous, and
every prescription we tried seemed to fail in some combination of circumstances.
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Finally we gave up and decided to use coordinate splitting. That is, on each
timestep we treated each coordinate independently, carrying out 1-D transport and
1-D flux limiting first in the x direction and then in y. Symbolically this can be
written, e.g.,

ρTD = (1+ Tx +Dx)(1+ Ty +Dy)ρ
0;

ρ1 = (1+Ax)(1+Ay)ρ
TD.

Obviously this introduces spurious terms, e.g., AxAy . Most of the time they do no
great harm because the errors tend to cancel out, but there are some situations where
splitting creates unphysical effects. One example is when plateau formation occurs
in both coordinate directions at the same time, for example on a hilltop. The result is
that contours of constant density (or pressure, etc.) become square. I got very tired
of going to meetings where I had to explain why my code generated square fireballs.

5 The Next Generation

Despite all our efforts we never found a way around the problem of creating a multi-
dimensional flux limiter. Eventually I decided that it was insoluble, and I told every
colleague who expressed an interest in it not to waste his time. As is well known, the
problem turned out not to be insoluble. Likewise, the “pioneering idea of blending
high- and low-order discretizations,” cited on the FCT-30 web page, was not part
of the original concept. It was a later development, due to the same individual who
created the multidimensional flux limiter, Steve Zalesak. But that is his story to tell.
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The Design of Flux-Corrected Transport (FCT)
Algorithms for Structured Grids

Steven T. Zalesak

Abstract A given flux-corrected transport (FCT) algorithm consists of three com-
ponents: (1) a high order algorithm to which it reduces in smooth parts of the flow;
(2) a low order algorithm to which it reduces in parts of the flow devoid of smooth-
ness; and (3) a flux limiter which calculates the weights assigned to the high and low
order fluxes in various regions of the flow field. One way of optimizing an FCT algo-
rithm is to optimize each of these three components individually. We present some
of the ideas that have been developed over the past 30 years toward this end. These
include the use of very high order spatial operators in the design of the high order
fluxes, non-clipping flux limiters, the appropriate choice of constraint variables in
the critical flux-limiting step, and the implementation of a “failsafe” flux-limiting
strategy. This chapter confines itself to the design of FCT algorithms for structured
grids, using a finite volume formalism, for this is the area with which the present
author is most familiar. The reader will find excellent material on the design of FCT
algorithms for unstructured grids, using both finite volume and finite element for-
malisms, in the chapters by Professors Löhner, Baum, Kuzmin, Turek, and Möller
in the present volume.

1 Introduction: Modern Front-Capturing Methods

We are interested in systems of conservation laws of the form

∂q(x, t)
∂t

+∇ · f(q,x, t)= 0 (1)

where q(x, t) and f(q,x, t) are vector functions of the independent variables x and t ,
which we henceforth refer to as space and time respectively. Examples of such equa-
tions include the Navier-Stokes equations, the equations of magnetohydrodynamics
(MHD), the Vlasov equation, and passively-driven convection.
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It is well known that differentiable solutions to (1) may cease to exist after a finite
time ts , even if the initial conditions q(x,0) are smooth. After ts , only the integral
or “weak” form of (1) will have solutions, and these will contain discontinuities in q
and/or one or more of its derivatives. We will term such discontinuities “fronts” for
the purpose of this chapter. This situation is addressed by the Lax-Wendroff The-
orem, which states that if one’s numerical approximation to Eq. (1) is in “flux” or
“conservation” form, and the numerical solution converges everywhere but on a set
of measure zero to some solution, then that solution is a weak solution to Eq. (1).
Thus the great majority of methods designed to treat fronts in the context of Eq. (1)
are in conservation form, i.e., a form consisting of numerical fluxes connecting ad-
jacent grid points, these fluxes being used to advance the numerical solution in time.

Using conservation form does not by itself give the desired result however, since
one still needs to compute a convergent solution. In general, numerical methods
not designed to deal with fronts will not produce the desired convergence in their
presence, often producing numerical oscillations that degrade the solution severely.
It is precisely this situation that prompted Von Neumann and Richtmyer to add an
explicit artificial dissipation term to Eq. (1), the idea being to smooth the fronts
to the point where they are resolved on the grid as narrow but smooth features,
thereby producing the desired convergence. This is the fundamental idea underlying
nearly all conservative numerical methods designed to handle fronts, including the
FCT algorithms we address here. (We are excluding, of course, methods that treat
fronts as moving internal boundaries, the class of methods known as “front-tracking
methods.” We are also excluding random choice methods [3, 4, 8].) For the purposes
of this chapter, we shall refer to methods which attempt to smooth a front into a
narrow but smooth transition as “front-capturing methods.”

Over the past 30 years a host of algorithms, known variously as “modern” front-
capturing methods or “high resolution methods,” have been developed in an attempt
to perform calculations more accurately and more efficiently than with the more
traditional explicit artificial dissipation approach. The first of these methods was
flux-corrected transport (FCT) [1, 2], but there are now a large number of others.
What distinguishes the “modern” front-capturing methods from their predecessors is
their attempt to constrain the numerical fluxes, grid point by grid point and timestep
by timestep, in such a way as to avoid the production of unphysical values in the
solution vector q in and near the fronts, and at the same time treat the regions in
space and time in which q is smooth as accurately as possible. Clearly the success
of these methods depends critically on an accurate criterion for determining what
constitutes an unphysical value for q, one of the primary topics of this chapter.

One way of stating the design philosophy of these methods, and the one we shall
embrace in this chapter, is as follows:

When the numerics fails, substitute the physics.

Clearly the designers of such algorithms must possess a knowledge of the physics
being addressed if they are to be successful.

These modern front-capturing methods may be thought of as consisting of three
parts:



The Design of Flux-Corrected Transport (FCT) Algorithms 25

1. an algorithm to which they reduce in regions of time and space where q is
smooth;

2. an algorithm to which they reduce at fronts; and
3. a mechanism for weighting each of the above algorithms at each grid point and

timestep.

Obviously the accuracy of a given modern front-capturing method may depend
strongly on the choices made in each of its three parts. In the FCT algorithms we
shall consider here, these three parts correspond to the high-order fluxes, the low-
order fluxes, and the flux limiter respectively, terms we shall define shortly. Our
experience is that FCT algorithms are capable of solving most problems involving
fronts with both robustness and accuracy, as long as certain design principles are
adhered to. Toward that end, this chapter shall present to the reader a collection of
design principles that we have found to be of value in the creation of an FCT algo-
rithm for a given situation. In general, they involve optimizing one’s choice of each
of the above three components of the algorithm. The reader will not be surprised to
learn that a knowledge of the physics problem being addressed is an essential part
of the design criteria.

In Sect. 2, we give a formal definition of FCT, first for the special case of one
spatial dimension, and then for multidimensions. In Sect. 3 we give six design crite-
ria that collectively define what we mean by a “properly designed” FCT algorithm.
In Sect. 4 we give examples of the kind of performance one can expect from a prop-
erly designed FCT algorithm, using the scalar linear advection problem. For this
problem, the “physics” that must be incorporated into the algorithm is simple and
intuitive, and accurate and robust algorithms are easy to construct. In Sect. 5 we
move on to nonlinear systems of equations, using the Euler equations as an exam-
ple. Here the physics is not trivial as it was in the case of linear advection, and we
find that blindly applying the methods that worked well for advection can be disap-
pointing. However, when we transform the problem into a set of variables for which
we have a legitimate set of physical constraints that can be imposed, we recover the
kind of performance that we saw in the linear advection case. In Sect. 6 we treat
both passively-driven convection and compressible gas dynamics in two space di-
mensions, and again have to face and solve the question of physically appropriate
constraints. Finally in Sect. 7 we give our conclusions.

2 Flux-Corrected Transport (FCT) Defined

As we mentioned in the previous section, the great majority of methods designed
to treat fronts in the context of Eq. (1), are in conservation form, i.e., a form con-
sisting of numerical fluxes connecting adjacent grid points, these fluxes being used
to advance the numerical solution in time. In FCT, at every timestep and at every
flux point, these fluxes are computed twice, once using an algorithm guaranteed not
to generate unphysical values (the “low order fluxes”), and once using an algorithm
that is formally of high accuracy in the smooth portions of the solution (the “high
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order fluxes”). FCT then constructs the net fluxes for the timestep as weighted aver-
ages of these two candidate fluxes. The weighting is performed in a manner which
ensures that the high order fluxes are used to the greatest extent possible without in-
troducing unphysical values into the solution. The procedure is referred to as “flux-
correction” or “flux limiting” for reasons which will become clear shortly.

From the above description, it should be clear that one may easily define an
FCT algorithm on any structured or unstructured grid in any number of spatial di-
mensions, as long as one can define a numerical technique for which the difference
between a low order time advancement operator and its higher order counterpart can
be written as an array of fluxes between adjacent grid points. Rather than attempt
to give a definition at that level of generality, we will give formal definitions for the
cases of one spatial dimension, and for two spatial dimensions on a structured grid.
From these two examples it should be clear how to construct an FCT algorithm in
any number of dimensions, and on any grid, structured or unstructured.

2.1 FCT in One Spatial Dimension

In one spatial dimension, Eq. (1) takes the simpler form

∂q(x, t)

∂t
+ ∂f (q, x, t)

∂x
= 0. (2)

A simple example of such a system of equations is the system describing one-
dimensional ideal inviscid fluid flow, also known as the Euler equations:

q =
⎛

⎝
ρ

ρu

ρE

⎞

⎠ ; f =
⎛

⎝
ρu

ρuu+ P

ρuE + Pu

⎞

⎠ (3)

where ρ, u, P , and E are the fluid density, velocity, pressure, and specific total
energy respectively.

We say that a discrete approximation to Eq. (2) is in conservation or “flux” form
when it can be written in the form

qn+1
i = qn

i −�x−1
i [Fi+(1/2) − Fi−(1/2)]. (4)

Here q and f are defined on the spatial grid points xi and temporal grid points tn,
and �xi is the cell width associated with cell i. The Fi+(1/2) are called numerical
fluxes, and are functions of f and q at one or more of the time levels tn. The func-
tional dependence of F on f and q defines the particular discrete approximation.

As mentioned above, FCT constructs the net flux Fi+(1/2) point by point and
timestep by timestep (nonlinearly) as the weighted average of two fluxes, one pro-
duced by a “high order” method and the other by a “low order” method. The formal
procedure introduced in [13] is as follows:

1. Compute FL
i+(1/2), the “low order fluxes,” using a method guaranteed not to gen-

erate unphysical values in the solution for the problem at hand.
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2. Compute FH
i+(1/2), the “high order fluxes” using a method chosen to be accurate

in smooth regions for the problem at hand.
3. Define the “antidiffusive fluxes” [2]

Ai+(1/2) ≡ FH
i+(1/2) − FL

i+(1/2). (5)

4. Compute the time advanced low order (“transported and diffused” [2]) solution:

qtd
i = qn

i −�x−1
i

[
FL
i+(1/2) − FL

i−(1/2)

]
. (6)

5. Limit the antidiffusive fluxes in a manner such that qn+1
i as computed in step 6

below does not take on nonphysical values:

AC
i+(1/2) = Ci+(1/2)Ai+(1/2), 0≤ Ci+(1/2) ≤ 1. (7)

6. Apply the limited antidiffusive fluxes:

qn+1
i = qtd

i −�x−1
i

[
AC

i+(1/2) −AC
i−(1/2)

]
.

The critical step in the above is step 5, the flux limiting step. In the absence of
step 5 (i.e., AC

i+(1/2) = Ai+(1/2)), qn+1
i would simply be the time-advanced high

order solution.

2.2 Multidimensional Flux-Corrected Transport

Let us see how the procedure above might be implemented in multidimensions. An
obvious choice would be to use an operator-splitting technique, splitting along spa-
tial dimensions, when it can be shown that the equations allow such a technique to
be used without serious error. Indeed, such a procedure may even be preferable from
programming and time-step considerations. However, there are many problems for
which such splitting produces unacceptable numerical results, among which are in-
compressible or nearly incompressible flow fields. The technique is straightforward
and shall not be discussed here. Instead, let us now consider the two-dimensional
system of conservation laws

q(x, t)t + f (q,x, t)x + g(q,x, t)y = 0. (8)

A simple example of such a system of equations, and one we consider later, is
the system describing two-dimensional ideal inviscid fluid flow, also known as the
two-dimensional Euler equations:

q =

⎛

⎜⎜
⎝

ρ

ρu

ρv

ρE

⎞

⎟⎟
⎠ ; f =

⎛

⎜⎜
⎝

ρu

ρuu+ P

ρuv

ρuE + Pu

⎞

⎟⎟
⎠ ; g =

⎛

⎜⎜
⎝

ρv

ρvu

ρvv+ P

ρvE + Pv

⎞

⎟⎟
⎠ (9)

where ρ, u, v, P , and E are the fluid density, x velocity, y velocity, pressure, and
specific total energy respectively.
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If we work on a finite volume coordinate-aligned mesh, we can define our two-
dimensional FCT algorithm thus:

qn+1
ij = qn

ij −�V −1
ij [Fi+(1/2),j − Fi−(1/2),j +Gi,j+(1/2) −Gi,j−(1/2)] (10)

where �Vij is the volume of cell ij .
Now there are two sets of transportive fluxes F and G, and the FCT algorithm

proceeds as before:

1. Compute FL
i+(1/2),j and GL

i,j+(1/2), the “low order fluxes,” using a method guar-
anteed not to generate unphysical values in the solution for the problem at hand.

2. Compute FH
i+(1/2),j and GH

i,j+(1/2), the “high order fluxes,” using a method cho-
sen to be accurate in smooth regions for the problem at hand.

3. Define the “antidiffusive fluxes” [2]

Ai+(1/2),j ≡ FH
i+(1/2),j − FL

i+(1/2),j ,

Ai,j+(1/2) ≡GH
i,j+(1/2) −GL

i,j+(1/2).

4. Compute the time advanced low order (“transported and diffused” [2]) solution:

qtd
ij = qn

ij −�V −1
ij

[
FL
i+(1/2),j − FL

i−(1/2),j +GL
i,j+(1/2) −GL

i,j−(1/2)

]
.

5. Limit the antidiffusive fluxes in a manner such that qn+1
ij as computed in step 6

below does not take on nonphysical values:

AC
i+(1/2),j = Ci+(1/2),jAi+(1/2),j , 0≤ Ci+(1/2),j ≤ 1,

AC
i,j+(1/2) = Ci,j+(1/2)Ai,j+(1/2), 0≤ Ci,j+(1/2) ≤ 1.

6. Apply the limited antidiffusive fluxes:

qn+1
ij = qtd

ij −�V −1
ij

[
AC

i+(1/2),j −AC
i−(1/2),j +AC

i,j+(1/2) −AC
i,j−(1/2)

]
.

As can be easily seen, implementation of FCT in multidimensions is straightfor-
ward, with the possible exception of Step 5, the flux limiter, which will be addressed
in a later section.

3 Design Criteria for FCT Algorithms

Here we give, with only modest detail, six criteria that we believe are necessary for
the construction of properly designed (robust but accurate) FCT algorithms. They
are:

1. The resolving power of the high order fluxes should be as high as is practical.
The term “resolving power” will be defined precisely below.

2. The high order fluxes should have a dissipative component which adapts itself to
the resolving power of the nondissipative component.

3. The high order fluxes should be “pre-constrained” with respect to physically ap-
propriate bounds before being input to the flux limiter.



The Design of Flux-Corrected Transport (FCT) Algorithms 29

4. The low order flux must be dissipative enough to guarantee that unphysical val-
ues in the solution cannot be generated, but should otherwise be as accurate as is
practical.

5. The flux limiter should accommodate as flexible a specification of solution
bounds as possible, and should utilize constraints that have a strong physical
basis.

6. The flux limiter should have a simple fail-safe feature that reduces all fluxes into
a grid point to their low order values when the normal flux limiter machinery
fails.

We will treat each one of these in turn.

3.1 High Order Fluxes with Very High Resolving Power

The primary result of [14] was that there is a significant advantage in using fluxes
derived from very high order, spatially-centered finite difference operators (fourth
order or higher) for the “high order fluxes” in FCT algorithms. That conclusion
was based on some analysis showing a strong empirical relationship between order
and resolving power (a term which we define below) for centered finite difference
operators, some heuristic reasoning as to how FCT works in practice, and several
one-dimensional test calculations dominated by linear advection test problems. We
review that work in this section.

For analysis, Eq. (2) is usually reduced to a scalar conservation law and lin-
earized:

∂q

∂t
+ u

∂q

∂x
= 0 (11)

where u is a constant. This is the linear advection equation with advection speed u.
Its solution is simply

q(x, t)= q(x − ut,0). (12)

That is, the profile is simply translated right or left with velocity u and no change
in shape. In Fourier space, this takes the form of each Fourier mode moving with
a phase velocity u, with no change in amplitude. Thus all numerical errors associ-
ated with a given numerical algorithm can be quantified by a specification of phase
velocity error per timestep and amplitude error per timestep as a function of the
wavenumber k, and as a function of the discretization step in space and time �x

and �t respectively.
In [14] we examined a particular algorithm for solving Eq. (11) on a uniform

mesh, that of using a leapfrog discretization in time and centered finite differences
of arbitrary order in space. This choice allowed us to ignore the amplitude errors
entirely, since for the leapfrog discretization these errors vanish for all k and for
all �x and �t satisfying the Courant condition ε ≡ |u|�t/�x < 1. Further noting
that the total phase error was the algebraic sum of that induced by the temporal and
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Fig. 1 Plot of relative phase
error versus the normalized
wavenumber k�x for the
leapfrog time-marching
scheme and analytic spatial
derivatives (top), and for
centered finite difference
schemes of order N and
analytic temporal derivatives
(bottom). Figure taken from
Ref. [14]

spatial discretizations separately, as long as both were small, we were able to reduce
our algorithm analysis to a single plot, reproduced here in Fig. 1.

The striking aspect of Fig. 1 is the marked effect of the order N of the centered
spatial finite difference operator, as well as the timestep �t , on the resolving power
of the algorithm. By “resolving power” we mean, loosely, the ability of an algorithm
to maintain low phase errors over a large part of k-space. In more precise terms, we
define the resolving power kr(E) of a given combination of N and �t to be the
largest wavenumber k for which all phase errors are smaller than a pre-specified
value E. Thus Fig. 1 tells us that for a given E, we can resolve more and more of
k-space if, on a given grid, we simply increase the spatial order N of our centered
finite difference operator, decreasing �t appropriately as we do so. The primary
conclusion of [14] was that not only is this statement true for smooth functions,
but that it is true in the presence of fronts also, as long as one is treating the fronts
with a front-capturing algorithm such as FCT. Nothing since 1981 has dissuaded
us from that view, and thus we present it as the first of our FCT design criteria.
Computational examples presented later in this chapter will hopefully provide the
reader more evidence of its correctness.

3.2 High Order Fluxes with an Adaptive Dissipation Component

Looking at the bottom portion of Fig. 1, we see that the arguments of the last section
become less and less convincing as one moves to the extreme right portion of the
plot. Phase error in this portion of the plot becomes increasing resistant to reduction
by simply increasing N . Indeed, at the Nyquist frequency k�x = π , the phase error
is −100% regardless of how large we make N or how small we make �t . Thus for
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Fig. 2 Top: Plot of the
damping induced by a
centered finite difference
approximation to the ND th
derivative versus the
normalized wavenumber
k�x, normalized so that the
Nyquist mode is completely
eliminated. Bottom: Same as
bottom of Fig. 1: Plot of
relative phase error versus the
normalized wavenumber k�x

for centered finite difference
schemes of order N and
analytic temporal derivatives

any given N , there will be some portion of k-space which is resolved poorly. Logic
dictates that these Fourier modes be damped rather than carried with an erroneous
speed, and that any given Fourier mode be damped nearly entirely by the time it is
180 degrees out of phase with the analytic result. Clearly, from Fig. 1, the functional
dependence of this dissipation on k must itself depend on N if we are to achieve this
result without damping the modes which are actually being carried accurately.

We have found that one can form such dissipative fluxes from the centered finite
difference forms of dNDq/dxND where ND ≤ N + 2. One then simply adds these
fluxes to FCT’s “high order” fluxes. Indeed, the early work of Kreiss and Oliger
[9] contained calculations of the linear advection of a triangular wave using ND =
N = 4 and leapfrog time differencing, with results that, although not oscillation
free, were considerably better than without the dissipation. These results are what
prompted us to use such forms to construct FCT algorithms, and we have found
them to be of sufficient value to include them among our design criteria.

In the top portion of Fig. 2 we plot the damping induced by centered finite dif-
ference approximations to dNDq/dxND versus k�x, normalized so that the Nyquist
mode is completely eliminated. In the bottom portion, we simply reproduce the bot-
tom portion of Fig. 1. Focusing our attention on pairs of lines for which N = ND ,
we see a rather remarkable match between phase error amplitude and dissipation
amplitude as a function of k�x. That is, for such pairs, as the relative phase error
increases, so does the damping, with approximately the same functional dependence
on k�x. This is in accordance with our expressed desire to induce damping in pro-
portion to the relative phase error. Thus, for the computational examples in this
chapter, we have chosen to use ND =N . An equally good case can be made for the
choice ND = N + 2, since this will leave the overall order of the algorithm intact.
Indeed we have made that choice ourselves in some contexts. The specific construc-
tion of these operators in flux form is given in the appropriate later sections.
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3.3 Imposition of Physically-Motivated Constraints on the High
Order Fluxes Before the Flux Limiting Step

In general, the numerical algorithms used to construct high order numerical fluxes
from the cell-centered values of q assume by necessity a degree of smoothness to q .
Thus near fronts it is not unusual, especially for spatial orders higher than 2, to find
that these fluxes violate physically-motivated bounds on their values. One could, of
course, take the position that the flux limiter itself will ensure that these fluxes are
prevented from producing values of q in the next time step that violate appropriate
bounds for q , and thus that these unphysical values for the high order fluxes should
be allowed to stand when computing the antidiffusive fluxes A. Nonetheless, it is
wise to attempt to address this problem at its source, rather than shift the burden to
the flux limiter at a later stage, and simply not allow the high order fluxes to take on
values that are clearly outside the bounds of possibility. This design principle is not
truly new, although not generally expressed as we have above. The prime example
is the default behavior of the original Boris-Book flux limiter [2], which the reader
will meet shortly. As explained in [13], this flux limiter sets the antidiffusive flux
A to zero in virtually all cases where the antidiffusive flux has the same direction
as the gradient of qtd , i.e., where A is actually diffusive, and in most cases would
not actually cause the adjacent values of q to take on unphysical values. Although
it is difficult to make rigorous statements in this context, in the great majority of the
cases for which this flux-canceling machinery is active, and for which one can place
physically-motivated upper and lower bounds on the value of the flux, the high or-
der flux itself can be shown to be outside those bounds, without resort to arguments
about its effect of the subsequent values of q . Another example of constraints im-
posed on the high order fluxes prior to the primary monotonicity machinery is to
be found in the PPM algorithm [5], wherein candidate point values of q at cell in-
terfaces are computed, given its cell averages. Rather than simply calculate these
“high order” point values of q in a straightforward way, Colella and Woodward use
a multistep algorithm that utilizes MUSCL slope limiting in a way that guarantees
that the candidate “high order” interface value of q is bounded by the correspond-
ing cell averages at the adjacent grid points. The motivation and the effects of this
“pre-limiting” is similar to that of the Boris-Book limiter.

If one can place rigorous physically-motivated bounds on the high order flux, this
step can be quite simple, as well as quite effective. We will see an example of such
a situation when we construct a non-clipping flux limiter for advection in the next
section. However, in general it is difficult to find such rigorous bounds, for at least
two reasons. The first is that the flux f lives in a space one dimension lower than
the corresponding q . For example, in three spatial dimensions in a finite volume
context, q represents a volume average over the cell while the fluxes f are area
averages at cell faces. The second is that in general f is a nonlinear function of q .
These two combine to make it quite difficult to reliably place bounds on the high
order fluxes. Thus we often use the reasoning implicit in the Boris-Book limiter: if
the antidiffusive flux is actually diffusive, then there must be something wrong with
the high order flux, and we set that antidiffusive flux to zero before limiting. We are
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not happy with the lack of rigor associated with that choice, but empirically we have
found that this is the correct action to take in most cases.

3.4 Low Order Fluxes That Guarantee That Physical Bounds Are
Not Violated

The prime requirement of FCT’s low order flux is that it be guaranteed to produce a
solution free of unphysical grid point values. If this cannot be guaranteed, then there
is no hope of guaranteeing that property in the final FCT solution, even with fail-
safe limiting (item 6). One way to satisfy this requirement is to simply incorporate
enough numerical dissipation in the algorithm, but overkill here is to be avoided
(see below). Another way is to use first-order upwind methods or kinetics-based
methods such as the beam scheme of Sanders and Prendergast. When properly cho-
sen, these are probably the best choice, for their inherent dissipation is usually close
to the minimum required to meet the prime requirement. However, be aware that
many such schemes using “approximate” Riemann solvers cannot meet the prime
requirement. It should be obvious that, within the prime requirement, the low order
algorithm should be as accurate as is practical. In particular, any low order flux with
more dissipation than is necessary to meet the prime requirement is harmful, putting
an extra burden on the flux limiter, which is arguably the weakest link of the algo-
rithm. Thus, for example, one would not use a Lax-Friedrichs flux for an advection
problem, since the less diffusive donor cell flux already satisfies the prime require-
ment. As another example, if we are solving a two-dimensional advection problem,
and we must choose between two donor cell algorithms, the first of which allows
corner transport, and the second of which does not, we would choose the former as
long as it satisfied the prime requirement.

3.5 Flexible Flux Limiters That Utilize Constraints with a Strong
Physical Basis

It is useful to consider a flux limiter as being comprised of two components:

1. A physics component which specifies physically-motivated upper and lower
bounds on grid point values in the next time step; and

2. An algorithmic machinery component for enforcing the above bounds.

It is clear that the algorithmic machinery component must have sufficient flex-
ibility to accommodate the needs of the physics component. Thus, in our view, a
good flux limiter must possess both a robust and accurate physics component and a
flexible algorithmic machinery component. There exist several flux limiters which
are of extremely simple form, expressible in as little as one line of Fortran. The
original flux limiter of Boris and Book, and the ones typically used in algorithms
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that describe themselves as “TVD” are prime examples. The simplicity of these flux
limiters is due to an extremely simple physics component and a very inflexible al-
gorithmic machinery component: they make rather strong assumptions about what
constitutes proper upper and lower bounds on the solution at a given grid point at a
given timestep, and their algorithmic machinery is capable of accommodating those
strong assumptions and little more. These assumptions may be overly restrictive, as
they are in the case of the “clipping” phenomenon, or overly loose, as in the case of
the “terracing” phenomenon. Thus we strongly encourage the reader to derive the
above flux limiters for himself or herself. This exercise will reveal the assumptions
implicit in these limiters, and allow an assessment as to their appropriateness for
the problem at hand. If they are not appropriate, the reader may wish to consider
a more flexible flux limiter, albeit one probably more complex and longer that one
line of Fortran. We give an example of a more flexible flux limiter later. In our view
the most difficult issue in the design of flux limiters is the physics component. Most
commonly the antidiffusive fluxes are those which update conservative variables di-
rectly, and hence the default choice for most FCT algorithms has been to constrain
the conservative variables using the default bounds built into the Boris-Book flux
limiter. But this can often be a bad choice. Even if we were to circumvent the de-
fault bounds by using more flexible algorithmic machinery, it can often be extremely
difficult to determine the appropriate bounds for the conserved variables. Using gas
dynamics as an example, one would be hard pressed to specify the physically appro-
priate bounds on mass, momentum, and energy per unit volume at a given grid point
at a given timestep, even if he or she were given the complete time history of the
computed solution up to that point. We know that the physics allows the formation
of new extrema in all three of these quantities. Thus looking at the adjacent grid
point values at the previous time step, or even at the values of the time-advanced
low order solution (FCT’s default), can lead to bounds on the solution that are not
physically appropriate. When we discuss the construction of FCT algorithms for
gas dynamics in Sect. 5, we will put forth the hypothesis that much more reliable
constraints are to be obtained by performing the flux limiting step in characteristic
variables rather than conservative variables.

3.6 Failsafe Flux Limiters

We suppose that this topic comes under the general heading of “dirty laundry,” but it
cannot be ignored in any objective discussion of front-capturing algorithms. If one
is attempting to solve difficult problems, our experience is that, no matter how care-
fully one tries to design algorithms that are consistent both with numerical analysis
and with the physics problem one is attempting to solve, there will be situations in
which at least one grid point at least one time step takes on values that are outside the
bounds of physical possibility. For FCT and similar algorithms, these will usually
be variables that one is not directly constraining. For example, if one is performing
flux limiting on the conserved variables (not recommended here, but done often by
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many users of FCT), the density by construction can never become negative, but the
internal energy can do so, since it is not directly constrained by the limiting pro-
cess. What should one do in this case? As another example that we ourselves will
face later in this chapter in the Woodward-Colella double shock tube problem, even
when we limit with respect to what in our view are the most physically appropri-
ate variables, the characteristic variables, we can occasionally generate unphysical
grid point values. The characteristic variables are, after all, a linearization, and a
linearization can be inaccurate at large jumps. Thus we could generate negative in-
ternal energies in that case also (or, in theory, even negative densities!). What action
should we take when this happens?

Prudence, if nothing else, would dictate that the algorithm make provisions for
such a case. Assuming we do not wish to simply terminate the calculation, we desire
a solution which is as consistent with the design philosophy of the algorithm as
possible and, most important of all, is explicitly stated.

For FCT, we believe that there is an obvious solution consistent with FCT’s de-
sign, and with the numerical analysis goal of being at least first order accurate, and
that is the one we choose here: For any such offending grid point, we iteratively
drive all the fluxes into or out of that grid point toward their low order values, un-
til the offense is eliminated. Thus it is especially important that FCT’s low order
scheme be guaranteed to be free of unphysical values! We use an especially simple
algorithm here, which we describe in a later section.

4 FCT Algorithms for One Dimensional Linear Advection

We wish to give the reader an idea of the kind of performance one can expect of
an FCT algorithm for the simplest of scalar conservation laws, linear advection.
That is, we have Eq. (2) with f = qu and u a constant. We use a uniform spatial
mesh of cell size �x. We utilize a method of lines approach, choosing our spatial
and temporal discretization independently. All temporal discretizations we shall use
(e.g., modified Euler, explicit Runge-Kutta, leapfrog, leapfrog-trapezoidal) involve
one or more leapfrog-like substeps of the following form:

qn+1
i = qn

i −�x−1
i [Fi+(1/2) − Fi−(1/2)]. (13)

Here tn+1 and tn are substep time levels associated with a particular substep, with
associated timestep �tn+1/2. The fluxes F are functions of f at one or more of the
time levels, not necessarily tn+1 and tn. The timestep �tn+1/2 has been absorbed
into the definition of the fluxes. This leapfrog-like substep will be used as the funda-
mental building block for any time discretization we use. Thus we can describe our
treatment for all temporal discretizations by describing our treatment of this substep.

Our low order flux for advection is given by the first order upwind scheme:

FL
i+(1/2) =

[
1

2

(
f n
i+1 + f n

i

)− 1

2
|u|(qn

i+1 − qn
i

)]
�tn+1/2. (14)
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The high order fluxes are given by the formulae in the Appendix of [13]. As an
example, the fourth order flux is given by:

FH4
i+(1/2) =

[
7

12

(
f a
i+1 + f a

i

)− 1

12

(
f a
i+2 + f a

i−1

)
]
�tn+1/2 (15)

where the time level ta is meant to denote whatever time level or average of time
levels is required by the particular substep of the particular time discretization cho-
sen.

The high order dissipative fluxes of order ND , which are added to the above high
order fluxes, are simply the flux form representation of ∂NDq/∂xND , normalized to
damp the Nyquist mode completely in one timestep at a Courant number of unity.
As an example, the order 4 dissipative flux is given by:

FD4
i+(1/2) =−|u|

[
3

16

(
qn
i+1 − qn

i

)− 1

16

(
qn
i+2 − qn

i−1

)]
�tn+1/2. (16)

Thus far we have dealt with only three of our six FCT design criteria, the design
of the high and low order fluxes. The other three are the pre-constraint of the high
order fluxes, the construction of the flux limiter, and the failsafe limiter. A failsafe
limiter is not needed here, since we are directly constraining the only variable of
interest. For the moment, we will choose a simple default for the remaining two
criteria, the original Boris-Book limiter:

AC
i+(1/2) = S max

(
0,min

(|Ai+(1/2)|, S
(
qtd
i+2 − qtd

i+1

)
�x,S

(
qtd
i − qtd

i−1

)
�x

))

where S ≡ sign(1,Ai+(1/2)). (17)

This simple formula implicitly determines our choices for the remaining two design
criteria. These choices turn out to be reasonable for this advection problem, at least
away from extrema. However, as we will shortly see, we can improve on FCT’s
performance at extrema by addressing these remaining two criteria explicitly.

All of the tests in this section use the classic explicit fourth order Runge-Kutta
time discretization, each substep of which is treated in the manner described above.

4.1 Tests of FCT Advection Algorithms on Three Classic Test
Problems

In [15] we compared a number of advection algorithms on three test problems cho-
sen from the open literature: the square wave test of Boris and Book [2], the Gaus-
sian of Forester [7], and the semi-ellipse of McDonald [10]. The first test consists
of a square wave 20 cells wide to be advected 800 time steps at a Courant number
of 0.2. The second test consists of a Gaussian of half width 2 cells to be advected
600 time steps at a Courant number of 0.1. The third and final test consists of a
semi-ellipse of radius 15 cells to be advected 600 time steps at a Courant number
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Fig. 3 Results for the Boris-Book square wave using FCT algorithms with high order fluxes of
fourth, eighth, and sixteenth order. The analytic solution is shown as a solid line, while the com-
puted solution is shown as discrete data points. The L1 error is denoted “AE” in the plots, for
consistency with the original plots of Boris and Book. Note the marked improvement with resolv-
ing power

of 0.1. We will use those same test problems here to demonstrate various aspects of
the FCT algorithms we have just described.

In Fig. 3, we examine the effect that we had observed in our earlier work [14].
Running the square wave problem, we vary only the order of the high order flux from
fourth to eighth to sixteenth, and see a marked increase in the resolution of the dis-
continuities. Our interpretation of this effect was, and continues to be, that since the
discontinuity is the result of the superposition of a large number of Fourier modes,
with precise phase relationships being critical, increasing the resolving power, i.e.,
the percentage of k-space for which the phase speed is accurate, makes it possi-
ble for the flux limiter to introduce less and less dissipation to prevent unphysical
values, thus yielding more accurate results.

In Fig. 4, we show the same sequence of algorithms, but for the semi-ellipse of
McDonald. Again we see an increase of performance with resolving power. How-
ever, this problem is prone to the “terracing” phenomenon, some hints of which can
be seen at the right edge of the semi-ellipse. To show the value of the dissipative
component of the high order flux, we show the same problem with the same set of
algorithms in Fig. 5, but with the dissipative component eliminated. Although not
as dramatic as the effect of increasing the resolving power of the high order flux, the
dissipative flux clearly is of value in preventing the occurrence of errors that are not
detected by the flux limiter. What is happening here is that dispersive oscillations
are being shed by the leading (right) edge of the semi-ellipse. As they propagate
into the semi-ellipse they are not detected as oscillations because they are hidden
by the large gradient in the right side of the ellipse. As they get closer to the cen-
ter of the ellipse, they try to take the form of true extrema, at which point they are
prevented from doing so by the flux limiter. The damage is already done, however.
The effect of the dissipative component in the high order flux is to damp the modes
moving with the wrong phase velocity before the fact. Calculations like these, as
well as analytic arguments, are the reason we believe that some high order dissi-
pation should be present in most calculations, whether one is using front capturing
techniques or not.
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Fig. 4 Results for the semi-ellipse of McDonald using FCT algorithms with high order fluxes
of fourth, eighth, and sixteenth order. The analytic solution is shown as a solid line, while the
computed solution is shown as discrete data points. The L1 error is denoted “AE” in the plots. Note
the improvement, albeit modest, with increased resolving power. Although mitigated significantly
by the high order dissipation, clear hints of the terracing phenomenon are still visible. Compare to
Fig. 5

Fig. 5 Same as Fig. 4, but with the dissipative component of the high order fluxes removed. Note
the “terracing” phenomenon on the right edge of the semi-ellipse, which is the result of dispersive
waves being ignored by the flux limiter until they attempt to become extrema. Compare to Fig. 4

The previous set of calculations was an example of one way a flux limiter can
fail. In that case, the flux limiter failed to perceive and prevent an error because its
definition of an error was the creation of new extrema in q . Note that the algorithmic
machinery component of the flux limiter did not fail, but rather its physics compo-
nent. In this case its “physics” criterion for what constituted an error was too weak.
In the next set of calculations, we see an example where exactly the same criterion
is too strong, preventing the formation of an extremum when it is physically allow-
able. In Fig. 6 we show the same sequence of algorithms, but for the Gaussian of
Forester. Although we again see the same pattern of increased performance with in-
creased resolving power, we also see the well-known “clipping” problem. Here, as
the true peak of the Gaussian passes between grid point centers, the true grid point
extrema value should increase and decrease in an oscillatory fashion. However, the
flux limiter used here does not allow for that possibility, treating all attempts to ac-
centuate an extremum during a time step as an error to be prevented. The problem
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Fig. 6 Results for the Gaussian of Forester using FCT algorithms with high order fluxes of fourth,
eighth, and sixteenth order. The analytic solution is shown as a solid line, while the computed
solution is shown as discrete data points. The L1 error is denoted “AE” in the plots. Again we see
improvement with resolving power, but the errors are dominated by the “clipping” phenomenon

can be addressed by using a more flexible limiter and a better estimate of the allow-
able upper and lower bounds on the solution, as we show in the next subsection.

4.2 An Alternative to the Boris-Book Flux Limiter

In [13], we described a new flux-limiting algorithm for FCT. Although developed
primarily to allow the construction of fully multidimensional FCT algorithms, that
flux limiter also allowed a much more flexible specification of upper and lower
bounds on the solution than did the original Boris-Book limiter Eq. (17). In partic-
ular, it allowed the construction of flux limiters which do not clip physical extrema.
We describe that algorithm in one spatial dimension in this section, and then use it
to construct a non-clipping flux limiter for one dimensional advection. In Sect. 5 we
describe and use the algorithm in two spatial dimensions.

In words, the alternative flux limiter constrains the solution by first computing
two independent sets of provisional coefficients Ci+(1/2) for each antidiffusive flux,
one to enforce the user-supplied upper bounds on the solution, and the other to en-
force the user-supplied lower bounds. Both bounds are satisfied simply by choosing
the final coefficients to be the minimum of the two provisional coefficients.

The upper bounds constraint is computed by dividing Q+i , the maximum allow-
able net flux into a cell, by P+i , the sum of all those fluxes whose effect is to increase
the value of qi . That fraction, bounded by 0 and 1, is provisionally assigned to the
Ci+(1/2) of each of those fluxes. A similar procedure is undertaken for the lower
bounds constraint, and still another provisional value of Ci+(1/2) assigned to each of
the fluxes whose effect is to decrease the value of qi . The net Ci+(1/2) is simply the
minimum of the two temporary values. From the above description it should be clear
that this limiter is unambiguously defined for any number of spatial dimensions and
for both structured and unstructured meshes, as long as the difference between the
low and high order components can be written as fluxes flowing between adjacent
cells. In one spatial dimension, the procedure is as follows:
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1. Compute, for each grid point i, physically-motivated upper and lower bounds
on the solution in the next timestep, qmax

i and qmin
i respectively. This step is

both flexible and critical, requiring intimate knowledge of the science underlying
one’s equation. It is important that qtd

i already satisfy these bounds.
2. For the upper bound, compute P , Q, and their ratio R at each grid point:

P+i =max(Ai−(1/2),0)−min(Ai+(1/2),0), (18)

Q+i =
(
qmax
i − qtd

i

)
�xi, (19)

R+i =min
(
1,Q+i /P+i

)
, P+i > 0, 0 otherwise. (20)

3. For the lower bound, compute P , Q, and their ratio R at each grid point:

P−i =max(Ai+(1/2),0)−min(Ai−(1/2),0), (21)

Q−i =
(
qtd
i − qmin

i

)
�xi, (22)

R−i =min
(
1,Q−i /P−i

)
, P−i > 0, 0 otherwise. (23)

4. Compute Ci+(1/2) by taking a minimum:

Ci+(1/2) =
{

min(R+i+1,R
−
i ) when Ai+(1/2) > 0,

min(R+i ,R−i+1) when Ai+(1/2) ≤ 0.
(24)

Note that in the above we do not specify the equivalent of Eq. (14) in [13], which,
as we explained in the previous section, can be thought of as a method for pre-
constraining the high order fluxes prior to the flux limiting step. In the case of linear
advection in one dimension, we have a much more robust way of pre-limiting those
fluxes, as we will see below.

4.3 A Non-clipping Version of the Alternative Flux Limiter

Let us now specify our non-clipping flux limiter for one-dimensional linear ad-
vection. To do so we need to define an algorithm for computing qmin

i and qmax
i

above. We also need to address our third criterion and specify an algorithm for
pre-constraining our high order fluxes. We shall use a similar approach for both.
In Fig. 7, we show a technique we shall use to reconstruct extrema between grid
points, for use both in specifying qmin

i and qmax
i and in pre-constraining our high

order fluxes. On each interval [xi, xi+1] we define q
peak

i+(1/2) to be the value of q at
the intersection of the lines formed by connecting the point (xi−1, qi−1) with (xi, qi)

and the point (xi+1, qi+1) with (xi+2, qi+2). If the x coordinate of this intersection
lies between xi and xi+1, then we consider this q

peak

i+(1/2) to be a physically legitimate
value for q on the interval [xi, xi+1].

Let us now define the upper and lower bounds for q on the interval [xi, xi+1] to
be

qmax
i+(1/2) =max

(
qi, qi+1, q

peak

i+(1/2)

)
, (25)

qmin
i+(1/2) =min

(
qi, qi+1, q

peak

i+(1/2)

)
(26)
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Fig. 7 A possible scheme for
extracting information about
extrema which exist between
grid points at a given point in
time. An extremum is
assumed to exist between grid
points i and i + 1 if the
intersection of the right and
left extrapolation of q has an
x coordinate between xi and
xi+1. The q coordinate of this
intersection in then used both
to compute qmax and qmin,
and to pre-constrain the high
order flux FH

i+(1/2) (see text)

where all quantities are evaluated at time level n.
We are now in a position to introduce the physics of the problem into the flux

limiter. Given that this is an advection problem, and that we choose our Courant
number to be less than unity, we know that qn+1

i must be bounded by qmin
i−(1/2) and

qmax
i−(1/2) if u > 0, and by qmin

i+(1/2) and qmax
i+(1/2) if u < 0. Thus we take

qmin
i =

{
min(qtd

i , qmin
i−(1/2)) when u > 0,

min(qtd
i , qmin

i+(1/2)) when u≤ 0,
(27)

qmax
i =

{
max(qtd

i , qmax
i−(1/2)) when u > 0,

max(qtd
i , qmax

i+(1/2)) when u≤ 0.
(28)

Finally we specify our pre-constraint condition on the high order fluxes. Again
we use the physics of the problem. Since this is advection, the physical fluxes
Fi+(1/2) must be bounded by uqmax

i+(1/2) and uqmin
i+(1/2). Thus we define Fmax

i+(1/2) ≡
max(uqmax

i+(1/2), uq
min
i+(1/2)) and Fmin

i+(1/2) ≡min(uqmax
i+(1/2), uq

min
i+(1/2)), and after com-

puting the unconstrained high order fluxes FH
i+(1/2), we constrain them thus:

FH
i+(1/2) =min

(
Fmax
i+(1/2),max

(
Fmin
i+(1/2),F

H
i+(1/2)

))
. (29)

The results of using the above pre-constraint condition and flux limiter are shown
in Fig. 8. For sufficiently high resolving power, the clipping phenomenon has been
virtually eliminated. We believe that this demonstrates the advantage of using one’s
knowledge of the physics of the problem to design FCT and other front-capturing
algorithms, rather than accepting their default behavior.

Before leaving this section, let us try to design the “ultimate” high order FCT
scheme, and see how it performs on the three test problems we have examined in
this section. It was shown by Fornberg that the asymptotic limit of an N th order
finite difference scheme on a periodic domain as N goes to infinity is in fact just the



42 S.T. Zalesak

Fig. 8 Same as Fig. 6, but using the non-clipping flux limiter and the pre-constraint of the high
order fluxes described in the text. Note the marked increase of accuracy with increased resolving
power. Also note that the clipping can be virtually eliminated as long as one has sufficient resolving
power

Fig. 9 Performance of a pseudospectral FCT algorithm on all three of the test problems used in
this section. We have used the non-clipping flux limiter and the pre-constraint of the high order
fluxes described in the text. These are the best results we have been able to produce for these
problems using front-capturing algorithms whose high-order components are stable

pseudospectral approximation using Fourier modes as basis functions. Thus we will
take our high order fluxes to be those which reproduce the pseudospectral discretiza-
tion. The results of using these pseudospectral fluxes and the non-clipping limiter
and pre-constraint algorithm described above are shown in Fig. 9. These are the best
results we have been able to produce for these problems using front-capturing al-
gorithms whose high-order components are stable. (Using unstable schemes as the
high order component of front-capturing algorithms can produce extremely sharp
square waves, but can severely distort the Gaussian and semi-ellipse. Examples are
Superbee, Ultrabee, ACM, and the contact detection algorithm in PPM.)

The above examples provide a springboard for the next section, where we ad-
dress a nonlinear system of equations, and the construction of our FCT algorithms
will become more complex. The path we will choose to success will be the same,
however: We will incorporate as much knowledge of the physics as possible into the
design of the algorithm.
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5 FCT Algorithms for One Dimensional Nonlinear Systems of
Conservation Laws

We now consider Eq. (2), where f is a fully nonlinear function of q . The example
we shall use is that of the Euler equations (3). If we go down our list of FCT design
criteria, we find that many of the optimal choices are the same as those for linear
advection, or are obvious generalizations thereof. However, the proper construction
of the flux limiter, both with regard to its physics component and with regard to its
algorithmic machinery, is less than obvious. Hence we will focus primarily on the
construction of the flux limiter in this section.

We saw in the last section that the results of an FCT calculation can be sensitive
to the choice of the flux limiter. But we also learned that modest modifications of
the basic FCT machinery allowed us to produce results which are quite good. Thus
it is worth looking at both the advection equation and at the advection flux limiters
for the purpose of determining how we wish to proceed for systems of hyperbolic
conservation laws.

The simplicity of the advection equation allows us to make some rather strong
statements about the allowable bounds for q in the next timestep. In particular, we
know that for any Courant number less than unity, the value of qn+1

i is bounded
by the values of qn on the interval [xi−1, xi+1]. This fact allows us to construct
reasonably precise upper and lower bounds on the solution. The bounds for qn+1

i

used by the Boris and Book flux limiter Eq. (17) are simply the maximum and
minimum of (qtd

i−1, q
td
i , qtd

i+1) respectively. While this could certainly be refined,
we saw in the last section that this algorithm produces reasonable results if one is
willing to tolerate the clipping of extrema. The reason for this, we believe, is that
the built-it physics component of the limiter is reasonably close to one physically
appropriate to the advection problem, again except near extrema.

5.1 Hyperbolic Systems of Conservation Laws: The Case for
Characteristic Variables

Let us now consider systems of hyperbolic conservation laws, using the Euler equa-
tions as an example. If we choose to deal completely with the conserved variables
q , what sort of statements can we make about upper and lower bounds on q in the
next timestep? In contrast to the case for advection, we are at a loss. In fact we know
for certain that qn+1

i is not necessarily bounded by qn anywhere in the vicinity of
grid point i. The default route taken by most FCT algorithms is to simply use what
worked for advection, and take the upper and lower bounds for qn+1 to be the max-
imum and minimum of (qtd

i−1, q
td
i , qtd

i+1) respectively. While certainly better than
the disastrous choice of using the maximum and minimum of (qn

i−1, q
n
i , q

n
i+1), in

contrast to the case for advection, brand new extrema will be a common occurrence.
The default choice would allow strong suppression of these new extrema by the
combination of the flux limiter and the dissipation in the low order fluxes. Using the
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non-clipping flux limiter described in the last section would not help either, again
because we have no basis by which to determine the magnitude that a new extremum
could attain before being declared unphysical. These difficulties are reflected in the
difficulty that FCT has, in our experience, in attaining the same kind of clean results
for systems of equations that are relatively easy to come by for scalar equations,
when using the default strategy of flux limiting with respect to the conserved vari-
ables directly. This is because we have strong and simple statements that we can
make about the upper and lower bounds in q in the next time step for the scalar case
that we just don’t have in the case of systems.

However, there is a set of variables in which a one-dimensional hyperbolic sys-
tem looks exactly like an advection equation, a set of uncoupled advection equations
to be precise, and that is the set of characteristic variables. These variables are not
global variables, but rather the result of locally linearizing the equations. Briefly,
what we will do in what follows is take the entire flux limiting problem, consisting
of the low order solution qtd and the set of “antidiffusive fluxes” A, and transform
them both into a set of variables in which the same flux limiting problem looks like a
set of uncoupled linear advection flux limiting problems. We then limit the fluxes us-
ing constraints physically and mathematically appropriate to an advection problem,
and then transform the limited fluxes back into conserved variables, where they will
be applied to qtd to produce the new solution qn+1. This will produce results that in
our view are far superior to those produced using the conserved variables directly.

Let us specialize our one-dimensional system of conservation laws Eq. (2) to the
case of a flux function f which is solely a function of q (the usual case), and write
it in the more compact notation

qt + f (q)x = 0 (30)

where the subscript denotes partial differentiation. We can then further rewrite
Eq. (30) in the following form:

qt +A(q)qx = 0 (31)

where A is the m×m Jacobian matrix ∂f/∂q , and m is the number of conservation
laws in Eq. (30). It is not clear that Eq. (31) is any improvement over Eq. (30),
since we have lost our explicit conservation form, and in general most entries of A

are nonzero. If our goal is to find an appropriate set of constraints on the values of
q for the purpose of flux limiting, we apparently have made no progress. But for
most hyperbolic systems it is possible to find a new set of variables q ′ defined by a
transformation matrix T −1 = T −1(q) such that Eq. (31) takes the form of a series
of m decoupled advection equations:

T −1qt + T −1A(q)T T −1qx = 0, (32)

q ′t +�q ′x = 0 (33)

where q ′ = T −1q and �= T −1A(q)T is a diagonal matrix with diagonal elements
λj , 1≤ j ≤m.
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Specifically, we will have m scalar equations of the form

∂q ′j
∂t
+ λj

∂q ′j
∂x
= 0. (34)

Our problem has now been reduced to performing the flux limiting step for m

independent advection equations, something that we know how to do well, precisely
because we have very good information on how to constrain the solution, as we
demonstrated in the last section. We note that the characteristic variables q ′ are not
the conserved quantities, and that we wish to construct our FCT algorithm such
that the conserved variables q are updated in flux form. Thus it will be important
to transform the fluxes themselves between the two spaces, not just the solution
vectors.

To construct our characteristic variable (CV) flux limiter, we first look at the
basic Boris-Book limiter, Eq. (17)

AC
i+(1/2) = S max

(
0,min

(|Ai+(1/2)|, S
(
qtd
i+2 − qtd

i+1

)
�x,S

(
qtd
i − qtd

i−1

)
�x

))
. (35)

This one-line formula provides one possible answer to the following question, which
we term the “Flux Limiting Problem” (FLP) for advection: Given the time-advanced
low order solution qtd and perhaps other auxiliary solution vectors, and given a set
of antidiffusive fluxes A, what is a set of corrected antidiffusive fluxes AC that are
as close to A as possible, and that will constrain qn+1 to lie within the bounds
appropriate to the advection problem? The FLP requires at least two inputs qtd

and A, and asks for one output AC . A look at Eq. (35), however, will convince
the reader that qtd itself is not really needed, but rather only its first differences at
flux evaluation points i + (1/2). This is not atypical. All flux limiting algorithms of
which we are aware have the property of depending only on local variations in q ,
not on the values of q themselves. This observation makes the construction of a CV
limiter particularly simple.

5.2 A Characteristic Variable Implementation of the Boris-Book
Flux Limiter

To be concrete here, we present a version of the CV flux limiter using the Boris-
Book limiter as a building block. Using other limiters as building blocks may require
some modification which will hopefully be obvious to the reader.

Given a hyperbolic system of conservation laws of length m with components
j , 1 ≤ j ≤ m in one spatial dimension, a low-order solution vector qtd with com-
ponents denoted qtd(j), 1≤ j ≤m defined on grid points xi , and a vector of antid-
iffusive fluxes A with components denoted A(j), 1 ≤ j ≤ m defined at flux points
xi+(1/2), the following steps define a characteristic variable-based implementation
of the Boris-Book flux limiter.

1. Calculate some appropriate average q
td(j)

i+(1/2), ∀j, i.
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2. From qtd
i+(1/2) calculate T −1

i+(1/2) and Ti+(1/2), ∀i.
3. Set Di+(1/2) = T −1

i+(1/2)(q
td
i+1 − qtd

i ), ∀i.
4. Set Bi+(1/2) = T −1

i+(1/2)Ai+(1/2), ∀i.
5. Set B

C(j)

i−(1/2) = S max(0,min(|B(j)

i+(1/2)|, SD(j)

i+(3/2)�x,SD
(j)

i−(1/2)�x)), ∀j, i,
where S = sign(1,B(j)

i+(1/2)).

6. Set AC
i+(1/2) = Ti+(1/2)B

C
i+(1/2), ∀i.

The notation above uses the superscript (j) on quantities only when it is nec-
essary to emphasize that each component of the vector is being manipulated sepa-
rately. Otherwise when the superscript is not present, a vector operation of length m

is assumed.

5.3 Computational Examples: The One Dimensional Euler
Equations

The equations of interest are

w =
⎛

⎝
ρ

ρu

ρE

⎞

⎠ ; f =
⎛

⎝
ρu

ρuu+ P

ρuE + Pu

⎞

⎠ (36)

where ρ, u, P , and E are the fluid density, velocity, pressure, and specific total
energy respectively. We will assume an ideal gas equation of state

P = (γ − 1)

(
ρE − 1

2
ρu2

)
. (37)

The matrices T and T −1 that we shall need are found by first setting

|A− λI | = 0

and solving for the eigenvalues λj of A. Then for each of these eigenvalues the right
and left eigenvectors are found. T is the matrix whose columns are the right eigen-
vectors of A. T −1 is the matrix whose rows are the corresponding left eigenvectors
of A. These matrices are well known for this system. They are

T =
⎡

⎢
⎣

1 1 1

u− c u u+ c

H − uc 1
2u

2 H + uc

⎤

⎥
⎦ ,

T −1 =

⎡

⎢⎢
⎣

1
2 (

γ−1
2 M2 + u

c
) − 1

2c − (γ−1)u
2c2

γ−1
2c2

1− γ−1
2 M2 (γ−1)u

c2 − γ−1
c2

1
2 (

γ−1
2 M2 − u

c
) 1

2c − (γ−1)u
2c2

γ−1
2c2

⎤

⎥⎥
⎦

where M2 ≡ u2/c2, c2 = γP/ρ, and H = c2/(γ − 1) + u2/2 is the stagnation
enthalpy.
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For our low order flux for the Euler equations we choose the Rusanov scheme:

FL
i+(1/2) =

[
1

2

(
f n
i+1 + f n

i

)− 1

4
(Qi +Qi+1)

(
qn
i+1 − qn

i

)]
�tn+1/2 (38)

where Qi is the maximum characteristic speed at i:

Qi = |ui | + ci . (39)

The high order fluxes are as given before for advection. As an example, the fourth
order flux is given by:

FH4
i+(1/2) =

[
7

12

(
f a
i+1 + f a

i

)− 1

12

(
f a
i+2 + f a

i−1

)]
�tn+1/2 (40)

where the time level ta is meant to denote whatever time level or average of time
levels is required by the particular substep of the particular time discretization cho-
sen.

The high order dissipative fluxes are modified versions of those used for advec-
tion, with the advection speed u replaced by the maximum characteristic speed Q.
As an example, the order 4 dissipative flux is given by:

FD4
i+(1/2) =−

1

2
(Qi +Qi+1)

[
3

16

(
qn
i+1 − qn

i

)− 1

16

(
qn
i+2 − qn

i−1

)]
�tn+1/2. (41)

The flux limiter, when we are not using the CV limiter described above, is again
given by the original Boris-Book limiter:

AC
i+(1/2) = S max

(
0,min

(|Ai+(1/2)|, S
(
qtd
i+2 − qtd

i+1

)
�x,S

(
qtd
i − qtd

i−1

)
�x

))

where S ≡ sign(1,Ai+(1/2)). (42)

All of the tests in this section use a modified Euler time discretization, each
substep of which is treated in the manner described in Sect. 4.

Our failsafe limiter is the simplest imaginable: If, after flux limiting, either the
density or the pressure in a cell is negative, all the fluxes into that cell are set to
their low order values, and the grid point values recalculated. Clearly there is much
room for a more precise failsafe mechanism, but this one has proved adequate for
the problems presented here.

Now that we have described the algorithms we will be using in this section, we
show some results using standard test problems. The first is the shock tube problem
due to Sod [11]. The initial conditions consist of a single discontinuity in density
(8 : 1) and pressure (10 : 1), with both γ = 1.4 gases at rest. All of our results plot
the analytic solution as a solid line, and the computed grid point values as data
points, using the temperature field, which we have found to be the field most sen-
sitive to numerical error. In Fig. 10 we show the results of our CV FCT algorithms
for N =ND = 4, 8, and 16. From left to right in each of the three plots, the reader
will recognize the shock wave, the contact discontinuity, and the rarefaction fan
associated with this problem. Note the marked increase in the accuracy of the con-
tact discontinuity as the resolving power of the high order fluxes increases, similar
to our experiences with advection. For comparison, in Fig. 11 we show the same
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Fig. 10 Results for the temperature field, Sod shock tube problem using CV FCT algorithms with
N =ND = 4, 8, and 16

Fig. 11 Same as Fig. 10, but using a flux limiter which limits only with respect to conserved
variables

three calculations, but using the more conventional FCT flux limiter which limits
the fluxes based solely on the conserved variables. Note the marked superiority of
the characteristic variable-based CV flux limiter.

The next test problem is the double shock tube of Woodward and Colella [12].
This problem involves the complex interaction of very strong waves of all types, and
is considerably more difficult than the Sod problem. Here we show the performance
of our CV FCT algorithms on three grids, of size 200, 400, and 800 grid points,
testing both absolute performance and convergence. In Fig. 12, we show the density
field at t = 0.2 using a grid of 200 points, and using our CV FCT algorithms with
N =ND = 4, 8, and 16. As with the advection tests, and with the Sod test problem,
we see increased accuracy with resolving power, but all calculations suffer from
lack of resolution.

Figures 13 and 14 show the same calculations with 400 and 800 grid points re-
spectively. We see increased accuracy with resolving power, as well as with grid
refinement. Note that the two shock waves are resolved over 1–2 grid points re-
gardless of the resolving power, but that the accuracy (sharpness in this case) of the
three contact discontinuities increases markedly with increased resolving power at
all refinement levels.
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Fig. 12 Results for the density field for the 200-point Woodward-Colella double shock tube prob-
lem using CV FCT algorithms with N =ND = 4, 8, and 16

Fig. 13 Same as Fig. 12, but using a grid of 400 points

Fig. 14 Same as Fig. 12, but using a grid of 800 points
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5.4 Using Characteristic Variables in Other FCT Components

Thus far, we have dealt with the use of characteristic variables only in the flux
limiter, but there are two other FCT components that could conceivably benefit from
their use: the low order fluxes, and the dissipative component of the high order
fluxes. The treatment of both is quite similar, so we will discuss them together.
Recall that our low order flux for advection was given by the first order upwind
method:

FL
i+(1/2) =

[
1

2

(
f n
i+1 + f n

i

)− 1

2
|u|(qn

i+1 − qn
i

)]
�tn+1/2. (43)

It can be proven that for any flux of the above form, the coefficient |u|/2 used above
is the smallest that will guarantee that the flux will maintain the monotonicity of a
monotone profile. Thus this flux is in some sense the optimum low order flux for
advection.

By contrast, our low order flux for the Euler equations was the Rusanov flux:

FL
i+(1/2) =

[
1

2

(
f n
i+1 + f n

i

)− 1

4
(Qi +Qi+1)

(
qn
i+1 − qn

i

)]
�tn+1/2 (44)

where Qi is the maximum characteristic speed at i:

Qi = |ui | + ci . (45)

This flux is not the optimum low order flux for the Euler equations, and is in
general considerably more dissipative than necessary to guarantee that unphysical
solutions cannot be generated. Rather, the Godunov flux is the optimal choice. This
flux requires the solution of the full nonlinear Riemann problem at each flux point.
However, a good approximation to the Godunov flux FG

i+(1/2) is obtained by doing
exactly what we did to limit fluxes: We transform the entire “low order flux” prob-
lem into characteristic variables, where the system is of the form of m uncoupled
advection problems, compute first order upwind fluxes in those variables, and then
transform the fluxes back to conserved variables:

1. Calculate some appropriate average q
n(j)

i+(1/2), ∀j, i.
2. From qn

i+(1/2) calculate T −1
i+(1/2) and Ti+(1/2), ∀i.

3. Set Di+(1/2) = T −1
i+(1/2)(q

n
i+1 − qn

i ), ∀i.
4. Set D(j)

i+(1/2) =−
|λ(j)

i+(1/2)|
2 D

(j)

i+(1/2), ∀i, j .

5. Set FL
i+(1/2) = [ 12 (f n

i+1 + f n
i )+ Ti+(1/2)Di+(1/2)]�tn+1/2.

In principle, this would be a much better choice for our low order flux than the
Rusanov flux we have chosen, because it would be less dissipative. However, we
cannot forget that the primary property that we want of our low order flux is its
guaranteed freedom from unphysical behavior. Anyone familiar with the modern
literature on approximate Riemann solvers will recognize the above as one of the
popular ways of constructing them. He or she will also know that such approximate
solvers are in general devoid of the guarantees that we need. Thus we leave this
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promising topic for future exploration, and move on to the related topic of optimiz-
ing the adaptive dissipation in the high order flux.

Recall that our order 4 dissipative flux for advection was given by:

FD4
i+(1/2) =−|u|

[
3

16

(
qn
i+1 − qn

i

)− 1

16

(
qn
i+2 − qn

i−1

)]
�tn+1/2 (46)

while the corresponding flux for the Euler equations was

FD4
i+(1/2) =−

1

2
(Qi +Qi+1)

[
3

16

(
qn
i+1 − qn

i

)− 1

16

(
qn
i+2 − qn

i−1

)]
�tn+1/2 (47)

where Qi is again the maximum characteristic speed at i:

Qi = |ui | + ci . (48)

Comparing the above pair of equations with the preceding pair, we see that the
order 4 dissipative flux for the Euler equations suffers from the same flaw as does
the Rusanov flux: in general it will provide more dissipation than is needed. The
most extreme example of this is that of very low Mach number flow in which ad-
vected waves would be subject to a dissipation proportional to c, while the waves
themselves were moving with a velocity of v � c. A way of addressing this is,
again, to use the characteristic variables, dissipating each of the component waves
in proportion to its own wave speed.

To give a concrete example of the procedure, let us first rewrite Eq. (47):

FD4
i+(1/2) =

1

32
(Qi +Qi+1)[�qi−(1/2) − 2�qi+(1/2) +�qi+(3/2)]�tn+1/2

where �qi+(1/2) ≡ qn
i+1 − qn

i . (49)

Our CV dissipative flux of order 4 would then be computed as follows:

1. Calculate some appropriate average q
n(j)

i+(1/2), ∀j, i.
2. From qn

i+(1/2) calculate T −1
i+(1/2) and Ti+(1/2), ∀i.

3. Set �i+(1/2) = T −1
i+(1/2)(q

n
i+1 − qn

i ), ∀i.
4. Set D(j)

i+(1/2) =
|λ(j)

i+(1/2)|
16 (�

(j)

i−(1/2) − 2�(j)

i+(1/2) +�
(j)

i+(3/2)), ∀j, i.
5. Set FD4

i+(1/2) = [Ti+(1/2)Di+(1/2)]�tn+1/2.

Other adaptive dissipative fluxes can be computed in a similar manner. Re-
running all of our previous CV limiter calculations with this CV adaptive dissi-
pation, we find that only the N = 4 calculations display any significant differences.
We show only those here. In Fig. 15 we compare two calculations, both using CV
limiting, for the Sod shock tube problem. The left panel is the same as that of the
left panel in Fig. 10, using the adaptive dissipation given by Eq. (47), while the right
panel instead uses the CV adaptive dissipation given by the above algorithm. Note a
significant increase in the sharpness of the contact discontinuity, without any other
adverse effects. This is, of course, what we hoped we would achieve.
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Fig. 15 Sod shock tube problem: Comparison of the N = Nd = 4 CV FCT algorithm using the
conventional adaptive dissipation given by Eq. (47) (left), and the CV-based adaptive dissipation
described in the text (right)

6 Flux-Corrected Transport in Multidimensions

As we have stated before, there is a large class of problems for which an operator
splitting strategy, using sequences of one-dimensional time-advancement operators,
can be successful. We are assuming here, however, that we are interested in pursuing
a more fully multidimensional approach wherein the results are independent, or as
independent as possible, of any apparent ordering of one-dimensional operators. Of
the three components of an FCT algorithm, only the flux limiter normally presents
any difficulty in this regard. Indeed, much of [13] was devoted to defining a fully
multidimensional flux limiter, which we present below.

6.1 A Fully Multidimensional Flux Limiter

The alternative flux limiting algorithm presented in Sect. 4.2 generalizes trivially
to any number of spatial dimensions, and in fact to unstructured as well as the
structured meshes we consider here. For the sake of completeness we present the
algorithm for the structured coordinate-aligned two dimensional mesh referred to in
Eq. (10).

Referring to Fig. 16, we seek to limit the antidiffusive fluxes Ai+(1/2),j and
Ai,j+(1/2) by finding coefficients Ci+(1/2),j and Ci,j+(1/2) such that

AC
i+(1/2),j = Ci+(1/2),jAi+(1/2),j , 0≤ Ci+(1/2),j ≤ 1,

AC
i,j+(1/2) = Ci,j+(1/2)Ai,j+(1/2), 0≤ Ci,j+(1/2) ≤ 1

and such that AC
i+(1/2),j , AC

i−(1/2),j , AC
i,j+(1/2), and AC

i,j−(1/2) acting in concert shall
not cause

qn+1
ij = qtd

ij −�V −1
ij

[
AC

i+(1/2),j −AC
i−(1/2),j +AC

i,j+(1/2) −AC
i,j−(1/2)

]
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Fig. 16 Schematic of the
flux limiting problem in two
dimensions

to exceed some maximum value qmax
ij or fall below some minimum value qmin

ij . The
procedure is completely analogous to that given in Sect. 2:

1. Compute, for each grid point ij , physically-motivated upper and lower bounds
on the solution in the next timestep, qmax

ij and qmin
ij respectively.

2. For the upper bound, compute P , Q, and their ratio R at each grid point:

P+ij =max(Ai−(1/2),j ,0)−min(Ai+(1/2),j ,0) (50)

+max(Ai,j−(1/2),0)−min(Ai,j+(1/2),0), (51)

Q+ij =
(
qmax
ij − qtd

ij

)
�Vij , (52)

R+ij =min
(
1,Q+ij /P

+
ij

)
, P+ij > 0, 0 otherwise. (53)

3. For the lower bound, compute P , Q, and their ratio R at each grid point:

P−ij =max(Ai+(1/2),j ,0)−min(Ai−(1/2),j ,0) (54)

+max(Ai,j+(1/2),0)−min(Ai,j−(1/2),0), (55)

Q−ij =
(
qtd
ij − qmin

ij

)
�Vij , (56)

R−ij =min
(
1,Q−ij /P

−
ij

)
, P−ij > 0, 0 otherwise. (57)

4. Compute Ci+(1/2),j and Ci,j+(1/2) by taking a minimum:

Ci+(1/2),j =
{

min(R+i+1,j ,R
−
ij ) when Ai+(1/2),j > 0,

min(R+ij ,R
−
i+1,j ) when Ai+(1/2),j ≤ 0,

(58)

Ci,j+(1/2) =
{

min(R+i,j+1,R
−
ij ) when Ai,j+(1/2) > 0,

min(R+ij ,R
−
i,j+1) when Ai,j+(1/2) ≤ 0.

(59)

Again note that in the above we do not specify the equivalent of Eq. (14) in [13].
As we have stated, we do not consider that equation to be part of the flux limiter
proper, but rather an algorithm for pre-constraining the high order fluxes. Nonethe-
less, for fully multidimensional problems we have yet to find anything better, and
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we use an abbreviated form of that equation to pre-constrain the high order fluxes
in the multidimensional advection problems that follow:

Ai+(1/2),j = 0 if Ai+(1/2),j
(
qtd
i+1,j − qtd

ij

)≤ 0,

Ai,j+(1/2) = 0 if Ai,j+(1/2)
(
qtd
i,j+1 − qtd

ij

)≤ 0.
(60)

With our fully multidimensional flux limiter in hand, along with our algorithm
for pre-constraining the high order fluxes Eq. (60), let us consider two multidimen-
sional problems: passively-driven convection in two dimensions, and compressible
gas dynamics in two dimensions.

6.2 FCT Algorithms for Two-Dimensional Passively-Driven
Convection

We shall be interested in solving Eq. (8) for the special case where q(x, y) is a scalar
and where

f = qu, (61)

g = qv. (62)

Here u(x, y) and v(x, y) are convection velocity components in the x and y direc-
tions respectively. They are assumed to be specified either globally or at the very
least at cell boundaries. Thus our equation is

qt + (qu)x + (qv)y = 0. (63)

Our first order of business is to specify high and low order fluxes. Since ui+(1/2),j
and vi,j+(1/2) are specified at cell faces, our job reduces to specifying qi+(1/2),j
and qi,j+(1/2) at cell faces, and then multiplying them by the appropriate cell face
velocity. The low order fluxes, the high order fluxes, and the high order dissipation
components are all straightforward generalizations of the fluxes we used in one
dimensional linear advection.

For our low order fluxes, we choose a two-dimensional donor cell algorithm:

qL
i+(1/2),j =

{
qij when ui+(1/2),j > 0

qi+1,j when ui+(1/2),j ≤ 0

}

, (64)

qL
i,j+(1/2) =

{
qij when vi,j+(1/2) > 0

qi,j+1 when vi,j+(1/2) ≤ 0

}

, (65)

FL
i+(1/2),j = qL

i+(1/2),j ui+(1/2),j Si+(1/2),j�tn+1/2, (66)

GL
i,j+(1/2) = qL

i,j+(1/2)vi,j+(1/2)Si,j+(1/2)�tn+1/2 (67)

where Si+(1/2),j and Si,j+(1/2) are the areas of the x and y cell faces respectively.
We note that the above “four-flux” donor cell algorithm does not account for corner
transport in a single step. While we do not describe them here, variants of the above
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do allow corner transport and at the same time satisfy the prime requirement of
preventing unphysical values of q . Thus these variants are the preferred low order
fluxes for this problem, and are the ones we use here.

The high order fluxes are again computed using the formulae in the Appendix
of [13]. As an example, the fourth order fluxes are given by:

qH4
i+(1/2),j =

7

12

(
qa
i+1,j + qa

ij

)− 1

12

(
qa
i+2,j + qa

i−1,j

)
, (68)

qH4
i,j+(1/2) =

7

12

(
qa
i,j+1 + qa

ij

)− 1

12

(
qa
i,j+2 + qa

i,j−1

)
, (69)

FH4
i+(1/2),j = qH4

i+(1/2),j ui+(1/2),j Si+(1/2),j�tn+1/2, (70)

GH4
i,j+(1/2) = qH4

i,j+(1/2)vi,j+(1/2)Si,j+(1/2)�tn+1/2 (71)

where the time level ta is meant to denote whatever time level or average of time
levels is required by the particular substep of the particular time discretization cho-
sen.

The high order dissipative fluxes of order ND , which are added to the above high
order fluxes, again follow very closely to their one-dimensional counterparts. As an
example, the order 4 dissipative fluxes are given by:

FD4
i+(1/2),j =−|ui+(1/2),j |

[
3

16

(
qn
i+1,j − qn

ij

)− 1

16

(
qn
i+2,j − qn

i−1,j

)]

× Si+(1/2),j�tn+1/2, (72)

FD4
i,j+(1/2) =−|vi,j+(1/2)|

[
3

16

(
qn
i,j+1 − qn

ij

)− 1

16

(
qn
i,j+2 − qn

i,j−1

)
]

× Si,j+(1/2)�tn+1/2. (73)

The pre-constraint of the high order fluxes is given by Eq. (60). Since we will be
limiting directly on the variable q , there is no need for a fail-safe procedure.

For our flux limiter, we choose the multidimensional limiter given above, with
qmax
ij and qmin

ij specified thus:

q+ij = max
(
qn
ij , q

td
ij

)
,

qmax
ij = max

(
q+i−1,j , q

+
i,j , q

+
i+1,j , q

+
i,j−1, q

+
i,j+1

)
,

q−ij = min
(
qn
ij , q

td
ij

)
,

qmin
ij = min

(
q−i−1,j , q

−
i,j , q

−
i+1,j , q

−
i,j−1, q

−
i,j+1

)
.

(74)

For our test problem we choose the solid body rotation problem given in [13].
We have Eq. (63) with u = −�(y − y0) and v = �(x − x0), where � is a con-
stant angular velocity, and (x0, y0) is the axis of rotation. The computational grid is
100× 100 cells, �x =�y, with counterclockwise rotation taking place about grid
point (50,50). Centered at grid point (50,75) is a cylinder of radius 15 grid points,
through which a slot has been cut of width 5 grid points. The time step and rotation
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Fig. 17 Initial condition.
Grid points inside the slotted
cylinder have q = 3.0. All
others have q = 1.0. Only the
central 50×50 array of grid
points around the analytic
center of the distribution is
shown

Fig. 18 Results after one revolution with N =ND = 4

speed are such that 1256 time steps will effect one complete revolution of the cylin-
der about the central point. A perspective view of the initial conditions is shown in
Fig. 17. In this and following figures, only the central 50× 50 array of grid points
around the analytic center of the distribution is shown.

In Fig. 18 we show the results after one revolution of the cylinder about the axis,
using N =ND = 4. We show the profile from four different angles, with the L1 error
denoted by “AE.” Overall, the FCT algorithm has performed well. Nowhere on the
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Fig. 19 Results after one revolution with N =ND = 8

grid are there values of q outside the bounds of the analytic result, bounds the high
order algorithm would have violated in the very first timestep. Yet the numerical
diffusion, although certainly present, is far less than that which would have been
generated by the low order algorithm. The top of the cylinder has remained flat
and free of oscillations, and kept its original value of 3.0. The flat area outside the
cylinder has also remained flat and free of oscillations, and kept its original value
of 1.0. The L1 error is 0.0276. The profile is a bit more diffuse than the fourth order
calculation shown in [13]. This can be attributed to the fact that we include a fourth
order dissipation term in the high order flux in the present calculation, and did not
do so in [13].

In Sect. 4, we found that by increasing the resolving power of the high order
fluxes, we could improve the performance of the corresponding FCT algorithm for
one-dimensional advection. Let us see if that pattern plays out in multidimensional
advection as well. In Fig. 19 we show the results after one revolution of the cylinder
about the axis, using N = ND = 8. The L1 error is 0.0170. The results are clearly
quite a bit better than the N = ND = 4 calculation. There is far less erosion in the
slot, and the bridge connecting the two halves of the cylinder has maintained its
integrity. In Fig. 20 we show the results after one revolution of the cylinder about
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Fig. 20 Results after one revolution with N =ND = 16

the axis, using N = ND = 16. The L1 error is 0.0138. Again we see a marked
improvement with increasing resolving power in the high order flux.

A careful look at Fig. 20 will reveal an aspect of the multidimensional limiter
used with the bounds given in Eq. (74) that has been noted both in [13] and more re-
cently by DeVore [6]: Even though this combination of limiter and upper and lower
bounds does prevent the occurrence of maxima and minima beyond those bounds,
this property is not synonymous with the enforcement of monotonicity in any given
coordinate direction. Note in particular the breaking of one-dimensional monotonic-
ity along the front upper portion of the cylinder in the lower left panel of Fig. 20.
Such breaking of monotonicity is often, but not always, caused by the development
of dispersive ripples due to high order fluxes in one direction which are not seen as
errors by the multidimensional limiter due to the presence of a steep gradient in a
transverse direction. To address this issue, both [13] and [6] recommended adding
a “pre-limiting” step before the multidimensional flux limiter, consisting of a call
to the Boris-Book flux limiter for each of the one-dimensional fluxes. That is, prior
to the multidimensional flux limiter, Ai+(1/2),j is limited with respect to qtd in the
x-direction, and Ai,j+(1/2) is limited with respect to qtd in the y-direction, using
the Boris-Book limiter. In Fig. 21 we show the results of applying that technique
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Fig. 21 N =ND = 16 with the Boris-Book pre-limiter

to the N = ND = 16 calculation shown previously in Fig. 20. Although many of
the regions of broken monotonicity have been eliminated, the overall solution has
been degraded. Significant erosion of the slot and the bridge have taken place, and
we now have an L1 error of 0.0159. This degradation is due primarily to the fact
that peaked profiles naturally occur along the outer portions of the cylinder, both
initially and as the profile moves and diffuses slightly. These peaked profiles are
subsequently “clipped” by the Boris-Book limiter, giving us worse results than if
we had not invoked the pre-limiter at all, at least for this problem.

A solution to the above dilemma is to pre-limit using a one-dimensional limiter as
above, but to do so using a limiter which does not clip extrema, rather than the Boris-
Book limiter. In Fig. 22 we show the results of using a slightly modified version of
the non-clipping one-dimensional flux limiter described in Sect. 4.3 to “pre-limit”
the N =ND = 16 calculation shown previously in Fig. 20. We see that not only have
many of the regions of broken monotonicity vanished, but the overall solution has
improved, with an L1 error of 0.0137. Thus if pre-limiting is deemed advisable, our
recommendation is to use non-clipping limiters rather than the Boris-Book limiter
to accomplish that task.
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Fig. 22 N =ND = 16 with a non-clipping pre-limiter

6.3 FCT Algorithms for Two-Dimensional Compressible Gas
Dynamics

We are interested in solving the equations of two-dimensional compressible inviscid
fluid flow Eq. (9). Recall that when we studied the corresponding one-dimensional
system, we found a distinct advantage to limiting with respect to the characteristic
variables rather than the conserved variables. We also found that we could use the
Boris-Book limiter with fairly good success, indicating that clipping was not a se-
rious problem, at least when one uses characteristic variables. Here we will try to
build on that success.

We immediately face an apparent problem, however. The characteristic variables
are only rigorously defined for one spatial dimension, i.e., it is not possible to si-
multaneously diagonalize both f and g with the same similarity transformation (for
gas dynamics). It is clear, then, that if we wish to limit with respect to characteristic
variables, we can only perform flux limiting in one direction at a time. We shall use
the characteristic form of the Boris-Book limiter that we developed in Sect. 5.2 for
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this task, using it in such a manner as to preserve as much full multidimensionality
as possible in the algorithm.

The flux limiter we shall use is exactly as described in Sect. 5.2, except that we
shall require similarity transformations appropriate for the full set of four conserved
variables. The ones we actually use here are those appropriate for three-dimensional
gas dynamics, with five conserved variables, with the third component of momen-
tum set to zero. The matrices T and T −1 in the x direction are given by

T =

⎡

⎢⎢⎢⎢
⎣

1 0 0 1 1
u− c 0 0 u u+ c

v 1 0 v v

w 0 1 w w

H − uc v w 1
2q

2 H + uc

⎤

⎥⎥⎥⎥
⎦

, (75)

T −1 =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

1
2 (

γ−1
2 M2 + u

c
) − 1

2c − (γ−1)u
2c2 − (γ−1)v

2c2 − (γ−1)w
2c2

γ−1
2c2

−v 0 1 0 0
−w 0 0 1 0

1− γ−1
2 M2 (γ−1)u

c2
(γ−1)v

c2
(γ−1)w

c2 − γ−1
c2

1
2 (

γ−1
2 M2 − u

c
) 1

2c − (γ−1)u
2c2 − (γ−1)v

2c2 − (γ−1)w
2c2

γ−1
2c2

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

(76)

where q2 ≡ u2+ v2+w2, M2 ≡ q2/c2, H is the stagnation enthalpy, and u, v, and
w are the x, y, and z components of velocity respectively. For the y direction, a
corresponding set of transformation matrices is used.

The easiest solution is, of course, to simply use directional operator splitting. To
demonstrate that such a technique is viable, in Fig. 23 we show a calculation using
a directionally split version of the N = 8, ND = 8 CV FCT algorithm given here
to solve the Mach reflection problem given by Woodward and Colella [12]. The
problem consists of a Mach 10 shock reflecting from a 30 degree wedge. The three
resolutions used in [12] are shown, corresponding to meshes of 120×30, 240×60,
and 480×120 from top to bottom. We invite the reader to compare the results to
those obtained elsewhere. In Fig. 24 we show the same calculation, but using the
conventional non-CV limiter which limits only on the conserved variables. The mor-
phology of the jet along the bottom wall disagrees both with experimental data and
with other published numerical calculations. We conclude that the CV limiter used
in Fig. 23 is by far the better choice. We also conclude that, for this particular test
problem, directional splitting is satisfactory.

Of course one would prefer not to use directional splitting, since one cannot be
sure in advance that the particular physics problem of interest will yield satisfactory
results when such splitting is employed. Thus we would prefer not to use full-blown
directional splitting, and yet the variables which we desire to use for flux limiting
would seem to require that the limiting step itself be directionally split. Is there a
way to satisfy both requirements? Is there some way to be “fully multidimensional”
and also use characteristic variables?

One way to define the term “fully multidimensional algorithm” is to demand that
the results be independent of any choice of ordering that may be present in an algo-
rithm. Another, perhaps just as satisfactory, is to demand that same independence,
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Fig. 23 Isodensity contours
for the Woodward-Colella
ramp problem at t = 0.2
using a CV limiter with
N =ND = 8, and directional
splitting. From top to bottom,
the displayed grids are
120× 30, 240× 60, and
480× 120

Fig. 24 Same as Fig. 23, but
using the conventional flux
limiter which limits only on
the conserved variables. The
morphology of the jet along
the bottom wall disagrees
both with experimental data
and with other published
numerical calculations. We
conclude that the CV limiter
used in Fig. 23 is by far the
better choice



The Design of Flux-Corrected Transport (FCT) Algorithms 63

Fig. 25 Same as Fig. 23, but
using a CV limiter
independently on fully
multidimensional
antidiffusive fluxes

except for the flux limiting step itself. We use one variant of each here, which we
describe in compact form:

1. Compute all high and low order fluxes fully multidimensionally.
2. Either

• limit the x-, y-, and z-directed fluxes independently; or
• limit the x-, y-, and z-directed fluxes sequentially, updating solution values

between steps.

The first choice increases the risk that the failsafe limiter will be brought into
play, but is truly multidimensional. The second is less likely to generate the need
for the failsafe limiter, but is multidimensional only in the second sense above. In
Fig. 25, we show the results of the Woodward-Colella Mach reflection problem us-
ing a CV limiter and limiting the x- and y-directed fluxes independently. In Fig. 26,
we show the results using a CV limiter and limiting the x- and y-directed fluxes
sequentially. Both are seen to perform quite well, albeit with results that are virtu-
ally indistinguishable from those in Fig. 23. Clearly this test problem, although it
is the standard test problem for multidimensional compressible flow, is not one for
which one needs a fully multidimensional algorithm to achieve accurate solutions.
Nonetheless, we would recommend either of the two multidimensional approaches
over the fully split one, as a means of avoiding the splitting errors that may occur
when simulating more general flows.
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Fig. 26 Same as Fig. 23, but
using a CV limiter
sequentially on fully
multidimensional
antidiffusive fluxes

7 Conclusions

We have tried to give the reader a distillation of the design principles for building
FCT algorithms, and front-capturing algorithms in general, that we have gleaned
from experience over the past several decades. If there is a common thread to all of
them it is this: the scientists who use such algorithms must have both input to and
knowledge of their design. There may come a day when we no longer hold to this
view, when the design of such algorithms can be left to expert numerical analysts
alone, but that day has not yet arrived.
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On Monotonically Integrated Large Eddy
Simulation of Turbulent Flows Based on FCT
Algorithms

Fernando F. Grinstein and Christer Fureby

Abstract Non-classical Large Eddy Simulation (LES) approaches based on us-
ing the unfiltered flow equations instead of the filtered ones have been the sub-
ject of considerable interest during the last decade. In the Monotonically Integrated
LES (MILES) approach, flux-limiting schemes are used to emulate the characteris-
tic turbulent flow features in the high-wavenumber end of the inertial subrange re-
gion. Mathematical and physical aspects of implicit SGS modeling using non-linear
flux-limiters are addressed using the modified LES-equation formalism. FCT based
MILES performance is demonstrated in selected case studies including (1) canoni-
cal flows (homogeneous isotropic turbulence and turbulent channel flows), (2) com-
plex free and wall-bounded flows (rectangular jets and flow past a prolate spheroid),
(3) very-complex flows at the frontiers of current unsteady flow simulation capabil-
ities (submarine hydrodynamics).

1 Background

High Reynolds (Re) number turbulent flows are of considerable importance in many
fields of engineering, geophysics, and astrophysics. Turbulent flows involve mul-
tiscale space/time developing flow physics largely governed by large-scale vorti-
cal Coherent Structures (CS’s). Typical turbulent energy spectra exhibit a large-
wavelength portion dependent on the flow features imposed by geometry and bound-
ary conditions, followed by an intermediate inertial subrange—which becomes
longer for higher Re and characterizes the virtually inviscid cascade processes, and
then by much-faster decaying portion in the dissipation region (e.g., Sect. 5.1.1 be-
low).
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Capturing the dynamics of all relevant scales based on the numerical solution of
the Navier-Stokes Equations (NSE) constitutes Direct Numerical Simulation (DNS),
which is prohibitively expensive for practical flows at moderate-to-high Re. On the
other end of computer simulation possibilities, the industrial standard is Reynolds-
Averaged Navier-Stokes (RANS) modeling, which involves simulating only the
mean flow and modeling the effects of the turbulent scales.

Large Eddy Simulation (LES) is an effective intermediate approach between
DNS and RANS, capable of simulating flow features which cannot be handled
with RANS such as flow unsteadiness and strong vortex-acoustic couplings. Fur-
thermore, LES provides higher accuracy than RANS at reasonable cost but still typ-
ically an order of magnitude more expensive. Desirable modeling choices involve
selecting an appropriate discretization of the flow problem at hand, such that the
LES cutoff lies within the inertial subrange, and ensuring that a smooth transition
can be enforced at the cutoff. The main assumptions of LES are that: (i) transport is
largely governed by large-scale unsteady features and that such dominant features
of the flow can be resolved, (ii) the less-demanding accounting of the small-scale
flow features can be undertaken by using suitable Sub Grid Scale (SGS) models.

In the absence of an accepted universal theory of turbulence to solve the problem
of SGS modeling, the development and improvement of such models must include
the rational use of empirical information. Several strategies to the problem of SGS
modeling are being attempted, see e.g., [1], for a recent survey. After more than
thirty years of intense research on LES of turbulent flows based on eddy-viscosity
models there is now consensus that such approach is subject to fundamental limita-
tions [2]. It has been demonstrated, for a number of flows, that the eigenvectors of
the SGS stress and rate-of-strain tensors involved in SGS eddy-viscosity models are
not parallel, rendering eddy-viscosity models to be inaccurate.

There have been other proposals that do not employ the assumption of co-
linearity of SGS stress and rate-of-strain embedded in the eddy-viscosity mod-
els, e.g. the scale-similarity model (SSM) [3] and the Approximate Deconvolution
Method (ADM) [4]. Such models may however be numerically unstable, and the
more recent efforts have focused on developing mixed models, combining in essence
the dissipative eddy-viscosity models with the more accurate but unstable SSM’s.
The results from such mixed models have been mostly satisfactory but the imple-
mentation and computational complexity of these improved combined approaches
have limited their popularity. In fact, because of the need to distinctly separate (i.e.
resolve) the effects of explicit filtering and SGS reconstruction models from those
due to discretization, carrying out such well-resolved LES can typically amount in
practice to performing a coarse DNS. As a consequence, it has been argued that the
use of hybrid RANS/LES models for realistic whole-domain complex configura-
tions might be unavoidable in the foreseeable future, e.g., [5].

Recognizing the aforementioned difficulties but also motivated by new ideas pio-
neered at NRL by Boris and collaborators [6, 7], several researchers have abandoned
the classical LES formulations and started employing the unfiltered flow equations
instead of the filtered ones. Major focus of the new approaches [8, 9] has been on the
inviscid inertial-range dynamics and regularization of the under-resolved flow, based
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on ab initio scale separation with additional assumptions for stabilization, or apply-
ing monotonicity via non-linear limiters that implicitly act as a filtering mechanism
for the small scales—the original proposal of Boris et al. [7]. The latter concept
goes back to the 50’s to von Neumann and Richtmyer [10], who used artificial dissi-
pation to stabilize finite-difference simulations of flows involving shocks. This arti-
ficial dissipation concept also motivated Smagorinsky [11] in developing his scalar
viscosity concept based upon the principles of similarity in the inertial range of 3D
isotropic turbulence. However, the recognition of the more broadly defined implicit
LES (ILES) framework is more recent [12]. In ILES, the effects of the SGS physics
on the resolved scales are incorporated through functional reconstruction of the con-
vective fluxes using non-oscillatory—but not necessarily monotonic—finite-volume
(NFV) algorithms.

In what follows, we use the modified LES equation formalism to carry out a
formal comparative analysis of conventional LES and MILES. The performance of
MILES is demonstrated for selected representative case studies including canoni-
cal flows, moderately complex free and wall-bounded flows, and extremely com-
plex flows at the frontiers of current flow simulation capabilities. We conclude our
presentation by addressing fundamental challenges for further development of the
concept of nonlinear Implicit LES (ILES).

2 Conventional LES

For simplicity, we restrict the discussion to incompressible flows described by the
Navier-Stokes momentum balance equation,

∂t (v)+∇ · (v⊗ v)=−∇p+∇ · S, (1)

in conjunction with the incompressibility (or divergence) constraint ∇ ·v= 0, where
⊗ denotes the tensorial product, and S = 2νD and D = 1

2 (∇v + ∇vT ) are the
viscous-stress and strain-rate tensors. The conventional LES procedure [1] involves
three basic ingredients:

(i) low-pass filtering by the convolution

f̄ (x, t)=G ∗ f (x, t)=
∫

D

G
(
x− x′,Δ

)
f
(
x′, t

)
d3x′,

with a prescribed kernel G=G(x,Δ) of width Δ,
(ii) finite volume, element or difference discretization,

(iii) explicit SGS modeling to close the low-pass filtered equations.

Applying (i) and (ii), using a second order accurate finite volume algorithm, to (1),
and rewriting the results in terms of the modified equations approach, i.e., the equa-
tion satisfied by the numerical solutions being actually calculated yields [13, 14],

∂t (v̄)+∇ · (v̄⊗ v̄)=−∇p̄+∇ · S̄−∇ ·B+mv + τ, (2)
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Fig. 1 Grid schematic. P and
N denote typical
computational cell centers
and f an interface; n denotes a
unit vector normal to the
interface, and A its area; d is
the topological vector
connecting neighboring cells

where,

B= v⊗ v− v̄⊗ v̄, mv = [G∗,∇](v⊗ v+ pI− S),

τ =∇ ·
[[

1

6
ν∇3v− 1

8
∇2v

]
(d⊗ d)+ · · ·

] (3)

are the SGS stress tensor, commutation error term, and the total (convective, tem-
poral and viscous) truncation error, respectively, I is the unit tensor, and d is
the topological vector connecting neighboring control volumes (see Fig. 1), and,
[G∗,∇]f =∇f −∇f̄ . The commutation error term is often lumped together with
the SGS force ∇ · B, prior to modeling, and hence a generalized SGS stress tensor
B needs to be prescribed in terms of discretized filtered fields for closure of the new
equations—which constitutes (iii) above.

Functional modeling consists of the modeling action of the SGS’s on the re-
solved scales. It involves modeling of energetic nature, by which balances of en-
ergy are transferred between resolved and subgrid scale ranges, thus accounting
for the SGS effects. The energy transfer mechanism from resolved to SGS’s is as-
sumed analogous to a Brownian motion superimposed on the large-scale motion.
An example of this is the eddy-viscosity approach, in which B=−2νkD̄ where νk

is the SGS viscosity—for example, using the Smagorinsky model [11] or the one
equation eddy-viscosity model (OEEVM) [15], its principal drawback is the well-
established lack of collinearity between B and D̄. Natural improvements to these
models use anisotropic counterparts based on tensor forms of the SGS turbulent vis-
cosity [16]. These more sophisticated closures involve structural modeling, which
attempts to model B without incorporating the interactions between SGS and re-
solved scales. By relying on actual SGS’s in the upper resolved subrange—rather
than on those modeled through dissipative eddy viscosity—we can better emulate
scatter and backscatter, and the modeling procedures won’t require assumptions
on local isotropy and inertial range. Potential drawbacks arise, however, because
structural models are computationally more expensive and typically not dissipative
enough; accordingly, mixed models, combined with an eddy-viscosity model, are
often used instead.
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3 Implicit LES

A key self-consistency issue required in the conventional LES approach involves
separating the computing effects of its three basic elements: filtering, discretization,
and reconstruction. Filtering and reconstruction contributions must be resolved, i.e.,
their effective contributions in (2) must be larger than the total truncation error τ .
Also, their upper range of represented (but inaccurate) scales interactions must be
addressed—in addition to those between resolved and SGS’s. Thus, it is useful to
examine B written in the following way,

B= v⊗ v− v̄⊗ v̄= (v⊗ v− vP ⊗ vP )+ (vP ⊗ vP − v̄⊗ v̄)= B1 +B2, (4)

where v̄P denotes the (grid) represented velocity scales, B1 the interaction between
represented and nonrepresented scales—which is not known a priori, and therefore
must be modeled—whereas B2 relates to the interaction between filtered and dis-
cretized represented scales, and it can be approximated by prescribing an estimated
vP in the represented-velocity space (i.e., the solution to the so-called soft decon-
volution problem) [4]. In this framework, a basic structural SGS model, such as the
scale-similarity model, provides B2, and the eventual need of mixed models results
from the recognition that B2 is not dissipative enough so a secondary regularization
through B1 is needed—i.e., an approximation to v in physical-velocity space must
be prescribed (the hard deconvolution problem).

Traditional approaches, motivated by physical considerations on the energy
transfer mechanism from resolved to SGS’s, express B1 with an appropriately func-
tional model (for example, an eddy-viscosity SGS model), and seek sufficiently
high-order discretization and grid resolution to ensure that effects due to τ are suffi-
ciently small. However, we could argue that discretization could implicitly provide
B1 if nonlinear stabilization can be achieved algorithmically via a particular class
of numerical algorithms or based on regularizing the discretization of the conser-
vation laws. In fact, (2) suggests that most schemes can potentially provide built-in
or implicit SGS models enforced by the discretization errors τ , provided that their
leading order terms are dissipative. We are thus led to the natural question: To what
extent can we avoid the (explicit) filtering and modeling phases of LES (i.e., B2 ≡ 0
and mv ≡ 0) and focus on the implicit B1 provided by a suitably chosen discretiza-
tion scheme?

Not all implicitly implemented SGS models are expected to work: good or bad
SGS physics can be built into the simulation model depending on the choice of
numerics and its particular implementation. Moreover, the numerical scheme has
to be constructed such that the leading order truncation errors satisfy physically
required SGS properties, and hence non-linear discretization procedures will here
be required. The analogy to be recalled is that of shock-capturing schemes designed
under the requirements of convergence to weak solution while satisfying the entropy
condition [17].
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4 Monotonically Integrated LES (MILES)

The relevancy of NFV algorithms for ILES of turbulent flows have been motivated
[14, 18] by proposing to focus on two distinct inherent physical SGS features to be
emulated:

• the anisotropy of high-Re turbulent flows in the high-wave-number end of the
inertial subrange region, characterized by very thin filaments of intense vortic-
ity and largely irrelevant internal structure, embedded in a background of weak
vorticity, e.g., [19],
• the particular (discrete) nature of laboratory observables (only finite fluid portions

transported over finite periods of time can be measured) [18].

We thus require that ILES be based on NFV numerics having a sharp velocity-
gradient capturing capability operating at the smallest resolved scales. By focusing
on the inviscid inertial-range dynamics and on adaptive regularization of the under-
resolved flow, ILES thus follows very naturally on the historical precedent of using
this kind of schemes for shock capturing—in the sense that requiring emulation
(near the cutoff) of the high wavenumber-end features of the inertial subrange region
of turbulent flows is analogous to spreading the shock width to the point that it can
be resolved by the grid.

Although the history of ILES draws on the development of shock-capturing
schemes, the MILES concept—as originally introduced by Boris and his col-
leagues [7] and further developed in our previous work [13, 14]—embodies a com-
putational procedure for solving the NSE as accurately as possible by using a par-
ticular class of flux-limiting schemes and their associated built-in (or implicit) SGS
models. An intriguing MILES feature is the convection discretization that implic-
itly generates a nonlinear tensor-valued eddy-viscosity, which acts predominantly to
stabilize the flow and suppress unphysical oscillations.

MILES draws on the fact that FV methods filter the NSE over nonoverlapping
computational cells ΩP , with the typical dimension |d|—using a top-hat-shaped
kernel, fP = 1

δVP

∫
ΩP

f dV . In the finite-volume context, discretized equations are
obtained from the NSE using Gauss’s theorem and by integrating over time with a
multistep method parametrized by m, αi , and βi ,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

βiΔt

δVP

∑

f

[
F

C,ρ
f

]n+i = 0,

m∑

i=0

(
αi(v)

n+i
P + βiΔt

δVP

∑

f

[
F

C,ρ
f vf + FD,v

f

]n+i + βi(∇p)n+iP Δt

)
= 0,

(5)

where α, β and m are parameters of the scheme, and F
C,ρ
f = (v · dA)f and FC,v

f =
F

C,ρ
f vf are the convective and FD,v

f = (ν∇v)f dA the viscous fluxes. To complete
the discretization, all fluxes at face ‘f’ need to be reconstructed from the dependent
variables at adjacent cells. This requires flux interpolation for the convective fluxes
and difference approximations for the inner derivatives in the viscous fluxes.
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For conventional LES, it is appropriate to use linear (or cubic) interpolation for
the convective fluxes and central difference approximations for the inner gradients
in the viscous fluxes. This then results in a cell-centered second- or fourth-order
accurate scheme. Scheme stability can be enforced not only by conserving momen-
tum, but also kinetic energy, which ensures robustness without numerical dissipation
(which compromises accuracy).

Given (5), the methods available for constructing implicit SGS models by means
of the leading order truncation errors are generally restricted to nonlinear high-
resolution methods for the convective flux FC,v

f to maintain second-order accuracy
in smooth regions of the flow (such high-resolution methods are at least second-
order accurate on smooth solutions while giving well-resolved, non-oscillatory dis-
continuities) [17]. In addition, these schemes are required to provide a leading order
truncation error that vanishes as d→ 0 so that it remains consistent with the NSE
and the conventional LES model. We focus here on the certain flux-limiting and
correcting methods.

To this end, we introduce a flux-limiter Γ that combines a high-order convective
flux-function vH

f which is well-behaved in smooth flow regions, with a low-order

dispersion-free flux-function vL
f , being well-behaved near sharp gradients, so that

the total flux-function becomes vf = vH
f − (1− Γ )[vH

f − vL
f ]. Choosing the par-

ticular flux limiting scheme also involves specific selections for vL
f and vH

f . In the

analysis that follows, vH
f and vL

f are assumed to be based on linear interpolation,
and upwind-biased piecewise constant approximation, respectively, e.g.,

⎧
⎪⎨

⎪⎩

FC,v,H
f = F

C,ρ
f

[
�vP + (1− �)vN − 1

8
(d⊗ d)∇2v+O

(|d|3)
]
,

FC,v,L
f = F

C,ρ
f

[
β+vP + β−vN +

(
β+ − β−

)
(∇v)d+O

(|d|2)],
(6)

where β± = 1
2 (vf · dA ± |vf · dA|)/|vf · dA|, and − 1

8 (d ⊗ d)∇2v and (β+ −
β−)(∇v)d are the leading order truncation errors. The flux limiter Γ is to be for-
mulated as to allow as much as possible of the correction [vH

f − vL
f ] to be included

without increasing the variation of the solution—e.g., to comply with the physical
principles of causality, monotonicity and positivity [7] (when applicable) and thus
to preserve the properties of the NSE. To see the effects of this particular convec-
tion discretization we consider the modified equations corresponding to the semi-
discretized equations (5) with the flux-limiting functions in (6) being used for the
convective fluxes,

∂t (v)+∇ · (v⊗ v)=−∇p+∇ · S+∇ ·
[

C(∇v)T + (∇v)CT

+ χ2(∇v)d⊗ (∇v)d+
[

1

6
ν∇3v− 1

8
∇2v

]
(d⊗ d)+ · · ·

]
,

(7)

with ∇ ·v= 0, and where C= χ(v⊗d) and χ = 1
2 (1−Γ )(β−−β+). In particular,

we note that in smooth regions, Γ = 1 implies that χ = 0 and C= 0, and the lead-
ing order truncation error becomes τ =∇ · [[ 16ν∇3v− 1

8∇2v](d⊗ d)]. Comparing
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with the analysis of the momentum equation in the framework of the conventional
LES approach (equation (2)) suggests that the MILES modified equation incorpo-
rates additional dissipative and dispersive terms, and we can consistently identify
the implicit SGS stress term,

B=C(∇v)T + (∇v)CT + χ2(∇v)d⊗ (∇v)d. (8)

The implicit SGS stress tensor can according to (8) be decomposed into B(1) =
C(∇v)T + (∇v)CT and B(2) = χ2(∇v)d⊗ (∇v)d, in which the former is a tensor-
valued eddy-viscosity model, while the latter is of a form similar to the scale sim-
ilarity model. The decomposition in (8) can also be interpreted as breaking B into
its slow and rapid varying parts—relative to the time scale of its response to vari-
ations in the mean flow [20]. In MILES, the rapid part that cannot be captured by
isotropic models relates to B(2), while the slow part relates to B(1). Borue and Orszag
[21] have shown that a B(2) type term improves the correlations between the exact
and modeled SGS stress tensor. A closely-related view further explaining the effec-
tiveness of ILES formulations based on local monotonicity (or sign) preservation
concepts has been given by Margolin and Rider [18]; they argued that the leading
order truncation error introduced by NFV algorithms represents a physical flow reg-
ularization term, providing necessary modifications to the governing equations that
arise when the motion of observables—finite volumes of fluid convected over finite
intervals of time—is considered.

Detailed properties of the implicit SGS model are related to the flux limiter Γ

and to the choice of low- and high-order schemes; they also relate as well to other
specific features of the scheme—e.g., such as monotonicity, l1-contraction, local
monotonicity preservation, and griding. We have illustrated above in (8) and dis-
cussed elsewhere [13, 14] how some of these properties can directly affect the im-
plicit SGS modeling effectiveness in the MILES context. MILES performance as a
function of flux limiter is discussed further below; dependence on the choice of low
order scheme has been examined in Ref. [22].

In what follows we address effects of variations in the flux-limiter Γ . To this end
we consider first high-resolution schemes that can be formulated using the ratio of
consecutive gradients,

r = δvn
P−1/2

δvn
P+1/2

= (vn
P − vn

P−1)

(vn
P+1 − vn

P )
.

Examples of well-known flux-limiters that fit into this category are:

1. the minmod flux-limiter of Roe, e.g. [23], with

Γ =max
(
0,min(1, r)

)
,

2. the van-Leer flux-limiter, e.g. [23], with

Γ = r + |r|
1+ |r| ,

3. the superbee flux-limiter, Roe, e.g. [23], with

Γ =max
(
0,max

(
min(2r,1),min(r,2)

))
,
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Fig. 2 TVD regions for first
and second order accurate
TVD schemes together with
selected limiters

4. the van-Albada flux-limiter, e.g. [24], with

Γ = r + r2

1+ r2
,

5. the GAMMA flux-limiter, e.g. [25], with

Γ = 1− k

k
r

[
θ(r)− θ

(
r − k

1− k

)]
+ θ

(
r − k

1− k

)
,

where k is a parameter of the scheme such that k ∈ [0,1], and θ is the Heaviside
function. Note that when k = 0.5 this scheme becomes TVD.

Some of these limiters are compared in Fig. 2 together with the r-independent lim-
iting cases—the first-order upwind (UD, Γ = 0) and the second-order central dif-
ference (CD, Γ = 1) schemes. In Fig. 2 the TVD constraint

TV
(
vn+1)≤ TV

(
vn
)
, where TV

(
vn
)=

∑

P

∥∥vn
P+1 − vn

P

∥∥,

reformulated as 0 ≤ |Γ (r),Γ (r)/r| ≤ 2 [23] is satisfied in the region bounded by
the traces associated with the minmod and superbee limiters, which includes the
van-Leer, van-Albada and (k = 0.5) GAMMA limiters. The diffusivity decreases
as the flux-limiters approach that of the superbee limiter, which results in the least
diffusive scheme.

We can also consider other high-resolution schemes, such as FCT [26] and
PPM [27], which can also use a similar flux-limiting type formalism based on
vf = vH

f − (1 − Γ )[vH
f − vL

f ], but for which the flux limiter cannot simply be
formulated in terms of the ratio of consecutive gradients, r . In the present study
we have however only included the FCT-limiter [26]. Some of these schemes (e.g.
FCT, PPM) are locally monotonicity-preserving, i.e. given the solution vn+1

P =
H(vn

P−k,vn
P−k+1, . . . ,vn

P+k) then if v0
P ≥ v0

P+1 then vn
P ≥ vn

P+1 for all P and n.
The global performance of MILES as a function of flux-limiter is documented in

Fig. 3, showing studies of fully developed turbulent channel flow at a friction veloc-
ity based Re-number of Reτ = 590, compared with DNS results [27]. The channel
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Fig. 3 MILES of Reτ = 590
channel flow; dependence on
choice of flux-limiter

flow calculations will be discussed in detail below, and are carried out on 603 and
483 grids with uniform spacing the streamwise and spanwise directions. Periodic
boundary conditions are employed in both streamwise and spanwise directions, to-
gether with no-slip conditions in the wall-normal directions. The influence of the
flux limiter is comparatively small but has been observed to be sensitive to the
wall-normal resolution (cf. [28]). From this comparison it is evident that the van-
Leer limiter is too diffusive, producing poor velocity profiles, while both FCT and
GAMMA produce velocity profiles that agree well with the reference DNS data.
Reported ILES work surveyed in [12] involved a broad range of NFV methods,
including among others, use of locally-monotonicity-preserving FCT [13, 14] and
PPM-based studies of homogeneous turbulence [29], locally-sign-preserving MP-
DATA [18], TVD-based turbulence studies [30], and studies of channel flows using
Godunov’s exact Riemann solver [31]. The following section discusses applications
involving FCT-based MILES.

5 MILES Applications

The first category of applications discussed below comprises what we regard to
be the traditional Computational Fluid Dynamics (CFD) role. For these cases, lab-
oratory experiments can be carried out exhibiting the effects of flow dynamics
and instabilities—typically demonstrating only the end outcome of complex three-
dimensional (3D) physical processes. Time-dependent experiments based on numer-
ical simulations with precise control of initial and boundary conditions, are ideally
suited to supplement these laboratory studies, providing insights into the underlying
flow dynamics and topology. Three groups of such examples are provided: (i) canon-
ical flows to demonstrate MILES benchmark studies; (ii) mixing layer and jet flows
to demonstrate MILES ability to capture complex flow physics; (iii) external flows
to demonstrate the MILES ability to deal with moderately complex geometries.
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Fig. 4 Forced homogeneous isotropic turbulence: (a) iso-surfaces of Q; (b) energy spectra

5.1 Canonical Cases

MILES of free shear flows have been extensively benchmarked and/or compared
with laboratory flows in various different flow configurations at moderately-to-high
Re numbers. Recent studies of forced and decaying homogeneous isotropic turbu-
lence, studies of wakes, subsonic and supersonic mixing layers, jet flows, and chan-
nel flows demonstrated that MILES can be successfully used to simulate (and eluci-
date) the governing features of the unsteady flow dynamics. Selected representative
examples are discussed in what follows.

5.1.1 Forced Homogeneous Turbulence

First, we consider forced homogeneous isotropic turbulence for a Taylor Re-number
of ReT = 96 at 323 and 643 resolution, for which DNS data is available [19]. The
body force, f, is here used to create random forcing of the large scales. For this pur-
pose we use the forcing scheme of Eswaran and Pope [32], to drive the largest flow
scales, see [33] for further details. The initial velocity field v̄ = v̄(x,0) is created
by superimposing Fourier modes, having a prescribed energy spectrum but random
phases.

Figure 4(a) shows typical visualizations at 643 resolution of the second invariant
of the velocity gradient, i.e., Q= 1

2 (‖W̄‖2−‖D̄‖2). The observed vortical structure
implies that weak and strong vortices have different topologies while there is no
evident structure in the lower intensity regions. The higher intensity regions tend to
be organized in slender tubes or elongated filaments as found with other LES stud-
ies. The vortical structures predicted by LES are considerably thicker than those
obtained by DNS. However, filtering the DNS data results in thicker vortical struc-
tures, qualitatively very similar to those obtained by the LES. It is virtually impossi-
ble to distinguish between different SGS models by inspecting such visualizations,
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but by comparing Probability Density Functions (PDFs) of, e.g., the resolved vor-
ticity magnitude |ω̄| (not shown) we find that MILES and LDKM [33, 34] result in
somewhat larger fractions of small-scale vorticity than conventional eddy-viscosity
models such as the OEEVM [15].

Figure 4(b) presents the time-averaged energy spectra for the ReT = 305 case at
643 resolution together with a DNS spectrum [19] and the theoretical model spec-
trum of Driscoll and Kennedy [35]. The energy spectra are found to depend on the
effects of the LES models only towards the high wavenumber end of the inertial
range, and into the viscous subrange. A larger fraction of the turbulence is resolved
in the 643 case as compared to the 323 results, and hence the influence of the SGS
model is comparatively smaller in the former case. In general, we find that the spec-
tra from MILES and LDKM are in better agreement with DNS data than, e.g., the
OEEVM, at high wavenumbers.

5.1.2 Turbulent Channel Flow

Next we focus on fully developed turbulent channel flow at (bulk) Re-numbers be-
tween Re= 15,000 and 400,000. The channel of length 6h and width 3h is confined
between two parallel plates 2h apart, where h is the channel half-width. The flow
is driven by a fixed mass flow in the streamwise (ex ) direction. We use no-slip con-
ditions in the cross-stream (ey ) direction and periodic conditions in the (ex ) and
spanwise (ez) directions. The friction velocity is uτ =√τw , where τw is the wall-
shear stress. We vary the mass flow to obtain three target friction-velocity-based Re
numbers: Reτ ≈ 395, 2000, and 10,000 (the first corresponds to the DNS data [27],
and the second to the laboratory data [36]). The grid consists of 603 cells with uni-
form spacing in the stream- and spanwise directions, whereas we use geometrical
progression in the ey -direction to appropriately cluster the grid near the walls to
resolve the velocity gradients.

Figure 5(a) shows the main channel flow features in terms of vortex lines, con-
tours of the streamwise velocity component v̄x and isosurfaces of the second in-
variant of the velocity gradient Q. By correlating isosurfaces of Q with the velocity
fluctuations close to the wall, we found that vortices above the low-speed streaks are
often ejected away from the wall, producing hairpin vortices stretched by the ambi-
ent shear. Using this mechanism, vorticity produced in the viscous region is advected
into the boundary layer, making it turbulent. The spanwise resolution appears more
important for accurate large-scale-dynamics prediction than the streamwise resolu-
tion. The wall-normal resolution is critical for the correct wall-shear stress τw pre-
diction, which, in turn, is important for making correct estimates of, for example,
the drag.

In Fig. 5(b), we compare LES mean velocity 〈v̄x〉 predictions (integrated over
time, x, and z) with DNS data [27] and experimental data [36]. For Reτ = 395, all
LES models used show very good agreement with the DNS data. When the flow is
well resolved, the SGS model details are of little importance to the resolved flow,
because most of the energy (about 98 percent) and structures are resolved on the
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Fig. 5 Fully developed channel flow: (a) instantaneous visualization in terms of contours of v̄x ,
vortex lines, and isosurfaces of Q; (b) vertical profiles of mean streamwise velocity 〈v̄x〉

grid. For Reτ ≈ 1800, we still see good agreement between LES and experimental
data, but with somewhat larger scatter in the LES data. This case is well resolved,
with about 87 percent of the energy belonging to the resolved scales. We do not
have any data to compare with, for Reτ = 10,000, but we may compare it (asymp-
totically) with the lower Reτ number velocity profiles and the log law. The scatter
among the LES models is now larger, and we find that the best agreement with
the log law is obtained by using Detached Eddy Simulation (DES) [37] and the
localized dynamic (LDKM) subgrid turbulence model [34] followed, in turn, by
MILES+WM, OEEVM+WM [38] and OEEVM [15] where WM denotes the wall
model [38]. However, for the second order statistical moments, MILES+WM and
OEEVM+WM provide better agreement with data.

The eddy-viscosity models are successful because νk responds to energy ac-
cumulation in the small scales by adjusting the dissipation before it contami-
nates the resolved scales. MILES performs well because it mimics the resolved
flow anisotropies. MILES turns out also to be computationally competitive, with
typical work figures of OEEVM = 1.00, MILES = 0.95, OEEVM+WM = 1.05,
DES= 1.10, and LDKM= 1.15.

5.2 Free Shear Flows: Global Instabilities and Vorticity Dynamics

Characterizing the local nature of free-shear-flow instabilities and their global non-
linear development in space and time is of fundamental importance for practical
shear-flow control. Linear inviscid stability analyses have shown the convectively
unstable nature of the spatially evolving subsonic mixing layer with respect to vor-
tical fluctuations. Consequently, except in rare configurations with global-absolute
instabilities, we expect environmental disturbances to drive turbulent mixing layers;
self-sustained instabilities have generally not been expected. Mechanisms influenc-
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ing re-initiation of the instabilities and transition to turbulence in free-shear flows
are:

• disturbances in the free streams,
• disturbances due to boundary layers, wakes, small recirculation zones, or acoustic

environmental disturbances, and
• disturbances fed back from downstream events in the flow.

Isolating these mechanisms is difficult because turbulence in free streams and
boundary layers cannot be eliminated. Numerical simulations of spatially evolv-
ing shear flows can be essentially eliminated, the first two disturbances and the third
can be addressed through careful control of the imposed boundary conditions.

5.2.1 Global Instabilities in Free Flows

An important question is whether a free mixing layer can be globally unstable with
the self-excitation upstream induced by pressure disturbances generated via finite-
amplitude fluid accelerations downstream. A previous study successfully addressed
this question with FCT based MILES of spatially evolving flows [39]. Numerical
simulations of compressible, subsonic, planar shear-flows were used to investigate
the role of feedback in the re-initiation of the vortex roll-up. The study dealt with
unforced, spatially evolving mixing layers for which the acoustic disturbance propa-
gation can be appropriately resolved; and boundary effects were ensured to be negli-
gible. The simulation shows global self-sustaining instabilities, in which new vortex
roll-ups were triggered in the initial shear layer by pressure disturbances originating
in the fluid accelerations downstream. This re-initiation mechanism, absent in linear
treatments of stability, was demonstrated conclusively and examined as a function
of Mach number and free-stream velocity ratio.

Another study demonstrated similar self-excited global instabilities in super-
sonic, countercurrent jets, based on upstream feedback mechanisms acting on the
subsonic outer jet regions (see Fig. 6) [40]. Recognition of these global instabilities
provided new insights to explain previously unresolved discrepancies between lab-
oratory and theoretical studies, suggesting practical approaches to active control of
these jets. A key computational capability used in both of these global instability
studies was the ability to isolate the generation of propagation of acoustical distur-
bances correlated with the large-scale vortex dynamics. Relevant features accurately
captured with MILES included the quadrupole pattern of acoustic production associ-
ated with vortices, the significantly more intense dilatation and pressure fluctuations
associated with vortex pairing, as well as the very low fluctuation levels involved
(for example, four orders of magnitude smaller than ambient values [39, 40]).

Accurate resolution of the small characteristic fluctuation levels, typically asso-
ciated with acoustical radiation from flow accelerations, involves major challenges:

• Complex vortex dynamics associated with acoustical production must be cap-
tured.
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Fig. 6 MILES studies of global instabilities in a countercurrent supersonic cold square jet in terms
of instantaneous visualizations [40]

• The numerical algorithm’s dispersiveness should be minimized to ensure good
modeling of the acoustical propagation properties of the small wavelengths.
• Because of the very small energy of the acoustic field compared to that of the flow

field, there is a potential for spurious sound sources due to numerical discretiza-
tion.

Because of the tensorial nature of its implicit SGS model, and the inherently low nu-
merical diffusion involved, the use of flux limiting in MILES offers an overall effec-
tive computational alternative to conventional SGS models in this context. MILES
was used to extensively investigate the natural mechanisms of transition to turbu-
lence in rectangular jets evolving from laminar conditions [41], in compressible
(subsonic) jet regimes with aspect ratio AR = 1 to 4 and moderately high Re. The
studies demonstrated qualitatively different dynamical vorticity geometries charac-
terizing the near jet, involving

• self-deforming and splitting vortex rings,
• interacting ring and braid (rib) vortices, including single ribs aligned with corner

regions (AR≥ 2), and rib pairs (hairpins) aligned with the corners (AR= 1), and,
• a more disorganized flow regime in the far jet downstream, where the rotational

fluid volume is occupied by a relatively weak vorticity background with strong,
slender tube-like filament vortices filling a small fraction of the domain.

Figure 7(a) illustrates characteristic axis-switching and bifurcation phenomena from
visualizations of laboratory elliptical jets subject to strong excitation at the preferred
mode [42, 43]. We compare it to the carefully developed simulation results (see
Figs. 7(b) and 7(c)) designed to address unresolved issues in vortex dynamics. De-
tailed key aspects—namely, reconnection, bridging, and threading (see Fig. 7(b))—
could not be captured in the laboratory studies and were first demonstrated by the
simulations.

Jet flows develop in different possible ways, depending on

• their particular initial conditions,
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Fig. 7 Vortex dynamics and
transition to turbulence in
subsonic noncircular jets;
(a) laboratory studies
[42, 43], (b) and (c) detailed
vortex dynamics elucidated
by simulations [41]

• nozzle geometry and modifications introduced at the jet exit,
• the types of unsteady vortex interactions initiated, and
• local transitions from convectively to absolutely unstable flow.

Taking advantage of these flow control possibilities is of interest to improve the
mixing of a jet, or plume, with its surroundings in practical applications demanding:

• enhanced combustion between injected fuel and background oxidizer,
• rapid initial mixing and submergence of effluent fluid,
• less intense jet noise radiation,
• reduced infrared plume signature.
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Fig. 8 Visualizations of non-premixed combustion regions as a function of aspect ratio [41]. Tem-
perature distributions (color) in the back half of the visualized subvolume are superimposed to
isosurfaces of the vorticity magnitude (gray)

For example, the jet entrainment rate—the rate at which fluid from the jet becomes
entangled or mixed with that from its surroundings—can be largely determined
by the characteristic rib-ring coupling geometry and the vortex-ring axis-switching
times (see Fig. 8) [40].

5.3 Moderately Complex Geometry: Flow Over a Prolate Spheroid

Crucial additional issues of LES of inhomogeneous high-Re flows to be addressed
relate to boundary condition (supergrid) modeling and overall computational model
validation [42, 43]. From the practical point of view, it is of utmost importance to
consider how the non-linear combination of all—algorithmic, physics-based, SGS,
and supergrid—aspects of the model affect the simulation of complex systems for
which detailed DNS-type approaches are not possible and for which only limited
experimental data might be available at best.

Despite its simple geometry, the flow around a prolate spheroid at an incidence
(see Fig. 6(a)) contains a rich gallery of complex 3D flow features. These include:

• stagnation flow,
• 3D boundary layers under influence of pressure gradients and streamline curva-

ture
• cross-flow separation, and
• the formation of free vortex sheets producing streamwise vortices.
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Fig. 9 Flow around a prolate spheroid: (a) perspective view and contours of the vorticity magni-
tude |ω| at x/L = 0.772; (b) velocity comparison at x/L = 0.772 and ϕ = 60◦ between experi-
mental (! and 1) and predicted data at α = 10◦ (black) and α = 20◦ (gray). (—) OEEVM+WM
on grid A, (- - -) MILES+WM on grid A, (-.-.) LDKM on grid A, (· · ··) LDKM on grid B and (· · ·)
DES on grid A

These features are archetypes of flows over more complicated airborne and un-
derwater vehicles warranting in-depth study. Previously [42, 43] we studied the flow
around a 6 : 1 prolate spheroid mounted in a wind tunnel with a rectangular cross-
section [44] at α = 10◦ and 20◦ angles of attack. Based on the free-stream veloc-
ity v0 and the body length L, the Re number is ReL = 4.2 · 106. The domain is
discretized with a block-structured mesh, supported by a double O-shaped block
structure. Two meshes are used in order to parameterize effects of the grid on the
boundary layer resolution. Mesh A has 0.75 · 106 cells and y+ ≈ 25 and mesh B has
1.50 · 106 cells with y+ ≈ 5. At the inlet, v̄ = v0n and ∂p̄/∂n = 0, where n is the
outward pointing unit normal, and at the outlet p̄ = p∞ and ∂(v̄ ·n)/∂n= 0. On the
body, no-slip conditions are used.

Figure 9(a) shows perspective views from the port side of the prolate spheroid
at α = 20◦. The flow is represented by surface streamlines, stream-ribbons, and
contours of the vorticity magnitude |ω̄| at x/L = 0.772, where ω̄ = 1

2∇ × v̄ is the
vorticity. The stream-ribbons show the complexity of the flow. On the windward
side, an attached 3D boundary layer is formed, while on the leeward side, the flow
detaches from the hull—because of the circumferentially adverse pressure gradi-
ent, and rolls up into a counterrotating pair of longitudinal spiraling vortices on the
back of the body. Furthermore, fluid from the windward side is advected across the
spheroid, engulfed into the primary vortices and subsequently ejected into the wake.

Figure 9(b) shows the time-averaged velocity components (U,V,W) at x/L =
0.772 and at ϕ = 90◦. The velocity components are presented in the body-surface
coordinate system [44]. For V and W , we see good agreement between predic-
tions and measurements for all models—with DES providing the least accurate
comparison. We obtained the best agreements with OEEVM and MILES with a
wall-model [38] on grid A (OEEVM+WM and MILES+WM). Concerning U , we
found significant differences as a function of the various models and grid resolu-
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tions. We found best agreements for MILES+WM and OEEVM+WM, whereas the
LDKM and DES predictions show larger deviations from the experimental data. The
LDKM appears to require better resolution than what we have provided because
it underpredicts the boundary layer thickness. The results from MILES+WM and
OEEVM+WM appear virtually unaffected by resolution, which is expected because
the wall model is designed to take care of the errors introduced by poor resolution
in the boundary layer. Also interesting is that the effects of changing the angle of
attack α—very important when studying, for example, maneuvering—are very well
reproduced in the simulations.

5.4 Challenging New Role of Simulations

For the studies of submarine hydrodynamics and flows in urban areas discussed
separately in this volume [22], it is unlikely that we will ever have a deterministic
predictive framework based on computational fluid dynamics. This is due to the
inherent difficulty in modeling and validating all the relevant physical sub-processes
and acquiring all the necessary and relevant boundary condition information. On
the other hand, these cases are representative of very fundamental ones for which
whole-domain scalable laboratory studies are impossible or very difficult, but for
which it is also crucial to develop predictability.

5.4.1 Submarine Hydrodynamics

The flow around a submarine is extremely complicated and characterized by very
high Re, O(109). Full-scale experiments are complicated and very expensive and
are of limited value due to the difficult measurement settings. RANS of full-scale
submarine hydrodynamics are barely within reach, whereas LES is currently out of
reach due to the wide range of scales present. For model-scale situations (Re≈ 107),
it might be possible to conduct LES and DES [45]. In particular, if we’re interested
in vortex dynamics, flow noise, and the coupling between the propeller dynamics
and the flow around the hull, LES and DES are our only alternatives for the foresee-
able future.

As Fig. 7(a) shows, each appendage generates a wake and several vortex sys-
tems. A horseshoe-vortex pair is formed in the junction between the hull and the
appendage, whereas a tip-vortex pair is formed at the tip of the appendage. Addi-
tional vortex systems can be formed, e.g., on the side of the sail towards the trailing
edge or in the boundary layer of the tapered sections of the hull. These vortex sys-
tems can interact with each other and with the (unsteady) boundary layer to form
a very complex flow entering the propeller, thus causing vibrations and noise. In
addition, the ocean water is usually stratified, with density variations caused by dif-
ferences in temperature and salinity between ocean currents, or between the surface
water and deeper water. Stratification influences the turbulence and the large flow
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Fig. 10 Submarine hydrodynamics: the main flow features represented by stream-ribbons and
contour plots of the vorticity magnitude in three cross-sections

structures in the wake, typically resulting in horizontally flattened flow structures
(so-called pancake vortices), which would not occur in nonstratified waters.

The case discussed here is the fully appended DARPA Suboff configuration [46]
constructed from analytical surfaces, and shown in Fig. 10. Experimental data, using
hot-film techniques, are provided at Re= 12 ·106 based on the overall hull length L,
the free-stream velocity u0 and ν [47]. The total measurement uncertainty in the ve-
locity data—i.e., the geometrical mean of the bias and precision errors, is estimated
to be about 2.5% of u0. The computational domain consists of the submarine model
mounted in a cylinder having the same hydraulic diameter as the wind tunnel used
in the scale model experiments. The cylinder extends one hull-length upstream and
two hull-lengths downstream, thus being 4L in overall length. For the hull an O-O
topology is used, while for the sail and stern appendages C-O topologies are used
and care is taken to ensure that the cell spacings and aspect ratios are suitable for
capturing the boundary layers along the hull.

Typically, about 20 cells are contained within the thickness of the boundary layer
on the parallel midsection of the hull, having a typical wall distance for the first
cell y+ ≈ 8. Two grids of about 3 · 106 and 6 · 106 nodes were used. At the inlet
boundary, v̄= u0n and (∇p̄ ·n)= 0, at the outlet p̄ = p0 and (∇v̄) ·n= 0, whereas
free-slip conditions are used at the wind-tunnel walls, and no-slip conditions are
used on the hull. All LES are initiated with quiescent conditions and the unsteady
flow in LES is allowed to evolve naturally (i.e., without any external forcing).

In Figs. 11(a) and 11(b) we show typical comparisons between predictions of
towed and self-propelled cases and experimental data [47] of the distribution of the
time-averaged static pressure coefficient CP = 2(〈p̄〉 − p0)/u

2
0 along the meridian

line of hull and of the circumferentially averaged velocity in the propeller plane.
Very good agreement between the measurement data and the computations is ob-
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Fig. 11 Submarine hydrodynamics: comparison of the mean pressure and mean velocity: (a) along
the meridian line of the hull; (b) in the propeller plane

served along the entire hull section for the towed case. Virtually no differences
in the CP distribution can be observed between the towed and the self-propelled
cases—with the exception of the far-end of the tapered section of the stern, nor do
we see significant differences between the MILES+WM and LDKM predictions.
Concerning the velocity distributions, the differences are attributed to the presence
of the propeller (or rather the actuator-disc used to model the effects of the pro-
peller), and show the effects of the axial pressure gradient, as implicitly imposed
by the propeller causing a suction effect along the stern part of the hull. Based on
the secondary velocity vector field (not shown) the location of the horseshoe-vortex
pair is estimated in the case of the towed case from predictions (measurements) to
be at r/R ≈ 0.41 (0.38) and ϕ ≈±23◦ (±22◦), respectively.

6 Outlook

In the absence of an accepted universal theory of turbulence, the development and
improvement of SGS models are unavoidably pragmatic and based on the ratio-
nal use of empirical information. Classical approaches have included many pro-
posals ranging from inherently limited eddy-viscosity formulations to more sophis-
ticated and accurate mixed models. The main drawback of mixed models relates
to their computational complexity, and ultimately, to the fact that well-resolved
(discretization-independent) LES is prohibitively expensive for the practical flows
of interest at moderate-to-high Re. This has recently led many researchers to aban-
don the classical LES formulations, shifting their focus directly to the SGS modeling
implicitly provided by nonlinear stabilization achieved algorithmically, through the
use of a particular class of numerical schemes, or based on regularization of the
discretization of conservation laws.

In ILES (MILES), the effects of SGS physics on the resolved scales are incor-
porated in the functional reconstruction of the convective fluxes using NFV meth-
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ods. Analysis based on the modified equations shows that ILES provides implicitly
implemented anisotropic SGS models dependent on the specifics of the particular
numerical scheme—i.e., on the flux limiter, on the choice of low- and high-order
schemes, and on the griding. By focusing on the inviscid inertial-range dynamics
and on regularization of the underresolved flow, ILES follows up very naturally on
the historical precedent of using this kind of numerical schemes for shock captur-
ing. Challenges for ILES include constructing a common appropriate mathematical
and physical framework for its analysis and development, further understanding the
connections between implicit SGS model and numerical schemes, and, in particular,
how to address building physics into the numerical scheme to improve global ILES
performance, i.e., on the implicitly-implemented SGS dissipation & backscatter fea-
tures. Moreover, additional (explicit) SGS modeling might be needed to address in-
herently small-scale physical phenomena such as scalar mixing and combustion—
which are actually outside the realm of any LES approach: how do we exploit the
implicit SGS modeling provided by the numerics, to build “efficient mixed” (ex-
plicit/implicit) SGS models?
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Large Scale Urban Simulations with FCT

Gopal Patnaik, Jay P. Boris, Fernando F. Grinstein, John P. Iselin,
and Denise Hertwig

Abstract Airborne contaminant transport in cities presents challenging new re-
quirements for CFD. The unsteady flow physics is complicated by very complex
geometry, multi-phase particle and droplet effects, radiation, latent and sensible
heating effects, and buoyancy effects. Turbulence is one of the most important of
these phenomena and yet the overall problem is sufficiently difficult that the turbu-
lence must be included efficiently with an absolute minimum of extra memory and
computing time. This paper describes the Monotone Integrated Large Eddy Sim-
ulation (MILES) methodology used in NRL’s FAST3D-CT simulation model for
urban contaminant transport (CT) (see Boris in Comput. Sci. Eng. 4:22–32, 2002
and references therein). We also describe important extensions of the underlying
Flux-Corrected Transport (FCT) convection algorithms to further reduce numerical
dissipation in narrow channels (streets).

1 Background

Urban airflow accompanied by contaminant transport presents new, extremely chal-
lenging modeling requirements. Configurations with very complex geometries and
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unsteady buoyant flow physics are involved. The widely varying temporal and spa-
tial scales exhaust current modeling capacities. Simulations of dispersion of air-
borne pollutants in urban scale scenarios must predict both the detailed airflow
conditions as well as the associated behavior of the gaseous and multiphase pol-
lutants. Reducing health risks from the accidental or deliberate release of Chemi-
cal, Biological, or Radioactive (CBR) agents and pollutants from industrial leaks,
spills, and fires motivates this work. Crucial technical issues include transport model
specifics, boundary condition modeling, and post-processing of the simulation re-
sults for practical use by responders to actual real-time emergencies.

Relevant physical processes to be modeled include resolving complex building
vortex shedding and recirculation zones. The model must also incorporate a con-
sistent stratified urban boundary layer with realistic wind fluctuations, solar heating
including shadows from buildings and trees, aerodynamic drag, turbulence gener-
ation, and heat losses due to the presence of trees, surface heat sorption variations
and turbulent heat transport. Because of the short time spans and large air volumes
involved, modeling a pollutant as well mixed globally is typically not appropriate.
It is important to capture the effects of unsteady, non-isothermal, buoyant flow con-
ditions on the evolving pollutant concentration distributions. In fairly typical urban
scenarios, both particulate and gaseous contaminants behave similarly insofar as
transport and dispersion are concerned. Thus the contaminant spread can be sim-
ulated effectively based on appropriate pollutant tracers with suitable sources and
sinks. In other cases the full details of multigroup particle distributions are required.

1.1 Established Approach: Gaussian Plume Models

Contaminant plume prediction technology currently in wide use around the world
is based on Gaussian similarity solutions (“puffs”). This is a class of extended La-
grangian approximations that only really apply for large scales and flat terrain where
separated-flow vortex shedding from buildings, cliffs, or mountains is absent. Dif-
fusion is used in plume/puff models to mimic the effects of turbulent dispersion
caused by the complex building geometry and wind gusts of comparable and larger
size (e.g., [2–5]). These current aerosol hazard prediction tools for CBR scenarios
are relatively fast running models using limited topography, weather and wind data.
They give only approximate solutions that ignore the effects of flow encountering
3D structures. The air flowing over and around buildings in urban settings is fully
separated. It is characterized by vortex shedding and turbulent fluctuations through-
out the fluid volume. In this regime, the usual timesaving approximations such as
steady-state flow, potential flow, similarity solutions, and diffusive turbulence mod-
els are largely inapplicable. Therefore, a clear need exists for high-resolution nu-
merical models that can compute accurately the flow of contaminant gases and the
deposition of contaminant droplets and particles within and around real buildings
under a variety of dynamic wind and weather conditions.
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1.2 Computational Fluid Dynamics Approach

Since fluid dynamic convection is the most important physical process involved
in CBR transport and dispersion, the greatest care and effort should be invested
in its modeling. The advantages of the Computational Fluid Dynamics (CFD) ap-
proach and representation include the ability to quantify complex geometry effects,
to predict dynamic nonlinear processes faithfully, and to handle problems reliably
in regimes where experiments, and therefore model validations, are impossible or
impractical.

1.2.1 Standard CFD Simulations

Some “time-accurate” flow simulations that attempt to capture the urban geome-
try and fluid dynamic details are a direct application of standard (aerodynamic)
CFD methodology to the urban-scale problem. An example is the work at Clark
Atlanta University where researchers conduct finite element CFD simulations of the
dispersion of a contaminant in the Atlanta, Georgia metropolitan area. The finite
element model includes topology and terrain data and a typical mesh contains ap-
proximately 200 million nodes and 55 million tetrahedral elements [6]. These are
grand-challenge size calculations were run on 1024 processors of a CRAY T3E.
Other research groups have used similar approaches (e.g., [7, 8]). The chief diffi-
culty with this approach for large regions is that they are computer intensive and
involve severe overhead associated with mesh generation.

1.2.2 The Large-Eddy Simulation Approach

Capturing the dynamics of all relevant scales of motion, based on the numerical
solution of the Navier-Stokes Equations (NSE), constitutes Direct Numerical Simu-
lation (DNS), which is prohibitively expensive for most practical flows at moderate-
to-high Reynolds Number (Re). On the other end of the CFD spectrum are the in-
dustrial standard methods such as the Reynolds-Averaged Navier-Stokes (RANS)
approach, e.g., involving k–ε models, and other first- and second-order closure
methods, which simulate only the mean flow and model the effects of all turbu-
lent scales. These are generally unacceptable for urban CT modeling because they
are unable to capture unsteady plume dynamics. Large Eddy Simulation (LES) con-
stitutes an effective intermediate approach between DNS and the RANS methods.
LES is capable of simulating flow features that cannot be handled with RANS, such
as significant flow unsteadiness, and provides higher accuracy than the industrial
methods at reasonable cost.

The main assumptions of LES are: (i) that transport is largely governed by large-
scale unsteady convective features that can be resolved, (ii) that the less-demanding
accounting of the small-scale flow features can be undertaken by using suitable sub-
grid scale (SGS) models. Because the larger scale unsteady features of the flow are
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expected to govern the unsteady plume dynamics in urban geometries, the LES ap-
proximation has the potential to capture many key features which the RANS meth-
ods and the various Gaussian plume methodologies cannot.

2 Monotonically Integrated LES

Traditional LES approaches seek sufficiently high-order discretization and grid res-
olution to ensure that effects due to numerics are sufficiently small, so that crucial
LES turbulence ingredients (filtering and SGS modeling) can be resolved. In the
absence of an accepted universal theory of turbulence, the development and im-
provement of SGS models are unavoidably pragmatic and based on the rational use
of empirical information. Classical approaches [9] have included many proposals
ranging from inherently-limited eddy-viscosity formulations to more sophisticated
mixed models combining dissipative eddy-viscosity models with the more accurate
but less stable Scale-Similarity Model. The main drawback of mixed models re-
lates to their computational complexity and cost for the practical flows of interest at
moderate-to-high Re. The shortcomings of LES methods have led many researchers
to abandon the classical LES formulations and shift focus directly to the SGS mod-
eling implicitly provided by nonlinear (monotone) convection algorithms (see, e.g.,
[10], for a recent survey). The idea that a suitable SGS reconstruction might be im-
plicitly provided by discretization in a particular class of numerical schemes [11]
lead to proposing the Monotonically Integrated LES (MILES) approach [12, 13].
Later theoretical studies show clearly that certain nonlinear (flux-limiting) algo-
rithms with dissipative leading order terms have appropriate built-in (i.e. “implicit”)
Sub-Grid Scale (SGS) models [14–16]. Our formal analysis and numerous tests have
demonstrated that the MILES implicit tensorial SGS model is appropriate for both
free shear flows and wall bounded flows. These are the conditions of most impor-
tance for CBR transport in cities.

As discussed further below, the MILES concept can be effectively used as a
solid basis for CFD-based contaminant transport simulation in urban-scale scenar-
ios, where conventional LES methods are far too expensive and RANS methods are
inadequate.

3 MILES for Urban Scale Simulations

The FAST3D-CT three-dimensional flow simulation model [1, 17, 18] is based on
the scalable, low dissipation Flux-Corrected Transport (FCT) convection algorithm
[19, 20]. FCT is a high-order, monotone, positivity-preserving method for solving
generalized continuity equations with source terms. The required monotonicity is
achieved by introducing a diffusive flux and later correcting the calculated results
with an antidiffusive flux modified by a flux limiter. The specific version of the
convection algorithm implemented in FAST3D-CT is documented in [21].
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Additional physical processes to be modeled include providing a consistent strat-
ified urban boundary layer, realistic wind fluctuations and solar heating including
shadows from buildings and trees. We must also model aerodynamic drag and heat
losses due to the presence of trees, surface absorption variations and turbulent heat
transport. Additional features include multi-group droplet and particle distributions
with turbulent transport to surfaces as well as gravitational settling, solar chemical
degradation, evaporation of airborne droplets, relofting of particles on the ground
and ground evaporation of liquids. Incorporating specific models for these processes
in the simulation codes is a challenge but can be accomplished with reasonable so-
phistication. The primary difficulty is the effective calibration and validation of all
these physical models since much of the input needed from field measurements or
experiments on these processes is typically insufficient or even nonexistent. Fur-
thermore, even though the individual models can all be validated to some extent, the
larger problem of validating the overall code has to be tackled as well. Some of the
principally fluid dynamics related issues are elaborated further below.

3.1 Urban Flow Modeling Issues

3.1.1 Atmospheric Boundary Layer Specification

We have to deal with a finite domain and so precise planetary boundary layer char-
acterization upstream of this domain greatly affects the boundary-condition pre-
scription required in the simulations. The weather, time-of-day, cloud cover and
humidity all determine if the boundary layer is thermally stable or unstable and thus
determine the level and structure of velocity fluctuations. Moreover, the fluctuating
winds, present in the real world but usually not known quantitatively, are known to
be important because of sensitivity studies.

In FAST3D-CT the time average of the urban boundary layer is specified analyti-
cally with parameters chosen to represent the overall thickness and inflection points
characteristic of the topography and buildings upstream of the computational do-
main. These parameters can be determined self-consistently by computations over
a wider domain, since the gross features of the urban boundary layer seem to es-
tablish themselves in a kilometer or so, but this increases the cost of simulations
considerably.

A non-periodic deterministic realization of the wind fluctuations is currently be-
ing superimposed on the average velocity profiles. This realization is specified as a
suitable nonlinear superposition of modes with several wavelengths and amplitudes.
Significant research issues remain unresolved in this area, both observationally and
computationally. Deterministic [22] and other [23] approaches to formulating turbu-
lent inflow boundary conditions are currently being investigated in this context. The
strength of the wind fluctuations, along with solar heating as described just below,
are shown to be major determinants of how quickly the contaminant density flushes
from the domain in time and this in turn is extremely important in emergency appli-
cations as it determines overall dosage.
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Fig. 1 Effect of fluctuations
on trapping of contaminants

3.1.2 Solar Heating Effects

An accurate ray-tracing algorithm that properly respects the building and tree ge-
ometry computes solar heating in FAST3D-CT. The trees and buildings cast shad-
ows depending on the instantaneous angle to the sun. Reducing the solar constant
slightly can represent atmospheric absorption above the domain of the simulation
and the model will even permit emulating a time-varying cloud cover. The geome-
try database has a land-use variable defining the ground composition. Our simula-
tions to date identify only two conditions, ground and water, though the model can
deal with the differences between grass, dirt, concrete and blacktop given detailed
enough land-use data. The simulated interaction of these various effects in actual
urban scenarios has been extensively illustrated in [1].

Figure 1 shows that the rate that a contaminant is flushed out of a city by the
winds can vary by a factor of four or more due to solar heating variations from day
to night and due to variations in the relative strength of the wind gusts. The horizon-
tal axis of the figure indicates the relative strength of the gusting fluctuations at the
boundaries, from about 20% on the left to about 100% on the right. For each of six
different “environmental” conditions, twelve ground-level sources were released,
four independent realizations at each of three source locations around the urban ge-
ometry. These source locations and the scale lengths of all the wind fluctuations
were held fixed for the six different runs. The value of the exponential decay time in
minutes is plotted for each source and realization as a diamond-shaped symbol. The
figure shows that the decay time is two or three times longer for release at night com-
pared to the day for otherwise identical conditions. The dark blue diamonds (decay
times) should be compared with the light blue and the purple diamonds compared
with the red. One can also see that the decay times get systematically shorter as the
wind fluctuation amplitude is increased from left to right. This is emphasized by the
light blue shaded bar through the center of the four daytime data sets.



Large Scale Urban Simulations with FCT 97

3.1.3 Tree Effects

Although we can resolve individual trees if they are large enough, their effects (i.e.,
aerodynamic drag, introduction of turbulent velocity fluctuations, and heat losses)
are represented through modified forest canopy models [24] including effects due
to the presence of foliage. For example, an effective drag-force source term for the
momentum equations can be written as F =−Cd a(z)|v|v, where Cd = 0.15 is an
isotropic drag coefficient, a(z) is a seasonally-adjusted leaf area density, z is the
vertical coordinate, and v is the local velocity. The foliage density is represented
in a fractal-like way so that fluctuations will appear even in initially laminar flows
through geometrically regular stands of trees.

3.1.4 Geometry Specification

An efficient and readily accessible data stream is available to specify the building
geometry data to FAST3D-CT. High-resolution (1 m or smaller) vector geometry
data in the ESRI ARCVIEW data format is commercially available for most ma-
jor cities. From these data, building heights are determined on a regular mesh of
horizontal locations with relatively high resolution (e.g., 1 m). Similar tables for
terrain, vegetation, and other land use variables can be extracted. These tables are
interrogated during the mesh generation to determine which cells in the computa-
tional domain are filled with building, vegetation, or terrain. This masking process
is a very efficient way to convert a simple geometric representation of an urban area
to a computational grid.

This grid masking approach is used to indicate which computational cells are
excluded from the calculation as well as to determine where suitable wall boundary
conditions are to be applied. However, the grid masking approach is too coarse to
represent rolling terrain, for which a shaved cell approach is applied. The terrain
surface is represented by varying the location of the lower interface of the bottom
cell. Even though this results in a terrain surface that is ultimately discontinuous,
the jump between adjacent cells is very small. Operational results show that this
approach works reasonably well and allow gradual changes in terrain height.

A more accurate representation of the geometry is possible with the VCE ap-
proach [25] in which all cell volume and interface areas are allowed to vary. This
level of detail now begins to approach that of conventional aerodynamics CFD but
it is not seen that this is necessary.

3.1.5 Wall Boundary Conditions

Appropriate wall boundary conditions must be provided so that the airflow goes
around the buildings. It is not possible with the available resolution to correctly
model the boundary layer on the surface. Therefore, rough-wall boundary layer
models [26] are used for the surface stress, i.e., τ = ρCD(U//)

2, and for the heat
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transfer from the wall, Ho = ρCpCHU//(Θ −Θo), where ρ is the mass density, CD

and CH are coefficients characterizing the roughness and thermal properties of the
walls or ground surface, U// is the tangential velocity at the near-wall (first grid point
adjacent to the wall), Cp is the specific heat at constant pressure, and Θ and Θo are
the potential temperature at the wall, and near-wall, respectively.

4 The MILES Implicit SGS Model

Historically, flux-limiting (flux-correcting) methods have been of particular interest
in the MILES context. A flux-limiter 0 ≤ Γ ≤ 1 combines a high-order convec-
tive flux-function vH

f that is well behaved in smooth flow regions, with a low-order

dispersion-free flux-function vL
f that is well behaved near sharp gradients. Thus the

total flux-function with the limiter Γ becomes vf = vH
f − (1−Γ )[vH

f − vL
f ]. Prop-

erties of the implicit SGS model in MILES are related to the choice of Γ , vL
f , and

vH
f , as well as to other specific features of the algorithm [15, 16]. This is quite sim-

ilar to choosing/adjusting an (explicit) SGS model in the context of conventional
LES.

Because of its inherently less-diffusive nature, prescribing Γ based on local
monotonicity constraints is a more attractive choice in developing MILES [14–16].
This is supported by our comparative channel flow studies [16] of the global perfor-
mance of MILES as a function of flux limiter. For example, the van-Leer TVD lim-
iter (e.g., [27]) was found to be too diffusive as compared to FCT [19] and GAMMA
[28] limiters which produce velocity profiles that agree well with the reference DNS
data.

4.1 Street Crossings

Another approach to controlling unwanted numerical diffusion is through the appro-
priate choice of low and high order transport algorithms. In our simulations of urban
areas, the typical grid resolution is of the order of 5 to 10 meters. While this resolu-
tion is adequate to represent the larger features of the city, many of the smaller fea-
tures are resolved with only one to two cells. This is true of smaller streets found in
cities, which are about 10 to 20 m wide. Alleyways are even smaller. These smaller
streets may be represented by only one or two cells in our computation, putting a
tremendous demand on the numerical convection not to diffuse and retard the flow
down these narrow streets.

By using the rough-wall boundary conditions discussed above instead of no-slip
boundary conditions, the flow can proceed unhampered down a single street even for
streets that are only one cell wide. However, if there is another street intersecting the
first, it was found that the flow essentially stagnates at this intersection. The problem
only occurs when dealing with streets which are 1–2 cells wide and not with wider
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Fig. 2 Advected quantity as
function of grid index for
both the conventional and
modified low-order schemes

streets. After careful inspection, it was determined that the problem arose due to the
form of the diffusion term in the low-order solution in the standard FCT algorithm,
LCPFCT [21], used in the FAST3D-CT code.

The traditional low-order component of FCT introduces numerical diffusion even
when the velocity goes to zero (as in the cross street) [21]. In normal situations, the
flux limiter is able to locate an adjacent cell that has not been disturbed by the
diffusion in the low-order method and is able to restore the solution to its original
undiffused value. However, when the streets are 1–2 cells wide, the region of high
velocity is diffused by low-order transport and there are no cells remaining at the
higher velocity (Fig. 2). Thus the flux limiter cannot restore the solution in these
cells to the original high value.

A solution to this problem lay in changing the form of the diffusion in the low-
order method. In LCPFCT, the algorithmic diffusion coefficient for the low-order
scheme is given by ν = 1

6 + 1
3ε

2, where the Courant number ε = |U |Δt/Δx. Note
that ν does not go to zero even when U goes to zero (as in the cross street). The
simplest less-diffusive low-order algorithm which ensures monotonicity is the up-
wind method previously used in the formal MILES analysis (e.g., [16]) for which
the diffusion coefficient is given by νupwind = 1

2 |ε|, which has the desired form
for ν. When the diffusion coefficient in the low-order component of FCT is re-
placed by νupwind , the flow no longer stagnates at the intersection of streets (Fig. 2).
This variation of the low-order method is only used for the momentum equations.
It is not required for the density equation, since the density is almost constant ev-
erywhere. With this modification of the low-order method, the global properties of
the transport algorithm were altered sufficiently to address this problem peculiar of
under-resolved flows in urban areas.
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Fig. 3 Comparison of Gaussian Plume and FAST3D-CT simulations

5 Practical Examples

5.1 Gaussian Lagrangian vs. Unsteady 3D Solutions

Gaussian atmospheric transport and dispersion schemes are characterized by some
initial direct spreading of the contaminant upwind by the diffusion, regardless of
wind speed. The characteristic differences between the three Gaussian similarity so-
lutions in Fig. 3 are similar to the differences between different Gaussian plume/puff
models. None of these approximate, idealized solutions has the correct shape, trap-
ping behavior, or plume width when compared to the FAST3D-CT simulation shown
in the upper-right panel of the Fig. 3. The contaminant gets trapped in the re-
circulation zones behind buildings and continues to spread laterally long after sim-
pler models say the cloud has moved on.

More detailed comparisons using actual “common use” puff/plume models (e.g.,
[29]) show a range of results depending on how much of the 3D urban bound-
ary layer information from the detailed simulation is incorporated in the Gaus-
sian model. Though building-generated aerodynamic asymmetries cannot be repli-
cated, crosswind spreading and downwind drift can be approximately matched given
enough free parameters. However, because the detailed simulations show that the
plume expands like an angular sector away from the source, Gaussian models show
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Fig. 4 View of contaminant release looking east toward downtown Chicago

too rapid a lateral spreading in the vicinity of the source to provide a plume that is
approximately the correct width downwind.

5.2 Unsteady 3D Solution—Chicago

The city of Chicago is typical of a large, densely populated metropolitan area in the
United States. The streets in the downtown area are laid out in a grid-like fashion,
and are relatively narrow. The buildings are very tall but with small footprints. For
example, the Sears tower is now the tallest building in the U.S.

Figures 4–6 show different views of a contaminant cloud from a FAST3D-CT
simulation of downtown Chicago using a 360 × 360 × 55 grid (6 m resolution).
A 3 m/s wind off the lake from the east blows contaminant across a portion of
the detailed urban geometry data set required for accurate flow simulations. One
feature that is very apparent from these figures is that the contaminant is lofted
rapidly above the tops of the majority of the buildings. This vertical spreading of
the contaminant is solely due to the geometrical effect of the buildings. This behav-
ior has also been observed in other simulations in which the buildings are not as
tall.

Placement of the contaminant source can have a very nonlinear effect on the dis-
persion characteristics. Figures 7 and 8 show results of identical simulations with the
exception of the contaminant release locations, which are shown by the red mark-
ers. The blue markers show the release location in the other simulation. Although
the release locations differed by less than 0.5 km the dispersion characteristics are
markedly different. The narrower dispersion pattern in Fig. 7 is likely caused by
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Fig. 5 Overhead view of contaminant concentrations over Chicago River

Fig. 6 View of contaminant from the Sears tower

a channeling effect of the Chicago River where velocities are higher. The wider
dispersion pattern in Fig. 8 is likely due to a combination of flow deflection and
recirculation of the flow from the building geometry. This behavior may also be de-
pendent on release time. Work is continuing to determine the function dependence
on location and release time. However, it is clear that spatially averaged parameteri-
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Fig. 7 Contaminant dispersion at ground level for release close to Chicago River

zations of urban surface characteristics will be unable to account for these nonlinear
effects.

Additional simulations for Chicago were used to examine the effect of the mod-
ified low-order component of FCT as described in Sect. 4.1. Figure 9 shows the
contaminant at ground level 9 minutes after release using the standard FCT algo-
rithm LCPFCT [21]. The channeling effect of the Chicago River is quite dominant,
though some lateral spreading occurs as well. The calculations were then repeated
with the modified low-order method. These results are shown in Fig. 10. It is im-
mediately apparent that the lateral spreading is much larger in this second case and
that the cloud also propagates more rapidly downstream. These effects can be at-
tributed to the lowered numerical diffusion in the cross-stream direction and the
consequent lowering of numerical diffusion overall. Figure 11 shows the velocity
(averaged horizontally over the computational domain) and RMS fluctuation pro-
files for both LCPFCT and the modified low-order scheme. The modified method
has higher values for both velocity and RMS fluctuation. This is consistent with the
observation of increased downstream and cross-stream propagation of the contami-
nant.
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Fig. 8 Contaminant dispersion at ground level for release further from Chicago River

Fig. 9 Contaminant dispersion using standard low-order method
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Fig. 10 Contaminant dispersion using modified low-order method

Fig. 11 Comparison of the
standard and modified
low-order method: velocity
and RMS fluctuation profiles

5.3 Unsteady 3D Solution—Baghdad

Baghdad is rather typical of capital cities—it has large, spread-out governmental
buildings, parks and monuments. There is no large dense urban core with tall build-
ings but there are several greater than 20 story buildings that are spread out. Res-
idential areas are mostly suburban with some high-rise housing. This city struc-
ture is quite different from Chicago with its skyscrapers. A limited amount of high-
resolution building data was available from a government-related source; however
this data only included the largest buildings and covered a fraction of the area of the
city. Large portions, especially residential areas, were not covered. Also, land-use
data (trees, water, etc.) were not available in high-resolution form.

The missing data was constructed manually, primarily from commercially avail-
able satellite photographs of the city. These photographs had sufficient resolution
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to discern trees, water, and even types of housing. “Synthetic” buildings were gen-
erated to represent areas not covered by the available high-resolution data. Typical
building heights and shapes found in suburbs were assigned at random to suburban
regions. One of the difficulties not typically found in CFD calculations which proved
to be a challenge was to ensure proper geo-referencing of the data, i.e., ensure ev-
erything lined up. This is especially severe when working from photographs that
do not have a uniform resolution, and may sometimes not have the proper desired
orientation.

5.3.1 In-Situ Validation

One of the obvious difficulties that arise for simulations of urban areas is that of val-
idation of results. Experimental data is rarely available, and what little that is avail-
able is extremely limited in scope and coverage. The type and extent of data that is
available restrict the quality of the validation effort. For Baghdad, no specific field
measurements are available. However, just prior to the start of the war in Iraq, large
trenches filled with oil were set ablaze in hope that the smoke would obscure targets.
The smoke from one such fire provided an opportunity to at least visually “validate”
our plume calculations. Figure 12 is a satellite photograph (courtesy DigitalGlobe)
of the smoke from a trench fire near the monument to the Unknown Soldier. Fig-
ures 13 and 14 show the results from our simulations of the event. Color contours of
the tracer gas are shown. The weather conditions for that day were given as “light
wind from northwest.” The simulations were carried with nominal wind speed of 3
m/s at 340◦. An important unknown that had to be estimated is the level of fluctua-
tion in the wind. The simulation depicted in Fig. 13 used a low level of fluctuation,
which is consistent with the light steady winds typically found in March in the area.
In order to investigate the importance of wind fluctuations, a higher level of fluc-
tuations was simulated as shown in Fig. 14, which had fluctuations four times as
high in amplitude as the baseline case (Fig. 13). As expected, the plume does spread
slightly further. However, for low wind fluctuations, the spreading is largely con-
trolled by the geometry of the city—an effect that becomes more dominant in dense
urban areas. These calculations show that while a good knowledge of the weather
is required for accurate predictions, in order to predict a worst-case scenario it is
possible to select the appropriate parameters without perfect knowledge of all input
conditions.

5.4 Detailed Validation Study—Hamburg, Germany

In a systematic study FAST3D-CT results of turbulent flow in the inner city of Ham-
burg, Germany, are being compared to reference measurements from a boundary-
layer wind tunnel experiment. The urban structure is characteristic for northern and
central European cities with complex crossings and courtyards. The focus of the
validation exercise is the comparison of time-series information and the characteri-
zation of turbulent flow structures within and above the urban canopy.
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Fig. 12 Smoke plume from oil fire in Baghdad

5.4.1 Experimental and Numerical Methods

Laboratory measurements in specialized boundary-layer wind tunnels can provide
an ideal validation data basis supplementary to information from field sites. Well
definable and controllable boundary conditions together with the potential to repeat
experimental runs under the same constraints result in high statistical confidence
levels of the measured quantities. The reference measurements were performed in
the boundary-layer wind tunnel facility at the University of Hamburg. The wind-
tunnel model comprises the city center of Hamburg together with industrial harbor
sites that are separated from the downtown area by the river Elbe. In total, the model
domain encompasses an area of 3.7 km× 1.4 km in full-scale dimension. The phys-
ical model was built on a scale of 1:350, including terrain and a 3.5 m high water
front. Effects of urban greenery are not accounted for. Figure 15 shows a photograph
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Fig. 13 Simulation of smoke plume. Low wind fluctuations

of the wind-tunnel model. The flow is approaching from the southwest (235◦), mir-
roring a quite frequent meteorological condition for that area. The inflow boundary
layer profiles were physically modeled to feature urban (i.e. very rough) turbulence
characteristics (wind profile exponent α ≈ 0.29; roughness length z0 ≈ 1.5 m) un-
der neutral atmospheric stratification. All flow measurements were conducted using
non-intrusive 2D laser Doppler velocimetry.

The 3D FAST3D-CT simulation for Hamburg was performed on a 4 km × 4 km
region of the inner city with 2.5 m grid resolution. The calculation was run on 64
CPUs of a SGI Altix computer and took more than three weeks to generate over
4 hours of real time data. The average wind direction is 235◦ rotated clockwise
from due south. The wind speed was approximately 7 m/s at a height of 190 m.
To match the FAST3D-CT conditions with the wind-tunnel experiments as closely
as possible, all temperature related effects such as buoyancy and surface heating as
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Fig. 14 Simulation of smoke plume. High wind fluctuations

well as drag effects of trees have been turned off. Time-dependent wind data were
collected every 0.5 seconds at various heights up to 130 m.

For the validation exercise, 22 measurement locations within the model domain
were chosen, including narrow street canyons, complex intersections, and measure-
ment points close to the ground. This selection was made to represent areas of the
city that are characteristic of urban flow situations and also pose challenges to nu-
merical models. Velocity measurements were made in the numerical calculations to
match the specified locations in the wind-tunnel experiment as closely as possible.
The nearest neighbor extraction was chosen in order to avoid contamination of the
results by interpolating data in order to have an exact spatial match. This procedure
in some cases led to slight offsets of the x, y, and z positions of the comparison
points that were in the range of a few centimeters up to a maximum of 1.75 m.
Experimental and numerical data were normalized by referencing all velocities and
their derivatives to a reference wind speed at a fixed location. This monitoring point
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Fig. 15 Urban model of the inner city of Hamburg mounted in the boundary-layer wind-tunnel.
View is from the inflow direction of 235◦. Courtesy of the Environmental Wind Tunnel Laboratory
at the University of Hamburg

was defined at a height of 49 m above the river Elbe at approximately 1 km upstream
from the city center.

5.5 Mean Flow Comparison

The validation started from a comparison of mean flow characteristics in terms of
time-averaged velocities. Figure 16 shows comparisons of vertical profiles of the
streamwise velocity component from wind-tunnel measurements and FAST3D-CT
simulations. In these and the following figures measurement locations are indicated
by red dots on the city maps. The profile positions differ in the arrangement of the
surrounding buildings. Figure 16(a) shows velocity profiles above the river Elbe (the
(x, y)-location is identical with the reference point). Being situated well upstream
of the densely built-up city center, the good agreement between experimental and
numerical profiles mirrors a good match of the mean inflow conditions. A good
agreement is also found for positions at which the flow is strongly influenced by the
building structure. Figure 16(b) shows a profile measured in a very narrow street
canyon. In Fig. 16(c), the measurement position is located in an open plaza exhibit-
ing a strong recirculation regime that is captured quite well by the code. Measure-
ments shown in Figs. 16(d)–(f) were conducted at intersections that trigger complex
flow behavior. At elevations below the mean building height (approx. Hmean ≈ 35
m by averaging over the city center) there is a slight trend towards an underpredic-
tion of velocities, whereas higher wind speeds than in the reference are observed at
heights larger than 2.5 Hmean. The close proximity of building walls and the wall
model used in the simulation might explain the slight offsets found within the street
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Fig. 16 Comparison of mean streamwise velocity profiles from wind-tunnel measurements (cir-
cles) and numerical simulations with FAST3D-CT (lines) at different locations within the city
(a)–(f). Scatter bars attached to the experimental values represent the reproducibility of the data
based on repetition measurements. The incoming flow is from left to right
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Fig. 17 Mean horizontal wind speed (a) and wind direction profiles (b) from wind-tunnel mea-
surements (circles) and FAST3D-CT calculations (lines)

canyon. The stronger acceleration well above the canopy might reflect an excess
of TKE in the numerical inflow prescription or the specific implementation of the
upper numerical boundary.

5.6 Time Series Analysis

Next, experimental and numerical time series were analyzed in terms of frequency
distributions and turbulent energy spectra. It has to be noted that both signals differ
in their length and their time resolution under full-scale conditions. While the 170 s
measurement time in the wind tunnel results in a full-scale duration of 16.5 h, the
duration of the numerical time series is 4.5 h. Especially at low elevations within
street canyons the full-scale temporal resolution of 2 Hz of the FAST3D-CT signals
is better than the scaled wind-tunnel data rate that is strongly affected by the local
flow seeding conditions.

First, the frequency distributions of instantaneous horizontal wind speeds and
wind directions were evaluated. The mean horizontal wind speeds Uh and wind di-
rections are compared in terms of vertical profiles shown in Figs. 17(a) and 17(b),
respectively. At each of the profile heights, the fluctuations about these means were
investigated. Figure 18 shows wind-rose diagrams of horizontal wind speeds and di-
rections that were observed (Fig. 18(a)) and simulated (Fig. 18(b)) at four different
heights within and above the street canyon. The wind-rose bars display the frac-
tional frequency at which certain wind speeds (color-coded) were observed from
the respective class of wind directions. At first view, the graphs show that the model
predicts the deflection of wind directions inside the canopy quite well, together with
the adjustment to the wind direction of the inflow at rooftop level and well above at
57.75 m (i.e. 1.65 Hmean). The spread about the central direction is largest at rooftop
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Fig. 18 Wind-rose diagrams showing frequency distributions of horizontal wind speeds and wind
directions for wind-tunnel measurements (a) and FAST3D-CT simulations (b) at four different
heights within and above a street canyon

height and smallest at the highest elevation in both the experiment and the simula-
tion. However, discrepancies in velocity magnitudes are observed inside the canopy,
especially for the lowermost point at 2.5 m (experimental) and 2.75 m (simulation),
respectively. As discussed earlier in connection with the mean flow validation, the
lower magnitudes are most likely due to the influence of wall boundary conditions
prescribed at the ground and at upright building surfaces. Despite these differences
the analysis indicates that the LES code is able to reproduce the directional fluctua-
tion levels caused by unsteady flow effects quite reliably.

Auto-spectral energy densities of the turbulent streamwise velocity component
are studied in order to analyze the spectral content associated with different eddy
structures in the flow. The spectra were obtained using an FFT algorithm. Figure 19
shows scaled frequency spectra obtained from numerical and experimental veloci-
ties at various locations at heights of 17.5 m (≈0.5 Hmean) in Figs. 19(a) and 19(b)
and 45.5 m (≈1.3 Hmean) in Figs. 19(c) and 19(d). A very good agreement of the
production and energy-containing range of the spectra is found at all positions. The
energetic peaks associated with integral length scale eddies coincide very well for
the measurements shown in Figs. 19(b) and 19(d), whereas at the other positions the
peaks are shifted for more than a decade towards higher frequencies. In order to in-
vestigate this, further analyses might concentrate on comparisons of integral length
scales that can be determined from autocorrelation time scales invoking Taylor’s
hypothesis.

Common to all of the numerical spectra is their fast roll-off in the high frequency
range that marks the onset of the influence of the nonlinear flux-limiting (MILES)
and numerical dissipation. At most of the investigated locations this influence be-
comes noticeable approximately one decade after the spectral peak was reached
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Fig. 19 Auto-spectral energy densities of the fluctuating streamwise velocity component from
wind-tunnel measurements and simulations with FAST3D-CT at various locations within the city
at heights of (a)–(b) 17.5 m (≈0.5 Hmean) and (c)–(d) 45.5 m (≈1.3 Hmean). The dashed lines
separate the low frequency parts of the spectra that can be directly resolved by the numerical
model given the grid resolution of Δ = 2.5 m and the respective mean wind speeds from the
subgrid-scales affected by numerical diffusion

resulting in a shortened extent of the inertial range. These urban flows are charac-
terized by local production of turbulence at scales very close to the grid cutoff.

In consideration of the fact that FAST3D-CT was particularly designed to sim-
ulate dispersion processes in urban areas, the very good match of the energy-
containing ranges associated with eddies that play a dominant role for scalar trans-
port confirms the model’s fitness for that purpose. However, it should be studied
whether an extension of the inertial range is possible in order to add to the physical
fidelity of the LES, even though this is not expected to contribute appreciably to the
dispersion of contaminants.

6 Concluding Remarks

Physically realistic urban simulations are now possible but still require some com-
promises due to time, computer, and manpower resource limitations. The necessary
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trade-offs result in sometimes using simpler models, numerical algorithms, or ge-
ometry representations than we would wish. We know that the quality of the spa-
tially and time-varying boundary conditions imposed, that is, the fluctuating winds,
require improvement. However, detailed time-dependent wind field observations at
key locations can be processed suitably to provide initial and boundary conditions
and, at the least, can be used for global validation (e.g., [23]).

We believe that the building and large-scale fluid dynamics effects that can be
presently captured govern the turbulent dispersion, and expect that the computed
predictions will get better in time because the MILES methodology is convergent.
However, there is considerable room to improve both the numerical implementation
and the understanding of the backscatter that is included implicitly by through the
MILES methodology.

Inherent uncertainties in simulation inputs and model parameters beyond the en-
vironmental variability also lead to errors that need to be further quantified by com-
parison with high quality reference data. Judicious choice of test problems for cal-
ibration of models and numerical algorithms are essential and sensitivity analyses
help to determine the most important processes requiring improvement. In spite of
inherent uncertainties and model trade-offs it is possible to achieve a significant de-
gree predictability. For example, today, the biggest errors in comparing to field trials
are associated with determining the actual wind profile and direction during the trial.

The FAST3D-CT simulation model can be used to simulate sensor and system
response to postulated threats, to evaluate and optimize new systems, and to con-
duct sensitivity studies for relevant processes and parameters. Moreover, the sim-
ulations can constitute a virtual test range for micro- and nano-scale atmospheric
fluid dynamics and aerosol physics, to interpret and support field experiments, and
to evaluate, calibrate, and support simpler models.

Figure 5 illustrates the critical dilemma in the CT context: unsteady 3D urban-
scenario flow simulations are currently feasible—but they are still expensive and
require a degree of expertise to perform. First responders and emergency managers
on site for contaminant release threats cannot afford to wait while actual simula-
tions and data post-processing are being carried out. A concept addressing this prob-
lem [1, 30] carries out 3D unsteady simulations in advance and pre-computes com-
pressed databases for specific urban areas based on suitable (e.g., historical, season-
ally adjusted) assumed weather, wind conditions, and distributed test-sources. The
relevant information is summarized as Dispersion nomographTM data so that it can
be readily used through portable devices, in conjunction with urban sensors provid-
ing current observational information regarding local contaminant concentrations,
wind speed, direction, and relative strength of wind fluctuations.
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40 Years of FCT: Status and Directions

Rainald Löhner and Joseph D. Baum

Abstract A somewhat historical perspective of the use of FCT for fluid dynamics is
given. The particular emphasis is on large-scale blast problems. A comparison with
other high-resolution CFD solvers is included to highlight the differences between
them, as well as the relative cost. Results from test runs, as well as several relevant
production runs are shown. Outstanding issues that deserve further investigation are
identified.

1 Introduction

By the early 70’s, computers had become sufficiently fast to allow the simulation
of unsteady compressible flows with ‘complex physics’ (nonlinear source terms,
arbitrary equations of state, large density/pressure/temperature ranges, etc.). A par-
ticularly disturbing observation made time and again was that low-order schemes,
although overly dissipative, in many cases gave better results than high-order
schemes. High-order schemes tended to have over/undershoots or ripples in re-
gions of high gradients, which in turn could lead to completely unphysical results
(for example, premature ignition for combustion calculations). Ironically, while a
tremendous amount of effort was still being devoted to perfecting the ‘ultimate lin-
ear scheme’, Godunov [15] by the end of the 50’s had already proven that any such
effort would be futile. No linear scheme of order higher than one could give mono-
tonicity preserving results. The resolution of this quandary came with the birth of
nonlinear schemes.
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Any high-order scheme used to advance the solution either in time or between
iterations towards steady-state may be written as

un+1 = un +�u= un +�ul + (
�uh −�ul

)= ul + (
�uh −�ul

)
. (1)

Here �uh and �ul denote the increments obtained by the high- and low-order
scheme respectively, and ul is the monotone solution at time t = tn+1 of the low-
order scheme. The idea behind any nonlinear scheme such as FCT is to limit the
second term on the right-hand side of (1)

un+1 = ul + lim
(
�uh −�ul

)
, (2)

in such a way that no new over/undershoots are created. Note that even though the
original PDE as well as the low- and high-order schemes are linear, the resulting
overall scheme is nonlinear, as it depends on the local behavior of u.

While it became clear that the TVD concept was only enforceable in 1-D (see
[16]: ‘except in certain trivial cases, any method that is TVD in two space dimen-
sions is at most first-order accurate’; 1-D TVD is being used unchanged to this day
on an edge/face basis in 3-D production codes, and TVD has been supplanted by
LED as an aim), the FCT concept realized a huge step forward with Zalesak’s gen-
eralization [54] to schemes of arbitrary order and dimensions. Here was a way to
apply FCT to schemes of any order, dimension, and, perhaps most importantly from
an application point of view, grid topology. Zalesak’s ideas were ported to Finite El-
ement grids by Parrott and Christie [39] for scalar equations. Building on this work,
Löhner, Morgan, Peraire and Vahdati [28, 29] added synchronization of limiters
for systems of equations, found a steepener for contact discontinuities and added a
Lapidus-type artificial viscosity [27] that removed the terracing problem for expan-
sion fans. Further progress in the effective use of vector-machines by renumbering
and grouping of elements, fast adaptive refinement with useful error indicators for
transient problems [30], the switch from element- to edge-based data structures [35],
extension to arbitrary Lagrangian-Eulerian (ALE) frames for problems with moving
bodies [5] and mesh embedding [33] led to codes with the inherent geometrical flex-
ibility of unstructured grids that were cost-competitive with structured grid codes.
The remarkable combination of faster techniques and more powerful computers led
to ever increasing problem size and application scope, as can be seen from Table 1. It
is interesting to note that throughout a 25 year period the basic FEM-FCT algorithm
for the simulation of transient shock problems has remained essentially unaltered.

The increase in compute power also shifted the CFD bottleneck in industry from
schemes (80’s: CPU time as the competitive differentiator) to grid generation (90’s:
surface definition to mesh as the competitive differentiator) to process integration
(00’s: CAD to accurate solution as the competitive differentiator). By the beginning
of the 21st century, all CFD codes used in industry were based on some form of
unstructured grid. At the same time FCT was placed on a sound theoretical basis by
Kuzmin et al. [21–24], who also extended FCT to fully implicit time-marching and
iterative limiting (for semi-implicit implementations of FCT and applications, see
[40, 41, 47]). A recent successful extension into aeroacoustics based on large-eddy
simulations [26] shows that this class of schemes remains very competitive.
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Table 1 Increase of problem
size Size Year Problem Machine

> 102 1983 Airfoil ICL

> 103 1985 Forebody CDC-205

> 104 1986 Train Cray-XMP

> 105 1989 Train Cray-2

> 106 1991 T-62 Cray-2

> 107 1994 WTC Cray-M90

> 108 1998 Village SGI-O2000

2 Basic Principles of FCT

Consider the system of conservation laws

u,t + Fi
,i = S, (3)

where u,F,S denote the unknowns, fluxes and source-terms. Any finite volume or
finite element discretization will yield a discrete system of the form:

Mij û
j
,t =Ri

s +CijFij . (4)

Here, M, ûj ,Rs,C
ij ,F ij denote the mass-matrix, vector of unknowns, right-hand

side due to sources, edge-coefficients for fluxes and edge-fluxes respectively. Let us
consider first the traditional TVD approach. For the standard Galerkin approxima-
tion we have

Fij = fi + fj , (5)

i.e. an equal weighting of fluxes at the end-point of an edge. This (high-order) com-
bination of fluxes is known to lead to an unstable discretization, and must be aug-
mented by stabilizing terms to achieve a stable, low-order scheme. In what follows,
we enumerate the most commonly used options in order to compare them to FCT.
We start with those schemes that limit before evaluating fluxes in order to contrast
them to FCT, where the limiting is performed after evaluating fluxes.

2.1 Limiting Before Flux Evaluation

If we assume that the flow variables are constant in the vicinity of the edge end-
points i, j , a discontinuity will occur at the edge midpoint. The evolution in time
of this local flowfield was first obtained analytically by Riemann [44], and consists
of a shock, a contact discontinuity and an expansion wave. More importantly, the
flux at the discontinuity remains constant in time. One can therefore replace the
average flux of the Galerkin approximation by this so-called Riemann flux. This
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stable scheme, which uses the flux obtained from an exact Riemann solver, was first
proposed by Godunov [15]. The flux is given by

Fij = 2f
(
uR
ij

)
, (6)

where uR
ij is the local exact solution of the Riemann problem to the Euler equations,

expressed as

uR
lr = Rie(ul ,ur ) (7)

where

ur = ui , ul = uj . (8)

This scheme represents what one may call the ‘ultimate first order scheme’. All
waves are taken into account, and the basic underlying physics are well reproduced.
In order to achieve a higher order scheme, the amount of inherent dissipation must
be reduced. This implies reducing the magnitude of the difference ui−uj by ‘guess-
ing’ a smaller difference of the unknowns at the location where the Riemann flux
is evaluated (i.e. the middle of the edge). The assumption is made that the function
behaves smoothly in the vicinity of the edge. This allows the construction or ‘re-
construction’ of alternate values for the unknowns at the middle of the edge. The
additional information required to achieve a scheme of higher order via these im-
proved values at the middle of the edge can be obtained in a variety of ways:

– Through continuation and interpolation from neighboring elements [7];
– Via extension along the most aligned edge [51]; or
– By evaluation of gradients [34, 35, 52].

The last option is the one most commonly used, but carries a considerable com-
putational overhead: 15 gradients for the unknowns in 3-D can account for a large
percentage of CPU time.

The inescapable fact stated in Godunov’s theorem that no linear scheme of order
higher than one is free of oscillations implies that with these higher order extensions,
some form of limiting will be required. For a review of these, see [49]. It is important
to note that this form of limiting is done before flux evaluation, and that, strictly
speaking, it should be performed with characteristic variables. A typical Godunov-
based scheme therefore has four main cost components:

– Solution of the exact Riemann problem;
– Gradient-based reconstruction of higher order approximations to the left and right

states;
– Forward/backward transformation from conservative to characteristic variables;

and
– Limiting.

In the sequel, we will enumerate possible simplifications to each of these cost com-
ponents, thereby deriving a whole spectrum of commonly used schemes.

The solution of the (nonlinear) Riemann problem requires an iterative procedure
which is expensive. Therefore, a considerable amount of effort has been devoted to
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obtain faster ‘approximate Riemann solvers’ that still retain as much of the physics
as the basic Riemann problem [38, 45, 50]. A widely used solver of this class is the
one derived by Roe [45], which may be written as:

Fij = fi + fj −
∣
∣Aij

∣
∣(ui − uj ) (9)

where |Aij | denotes the standard Roe matrix evaluated in the direction dij . Note
that, as before, reducing the magnitude of the difference ui − uj via reconstruction
and limiting leads to schemes of higher order.

A further possible simplification can be made by replacing the Roe matrix by its
spectral radius. This leads to a numerical flux function of the form

Fij = fi + fj −
∣∣λij

∣∣(ui − uj ), (10)

where
∣∣λij

∣∣= ∣∣vk
ij · Sij

k

∣∣+ cij , (11)

and vk
ij and cij denote edge values, computed as nodal averages, of the fluid velocity

and speed of sound respectively, and S
ij
k is the unit normal vector associated with

the edge (i.e. in 3-D the unit normal of the finite volume surface associated with
the edge). This can be considered as a centered difference scheme plus a second
order dissipation operator, leading to a first order, monotone scheme. As before, a
higher order scheme can be obtained by a better approximation to the ‘right’ and
‘left’ states of the ‘Riemann problem’. Given that for smooth problems through
the use of limiters the second order dissipation |ui − uj | reverts to fourth order
dissipation [19, 32], and that limiting requires a considerable number of operations,
the next possible simplification is to replace the limiting procedure by a pressure
sensor function. A scheme of this type may be written as

Fij = fi + fj −
∣∣λij

∣∣
[

ui − uj + β

2
lji · (∇ui +∇uj )

]
, (12)

where 0 < β < 1 denotes a pressure sensor function of the form [42]

β = 1− pi − pj + 0.5lji · (∇pi +∇pj )

|pi − pj | + |0.5lji · (∇pi +∇pj )| (13)

and lji = xj − xi . For β = 0,1, second and fourth order damping operators are
obtained respectively. Several forms are possible for the sensor function β [37].
Although this discretization of the Euler fluxes looks like a blend of second and
fourth order dissipation, it has no adjustable parameters. The scalar dissipation op-
erator presented above still requires the evaluation of gradients. This can be quite
costly for Euler simulations: for a typical multistage scheme, more than 40% of the
CPU-time is spent in gradient-operations, even if a new dissipation operator is only
required at every other stage. The reason lies in the very large number of gradients
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required: 15 for the unknowns in 3-D, and an additional 3 for the pressure. An alter-
native would be to simplify the combination of second- and fourth order damping
operators by writing out explicitly these operators:

d2 = λij (1− β)[ui − uj ], d4 = λijβ

[
ui − uj + lji

2
· (∇ui +∇uj )

]
. (14)

Performing a Taylor series expansion in the direction of the edge, we have

ui − uj + lji
2
· (∇ui +∇uj )≈

l2ji
4

[
∂2u
∂l2

∣∣∣∣
j

−∂2u
∂l2

∣∣∣∣
i

]
. (15)

This suggests the following simplification, which neglects the off-diagonal terms of
the tensor of second derivatives:

l2ji
4

[
∂2u
∂l2

∣∣∣∣
j

−∂2u
∂l2

∣∣∣∣
i

]
≈ l2ji

4

[∇2uj −∇2ui

]
, (16)

and leads to the familiar blend of second and fourth order damping operators [20,
36]

Fij = fi + fj − |λij |(1− β)[ui − uj ] − |λij |β
l2ji
4

[∇2uj −∇2ui

]
. (17)

2.1.1 Lax-Wendroff/Taylor-Galerkin

The essential feature of Lax-Wendroff/ Taylor-Galerkin schemes is the combination
of time and space discretizations, leading to second order accuracy in both time and
space. An edge-based two-step Taylor-Galerkin scheme can readily be obtained by
setting the numerical flux to

Fij = 2f
(
u
n+ 1

2
ij

)
, (18)

where

u
n+ 1

2
ij = 1

2
(ui + uj )− �t

2

∂fk

∂xk

∣∣∣∣
ij

, (19)

and ∂fk
∂xk
|ij is computed on each edge and given by either

∂fk

∂xk

∣
∣∣∣
ij

≈ lij
l2ij
· (Fi − Fj

)
or

∂fk

∂xk

∣
∣∣∣
ij

≈ Dij

D2
ij

· (Fi − Fj
)
, (20)

where Dij denotes the edge-coefficients for the advective terms obtained from the
Galerkin approximation. The major advantage of this scheme lies in its speed,
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since there is no requirement of gradient computations, as well as limiting pro-
cedures for smooth flows. An explicit numerical dissipation (e.g. in the form of
a Lapidus viscosity [27]) is needed to model flows with discontinuities. Taylor-
Galerkin schemes by themselves are of little practical use for problems with strong
shocks or other discontinuities. However, they provide high order schemes with the
best cost/performance ratio for the flux-corrected transport schemes presented be-
low.

2.2 Limiting After Flux Evaluation

Limiting after flux evaluation is the key idea inherent to all FCT schemes. If we
focus on high order schemes of the Lax-Wendroff/Taylor-Galerkin family, the high
order increment may be written as

Ml�uh = r+ (Ml −Mc)�uh. (21)

Here Ml denotes the diagonal, lumped mass-matrix, and Mc the consistent finite
element mass-matrix. The low order scheme is simply given by

Ml�ul = r+ cd(Mc −Ml )un, (22)

i.e. lumped mass-matrix plus sufficient diffusion to keep the solution monotonic.
Subtracting these two equations yields the antidiffusive edge contributions

(
�uh −�ul

)=M−1
l (Ml −Mc)

(
cdun +�uh

)
. (23)

Note that no physical fluxes appear in the antidiffusive edge contributions. This
may also be interpreted as: advance the physical fluxes with extra diffusion, thus
assuring transport, conservation, etc. Thereafter, perform the antidiffusive step to
enhance the solution as much as possible without violating monotonicity principles.
The simplicity of the antidiffusive edge contributions for this class of scheme makes
it both fast and very general, and has been one of the main reasons why this scheme
has served the CFD community for more than 25 years without major alterations.

Let us treat in more detail limiting after flux evaluation. If we consider an isolated
point surrounded by elements, the task of the limiting procedure is to insure that the
increments or decrements due to the antidiffusive contributions do not exceed a
prescribed tolerance (see Fig. 1).

In the most general case, the contributions to a point will be a mix of positive
and negative contributions. Given that the antidiffusive element/edge contributions
(AEC’s) will be limited, i.e. multiplied by a number 0≤ Cel ≤ 1, it may happen that
after limiting all positive or negative contributions vanish. The largest increment
(decrement) will occur when only the positive (negative) contributions are consid-
ered. For this reason, we must consider what happens if only positive or only nega-
tive contributions are added to a point. The comparison of the allowable increments



126 R. Löhner and J.D. Baum

Fig. 1 Limiting procedure

and decrements with these all-positive and all-negative contributions then yields the
maximum allowable percentage of the AEC’s that may be added or subtracted to
a point. On the other hand, an element/edge may contribute to a number of nodes,
and in order to maintain strict conservation, the limiting must be performed for all
the element/edge node contributions in the same way. Therefore, a comparison for
all the nodes of an element/edge is performed, and the smallest of the evaluated
percentages that applies is retained. Defining the following quantities:

P±i : the sum of all positive (negative) element/edge contributions to node i

P±i =
∑

el

{
max

min

}
(0,AECel); (24)

Q±i : the maximum (minimum) increment node i is allowed to achieve

Q±i = u
max
min
i − ul

i; (25)

the ratio of positive and negative contributions that ensure monotonicity is given
by

R±i :=
{

min(1,Q±i /P±i ), P+i > 0 >P−i ,

0, otherwise.
(26)

For the elements/edges, the final value taken is the most conservative:

Cel =min(element/edge nodes)

{
R+i if EC > 0,

R−i if EC < 0.
(27)

The allowed value u
max
min
i is taken between each point and its nearest neighbors. For

element-based schemes, it may be obtained in three steps as follows:

(a) Maximum (minimum) nodal unknowns of un and ul :

u∗i =
{

max

min

}(
ul
i, u

n
i

); (28)
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Table 2 Ingredients of CFD
solvers Solver Riemann Gradient Char. Transf. Limiting

Classic Godunov Yes Yes Yes Yes

Consvar Godunov Yes Yes No Yes

Consvar Roe Approx Yes No Yes

Scal. Dissip. No Yes No Yes

Scal. Edge 2/4 No Yes No No

Scal. Lapl 2/4 No No No No

Taylor-Galerkin No No No No

TG-FCT No No No Yes

(b) Maximum (minimum) nodal value of element/edge:

u∗e =
{

max

min

}(
u∗A,u∗B, . . . , u∗C

); (29)

(c) Maximum (minimum) unknowns of all elements/edges surrounding node i:

u
max
min
i =

{
max

min

}(
u∗1, u∗2, . . . , u∗m

)
. (30)

A number of variations are possible for u
max
min
i . For example, the so-called ‘clipping

limiter’ is obtained by setting u∗i =
{max

min

}
ul
i in (a), i.e., by not looking back to the

solution at the previous timestep or iteration, but simply comparing nearest neighbor
values at the new timestep or iteration for the low-order scheme. As remarked be-
fore, the limiting is based solely on the unknowns u, not on a ratio of differences as
in most TVD schemes. Table 2 summarizes the main ingredients of high-resolution
schemes, indirectly comparing the cost of most current flow solvers.

2.3 Iterative Limiting

Given that the antidiffusive element contributions surrounding a point can have dif-
ferent signs, and that a ‘most conservative’ compromise has to be reached for posi-
tive and negative contributions, the remaining (i.e. not yet added) antidiffusive ele-
ment contributions may still be added to the new solution without violating mono-
tonicity constraints. This may be achieved by the following iterative limiting proce-
dure:

– For iterations j = 1, k:
– Perform limiting procedure:

un+1 = ul +
∑

el

Cel · AEC;
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– Update remaining antidiffusive element contributions:

AEC← (1−Cel)AEC;
– Re-define the low-order solution at tn+1:

ul = un+1.

Experience indicates that for explicit schemes, the improvements obtained by this
iterative limiting procedure are modest. However, for implicit schemes, the gains
are considerable and well worth the extra computational effort [21–25].

2.4 Test Cases

We include two simple test cases that demonstrate the performance of the edge-
based FEM-FCT Euler solver. In both cases, FCT was run with limiter synchroniza-
tion on the density and energy.

(a) Shock Tube: This is a classic example, which was used repeatedly to compare
different Euler solvers [48]. Initially, a membrane separates two fluid states
given by ρ1 = 1.0,v1 = 0.0,p1 = 1.0 and ρ2 = 0.1,v2 = 0.0,p2 = 0.1. The
membrane ruptures, giving rise to a shock, a contact discontinuity and a rar-
efaction wave. Figure 2(a) shows the surface mesh and the surface contours of
the density. A line-cut through the 3-D mesh is compared to the exact solution
in Fig. 2(b). Note that the number of points appearing here corresponds to faces
of tetrahedra being cut, i.e., is 2–3 times the number of actual points. One can
see that the shock and contact discontinuities are captured over 2 or 4 elements
respectively.

(b) Shock Diffraction Over a Wall: The second example shown is typical of some
of the large-scale blast simulations carried out with FCT schemes over the last
decade [1–4, 31, 46], and is taken from [43]. The outline of the domain is shown
in Fig. 3(a). Surface pressures for an axisymmetric and 3-D run, together with
comparison to photographs from experiments is given in Figs. 3(b), (c). The
comparison to experimental results at different stations is shown in Fig. 3(d).
As one can see, FCT schemes yield excellent results for this class of problems.

For more verification runs, see [3, 12, 28, 29, 31].

3 Some Landmark Runs

In this section we list a few memorable runs that were conducted with FEM-FCT
over the years.
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Fig. 2 Shock tube: (a) surface mesh and density; (b) comparison to exact values

(a) T-62: This simulation considers the impact of a strong shockwave on a main
battlefield tank. The particular tank happens to be a T-62, of which there seem
to be an abundance in the Middle East. The aim of the run was to gauge the
possible effects of strong shockwaves on such tanks. This run was the first to
exceed 2 Mtets, and was conducted on a CRAY-2. It was also the first run of this
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Fig. 3 (a) Shock diffraction over a wall. (b) Results at time t = 146 µsec. (c) Results at time
t = 327 µsec. (d) Comparison to experimental values
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Fig. 3 (Continued)

magnitude to make extensive use of adaptive refinement. Even with an initial
mesh grading that exhibited smaller elements close to the vehicle, the mesh was
adaptively refined (and coarsened) to 2 levels every 5 timesteps. Figure 4 shows
the surface discretization and pressure at different times. The passage of the
shockwave over the vehicle is readily visible. For more information, see [1].

(b) World Trade Center: The World Trade Center has always been a symbol of
global capitalism, and has therefore been a target for terrorist attacks almost
since its inception. In 1993 a powerful car bomb was detonated in one of the
lower parking levels, causing loss of life and extensive damage. In order to aid
in the forensic studies that followed, a simulation was conducted. Data was as-
sembled from a variety of sources: drawings, blueprints, videos, CAD-data. The
distribution of cars (more than 400 of them) was set from a statistical distribu-
tion of 10 typical models. This run was the first to exceed 20 Mtets, and was
conducted on a CRAY-2M. Figure 5 clearly shows the shock wave at approxi-
mately T = 96 msec. For more information, see [4].

(c) Truck: This simulation considers the interaction of a strong shockwave with a
typical command and control center truck. The aim of the run was to demon-
strate the feasibility of conducting fully coupled fluid-structure interaction cal-
culations for this class of problems. The mesh was allowed to move close to
the vehicle, and the FEM-FCT algorithm was cast in an Arbitrary Lagrangian-
Eulerian (ALE) frame of reference. Approximately 10 global remeshings and
countless local remeshings were required to accommodate the severe deforma-
tion of the structure. The response may be seen in Fig. 6. For more information,
see [6].
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Fig. 4 Shock interaction with T-62

(d) Blast in City: This simulation considers a strong explosion in a typical city
setting. The particular location chosen corresponds to Nairobi, where a powerful
bomb was detonated close to the American embassy in 1998. This run was the
first to reach 500 Mtets in a fully adaptive, transient setting, and was carried out
on a multiprocessor SGI O2000 machine. The propagation of the blast wave can
be discerned from Fig. 7(a). The adaptive refinement of the mesh can be seen in
Fig. 7(b).

(d) Generic Weapon Fragmentation: This simulation considers the detonation and
fragmentation of a generic weapon. It is performed using a JWL model for the
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Fig. 5 Shock propagation in World Trade Center

fluid and FEM-FCT as the basic flow solver, and a large-deformation structural
dynamics code for the casing. The flow mesh is not moving, i.e. the structure
inside the flowfield is treated using the embedded adaptive approach [33]. The
CSD domain was modeled with approximately 66 Khex elements correspond-
ing to 1,555 fragments whose mass distribution matches statistically the mass
distribution encountered in experiments. The structural elements were assumed
to fail once the average strain in an element exceeded 60%.

The CFD mesh was refined to 3 levels in the vicinity of the solid surface. Addi-
tionally, the mesh was refined based on the modified interpolation error indicator
proposed in [30], using the density as indicator variable. Adaptive refinement was
invoked every 5 timesteps during the coupled CFD/CSD run. The CFD mesh started
with 39 Mtet, and ended with 72 Mtet. Figures 8(a), (b) show the structure as well as
the pressure contours in a cut plane at two times during the run. The detonation wave
is clearly visible, as well as the thinning of the structural walls and the subsequent
fragmentation.

4 Outstanding Issues

In this section, we list some of the outstanding issues in CFD solvers based on FCT.
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Fig. 6 Shock interaction with a truck

4.1 Steepening

The antidiffusive step in FCT is designed to steepen the low-order solution obtained
at the new timestep or iteration. In some cases, particularly for high-order schemes
of order greater than two, the antidiffusive step can flatten the profile of the solution
even further, or lead to an increase of wiggles and noise. This is the case even though
the solution remains within its allowed limits. A situation where this is the case can
be seen from Fig. 9.
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Fig. 7 (a) Blast in city. (b) Detail showing adaptive refinement

This type of behavior can be avoided if the antidiffusive flux is either set to zero
or reversed. A simple way to decide when to reverse the antidiffusive fluxes is to
compute the scalar product of the low-order solution at the new timestep or iteration
and the antidiffusive element/edge contributions:

∇ul · AEC < 0 =⇒ AEC=−α · AEC, (31)
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Fig. 8 CSD/flow velocity/mesh at: (a) 68 ms; (b) 102 ms
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Fig. 9 Steepener for FCT

with 0 < α < 1. Values of α greater than unity lead to steepening. This can be ben-
eficial in some cases, but is highly dangerous, as it can lead to unphysical solutions
(e.g. spurious contact discontinuities) in complex applications. Although this type
of steepening works well in practice, a more formal analysis/treatment would be
beneficial.

4.2 Limiting for Systems of Equations

The results available in the literature [8–10, 28, 29, 39, 54, 55] indicate that with
FCT results of excellent quality can be obtained for a single PDE, e.g. the scalar ad-
vection equation. However, in the attempt to extend the limiting process to systems
of PDEs no immediately obvious or natural limiting procedure becomes apparent.
Obviously, for 1-D problems one could advect each simple wave system separately,
and then assemble the solution at the new time step. However, for multidimensional
problems such a splitting is not possible, as the acoustic waves are circular in nature.
Finite-Difference FCT codes used for production runs [13, 14] have so far limited
each equation separately, invoking operator-splitting arguments. This approach does
not always give very good results, as may be seen from [48] comparison of schemes
for the Riemann problem, and has been a point of continuing criticism by those who
prefer to use the more costly Riemann-solver-based, essentially one-dimensional
TVD-schemes [11, 18, 38, 45, 49, 50, 53]. An attractive alternative is to introduce
‘system character’ for the limiter by combining the limiters for all equations of
the system. Many variations are possible and can be implemented, giving different
performance for different problems. Some of the possibilities are listed here, with
comments where empirical experience is available.

(a) Independent treatment of each equation as in operator-split FCT: This is the
least diffusive method, tending to produce an excessive amount of ripples in the
non-conserved quantities (and ultimately also in the conserved quantities).
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(b) Use of the same limiter (Cel) for all equations: This produces much better
results, seemingly because the phase errors for all equations are ‘synchro-
nized’. This was also observed by Harten and Zwaas [17] and Zhmakin and
Fursenko [56] for a class of schemes very similar to FCT. We mention the fol-
lowing possibilities:

– Use of a certain variable as ‘indicator variable’ (e.g. density, pressure, en-
tropy).

– Use of the minimum of the limiters obtained for the density and the en-
ergy (Cel =min(Cel(ρ),Cel(ρe))): this produces acceptable results, although
some undershoots for very strong shocks are present. This option is currently
the preferred choice for strongly unsteady flows characterized by propagating
and/or interacting shock waves.

– Use of the minimum of the limiters obtained for the density and the pressure
(Cel =min(Cel(ρ),Cel(p))): this again produces acceptable results, particu-
larly for steady-state problems.

4.2.1 Limiting Any Set of Quantities

A general algorithm to limit any set of quantities may be formulated as follows:

– Define a new set of (non-conservative) variables u′;
– Transform: u,ul → u′,u′l and see how much u′ can change at each point ⇒

�u′|max
min ;

– Define a mean value of ul in the elements and evaluate:

�u′ =A
(
ul
) ·�u, (32)

– Limit the transformed increments �u′ ⇒ C′el⇒�u′′ = lim(�u′);
– Transform back the variables and add:

�u∗ =A−1(ul
) ·�u′′ =A−1(ul

) ·C′el ·A
(
ul
) ·�u. (33)

4.3 Terracing

Terracing typically occurs when smooth profiles are transported over many grid-
points. Without incurring a loss of monotonicity, the profiles become ragged, ex-
hibiting terraces (hence the name). In most cases, terracing occurs due to antidiffu-
sive fluxes that are too strong, as in the case discussed above for steepeners. A usual
way to suppress steepening is by adding a small amount of background dissipa-
tion, typically in the form of a fourth-order damping or via Lapidus smoothing [27].
While these empirical fixes work well, it would be highly desirable to have a formal
understanding of this phenomenon.
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4.4 Low-Order Schemes

An important observation which is very often overlooked in steady flow problems
(e.g. classical aerodynamics) is that the creation of new extrema during a run can
only occur at the rate of the low-order scheme. Therefore, one should strive for a
low-order scheme with the lowest possible diffusion that still satisfies the mono-
tonicity constraints of the physics. The effects of overdiffusion and/or bad limiting
can often be seen in blast simulations, where shock rise times are too long and peak
pressures too low. Consider the Taylor-Galerkin based FCT shown before. The an-
tidiffusive edge contributions are given by:

(
�uh −�ul

)=M−1
l (Ml −Mc)

(
cdun +�uh

)
. (34)

The usual procedure is to use a constant factor cd throughout the mesh. Consider
now a transient problem, integrated with an explicit scheme on a mesh with a large
variation of mesh size and maximum eigenvalues of the flow (velocity, speed of
sound). In regions where the local allowable timestep �tl is much larger than the
minimum timestep over the mesh �t chosen to advance the solution, the factor cd
could be lowered according to

c∗d =
�t

�tl
cd (35)

without violating monotonicity. Not reducing the diffusion coefficient by this ratio
of timesteps can lead to an overdiffused solution with larger shock rise times and
lower shock peaks. The example shown in Fig. 10 is a typical case. It considers a
blast in an urban canyon. The geometry and blast location is shown in Fig. 10(a).
For symmetry reasons, only half of the domain is required for the calculation. The
solution, shown at different times in Fig. 10(b), was initialized from a detailed 1-D
run. Figure 10(c) shows the comparison of pressure and impulse for the station
marked in Fig. 10(a). The notation is as follows: FCTUSUAL is the usual edge-
based FEM-FCT with Taylor-Galerkin and a constant cd ; FCTDTRAT is the same,
except that cd is multiplied by the ratio of allowable timesteps as shown above; FCT-
DTRI2 is FCTDTRAT with a second iterative antidiffusion pass; and FCTCARI2 is
the same as FCTDTRI2, except that now the grid has a Cartesian point distribution
(to see if this had an effect). One can see that, as expected, the peak pressures are
higher when the dissipation of the low-order is diminished. We remark that these
differences would not be seen in the shock-tube cases commonly used to compare
schemes, as the solution remains constant after the shock has passed.

5 Conclusions and Outlook

FCT algorithms have proven to be an invaluable ingredient of many production
codes over the last four decades. They have been used in a large variety of fields,
such as fluid dynamics, plasma physics, petroleum engineering and electromagnet-
ics. The present paper has given a somewhat historical perspective for fluid dynam-
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Fig. 10 (a) Blast in urban canyon. (b) Blast in urban canyon: surface pressures. (c) Blast in urban
canyon: comparison of pressures and impulses

ics, with particular emphasis on large-scale blast problems. A comparison with other
high-resolution CFD solvers has been included to highlight the differences between
them, as well as the relative cost. Results from test runs, as well as several relevant
production runs have been shown. Finally, several outstanding issues that deserve
further investigation have been identified.
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Fig. 10 (Continued)

While many other CFD techniques have appeared in the last two decades, FCT,
due to its very favorable cost/accuracy ratio, has been able to survive almost un-
changed. The increase in compute power may, perhaps, shift the emphasis to more
costly, refined schemes. However, for the truly large-scale problems at present there
exist few alternatives to FCT.
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Algebraic Flux Correction I

Scalar Conservation Laws

Dmitri Kuzmin

Abstract This chapter is concerned with the design of high-resolution finite el-
ement schemes satisfying the discrete maximum principle. The presented alge-
braic flux correction paradigm is a generalization of the flux-corrected transport
(FCT) methodology. Given the standard Galerkin discretization of a scalar trans-
port equation, we decompose the antidiffusive part of the discrete operator into nu-
merical fluxes and limit these fluxes in a conservative way. The purpose of this
manipulation is to make the antidiffusive term local extremum diminishing. The
available limiting techniques include a family of implicit FCT schemes and a new
linearity-preserving limiter which provides a unified treatment of stationary and
time-dependent problems. The use of Anderson acceleration makes it possible to
design a simple and efficient quasi-Newton solver for the constrained Galerkin
scheme. We also present a linearized FCT method for computations with small time
steps. The numerical behavior of the proposed algorithms is illustrated by a grid con-
vergence study for convection-dominated transport problems and anisotropic diffu-
sion equations.

1 Introduction

A major bottleneck in finite element simulation of transport phenomena is the in-
ability of the standard Galerkin discretization to satisfy the relevant maximum prin-
ciples and/or maintain positivity on general meshes. This deficiency manifests itself
in spurious undershoots and overshoots that pop up in regions of insufficient mesh
resolution. Discontinuous weak solutions to hyperbolic conservation laws are par-
ticularly difficult to compute using continuous finite elements. The Galerkin “best
approximations” to elliptic and parabolic transport equations may also exhibit non-
physical artifacts in proximity to unresolved small-scale features [48, 50]. An ef-
fective remedy to this problem must be found when it comes to the development of
general-purpose finite element codes for Computational Fluid Dynamics.
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Many modern high-resolution schemes for the equations of fluid mechanics are
based on the flux-corrected transport (FCT) algorithm [6, 78] or use total variation
diminishing (TVD) limiters [26, 73] to enforce the discrete maximum principle.
The basic idea boils down to using a high-order scheme in smooth regions and a
nonoscillatory low-order scheme elsewhere. The implementation of FCT and TVD
in explicit finite element codes dates back to the late 1980s [3, 54, 55, 65, 68, 69].
The author and his coworkers developed the first implicit FCT schemes for con-
tinuous (linear and multilinear) finite elements [35, 39, 45, 47]. In the first edition
of this book, we introduced the algebraic flux correction paradigm [43], a general
framework for the design of multidimensional flux limiters. This approach leads to
many useful generalizations of FCT and TVD-like methods [36, 41, 42].

The recent comparative study by John and Schmeyer [32] indicates that FEM-
FCT is superior to mainstream stabilization techniques when it comes to solving
unsteady convection problems with linear finite elements. However, flux correc-
tion of FCT type is inappropriate for steady-state computations since the results de-
pend on the pseudo-time step, and severe convergence problems may occur. Flux
limiters of TVD type [36, 37, 43, 46, 57] are free of these drawbacks but re-
quire mass lumping. As an alternative to FCT and TVD, we developed a linearity-
preserving flux limiter that can handle stationary and time-dependent problems
equally well [42]. In this algorithm, the same strategy is used to constrain the con-
vective term, anisotropic diffusion, and the consistent mass matrix. Furthermore,
linearity preservation implies consistency and second-order accuracy for smooth
data [10, 59].

The cost of algebraic flux correction depends on the number of iterations required
to obtain a converged solution. In our experience, this cost can be significantly re-
duced using a linearization of the antidiffusive term [39] or convergence acceleration
techniques for iterative solvers. In particular, we recommend Anderson mixing [1,
17, 18, 77] (also known as Anderson acceleration) which combines a number of
iterates in a GMRES-like fashion. As shown by Eyert [17], the accelerated solver
belongs to the Broyden family of Jacobian-free quasi-Newton methods.

This chapter summarizes our work on algebraic flux correction schemes in-
spired by Zalesak’s FCT algorithm [78]. Due to many recent developments, the
presentation of this material differs considerably from the first edition of the
book. In Sect. 2, we briefly review the continuous maximum principles for lin-
ear convection-diffusion equations. The discrete maximum principles and sufficient
conditions of positivity preservation are formulated in Sect. 3. In Sects. 4 and 5,
we analyze the standard Galerkin discretization and explain the philosophy be-
hind algebraic flux correction. The generalized FCT algorithm and the linearity-
preserving flux limiter are presented in Sects. 6 and 7, respectively. In Sect. 8,
we address the design and acceleration of iterative solvers for the nonlinear sys-
tem. A grid convergence study for 2D test problems is presented in Sect. 9. Fi-
nally, we summarize the results and outline some promising directions for further
research.
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Table 1 Taxonomy of scalar
transport equations Parabolic type ∂u

∂t
+∇ · (vu−D∇u)= 0 ∂u

∂t
−∇ · (D∇u)= 0

Elliptic type ∇ · (vu− D∇u)= 0 −∇ · (D∇u)= 0

Hyperbolic type ∂u
∂t
+∇ · (vu)= 0 ∇ · (vu)= 0

2 Analysis of the Continuous Problem

The model problem that will serve as a vehicle for the presentation of our high-
resolution finite element schemes is the linear convection-diffusion equation

∂u

∂t
+∇ · (vu−D∇u)= 0 in Ω (1)

which describes the transport of a conserved scalar quantity u(x, t) in a bounded
domain Ω ⊂R

d , d ∈ {1,2,3}. The velocity v and diffusion tensor D are given.
If all terms are present, equation (1) is parabolic Also of interest are steady-state

solutions ( ∂u
∂t
= 0) as well as the limiting cases of pure convection (D= 0) and pure

diffusion (v= 0). The PDE type for each model is listed in Table 1.
In the case of unsteady transport, we prescribe an initial condition of the form

u(x,0)= u0(x), ∀x ∈Ω. (2)

The Dirichlet-Neumann boundary conditions for our model problem are given by

u= uD on ΓD, (3)

n · ∇u= 0 on ΓN, (4)

where n is the unit outward normal to the boundary Γ = ∂Ω . In the presence of
diffusion, we have ΓD ∪ ΓN = Γ . In the hyperbolic case, we have ΓN = ∅ and

ΓD = {x ∈ Γ |v · n < 0}.

Definition 1 Let Σ be the set of points where initial/boundary conditions are pre-
scribed, i.e., Σ := ΓD ∪ ΓN in the steady case and Σ := {(x, t) | x ∈ ΓD ∪ ΓN ∨
t = 0} in the unsteady case. The (continuous) maximum principle holds if

min
Σ

u≤ u≤max
Σ

u. (5)

If the initial and boundary conditions are nonnegative, then the maximum prin-
ciple implies that u≥ 0. This yields another useful a priori estimate of u in terms of
u|Σ .

Definition 2 The solution of a scalar transport equation is positivity-preserving if

min
Σ

u≥ 0 �⇒ u≥ 0. (6)

At the continuous level, the solution of a scalar transport equation without
sources or sinks is always positivity-preserving but a proof of the maximum princi-
ple is available only for the case of an incompressible velocity field (∇ · v= 0).
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Theorem 1 The following a priori estimates hold for all PDEs listed in Table 1:

(i) ∇ · v= 0�⇒minΣ u≤ u≤maxΣ u (maximum principle);
(ii) u|Σ ≥ 0�⇒ u≥ 0 (positivity preservation).

A formal proof of this theorem for each PDE type, its generalization to equations
with source terms, and some useful corollaries can be found, e.g., in [41].

The maximum principle and positivity preservation are important for several rea-
sons. On the one hand, the a priori bounds may represent certain physical con-
straints. For example, concentrations of chemical species are known to lie between
0 and 1. On the other hand, some useful information about the solutions of differ-
ential solutions becomes available, although these solutions are generally unknown.
Upper/lower bounds, uniqueness proofs, and comparison principles can be obtained
using elementary calculus. Last but not least, discrete maximum principles play an
important role in the development of numerical methods for transport equations.

3 Analysis of the Discrete Problem

Of course, a good numerical scheme must respect the known properties of exact
solutions. In this section, we review algebraic constraints which imply a discrete
maximum principle and/or ensure positivity preservation. In the next sections, we
will use these sufficient conditions to constrain the Galerkin discretization of the
unsteady convection-diffusion equation (1). We tacitly assume that one or two terms
in this equation may be missing, so that it represents all models listed in Table 1.

3.1 Semi-discrete Problem

Any space discretization of (1) produces a system of differential algebraic equations

M
du

dt
=Qu, (7)

where u(t) is the vector of time-dependent nodal values, M = {mij } is the so-called
mass matrix, and Q= {qij } is the discrete transport operator. The properties of M

and Q depend on the computational mesh and on the discretization method.
As in the continuous case, the unknown solution values are known to be bounded

under certain assumptions. The semi-discrete equation for ui reads

∑

j

(
mij

duj

dt

)
=
∑

j

qij uj . (8)

To prevent spurious undershoots/overshoots, we impose the following constraints
which imply a semi-discrete maximum principle and positivity preservation.
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Theorem 2 Consider a semi-discrete scheme of the form (8). Suppose that

mii > 0, mij = 0, qij ≥ 0, ∀j �= i. (9)

Then the following a priori estimates hold for the solution value ui :

(i)
∑

j

qij = 0 and ui ≥ uj , ∀j �= i �⇒ dui

dt
≤ 0 (semi-DMP);

(ii) uj (0)≥ 0, ∀j �⇒ ui(t)≥ 0, ∀t > 0 (positivity preservation).

Proof A comparison of Theorems 1 and 2 reveals that the zero row sum property is
a discrete version of the incompressibility constraint. If

∑
j qij = 0, then

dui

dt
= 1

mii

∑

j �=i
qij (uj − ui). (10)

Suppose that ui =maxj uj . By assumption, we have mii > 0 and qij (uj − ui)≤ 0,
∀j �= i. Thus dui

dt ≤ 0, i.e., a maximum cannot increase. This proves (i).
To prove (ii), suppose that ui(t)= 0 and uj (t)≥ 0 for all j �= i. It follows that

dui

dt
= 1

mii

∑

j �=i
qij uj , (11)

where qijuj ≥ 0, ∀j �= i. Thus, the solution value ui cannot become negative. �

Definition 3 A space discretization of the form (10) with mii > 0 and qij ≥ 0 for
all i and j �= i is called local extremum diminishing (LED).

The LED criterion was introduced by Jameson [29, 30] in the context of finite
volume methods for unstructured grids. It is consistent with the FCT philosophy [6]:
no new extrema can form and existing extrema cannot grow. The word local refers
to the fact that the coefficient matrices are sparse, so only the nearest neighbors of
node i make a nonzero contribution to (8) and define the bounds for ui .

It is easy to prove that a LED scheme is total variation diminishing (TVD) in 1D.
By the Godunov theorem [22], a linear positivity-preserving/LED discretization of

a hyperbolic transport equation can be at most first-order accurate. The order barrier
for a linear LED approximation of the diffusive term is 2 (see [28], pp. 118–120).
Hence, the conditions of Theorem 2 are very restrictive in the linear case but they
turn out to be a handy tool for the design of nonlinear high-resolution schemes.

3.2 Fully Discrete Problem

The fully discrete counterpart of problem (7) is a sparse linear system of the form
(
AΩ AΓ

0 I

)(
uΩ

uΓ

)
=
(
BΩ BΓ

0 I

)(
gΩ

gΓ

)
, (12)
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where I is the identity matrix and uΓ = gΓ is the vector of Dirichlet boundary
values.

For a two-level time-stepping scheme, uΩ = un+1
Ω is the vector of unknowns and

gΩ = un
Ω is the vector of solution values from the last time step. For stationary

problems BΩ = 0 and BΓ = 0. The general form of the i-th equation reads

aiiui = biigi +
∑

j∈Si

(bij gj − aijuj ), (13)

where Si := {j �= i | aij �= 0 ∨ bij �= 0} is the set of nearest neighbors of node i.

Definition 4 The solution to (13) satisfies the local discrete maximum principle if

umin
i ≤ ui ≤ umax

i , (14)

where

umax
i :=max

{
max

j∈Si∪{i}
gj ,max

k∈Si

uk

}
, (15)

umin
i :=min

{
min

j∈Si∪{i}
gj ,min

k∈Si

uk

}
(16)

are the largest and smallest solution values that appear in the right-hand side of (13).

The so-defined local DMP implies that ui should not decrease as result of in-
creasing any other nodal value that contributes to the discretized equation for node i

[66]. Conversely, ui should not increase if another nodal value is decreased, all other
things being fixed. If the given solution values are all nonnegative, then so is ui .

Definition 5 The solution to (13) is said to be locally positivity-preserving if

umin
i ≥ 0 �⇒ ui ≥ 0. (17)

The following theorem presents sufficient conditions of local positivity preserva-
tion and an additional constraint which guarantees the validity of (14).

Theorem 3 Suppose that the coefficients of the discrete problem (13) satisfy

aii > 0, bii ≥ 0, aij ≤ 0, bij ≥ 0, ∀j ∈ Si. (18)

Then the following a priori estimates hold for the solution value ui :

(i)
∑

j

aij =
∑

j

bij �⇒ umin
i ≤ ui ≤ umax

i (local DMP);

(ii) umin
i ≥ 0 �⇒ ui ≥ 0 (positivity preservation).

Proof To prove (i), we define wj := uj − umax
i and vj := gj − umax

i such that

wj ≤ 0, ∀j ∈ Si, vj ≤ 0, ∀j ∈ Si ∪ {i}. (19)
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Using the row sum condition
∑

j aij =
∑

j bij , we can express (13) as follows:

aiiwi = biivi +
∑

j∈Si

(bij vj − aijwj ). (20)

By (18) and (19), the right-hand side of (20) is nonpositive. Since aii > 0, we have
wi ≤ 0 or, equivalently, ui ≤ umax

i . The proof for ui ≥ umin
i is similar.

To prove (ii), suppose that umin
i ≥ 0, i.e., uj ≥ 0, ∀j ∈ Si and gj ≥ 0, ∀j ∈

Si ∪ {i}. By (18), the right-hand side of (13) is nonnegative, so aii > 0 ⇒ ui ≥ 0.
�

The theorem implies that ui is bounded by the solution values in a neighborhood
of node i. If the local DMP holds for all nodes, then global maxima and minima
must occur on the Dirichlet boundary or at the previous time level. Likewise, local
positivity preservation for all nodes implies global positivity preservation.

Definition 6 The solution to (12) satisfies the global discrete maximum principle if

ming ≤ u≤maxg, (21)

where u denotes the vector of unknowns and g is the vector of given solution values.

Definition 7 The solution to (12) is said to be globally positivity-preserving if

g ≥ 0 �⇒ u≥ 0. (22)

A typical proof of (21) and (22) is based on the theory of monotone matrices [76].

Definition 8 A regular matrix A is called monotone if A−1 ≥ 0 or, equivalently, if

u≥ 0 �⇒ Au≥ 0.

Definition 9 A monotone matrix A with aij ≤ 0, ∀j �= i is called an M-matrix.

Theorem 4 Consider a fully discrete scheme of the form Au = Bg. Suppose that
the coefficients of A= {aij } and B = {bij } satisfy conditions (18) for all i.

If A is strictly or irreducibly diagonally dominant, then A is an M-matrix and

(i) the global DMP holds if
∑

j aij =
∑

j bij , ∀i;
(ii) the scheme is globally positivity-preserving.

Proof We refer to Varga [76] for a proof of the M-matrix property. To prove the
global DMP, define the vectors w := u−maxg and v := g−maxg. Invoking (20),
we obtain a linear system of the form Aw = Bv, where A is monotone, B ≥ 0, and
v ≤ 0. Hence w =A−1Bv ≤ 0, which implies u≤maxg. Similarly, the solution to
Au= Bg proves positivity-preserving since u=A−1Bg ≥ 0 whenever g ≥ 0. �
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4 Galerkin Discretization

Some finite element approximations are known to satisfy the conditions of Theo-
rems 3 and 4 unconditionally or under mild restrictions on the geometric properties
of the mesh (no obtuse angles, no thin elements) [12, 19, 33, 34]. However, these
sufficient conditions become too restrictive in the case of high-order finite elements,
convection-dominated transport equations, and anisotropic diffusion problems. The
usual remedy is to add a certain amount of artificial diffusion in order to compen-
sate the contribution of matrix entries that have a wrong sign. Many shock capturing
techniques, including algebraic flux correction, are based on this approach.

We will explain the principles of algebraic flux correction in the finite element
context. To begin with, let us discretize the generic transport equation (1) using the
(continuous) Galerkin approximation which delivers optimal accuracy in smooth
regions but tends to produce spurious undershoots and overshoots elsewhere.

The variational form of our Dirichlet-Neumann boundary value problem reads
∫

Ω

w

(
∂u

∂t
+∇ · (vu)

)
dx+

∫

Ω

∇w · (D∇u)dx= 0 (23)

for all admissible test functions w vanishing on the Dirichlet boundary ΓD . We
assume sufficient regularity without giving a formal definition of Sobolev spaces.

Let {ϕj } be a finite set of piecewise-linear or multilinear basis functions. The
numerical solution uh ≈ u is defined as a linear combination thereof

uh =
∑

j

ujϕj . (24)

The unknown degrees of freedom are the coefficients uj which represent the (pos-
sibly time-dependent) values of uh at the vertices of the mesh.

Instead of differentiating the convective flux, we replace it with the interpolant

(vu)h =
∑

j

(vj uj )ϕj , (25)

where vj denotes the velocity at node j . This approach is known as the group finite
element formulation [20, 21]. The divergence of (25) is given by

∇ · (vu)h =
∑

j

uj (vj · ∇ϕj ). (26)

The contribution of the diffusive flux is evaluated using the consistent gradient

∇uh =
∑

j

uj∇ϕj . (27)

To obtain a semi-discrete equation for the solution value ui , substitute approxima-
tions (24), (26), and (27) into (23) with the test function wh := ϕi . This gives

∑

j

(∫

Ω

ϕiϕj dx
)

duj

dt
=−

∑

j

vj ·
(∫

Ω

ϕi∇ϕj dx
)
uj



Algebraic Flux Correction I 153

−
∑

j

(∫

Ω

∇ϕi · (D∇ϕj )dx
)
uj . (28)

The resultant semi-discrete problem can be written in the generic matrix form

MC

du

dt
= (K −L)u, (29)

where MC = {mij } denotes the consistent mass matrix, K = {kij } is the convec-
tive part of the discrete transport operator, and L = {lij } is the contribution of the
diffusive term. By (28) the coefficients of the three matrices are given by

mij =
∫

Ω

ϕiϕj dx, lij =
∫

Ω

∇ϕi · (D∇ϕj )dx, (30)

kij =−vj · cij , cij =
∫

Ω

ϕi∇ϕj dx. (31)

In the case of an unsteady velocity field, the convective part K must be updated at
each time step. If the mesh is fixed, then the coefficients cij of the discrete gradient
operator do not change and need to be evaluated just once. Hence, the group finite
element formulation makes it possible to update K in a very efficient way.

Let 0= t0 < t1 < t2 < · · ·< tM = T be a sequence of discrete time levels for the
time integration of (29). For simplicity, we assume that the time step Δt := tn+1− tn

is constant so that tn = nΔt . By the Fundamental Theorem of Calculus

MC

(
un+1 − un

)=
∫ tn+1

tn
(K −L)udt.

The integral is approximated using a suitable quadrature rule. In particular, we will
consider the fully discrete problem for the standard θ -scheme

[
MC − θΔt(K −L)

]
un+1 = [

MC + (1− θ)Δt(K −L)
]
un, (32)

where θ ∈ [0,1] is the degree of implicitness. The forward Euler (θ = 0) version
is unstable for convection-dominated transport problems and gives rise to severe
time step restrictions in the case of dominating diffusion. For this reason, we restrict
ourselves to the unconditionally stable Crank-Nicolson (θ = 1

2 ) and backward Eu-
ler (θ = 1) time stepping. If a fully explicit treatment is desired, we recommend
the family of strong stability-preserving Runge-Kutta methods [23, 24] which guar-
antee the local and global DMP if the underlying space discretization is LED and
the time steps are sufficiently small. Other explicit schemes can generate spurious
oscillations even if the space discretization satisfies the conditions of Theorem 2.

5 Algebraic Flux Correction

The fully discrete scheme (32) is a linear system of the form Aun+1 = Bun. The
diagonal entries of the matrices A and B are positive, at least for sufficiently small
time steps Δt . However, a violation of the DMP conditions (18) may be caused by
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• positive off-diagonal entries of the consistent mass matrix MC ;
• negative off-diagonal entries of the discrete convection operator K ;
• positive off-diagonal entries of the discrete diffusion operator L.

In the process of algebraic flux correction, we constrain the contribution of these
entries trying to stay as close as possible to the original Galerkin discretization.

The “good” part of the Galerkin scheme (29) is an ODE system of the form

ML

du

dt
= (K̃ − L̃)u, (33)

where ML and K̃− L̃ satisfy the conditions of Theorem 2. We define these matrices
in Sect. 5.1. The “bad” antidiffusive part of (29) is given by

f (u)= (ML −MC)
du

dt
+ (K − K̃)u− (L− L̃)u. (34)

To prevent a possible violation of the (semi-)discrete maximum principle, we de-
compose the antidiffusive term f (u) into numerical fluxes and limit the magnitude
of these fluxes in regions where they threaten to create an undershoot or overshoot.
To this end, each flux is multiplied by a solution-dependent correction factor. In con-
trast to mainstream stabilization techniques for finite elements, there are no free pa-
rameters. The constrained Galerkin scheme is guaranteed to be positivity-preserving
and satisfy the DMP if it holds for the solution of the continuous problem.

In this section, we review the design philosophy behind algebraic flux correction.
Some generalizations [39, 45, 47] of the multidimensional FCT algorithm [78] and
a new linearity-preserving flux limiter [42, 48] are presented in the next section.

5.1 Artificial Diffusion Operators

The derivation of (33) begins with row-sum mass lumping. In explicit finite element
codes, the mass matrix MC is frequently replaced with the diagonal approximation

ML := diag{mi}, mi =
∑

j

mij . (35)

For linear finite elements, this conservative modification is equivalent to inexact
evaluation of MC with a low-order Newton-Cotes quadrature rule [25].

The negative off-diagonal entries of the (nonsymmetric) convection operator K

are eliminated by adding a suitably designed artificial diffusion operator D.

Definition 10 A symmetric matrix D = {dij } is called a discrete diffusion operator
if D has zero row and column sums [45]. That is,

dij = dji,
∑

j

dij =
∑

i

dij = 0. (36)
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To make sure that K̃ :=K +D has no negative off-diagonal entries, we define

dij :=max{−kij ,0,−kji}, ∀j �= i. (37)

Remark 1 Artificial diffusion coefficients that enforce positivity in this way were
used to construct low-order schemes for FCT as early as in the mid-1970s [8].

Definition (37) implies dij = dji . To comply with the zero row sum condition,
let

dii := −
∑

j �=i
dij . (38)

By symmetry, the column sums are also equal to zero, so D satisfies conditions (36).
In practice, there is no need to assemble the global matrix D. Instead, artificial

diffusion can be built into K in a loop over the edges of its sparsity graph. By
definition, each edge is a pair of nodes {i, j} that corresponds to a pair of nonzero
off-diagonal coefficients kij and kji . The required update is as follows:

kii := kii − dij , kij := kij + dij ,

kji := kji + dij , kjj := kjj − dij .
(39)

Without loss of generality, the edges of the sparsity graph are oriented so that

kij ≤ kji . (40)

This orientation convention implies that node i is located ‘upwind’ and corresponds
to the row number of the negative off-diagonal entry to be eliminated.

Physical diffusion can be taken into account before or after the assembly of D. If
some off-diagonal entries of L are strictly positive, we split it into the antidiffusive
part L+ = {l+ij } and the remainder L̃ := L−L+. The entries of L+ are given by

l+ii := −
∑

j �=i
l+ij , l+ij :=max{0, lij }, ∀j �= i. (41)

The conservative elimination of l+ij can also be performed edge-by-edge

lii := lii + l+ij , lij := lij − l+ij ,
lj i := lj i − l+ij , ljj := ljj + l+ij .

(42)

If all off-diagonal entries of L are nonpositive, then L+ = 0 and L̃= L. However,
the standard Galerkin approximation may fail to satisfy the DMP conditions if the
mesh and/or the diffusion tensor are highly anisotropic [50]. In this case, L̃ is a
monotone but possibly inconsistent approximation to L. The lack of consistency
must be compensated in the course of flux correction (see Sect. 7).

Example 1 To clarify the implications of (39), consider the 1D convection equation

∂u

∂t
+ v

∂u

∂x
= 0 in Ω = (0,1), (43)
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where v is a positive constant. The inflow boundary condition is given by

u(0)= g.

On a uniform mesh of linear finite elements, the standard Galerkin method yields

K = 1

2

⎛

⎜⎜
⎜
⎝

. . .

v 0 −v
v 0 −v

v 0 −v
. . .

⎞

⎟⎟
⎟
⎠

.

For any interior node, mi =Δx, where Δx is the constant mesh size. Hence, the
lumped-mass version of (29) is equivalent to the central difference scheme

dui

dt
+ v

ui+1 − ui−1

2Δx
= 0.

Since kij =− v
2 for j = i + 1, the artificial diffusion coefficient (37) is dij = v

2 and

K̃ =

⎛

⎜⎜⎜
⎝

. . .

v −v 0
v −v 0

v −v 0
. . .

⎞

⎟⎟⎟
⎠

,

which corresponds to the first-order accurate upwind difference approximation

dui

dt
+ v

ui − ui−1

Δx
= 0.

Thus, the elimination of negative off-diagonal entries from a skew-symmetric oper-
ator K can be interpreted as discrete upwinding [43]. For any pair of nodes i and
j = i + 1 numbered in accordance with (40), the grid point xi lies upstream of xj .

After the discretization in time by the standard θ -scheme, the upwind difference
method proves positivity-preserving under the CFL-like condition [45]

v
Δt

Δx
≤ 1

1− θ
, 0≤ θ < 1. (44)

According to this formula, there is no time step restriction for the backward Euler
method (θ = 1) which corresponds to first-order ‘upwinding’ in time.

5.2 Conservative Flux Decomposition

The replacement of the high-order Galerkin scheme (29) by the perturbed system
(33) ensures positivity preservation but creates a lot of numerical diffusion. The next
ingredient of an algebraic flux correction scheme is a decomposition of (34) into a
sum of numerical fluxes. These antidiffusive fluxes enable us to remove artificial
diffusion in regions where the Galerkin solution is sufficiently smooth.



Algebraic Flux Correction I 157

The antidiffusive term (34) represents the difference between the residuals of
systems (29) and (33). By definition of the matrices ML, K̃ , and L̃, we have

f (u)= (ML −MC)
du

dt
−Du−L+u. (45)

By construction, the matrices MC −ML, D, and L+ are discrete diffusion operators
in the sense of Definition 10. Using the zero row sum property, we obtain

(MCu−MLu)i =
∑

j

mijuj − ui

∑

j

mij =
∑

j �=i
mij (uj − ui), (46)

(Du)i =
∑

j

dij uj =
∑

j �=i
dij uj + diiui =

∑

j �=i
dij (uj − ui), (47)

(
L+u

)
i
=
∑

j

l+ij uj =
∑

j �=i
l+ij uj + l+ii ui =

∑

j �=i
l+ij (uj − ui). (48)

The right-hand sides of (47)–(48) resemble that of a LED scheme. By symmetry,
the components of the sums over j �= i can be interpreted as numerical fluxes that
describe a conservative mass exchange between a pair of nodes. Let

fij =
(
mij

d

dt
+ dij + l+ij

)
(ui − uj ), ∀j �= i (49)

denote the raw antidiffusive flux from node j into node i. In the fully discrete ver-
sion, the time derivative is replaced with a finite difference.

The net antidiffusion received by node i admits the following decomposition

fi =
∑

j �=i
fij , fji =−fij . (50)

Since fij + fji = 0 by definition, the antidiffusive term does not change the to-
tal mass of the discrete solution. The mass added to node i is subtracted from its
neighbors.

5.3 Limited Antidiffusive Correction

Some of the raw antidiffusive fluxes fij are harmless but others may create an un-
dershoot or overshoot. The contribution of these “bad” fluxes must be limited so as
to keep the antidiffusive term local extremum diminishing for a given solution.

The flux-corrected counterpart of (29) is a semi-discrete problem of the form

ML

du

dt
= (K̃ − L̃)u+ f̄ (u), (51)

where the (nonlinear) term f̄ (u) stands for the sum of limited antidiffusive fluxes

f̄i =
∑

j �=i
f̄ij , f̄j i =−f̄ij . (52)
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A well-designed flux limiter produces f̄ij = fij in smooth regions and f̄ij = 0 in in-
terior or boundary layers. The unconstrained Galerkin scheme (29) and its nonoscil-
latory part (33) correspond to f̄ = f and f̄ = 0, respectively.

In general, the best definition of f̄ij satisfying the LED constraint is given by the
solution of a constrained optimization problem [5]. A nonoptimal but cost-effective
alternative is the multiplication by a solution-dependent correction factor

f̄ij := αijfij , 0≤ αij ≤ 1. (53)

This kind of flux correction traces its origins to the FCT algorithm and forms the
basis for the construction of our algebraic flux correction schemes.

The following criterion guarantees that the antidiffusive term (52) is LED
∑

j �=i
qij min{0, uj − ui} ≤

∑

j �=i
αij fij ≤

∑

j �=i
qij max{0, uj − ui} (54)

for a given set of bounded nonnegative coefficients qij . The upper and lower bounds
may consist of a single term associated with a local maximum or minimum

umax
i :=max

{
ui,max

j∈Si

uj

}
, (55)

umin
i :=min

{
ui,min

j∈Si

uj

}
. (56)

Introducing qi :=∑
j �=i qij , we can replace (54) with the weakened LED constraint

qi
(
umin
i − ui

)≤
∑

j �=i
αij fij ≤ qi

(
umax
i − ui

)
. (57)

If ui is a local maximum, then (54) and (57) imply the cancellation of all positive
fluxes. Similarly, all negative fluxes are canceled if ui is a local maximum. Hence,
the sum of f̄ij := αijfij cannot create an undershoot or overshoot at node i.

The above criteria provide a general framework for the design of algebraic flux
correction schemes that differ in the definition of the LED bounds for the sum of
limited antidiffusive fluxes. The best choice of qij and qi is dictated by accuracy and
efficiency considerations. Obviously, increasing the value of these parameters makes
the bounds less restrictive. However, this may cause divergence of iterative solvers
for the resultant nonlinear system. For accuracy reasons, it is essential to guarantee
that αij = 1 is acceptable whenever the solution varies linearly in a neighborhood
of node i. This design principle is called linearity preservation [5, 10, 59].

We use a generalization of Zalesak’s FCT algorithm [78] to calculate αij satisfy-
ing (57). The same limiting strategy is used to enforce the LED bounds defined by
(54) in algebraic flux correction schemes of TVD type [37, 41, 46]. In the following
sections, we address the design of multidimensional flux limiters and the iterative
solution of nonlinear systems produced by the constrained Galerkin schemes.
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6 Generalized FCT Algorithms

FCT was the first nonlinear high-resolution scheme to be equipped with a flux lim-
iter. The classical FCT algorithms of Boris, Book, and Hain [6, 8, 9] belong to the
class of diffusion-antidiffusion (DAD) methods [13] that involve two steps:

1. Advance the solution in time with an explicit low-order scheme containing
enough numerical diffusion to suppress undershoots and overshoots.

2. Correct the solution using antidiffusive fluxes limited in such a way that no new
maxima or minima can form and existing extrema cannot grow.

The numerical diffusion of the low-order method makes it possible to maintain pos-
itivity and improves the phase accuracy of an explicit approximation to the convec-
tive term. The limited antidiffusive correction reduces the amplitude errors in a LED
manner. In contrast to TVD methods [26, 73], the upper and lower bounds for the
FCT limiter are defined in terms of the low-order predictor and designed to accept
as much antidiffusion as possible without violating the positivity constraint.

Zalesak’s fully multidimensional FCT algorithm [78] is based on blending ex-
plicit high- and low-order approximations so as to constrain the maximum and min-
imum increments to each nodal value. The work of Zalesak has formed the basis
for the development of all algebraic flux correction schemes to be presented in this
chapter. The combination of FCT with finite elements and unstructured meshes dates
back to the explicit algorithms of Parrott and Christie [65] and Löhner et al. [54,
55]. A number of implicit FEM-FCT schemes were published by the author and his
coworkers [35, 39, 45, 47]. The rationale for the use of an implicit time discretiza-
tion stems from the fact that the CFL stability condition becomes too restrictive in
the case of nonuniform velocity fields and locally refined meshes.

In this section, we begin with a presentation of predictor-corrector FCT algo-
rithms in which the antidiffusive fluxes are linearized about a provisional low-order
solution. The linearized FCT scheme [39] is recommended for evolutionary prob-
lems that call for the use of small time steps. We also present the nonlinear version
of this scheme which requires iterative flux correction. In particular, we describe
an algorithm for ‘recycling’ the rejected antidiffusion step-by-step [47]. Finally, we
summarize the pros and cons of the FCT approach to algebraic flux correction.

6.1 Linearized FCT Scheme

After the discretization in time by the two-level θ -scheme, the constrained Galerkin
discretization (51) produces a nonlinear algebraic system of the form

Aun+1 = Bun + f̄ , (58)

where f̄ = f̄ (un+1, un) denotes the limited antidiffusive term. The matrices

A= 1

Δt
ML − θ(K̃ − L̃) (59)
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and

B = 1

Δt
ML + (1− θ)(K̃ − L̃) (60)

represent the nonoscillatory low-order part of the original Galerkin scheme. If the
governing equation is nonlinear or the velocity field is time-dependent, then the
coefficients of A and B may change as the solution evolves.

If the time step Δt is relatively small, it is worthwhile to linearize (58) using a
predictor-corrector strategy. At the first step of the linearized FCT algorithm [39],
we disregard the antidiffusive term f̄ and solve the linear system

AuL = Bun. (61)

By construction, the off-diagonal entries of K̃ and L̃ are nonnegative and non-
positive, respectively. The diagonal coefficients of these matrices have the opposite
sign (except in the case of a strongly compressible velocity field). By Theorem 4,
our low-order scheme (61) is positivity-preserving under the CFL-like condition

Δt ≤ 1

1− θ

mi

l̃ii − k̃ii
, ∀i. (62)

Furthermore, the discrete maximum principle holds if A and B have equal row sums.

Remark 2 Van Slingerland [74, 75] proposed a variable-order θ -scheme in which
(62) is used to determine the optimal degree of implicitness θij ∈ [0,1] individually
for each pair of nodes. This approach requires a conservative flux decomposition
not only for the antidiffusive term but also for the low-order operator.

Remark 3 The two-level θ -scheme can be replaced with any other time integration
scheme, e.g., a strong stability-preserving (TVD) Runge-Kutta method [23, 24].
Clearly, the time step restriction will depend on the time integration method.

The low-order predictor uL is used to evaluate the raw antidiffusive fluxes

fij =mij

(
u̇L
i − u̇L

j

)+ dij
(
uL
i − uL

j

)
, j �= i (63)

where u̇L is an approximation to the vector of time derivatives at the time level tn+1.
For example, the semi-discrete low-order scheme (33) with u := uL yields

u̇L =M−1
L

[
(K̃ − L̃)uL

]
. (64)

The so-defined approximation is smooth but diffusive. Another option is

u̇L =M−1
C

[
(K −L)uL

]
. (65)

This formula follows from (29). The well-conditioned mass matrix MC can be ‘in-
verted’ with 3–5 cycles of the preconditioned Richardson iteration [16, 39].

The raw antidiffusive fluxes fij are passed to the multidimensional FCT limiter
(see Sect. 6.4) which returns a set of correction factors αij . This gives

f̄i =
∑

j �=i
αij fij , 0≤ αij ≤ 1. (66)
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After flux limiting, the final solution un+1 is obtained with the explicit correction

MLu
n+1 =MLu

L +Δtf̄ . (67)

Remark 4 Due to the linearization about uL, the unconstrained (αij := 1) version
of the above algorithm is no longer equivalent to the original Galerkin scheme.

6.2 Nonlinear FCT Scheme

Linearization errors are avoided if the nonlinear system (58) is solved in an iterative
fashion. This approach leads to a FEM-FCT algorithm in which the antidiffusive
fluxes fij and the corresponding correction factors αij are updated step-by-step until
the residuals or relative changes become smaller than a prescribed tolerance.

Let {u(m)} be a sequence of successive approximations to the flux-corrected
Galerkin solution un+1. A reasonable initial guess is u(0) = un or u(0) = 2un−un−1.
These settings correspond to the constant and linear extrapolation in time, respec-
tively. Given the current iterate u(m) and the vector of approximate time derivatives

u̇(m) := u(m) − un

Δt
, (68)

we recalculate the implicit part of the raw antidiffusive fluxes given by

f
(m)
ij =mij

(
u̇
(m)
i − u̇

(m)
j

)+ θ
(
dij + l+ij

)(
u
(m)
i − u

(m)
j

)

+ (1− θ)
(
dij + l+ij

)(
un
i − un

j

)
, j �= i. (69)

Then we apply the FCT limiter (see Sect. 6.4) and solve the linear system

Au(m+1) = Bun + f̄ (m). (70)

Each solution update of the form (70) can be split into three steps [35, 39]

1. Compute an explicit low-order approximation to un+1−θ by solving

MLũ
(0) = Bun. (71)

2. Apply limited antidiffusive fluxes to the intermediate solution ũ

MLũ
(m+1) =MLũ

(0) +Δtf̄ (m). (72)

3. Solve the linear system for the new approximation to un+1

Au(m+1) =MLũ
(m+1). (73)

Note that the auxiliary solution ũ(0) is independent of the iteration number m, so
it needs to be determined just once per time step (for m = 0). For its computation
to be positivity-preserving, the time step Δt must satisfy (62). The flux limiting
procedure presented in Sect. 6.4 guarantees that ũ(0) ≥ 0 �⇒ ũ(m+1) ≥ 0. The last
solution update is positivity-preserving by the M-matrix property of A. Thus

u(0) ≥ 0 �⇒ ũ(0) ≥ 0 �⇒ ũ(m+1) ≥ 0 �⇒ u(m+1) ≥ 0 (74)

provided that the CFL-like condition (62) holds for the given Δt and θ ∈ (0,1].



162 D. Kuzmin

6.3 Iterative FCT Scheme

The implicit FCT scheme (71)–(73) ‘forgets’ the history of previous flux correction
steps when it comes to the assembly of f̄ (m). Hence, it tends to reject more anti-
diffusion than necessary to enforce the positivity constraint. As shown by Schär and
Smolarkiewicz [63], an iterative ‘recycling’ of the rejected antidiffusive fluxes may
significantly improve the accuracy of an FCT algorithm in some cases.

An iterative limiting strategy for maximizing the amount of accepted antidiffu-
sion in implicit FCT schemes was developed in [47]. Replacing (72) with

MLũ
(m+1) =MLũ

(m) +Δtf̄ (m), (75)

we perform flux limiting in terms of ũ(m) rather than ũ(0). The sum of all previous
corrections is built into ũ(m), so only the remainder of f (m)

ij needs to be limited

f
(m)
ij := f

(m)
ij −

m−1∑

k=0

α
(k)
ij f

(k)
ij (76)

for all m> 0. This simplifies the job of the flux limiter and enables it to accept more
antidiffusion. For a detailed description of the algorithm, we refer to [47].

Iterative FCT is more accurate than (71)–(73) but converges very slowly. For
this reason, we do not recommend its use unless it is justified by unusually strin-
gent accuracy requirements. For many problems of practical interest, the predictor-
corrector approach presented in Sect. 6.1 offers the best cost/accuracy ratio.

6.4 Zalesak’s FCT Limiter

In this section, we present Zalesak’s limiter [78] that we use to calculate the correc-
tion factors αij for all FCT schemes. Consider a solution update of the form

miui =miũi +Δt
∑

j �=i
αij fij , (77)

where ũ is a nonoscillatory intermediate solution. Let umax
i and umin

i denote the local
extrema of ũ. The objective is to find the best value of αij such that

umin
i ≤ ui ≤ umax

i . (78)

This condition implies that (77) satisfies the local discrete maximum principle.

6.4.1 Prelimiting Step

The process of flux correction begins with the optional elimination of fluxes that
have the same sign as ũj − ũi . Such fluxes flatten the solution profile instead of
steepening it. As a consequence, the flux-corrected solution may exhibit spurious
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ripples within the bounds allowed by the limiter [14]. In the original Boris-Book
limiter [6], a wrong sign is reversed, and the magnitude of the antidiffusive flux is
limited in the usual way. This fix works well for discontinuities but may distort a
smooth profile. A safer remedy is to cancel the “diffusive” fluxes by setting

fij := 0, if fij (ũj − ũi ) > 0. (79)

This optional adjustment is called prelimiting because it must be performed before
the computation of the correction factors αij and flux limiting [14, 78].

Zalesak [78] argued that the effect of (79) is marginal and cosmetic in nature
since the vast majority of antidiffusive fluxes have the right sign. This remark might
have led many readers to disregard equations (14) and (14′) in [78]. Two decades
later, the need for prelimiting of the form (79) was emphasized by DeVore [14] who
explained its ramifications and demonstrated that it may lead to a marked improve-
ment of accuracy. In our experience, prelimiting is particularly useful in the context
of finite element approximations because the contribution of the consistent mass
matrix may change the sign of the raw antidiffusive flux and render it diffusive. The
cancellation of such outliers is essential for keeping the solution free of ripples.

6.4.2 Limiting Strategy

In accordance with the LED criterion (57), the choice of the correction factors αij

should ensure that positive antidiffusive fluxes cannot create an overshoot, while
negative ones cannot create an undershoot. Assuming the worst-case scenario, we
enforce condition (78) using Zalesak’s multidimensional FCT algorithm [78]:

1. Compute the sums of positive/negative antidiffusive fluxes into node i

P+i =
∑

j �=i
max{0, fij }, P−i =

∑

j �=i
min{0, fij }. (80)

2. Determine the distance to a local maximum/minimum and the bounds

Q+i =
mi

Δt

(
umax
i − ũi

)
, Q−i =

mi

Δt

(
umin
i − ũi

)
. (81)

3. Evaluate the nodal correction factors for the net increment to node i

R+i =min

{
1,

Q+i
P+i

}
, R−i =min

{
1,

Q−i
P−i

}
. (82)

4. Check the sign of the raw antidiffusive flux fij and multiply it by

αij =
{

min{R+i ,R−j }, if fij > 0,
min{R−i ,R+j }, if fij < 0.

(83)

Remark 5 It is worthwhile to set R±i := 1 if a Dirichlet boundary condition is im-
posed at node i and, therefore, the value of ui does not depend on αij .
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The above definition of αij guarantees that sum of limited antidiffusive fluxes
satisfies (57) with qi = mi

Δt
. The LED property (78) follows from the estimate

umin
i = ũi + Δt

mi

Q−i ≤ ui ≤ ũi + Δt

mi

Q+i = umax
i .

The presence of the time step Δt in the denominator of Q±i is a blessing or a
curse, depending on the purpose of simulation. On the one hand, the LED constraints
become less restrictive and, consequently, a larger portion of the raw antidiffusive
flux fij is retained as the time step is refined. This makes FCT the method of choice
for transient computations. On the other hand, the use of large Δt results in a loss
of accuracy, and severe convergence problems may occur in the steady state limit.

6.4.3 Edge-Based Implementation

The practical implementation of Zalesak’s FCT limiter depends on the employed
data structures, storage techniques, and software development concepts. In the
pseudo-code labeled Algorithm 1, we take advantage of the fact that fji = −fij

and αji = αij . The flux sums P±i and the corresponding bounds Q±i are assembled
in a loop over all neighbors j ∈ Si such that j > i. The values of P∓j and Q∓j are

updated in the same j -loop. The nodal correction factors R±i are evaluated in the
next i-loop. When it comes to the assembly of the antidiffusive term, flux limiting
is performed in another loop over j > i. The flux f̄ij := αijfij is added to f̄i and
subtracted from f̄j . This implementation of FCT calls for the use of edge-based
data structures [4, 67, 70] which operate with pairs of nodes, just like finite volume
schemes.

The advantages of edge-based finite element solvers include algorithmic simplic-
ity, low memory requirements, and a major reduction in indirect addressing [52, 53].
Moreover, edge-based data structures are well-suited for large-scale parallel com-
puting [11, 51, 58]. Last but not least, the equivalence between linear finite elements
and vertex-centered finite volumes can be exploited to develop a unified framework
for edge-based flux/slope limiting on unstructured meshes [57, 71].

Of course, algebraic flux correction schemes can also be implemented in an ex-
isting finite element code based on traditional element-by-element matrix assembly.
In our code, we use edge-based data structures for limiting purposes only.

6.4.4 Clipping and Terracing

A well-known problem associated with flux correction of FCT type is clipping [7,
78]. Since the sum of limited antidiffusive fluxes is forced to be local extremum
diminishing, existing peaks lose a little bit of amplitude during each time step. To
alleviate peak clipping, Zalesak [78] defined umax

i and umin
i as the local extrema of

un or ũ. This adjustment is consistent with the local discrete maximum principle
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Algorithm 1 Edge-based implementation of FCT

P± := 0, Q± := 0, f̄ := 0

For all i do

For all j ∈ Si, j > i do

P±i := P±i + max
min {0, fij }

P±j := P±j + max
min {0,−fij }

Q±i := max
min {Q±i ,

mi

Δt
(uj − ui)}

Q±j := max
min {Q±j ,

mj

Δt
(ui − uj )}

For all i do

R±i :=min{1, Q±i
P±i
}

For all i do

For all j ∈ Si, j > i do

αij :=min{R±i ,R∓j }
f̄ij := αijfij

f̄i := f̄i + f̄ij

f̄j := f̄j − f̄ij

(Definition 4). However, it may produce an overshoot or undershoot if the transport
equation contains source terms that change the definition of the local DMP.

In our experience, a nonclipping flux limiter can be designed using information
about the higher-order derivatives. In [40] we developed such a limiter for quadratic
finite elements within the framework of a discontinuous Galerkin (DG) method. In
the case of linear or multilinear finite element FCT schemes, the second derivatives
are not available, which makes it more difficult to distinguish between spurious
spikes (‘wiggles’) and smooth peaks. The use of Hessian recovery techniques pro-
duces a smooth approximation which is no longer a reliable shock detector.

Another infamous byproduct of FCT manifests itself in distortions of a smooth
profile. This phenomenon is known as terracing and represents ‘an integrated, non-
linear effect of residual phase errors’ [64] or, loosely speaking, ‘the ghosts of de-
parted ripples’ [7]. A particularly severe form of terracing is caused by the linear
instability of the high-order scheme. For this reason, we do not recommend the use
of the forward Euler time-stepping (θ = 0) even though the flux-corrected scheme
proves positivity-preserving under the CFL-like time step restriction (62).

Terracing can also be caused by the lack of information about the solution be-
havior in the exterior of Ω . Figure 1 displays a zoom of the FCT solution to the
1D convection equation (43) with v = 1 an u0 = x in Ω = (0,1). The standard



166 D. Kuzmin

Fig. 1 Terracing in the
neighborhood of a hyperbolic
outlet

Galerkin method would produce excellent results for a linear profile but the FCT
version gives rise to terracing in a neighborhood of the (artificial) open boundary
x = 1. This happens because the solution value at the last node is treated as a peak,
although it is not a peak if we make Ω a little longer [60]. This example indicates
that the FCT limiter is not linearity-preserving, which makes it particularly prone to
terracing.

6.5 Evaluation of FCT

In our experience, FCT produces excellent results for strongly time-dependent prob-
lems. The use of small time steps increases the amount of accepted antidiffusion and
justifies the linearization of the antidiffusive flux which leads to a simple and effi-
cient predictor-corrector algorithm. The cost of an implicit FCT scheme depends
on the choice of iterative methods, parameter settings, and stopping criteria. If the
time step is very small, then a good initial guess is available and the sparse lin-
ear system can be solved with 1–2 iterations of the Jacobi or Gauß-Seidel method.
Thus, the cost per time step approaches that of an explicit finite difference or fi-
nite volume scheme. As the time step increases, so does the number of iterations,
and advanced linear algebra tools (smoothers, preconditioners, convergence accel-
eration techniques) may need to be employed. Moreover, the use of large time steps
degrades the accuracy of an FCT algorithm since Q±i → 0 as Δt→∞. Other po-
tential drawbacks include clipping, terracing, and the ad hoc nature of the prelimit-
ing procedure.

We conclude that algebraic flux correction of FCT type is the method of choice
for evolutionary problems. No other shock capturing technique performs better
when it comes to solving an unsteady hyperbolic equation with linear finite elements
[32]. For steady-state computations, we recommend the linearity-preserving limiter
presented in the next section. It is similar to FCT in many ways but its derivation is
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based on variational gradient recovery, and all high-order operators (MC , K , and L)
are constrained independently using the same general-purpose limiting strategy.

7 Linearity-Preserving Limiters

As an alternative to FCT, we developed several multidimensional flux limiters which
are independent of the time step and produce a TVD scheme in the 1D case [36, 37,
43]. As this methodology evolved and matured, we realized that the definition of
the upper and lower bounds for a generalized TVD scheme must guarantee linearity
preservation on arbitrary meshes. In other words, the constrained approximation
must reduce to the underlying Galerkin scheme if the solution is a linear function.
This property implies consistency and second-order accuracy for smooth data [10,
59]. In the context of algebraic flux correction, it can be enforced using variational
gradient recovery to obtain the LED bounds for the edge-based slope limiter [48].

Another open problem in the design of TVD-like schemes for finite elements
was the treatment of the consistent mass matrix which is essential for maintain-
ing the high accuracy of the Galerkin scheme for time-dependent problems. Our
multidimensional limiters of TVD type were designed to constrain the entries of
the discrete convection operator, and our first attempts to limit the consistent mass
matrix independently were rather unsuccessful. This has led us to marry FCT and
‘TVD’ within the framework of a general-purpose flux limiter [36]. Unfortunately,
the resulting scheme inherited not only the advantages but also some drawbacks of
the two limiting techniques (dependence on the time step, lack of linearity preser-
vation, artificial coupling between the antidiffusive fluxes associated with differ-
ent discrete operators). Moreover, the increased complexity of the algorithm has
made it too expensive for practical purposes. For some time, we continued using the
more efficient special-purpose limiting techniques: FCT for time-dependent prob-
lems and lumped-mass ‘TVD’ for steady-state computations. In this section, we in-
troduce an algebraic flux correction scheme that can handle both situations equally
well.

The algorithm to be presented is a fully multidimensional counterpart of the
edge-based slope limiter we developed in [48] for anisotropic diffusion problems.
In what follows, we extend it to steady and unsteady convective transport. The con-
tribution of the consistent mass matrix is taken into account by applying the limiter
to the vector of discretized time derivatives. Furthermore, we constrain the sum of
raw antidiffusive fluxes instead of individual fluxes or slopes. This revision results
in a marked gain of accuracy as compared to edge-by-edge slope limiting.

Another major improvement is a new iterative solver for the nonlinear algebraic
system. We present a nonlinear SSOR scheme which updates the nodal values of the
numerical solution and the limited antidiffusive fluxes in a single loop over the nodes
of the computational mesh. To speed up convergence, we use Anderson acceleration
[1, 77], also known as Anderson mixing [17, 18]. The efficiency of this approach is
confirmed by our numerical study for an anisotropic diffusion equation. On fine
meshes, the number of SSOR iterations is reduced by a factor of 60 and more.
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7.1 Flux Splitting

So far we have limited all components of the raw antidiffusive flux fij using a
common correction factor αij ∈ [0,1]. Let us now replace definition (53) with

f̄ij := αM
ij fM

ij + αK
ij f

K
ij + αL

ijf
L
ij , (84)

where αM
ij , αK

ij , and αL
ij denote the individual correction factors for the fluxes

fM
ij =mij (u̇i − u̇j ), (85)

f K
ij = dij (ui − uj ), (86)

f L
ij = l+ij (ui − uj ). (87)

The limited antidiffusive term (52) proves local extremum diminishing if

qM
i

(
u̇min
i − u̇i

)≤
∑

j �=i
αM
ij f M

ij ≤ qM
i

(
u̇max
i − u̇i

)
, (88)

qK
i

(
umin
i − ui

)≤
∑

j �=i
αK
ij f

K
ij ≤ qK

i

(
umax
i − ui

)
, (89)

qL
i

(
umin
i − ui

)≤
∑

j �=i
αL
ij f

L
ij ≤ qL

i

(
umax
i − ui

)
(90)

for some positive constants qM
i , qK

i , and qL
i independent of u. In this section, we

use criterion (88)–(90) to determine the values of αM
ij , αK

ij , and αL
ij .

Without loss of generality, we consider fij := f K
ij and present the limiting strat-

egy that delivers αij satisfying (57) for a given qi > 0. The fluxes f L
ij and fM

ij are

limited in the same way but the bounds for fM
ij are defined in terms of u̇ rather

than u.

7.2 Gradient-Based Slope Limiting

To get started, we present the symmetric linearity-preserving (LP) slope limiter we
developed in [48] in the context of steady anisotropic diffusion. This algorithm be-
longs to the family of edge-based stencil reconstruction methods that constrain the
jumps of the gradient along the line connecting two nodes [29, 51, 57, 67].

A raw antidiffusive flux of the form fij = dij (ui − uj ) requires limiting if the
difference between ui and uj is “too large.” Introducing the limited slope

s̄ij := αij (ui − uj ), 0≤ αij ≤ 1, (91)

we define

f̄ij := dij s̄ij = αijfij . (92)
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Thus, the multiplication of fij by αij is equivalent to replacing ui −uj with s̄ij . An
algorithm that produces s̄ij rather than αij is called a slope limiter.

The definition of s̄ij must guarantee that f̄ij is LED. This will be the case if

smin
ij ≤ s̄ij ≤ smax

ij , (93)

where the upper and lower bounds are given by

smax
ij = γij

(
umax
i − ui

)
, (94)

smin
ij = γij

(
umin
i − ui

)
(95)

for some bounded γij ≥ 0. That is, each slope is constrained in the same manner as
the sum of antidiffusive fluxes in (57). This approach is used in many edge-based
extensions of 1D high-resolution schemes to unstructured meshes [29, 51, 57].

To construct the LED bounds smax
ij and smin

ij , consider the linear approximation

ui − uj ≈ sij := (∇u)i · (xi − xj ). (96)

The value of (∇u)i is obtained using numerical differentiation. A variety of gradient
reconstruction techniques based on averaging or superconvergent patch recovery are
available for this purpose. In our method, we use the lumped-mass L2 projection

(∇u)i = 1

mi

∑

k

cikuk, (97)

where mi is a diagonal entry of the lumped mass matrix ML, and cik is a vector-
valued coefficient of the discrete gradient operator C given by (31). Since the gra-
dients of Lagrange basis functions sum to zero, we have

cii =−
∑

k �=i
cik.

Thus

(∇u)i = 1

mi

∑

k �=i
cik(uk − ui). (98)

We will use this representation to derive the LED bounds for the extrapolated slope
sij , and then we will use these bounds to define γij in (94) and (95).

Plugging (98) into the definition of sij , we obtain the following estimates

sij ≤ 1

mi

∑

k �=i

∣∣cik · (xi − xj )
∣∣(umax

i − ui

)
, (99)

sij ≥ 1

mi

∑

k �=i

∣∣cik · (xi − xj )
∣∣(umin

i − ui

)
. (100)

To make the bounds for sij less restrictive, we multiply them by 2 and define

γij := 2

mi

∑

k �=i

∣∣cik · (xi − xj )
∣∣. (101)
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This nonnegative coefficient is used to determine the bounds (94) and (95) for the
slope limiter. The localized LED constraint (93) can be enforced by setting

s̄ij =
{

min{smax
ij , ui − uj }, if ui > uj ,

max{smin
ij , ui − uj }, if ui < uj .

(102)

The one-sided limiting strategy is sufficient if the slope s̄j i := −s̄ij cannot violate
the LED principle for node j . In particular, this is the case if j is a node on the
Dirichlet boundary or a downwind neighbor of node i (see Sect. 7.3). In all other
cases, the slope limiter must enforce not only (93) but also smin

ji ≤ s̄j i ≤ smax
ji .

The following definition of s̄ij guarantees the LED property for both nodes [48]

s̄ij =
{

min{smax
ij , ui − uj ,−smin

ji }, if ui > uj ,

max{smin
ij , ui − uj ,−smax

ji }, if ui < uj .
(103)

This symmetric limiting strategy corresponds to a double application of the one-
sided slope limiter. In the following Theorem, we prove linearity preservation.

Theorem 5 If uh is linear, then the lumped-mass L2 projection (97) is exact and

sij = ui − uj = s̄ij .

Proof If uh is a linear, then its gradient is constant and ui − uj = ∇uh · (xi − xj ).
It follows that sij = ui − uj if (∇u)i =∇uh. According to (97), we have

(∇u)i = 1

mi

∫

Ω

ϕi∇uh dx=∇uh

(
1

mi

∫

Ω

ϕi dx
)
=∇uh (104)

since the diagonal entry of the lumped mass matrix is given by

mi =
∑

j

mij =
∫

Ω

ϕi

(∑

j

ϕj

)
dx=

∫

Ω

ϕi dx.

Thus, the L2 projection is exact and sij = ui − uj . By definition of γij , the slope
s̄ij = sij satisfies the imposed constraints, whence no limiting is performed. �

Linearity preservation implies that f̄ij → fij as h→ 0. Therefore, the con-
strained Galerkin scheme is consistent even if the low-order scheme is inconsistent.

Example 2 To illustrate the relationship of the linearity-preserving slope limiter to
classical TVD schemes [26, 73], consider a 1D mesh with uniform spacing Δx. In
this case, the coefficients of (97) are given by mi =Δx and ci±1/2 =±1/2.

The resulting formula for u′i is equivalent to the second-order central difference

u′i =
1

2

(
ui − ui−1

Δx
+ ui+1 − ui

Δx

)
= ui+1 − ui−1

2Δx
.

For any interior node, the local maxima and minima of the grid function are

umax
i =max{ui−1, ui, ui+1}, umin

i =min{ui−1, ui, ui+1}.
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Furthermore, γij = 2 for j = i + 1 since estimate (99)–(100) corresponds to

umin
i − ui ≤Δxu′i ≤ umax

i − ui.

The one-sided slope limiter (102) can be written as a single-line formula

s̄ij =minmod
{
2(ui−1 − ui), ui − ui+1

}
,

and the corresponding formula for the symmetric slope limiter (103) reads

s̄ij =minmod
{
2(ui−1 − ui), ui − ui+1,2(ui+1 − ui+2)

}
.

The minmod limiter function returns the argument with the smallest magnitude if
all arguments have the same sign and zero otherwise. That is,

minmod{a, b, . . .} =

⎧
⎪⎨

⎪⎩

min{a, b, . . .}, if a > 0, b > 0, . . . ,

max{a, b, . . .}, if a < 0, b < 0, . . . ,

0, otherwise.

It follows that the proposed slope limiter is activated only if two consecutive gradi-
ents have opposite signs or their magnitudes differ by a factor of 2 and more.

7.3 Symmetric Flux Limiter

In contrast to the fully multidimensional FCT method, the linearity-preserving (LP)
slope limiter presented in Sect. 7.2 constrains the antidiffusive flux fij indepen-
dently of all other fluxes into node i. This is convenient but the results are quite
sensitive to the orientation of mesh edges. In this section, we convert the edge-based
slope limiter into an FCT-like limiter for the sum of antidiffusive fluxes. The LED
constraint (57) can be enforced using the following generalization of (80)–(83).

1. Compute the sums of positive/negative antidiffusive fluxes to be limited

P+i =
∑

j �=i
max{0, fij }, P−i =

∑

j �=i
min{0, fij }. (105)

2. Define local extremum diminishing upper/lower bounds of the form

Q+i = qi
(
umax
i − ui

)
, Q−i = qi

(
umin
i − ui

)
. (106)

3. Compute the nodal correction factors for positive/negative fluxes

R+i =min

{
1,

Q+i
P+i

}
, R−i =min

{
1,

Q−i
P−i

}
. (107)

4. Limit the fluxes fij and fji using the common correction factor

αij =
{

min{R+i ,R−j }, if fij > 0,

min{R−i ,R+j }, if fij < 0.
(108)
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As in the case of FCT, this definition of the correction factor αij implies that

Q−i ≤R−i P−i ≤
∑

j �=i
αij fij ≤R+i P+i ≤Q+i . (109)

To maintain linearity preservation, we define Q±i as the sum of the LED bounds we
imposed on individual slopes/fluxes in Sect. 7.2. That is, we set

qi :=
∑

j �=i
γij dij . (110)

In contrast to FCT, the resulting formula for Q±i is independent of the time step.

7.4 One-Sided Flux Limiter

Algorithm (105)–(108) is ideally suited for constraining a symmetric operator like L

or MC . In the latter case, the antidiffusive fluxes (85) and the bounds Q±i be defined
in terms of u̇ rather than u. At the fully discrete level, the time derivative is replaced
with the finite difference approximation u̇ ≈ (un+1 − un)/Δt . Note that the same
correction factor αM

ij is applied to the explicit and implicit part of fM
ij .

In principle, the discrete convection operator K can also be constrained using
(105)–(108). However, it turns out that the LED constraint for node j is satisfied
automatically if kji > 0. To take advantage of this fact, we limit the convective part
in an upwind-biased fashion [43, 46]. In accordance with our upwind-downwind
edge orientation convention (40), we assume that kij ≤ kji . As long as

k̄j i := kji + (1− αij )dij

is nonnegative for all αij ∈ [0,1], it is enough to make sure that (57) holds for node i.
In the one-sided version of (105)–(108), we begin with the prelimiting step

fij :=
(
dij +max{0, kji}

)
(ui − uj ) (111)

which is required to enforce the LED constraint for node j in the unlikely case of
kji < 0. After this prelimiting, the correction factors αij are calculated as follows:

1. Compute the sums of positive/negative antidiffusive fluxes to be limited

P+i =
∑

kij≤kji
max{0, fij }, P−i =

∑

kij≤kji
min{0, fij }. (112)

2. Compute qi and the local extremum diminishing upper/lower bounds

Q+i = qi
(
umax
i − ui

)
, Q−i = qi

(
umin
i − ui

)
. (113)

3. Compute the nodal correction factors for positive/negative fluxes

R+i =min

{
1,

Q+i
P+i

}
, R−i =min

{
1,

Q−i
P−i

}
. (114)
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4. Multiply fij and fji by the nodal correction factor for the upwind node i

kij ≤ kji �⇒ αij =
{
R+i , if fij ≥ 0,
R−i , if fij < 0,

αji := αij . (115)

We have used this one-sided limiting strategy to design algebraic flux correction
schemes based on a generalization of upwind TVD limiters [36, 37, 43, 46].

8 Solution of Nonlinear Systems

After the discretization in time, the flux-corrected discrete problem can be written
in the form (58). Since the antidiffusive term depends on the unknown solution, the
nonlinear discrete problem must be solved in an iterative way. In contrast to the
nonlinear FCT algorithm presented in Sect. 6.2, only the fully converged solution is
guaranteed to be nonoscillatory. Therefore, it is essential to make sure that iterations
converge. Moreover, convergence must be fast enough to keep the cost of algebraic
flux correction reasonable. Thus, the robustness and efficiency of the iterative solver
for the nonlinear system are just as important as the flux limiting procedure.

8.1 Defect Correction Scheme

As in the case of FCT, the structure of the nonlinear system (58) suggests the use of
a fixed-point iteration with a lagged evaluation of the antidiffusive term

Au(m+1) = Bun + f̄ (m). (116)

A more general class of defect correction schemes can be formally written as

u(m+1) = u(m) +ωÃ−1r(m), (117)

where Ã is an approximation to the Jacobian of the nonlinear system, ω ∈ [0,1] is a
relaxation parameter, and r(m) is the residual vector given by

r(m) = Bun −Au(m) + f̄ (m). (118)

In practice, the matrix Ã is ‘inverted’ by solving a linear system (see Al-
gorithm 2). The iteration process is typically terminated when certain norms of
u(m+1)−u(m) and/or r(m+1) become smaller than a prescribed tolerance. More elab-
orate stopping criteria based on the finite element theory can be found in [2]. Clearly,
the rates of convergence and the overall efficiency of the above defect correction
scheme are strongly influenced by the choice of the ‘preconditioner’ Ã.

The default setting is ω := 1 and Ã := A, which corresponds to (116). By con-
struction, the low-order operator A is an M-matrix. This property results in fast
convergence of inner iterations. If the time step Δt is very small, the solution can be
updated in a fully explicit fashion using the diagonal preconditioner Ã := diag(A).
As few as 1–3 outer iterations may suffice if good initial guess is available. Thus,
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Algorithm 2 Defect correction scheme

Set u(0) := un

For all m= 0,1, . . . do

Solve the linear system ÃΔu(m+1) = r(m)

Update the solution u(m+1) := u(m) +ωΔu(m+1)

Exit if the stopping criteria are satisfied

Set un+1 := u(m+1)

the cost per time step might be comparable to that of an explicit algorithm. On the
other hand, such a solver may fail to converge if the time step is too large.

Some advanced preconditioning and underrelaxation techniques are discussed in
[41, 48, 61]. In quasi-Newton methods, Ã must be a good approximation to the Ja-
cobian of (58). Due to the complex structure and nondifferentiability of the limited
antidiffusive term, the assembly of such preconditioners is very complicated and
expensive. Thus, Jacobian-free solvers are to be preferred. In particular, the conver-
gence acceleration method described in Sect. 8.3 leads to a Newton-like scheme in
which the memory effect is exploited to avoid numerical differentiation.

8.2 Nonlinear SSOR Scheme

A major drawback of fixed-point methods like (116) is the fully explicit treatment
of the antidiffusive term. An attempt to build implicit antidiffusion into the precon-
ditioner Ã aggravates convergence problems if all correction factors are taken from
the previous outer iteration. This has led us to update the solution values, the anti-
diffusive fluxes, and the correction factors simultaneously in a loop over nodes. The
resulting algorithm can be classified as a nonlinear Gauß-Seidel / SSOR method.

The i-th equation of the flux-corrected Galerkin scheme (58) can be written as
∑

j

aij uj = bi + f̄i , (119)

where the antidiffusive term f̄i depends on u = un+1, whereas bi =∑
j bij u

n
j is

known.
The calculation of u(m+1)

i ≈ un+1
i begins with the assembly of f̄i . In the forward

sweep, the new values of uj are already available for all j < i. Thus

uj =
{
u
(m+1)
j , if j < i,

u
(m)
j , if j ≥ i.

(120)

In the backward sweep, the solution values are updated in the reverse order, so the
i-th step begins with uj = u

(m+1)
j for j > i and uj = u

(m)
j otherwise.
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Given the array of current solution values ui , we recalculate the raw antidiffusive
fluxes fij , apply the flux limiter, and add the result to f̄i (see Algorithm 3).

Algorithm 3 Assembly of f̄i (symmetric version)
For all i do

P±i := 0, Q±i := 0, f̄i := 0

For all j ∈ Si do

P±i := P±i + max
min {0, fij }

Q±i := max
min {Q±i ,

mi

Δt
(uj − ui)}

R±i :=min{1,Q±i /P±i }
For all j ∈ Si do

αij :=min{R±i ,R∓j }
f̄i := f̄i + αijfij

Since the value of αij depends not only on R±i but also on R∓j , we store the
updated nodal correction factors, so that they are readily available when it comes to
calculating αij . Due to the lag in evaluation of f̄ij and f̄j i , intermediate approxima-
tions may be nonconservative but f̄j i =−f̄ij when the algorithm converges.

Given the updated value of f̄i , the old solution value ui is overwritten by

ui := ui + 1

ãii

(
bi −

∑

j

aij uj + f̄i

)
, (121)

where ãii ≥ aii . Setting ãii := aii , one obtains the symmetric Gauß-Seidel (SGS)
method which may fail to converge if the implicit part of f̄i is too large compared
to
∑

j aij uj . A possible remedy is implicit underrelaxation of the form

ãii := aii

ω
, 0 <ω ≤ 1.

Equivalently, the SSOR scaling factor ãii can be defined by adding a nonnegative
number to the diagonal entry. In our numerical experiments, we used

ãii := aii + θ
∑

j �=i

(
dij + l+ij

)
.

The flow chart of the nonlinear SSOR method for solving (58) is labeled Algo-
rithm 4. The forward sweep can be written as (D̃ + L̃)Δu∗ := r , where r is the
residual, D̃ = diag{ãii} is a diagonal matrix of scaling factors, and L̃ is the strict
lower triangular part of A plus limited antidiffusion. Likewise, the backward sweep
can be written as (D̃ + Ũ )Δu :=Δu∗, where Ũ is a strict upper triangular matrix.
Thus, Algorithm 4 can written in the form (117) with ω= 1 and

Ã= (D̃ + L̃)D̃−1(D̃ + Ũ ).
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Algorithm 4 Nonlinear SSOR iteration
For all i = 1, . . . ,N − 1,N do (forward sweep)

For all i =N,N − 1, . . . ,1 do (backward sweep)

Update the antidiffusive term f̄i using Algorithm 3

Calculate the new solution value ui using (121)

Luo et al. [56] used this sort of defect correction as a preconditioner for a linear
GMRES solver. A nonlinear version of this solution strategy is recovered when the
method presented in Sect. 8.3 is employed to accelerate Algorithm 4.

In the iterative solver for steady transport equations, we set θ := 1 and bi := 0.
Furthermore, the contribution of the mass matrix is removed, which corresponds
to using an infinitely large pseudo-time step Δt . It is also possible to march the
solution to the steady state using θ := 1 and local time stepping. In either case, a
usable initial guess can be obtained by solving the linear system with f̄i = 0 or
f̄i = fi .

8.3 Anderson Acceleration

Since the cost of recalculating the correction factors for the flux limiter is rather
high, slow convergence of an iterative method can make algebraic flux correction
very expensive. The fixed-point defect correction scheme (117) and the nonlin-
ear SSOR iteration (121) generate a sequence of successive approximations but
only the last iterate u(m) is used when it comes to the computation of u(m+1). It
turns out that including information from a number of previous iterates may dra-
matically improve the convergence behavior. This idea is exploited in many vec-
tor extrapolation techniques for vector sequences (see, e.g., [31, 72]). In this work,
we employ the convergence acceleration technique known as Anderson mixing [1,
17, 18, 77]. As shown in [17], this approach is equivalent to the Broyden scheme
for the inverse Jacobian but is easier to implement and explain. On linear prob-
lems, the accelerated fixed point iteration is related to the preconditioned GMRES
method [77].

Following Walker and Ni [77], we formulate Anderson acceleration as shown
in Algorithm 5. In practice, it is worthwhile to calculate the weights by solving an
equivalent unconstrained least squares problem [77]. Furthermore, Anderson ac-
celeration may need to be restarted if the vectors Δu(m) become (almost) linearly
dependent, or if the norm of Δu(m) is much greater than that of Δu(m−1). We refer
to [17, 18, 62, 77] for a discussion of various improvements and practical imple-
mentation details.



Algebraic Flux Correction I 177

Algorithm 5 Anderson acceleration
For all m= 0,1, . . . do

Compute ũ(m) := g(u(m)) with (117) or (121)

Store ũ(m) and Δu(m) := ũ(m) − u(m)

Given k ≤m iterates, determine the weights

ω(m) = (
ω

(m)
1 , . . . ,ω

(m)
k

)T

by solving the constrained least-squares problem

min
ω(m)

∥∥∥∥∥

k∑

i=1

ω
(m)
i Δu(m−k+i)

∥∥∥∥∥
2

s.t.
k∑

i=1

ω
(m)
i = 1

Set u(m+1) :=∑k
i=1 ω

(m)
i ũ(m−k+i)

9 Numerical Examples

A properly designed high-resolution scheme should be (i) at least second-order
accurate for smooth data and (ii) capable of resolving small-scale features with-
out excessive smearing or steepening. To evaluate the accuracy and efficiency of
our linearity-preserving limiting techniques, we apply them to three representative
benchmark problems which have already been studied using other algebraic flux
correction schemes [39, 41, 43, 48] as well as variational shock capturing [32],
monotone finite volume schemes [49, 50], and slope limiters for discontinuous
Galerkin methods [40]. Thus, a quantitative comparison of the results is possible.

Given a reference solution u and a numerical approximation uh, we define

E1(h)=
∑

i

mi

∣∣u(xi )− ui

∣∣≈ ‖u− uh‖1, (122)

E2(h)=
√∑

i

mi |u(xi )− ui |2 ≈ ‖u− uh‖2, (123)

where mi =
∫
Ω

ϕi dx stands for a diagonal coefficient of the lumped mass matrix
ML.

The objective of the below numerical study is to investigate the dependence of
the errors E1 and E2 on the mesh size h and on the choice of the limiting strategy.
In particular, we will use the numerical solutions computed on the two finest meshes
to estimate the expected order of accuracy by the formula [49]

p = log2

(
E1(2h)

E1(h)

)
. (124)

In the last two examples, we compare the convergence behavior of the global defect
correction scheme to that of nonlinear SSOR with Anderson acceleration.
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9.1 Solid Body Rotation

The solid body rotation test [49, 78] is often used to evaluate numerical advection
schemes. The problem to be solved is the continuity equation

∂u

∂t
+∇ · (vu)= 0 in Ω = (0,1)× (0,1). (125)

The velocity v describes a counterclockwise rotation about the center of Ω

v(x, y)= (0.5− y, x − 0.5). (126)

After each full revolution, the exact solution u coincides with the given initial data
u0. Hence, the challenge of this test is to preserve the shape of u0.

Following LeVeque [49], we simulate solid body rotation of the profile displayed
in Fig. 2. The geometry of each body is described by a given function G(x,y)

defined on a circle of radius r0 = 0.15 centered at some point (x0, y0) ∈Ω . Let

r(x, y)= 1

r0

√
(x − x0)2 + (y − y0)2

be the normalized distance from the point (x0, y0). Then r(x, y)≤ 1 inside the cir-
cle.

The slotted cylinder is centered at the point (x0, y0)= (0.5,0.75) and

G(x,y)=
{

1, if |x − x0| ≥ 0.025 or y ≥ 0.85,

0, otherwise.

The sharp cone is centered at (x0, y0)= (0.5,0.25), and its shape is given by

G(x,y)= 1− r(x, y).

The smooth hump is centered at (x0, y0)= (0.25,0.5), and the shape function is

G(x,y)= 1+ cos(πr(x, y))

4
.

In the rest of the domain, the solution to (125) is initialized by zero, and homoge-
neous Dirichlet boundary conditions are prescribed at the inlets.

The snapshots presented in Figs. 2–5 show the shape of the solution at the final
time T = 2π , which corresponds to one full rotation. All computations were per-
formed on a uniform mesh of 128×128 bilinear elements using the Crank-Nicolson
time-stepping with the time step Δt = 10−3. The results obtained with αij := 1 and
αij := 0 are displayed in Figs. 3 and 4, respectively. As expected, the unconstrained
Galerkin solution exhibits spurious oscillations, while its low-order counterpart is
too diffusive. The solution shown in Fig. 5 was computed using linearized FCT
(see Sect. 6.1) with u̇L given by (65). A detailed numerical study of FCT schemes
(explicit vs. implicit, linearized vs. nonlinear) can be found in [39].

In the captions to Figs. 6–9, the abbreviations LPSL and LPFL refer to the limit-
ing techniques described in Sects. 7.2 and 7.3, respectively (LP := Linearity Preserv-
ing, SL:= Slope Limiting, FL := Flux Limiting). The results shown in Figs. 6 and 7
indicate that LPFL is more accurate than LPSL and almost as accurate as FCT. This
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Fig. 2 Solid body rotation:
initial data / exact solution at
t = 2π

Fig. 3 Solid body rotation:
Galerkin solution at t = 2π

Fig. 4 Solid body rotation:
low-order solution at t = 2π
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Fig. 5 Solid body rotation:
FEM-FCT solution at t = 2π

Fig. 6 Solid body rotation:
consistent-mass LPSL
solution at t = 2π

is good news since the solid body rotation test belongs to the class of problems that
FCT can handle much better than other shock-capturing methods [32].

In contrast to flux limiters of TVD type [36, 37], LPSL and LPFL are applicable
to the antidiffusive part of the consistent mass matrix which makes it possible to
attain fourth-order accuracy with linear finite elements (see [15], p. 96). To demon-
strate the importance of this result, we present the numerical solutions obtained with
the lumped mass matrix (αM

ij := 0) in Figs. 8 and 9. The diagram in Fig. 10 depicts
the E1 convergence history for the consistent and lumped-mass versions of LPSL
and LPFL. The numerical values of E1 and E2 are listed in Tables 2 and 3. The local
Courant number ν = |v|Δt

h
equals zero at the center of the square domain and attains

its largest value νmax = 1√
2
Δt
h

at the corners. In the process of mesh refinement, the

time step was adjusted to maintain the fixed ratio Δt
h
= 0.128.

The expected order of accuracy p is estimated using (124) with h = 1/256.
The rates of convergence for the LP algorithms used in Figs. 6–9 are given by
p = 0.96,0.90,0.77, and 0.77, respectively. The consistent-mass LPFL produces
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Fig. 7 Solid body rotation:
consistent-mass LPFL
solution at t = 2π

Fig. 8 Solid body rotation:
lumped-mass LPSL solution
at t = 2π

Fig. 9 Solid body rotation:
lumped-mass LPFL solution
at t = 2π
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Fig. 10 Solid body rotation,
convergence history for LP
limiters

Table 2 Solid body rotation:
LPSL grid convergence h LPSL, lumped mass LPSL, consistent mass

E1 E2 E1 E2

1/32 0.783E−01 0.163E+00 0.582E−01 0.135E+00

1/64 0.564e−01 0.144e+00 0.380E−01 0.111E+00

1/128 0.346e−01 0.109e+00 0.180E−01 0.704E−01

1/256 0.203e−01 0.803e−01 0.919E−02 0.509E−01

Table 3 Solid body rotation:
LPFL grid convergence h LPSL, lumped mass LPSL, consistent mass

E1 E2 E1 E2

1/32 0.785E−01 0.165E+00 0.465E−01 0.125E+00

1/64 0.560E−01 0.147E+00 0.271E−01 0.907E−01

1/128 0.340E−01 0.110E+00 0.130E−01 0.612E−01

1/256 0.200E−01 0.806E−01 0.705E−02 0.459E−01

smaller errors than LPSL. However, there is hardly any difference if mass lumping
is performed. In this case, both algorithms converge at the rate p = 0.77, which is
a typical value for a TVD scheme that delivers p = 2 for smooth data. The use of
the consistent mass matrix results in a significant gain of accuracy and faster grid
convergence. This justifies the additional effort invested in the computation of αM

ij .
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Table 4 Circular convection:
LPSL grid convergence h Smooth data Discontinuous data

E1 E2 E1 E2

1/32 0.318E−01 0.551E−01 0.821E−01 0.152E+00

1/64 0.104E−01 0.204E−01 0.449E−01 0.108E+00

1/128 0.251E−02 0.595E−02 0.259E−01 0.860E−01

1/256 0.537E−03 0.160E−02 0.138E−01 0.601E−01

Table 5 Circular convection:
LPFL grid convergence h Smooth data Discontinuous data

E1 E2 E1 E2

1/32 0.146E−01 0.266E−01 0.540−01 0.131E+00

1/64 0.377E−02 0.801E−02 0.295E−01 0.893E−01

1/128 0.944E−03 0.230E−02 0.185E−01 0.757E−01

1/256 0.218E−03 0.632E−03 0.104E−01 0.519E−01

9.2 Circular Convection

The second test problem is taken from [27]. Consider the hyperbolic PDE

∇ · (vu)= 0 in Ω = (−1,1)× (0,1) (127)

which describes steady circular convection if the velocity field is defined as

v(x, y)= (y,−x).
The exact solution and inflow boundary conditions for this test are given by

u(x, y)=
{
G(r), if 0.35≤ r =√

x2 + y2 ≤ 0.65,
0, otherwise,

where G(r) is a given function that defines the shape of the solution profile.
To evaluate the performance of LPSL and LPFL for smooth data and discontinu-

ous solutions, we consider the following shape functions

G1(r)= cos2
(

5π
2r − 1

3

)
, G2(r)≡ 1.

As before, computations are performed on a uniform mesh of bilinear finite elements
which is successively refined to perform a grid convergence study.

The exact solution to the circular convection problem is constant along the
streamlines of the stationary velocity field. Figure 11 displays the results for G=G1
and G=G2 computed using the LPFL algorithm with h= 1/64. The convergence
history for LPSL and LPFL is presented in Tables 4 and 5, respectively. In the case
of the smooth profile G1, the E1 errors for LPSL are approximately twice as large
as those for LPFL. The expected orders of accuracy are 2.22 and 2.11, respectively.
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Fig. 11 Circular convection:
LPFL results for (a) smooth
and (b) discontinuous data

In the case of the discontinuous profile G2, the convergence rates drop to 0.91 for
LPSL and 0.83 for LPFL. The absolute values of the E1 errors differ by a factor of
1.5. We conclude that the revised limiting strategy leads to a marked improvement
not only for transient convection problems but also in steady-state computations.

The iterative solver was configured to run until the absolute norm of the residual
becomes smaller than 10−6. This stopping criterion is more stringent than necessary
to obtain an accurate solution. However, it is important to make sure that the resid-
uals go to zero. The methods under investigation are the global defect correction
scheme (with ãii = 2aii and ãij = aij for j �= i) and the nonlinear SSOR method
(with ãii =∑

j |aij |). The same subroutine was used to evaluate the residuals for
both schemes. To prevent division by zero, the LP limiter was implemented using

R±i =min{1, Q±i ±ε
P±i ±ε

}, where ε is a multiple of the machine precision.

In the circular convection test with the discontinuous profile, the residuals begin
to oscillate, and convergence stalls if no Anderson acceleration is performed. The
number of nonlinear iterations for the accelerated schemes is presented in Table 6,
where AA(k) stands for Anderson acceleration applied to k iterates. The defect cor-
rection scheme with k = 5 fails to converge in most cases. The total number of
iterations for k = 10 is twice as large as that for nonlinear SSOR. Moreover, the
cost of a defect correction cycle is higher than that of an SSOR iteration.
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Table 6 Circular convection:
number of nonlinear
iterations

h Defect correction Nonlinear SSOR

AA(5) AA(10) AA(5) AA(10)

1/32 576 574 274 287

1/64 — 975 487 501

1/128 — 1866 908 940

1/256 — — — 1893

9.3 Anisotropic Diffusion

In the last example, we consider a steady anisotropic diffusion equation

−∇ · (D∇u)= 0 in Ω, (128)

where Ω = (0,1)2\[4/9,5/9]2 is a square domain with a hole in the middle.
The outer and inner boundary of Ω are denoted by Γ0 and Γ1, respectively (see

Fig. 12(a)). The following Dirichlet boundary conditions are prescribed

u(x, y)=
{−1, if (x, y) ∈ Γ0,

1, if (x, y) ∈ Γ1.
(129)

The diffusion tensor D is a symmetric positive definite matrix defined as

D =R(−θ)
(
k1 0
0 k2

)
R(θ), (130)

where k1 and k2 are the positive eigenvalues and R(θ) is a rotation matrix

R(θ)=
(

cos θ sin θ

− sin θ cos θ

)
. (131)

The eigenvalues of D represent the diffusion coefficients associated with the axes
of the Cartesian coordinate system rotated by the angle θ . Let

k1 = 100, k2 = 1, θ =−π

6
.

By the continuous maximum principle, the exact solution to the above Dirichlet
problem is bounded by the prescribed boundary data u|Γ =±1. However, the diffu-
sion tensor (130) is highly anisotropic, which may result in a violation of the DMP
even if a regular mesh of acute/non-narrow type is employed.

The above benchmark problem was introduced by Lipnikov et al. [50]. The re-
sults obtained with LPSL can be found in [48]. In this section, we discretize the
anisotropic diffusion equation (128) using LPFL and linear finite elements on uni-
form triangular meshes. Since no exact solution is available, the reference solution
depicted in Fig. 12(b) is calculated with the standard Galerkin method on a very fine
mesh (h = 1/1152). This solution is bounded by the prescribed Dirichlet bound-
ary values, as required by the maximum principle. The unconstrained Galerkin
solutions computed on coarser meshes exhibit spurious undershoots shown as the
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Fig. 12 Anisotropic diffusion: (a) domain geometry, (b) reference solution, (c) Galerkin,
h= 1/36, (d) Galerkin, h= 1/288, (e) LPFL, h= 1/36, (f) LPFL, h= 1/288

dark blue regions in Figs. 12(c) and 12(d). Algebraic flux correction based on the
LPFL algorithm makes it possible to enforce the DMP constraint without excessive
smearing. The solutions for h = 1/36 and h = 1/288 are presented in Figs. 12(e)
and 12(f).
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Table 7 Anisotropic
diffusion: Galerkin grid
convergence

h E1 E2 p umin umax

1/18 0.826E−01 0.194E+00 −1.06565 1.00000

1/36 0.514E−01 0.136E+00 0.68 −1.05527 1.00000

1/72 0.298E−01 0.904E−01 0.79 −1.03944 1.00000

1/144 0.155E−01 0.544E−01 0.94 −1.01818 1.00000

1/288 0.684E−02 0.278E−01 1.18 −1.00133 1.00000

1/576 0.225E−02 0.103E−01 1.60 −1.00000 1.00000

Table 8 Anisotropic
diffusion: LPFL grid
convergence

h E1 E2 p NNL-A NNL

1/18 0.741E−01 0.181E+00 70 258

1/36 0.441E−01 0.128E+00 0.75 293 1,136

1/72 0.257E−01 0.874E−01 0.78 448 4,904

1/144 0.143E−01 0.547E−01 0.85 951 20,375

1/288 0.712E−02 0.292E−01 1.01 1,094 51,73

1/576 0.245E−02 0.111E−01 1.54 1,976 120,213

The results of the grid convergence study are summarized in Tables 7 and 8.
On coarse meshes, the LPFL algorithm produces smaller errors than the underlying
Galerkin scheme. As the mesh is refined, the undershoots produced by the latter
method become smaller and eventually disappear. In the fourth column, we list the
rate of convergence (124) for each pair of meshes. Note that the value of p increases
monotonically as the mesh size h goes to zero.

The nonlinearity of the algebraic system associated with the flux-corrected
Galerkin discretization of the anisotropic diffusion equation is more severe than
in the case of pure convection. This phenomenon was first discovered in [48]. The
last two columns in Table 8 list the total number of nonlinear SSOR iterations re-
quired to make the maximum norm of the residual smaller than ε = 10−6. It is worth
mentioning that the values of E1 and E2 converged at early stages of the iteration
process. Hence, a better choice of stopping criteria would make the iterative solver
more efficient [2]. The numbers in the column labeled NNL-A were obtained with
Anderson acceleration, as described in Sect. 8.3. If it is switched off, a dramatic
increase in the number of nonlinear iterations NNL is observed (see the last column
in Table 8). The accelerated version is 60 times faster on the finest mesh.

In the current implementation of Anderson acceleration, we always mix k = 5
iterates and calculate the corresponding weights using the LAPACK subroutine
DGELS to solve the (unconstrained) least squares problem. The improvements pro-
posed in [17, 18, 62, 77] are likely to result in a further gain of efficiency.
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10 Summary and Outlook

The algebraic flux correction paradigm presented in this chapter provides a set of
general rules, concepts, and tools for enforcing the discrete maximum principle and
positivity preservation in the context of low-order finite element approximations
on arbitrary meshes. The presented methodology is based on a generalization of
FCT. In particular, we addressed the design of implicit FCT schemes, developed
a linearity-preserving slope limiter and converted it into a fully multidimensional
format. In contrast to FCT, the new approach to flux correction is well-suited not
only for time-dependent problems but also for steady transport equations.

The use of flux limiting gives rise to a nonlinear system which must be lin-
earized or solved in an iterative way. The former approach has led us to an efficient
predictor-corrector algorithm for computations with small time steps. In the case of
stationary transport equations or large time steps, the linearization of antidiffusive
fluxes about a low-order predictor would degrade the accuracy of the algebraic flux
correction scheme and inhibit convergence. Hence, there is no way to replace the it-
erative solution of a nonlinear system with a single postprocessing step. Our results
for the anisotropic diffusion equation indicate that Anderson acceleration is a very
useful tool for the design of efficient quasi-Newton iterative solvers. The nonlinear
SSOR method presented in this paper can also be used as a smoother within the
framework of a full multigrid / full approximation scheme (FMG-FAS).

The generality of algebraic flux correction makes it very powerful. The same
limiter routine can be employed to enforce positivity constraints in 2D and 3D, on
structured and unstructured meshes. The origin of discrete operators makes no dif-
ference as far as the M-matrix property is concerned. However, the flux limiter must
be designed to keep the perturbation of the discrete problem as small as possible.
The demand for high resolution is particularly difficult to meet in the case of higher-
order finite elements because the fluxes may depend on solution values at more than
two nodes, and even the construction of an optimal low-order scheme becomes a
nontrivial task [38]. This has led us to believe that higher-order Galerkin schemes
must be constrained within the framework of hp-adaptivity. In regions where the
derivatives of order p ≥ 1 are smooth, no limiting is required. Otherwise, the poly-
nomial degree p must be reduced until a smooth derivative is found [40] or a (multi-)
linear approximation (p = 1) is recovered in a given element. In the latter case, flux
limiting can be performed using the methodology presented in this chapter.

The unavoidable loss of accuracy around internal and boundary layers can be
compensated using h-adaptation, i.e., local mesh refinement. The Galerkin orthog-
onality error produced by the flux limiter is computable and easy to localize. Thus,
it provides valuable feedback for goal-oriented mesh adaptation [44].

In the next two chapters, we extend algebraic flux correction to systems of con-
servation laws including the compressible Euler and incompressible Navier-Stokes
equations. The topics to be addressed include the construction of artificial viscosity
operators, flux limiting in terms of nonconservative variables, synchronization of
the correction factors, and failsafe control of the solution behavior. We also discuss
the treatment of source/sink terms in the context of the k–ε turbulence model.
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Algebraic Flux Correction II

Compressible Flow Problems

Dmitri Kuzmin, Matthias Möller, and Marcel Gurris

Abstract Flux limiting for hyperbolic systems requires a careful generalization of
the design principles and algorithms introduced in the context of scalar conservation
laws. In this chapter, we develop FCT-like algebraic flux correction schemes for the
Euler equations of gas dynamics. In particular, we discuss the construction of artifi-
cial viscosity operators, the choice of variables to be limited, and the transformation
of antidiffusive fluxes. An a posteriori control mechanism is implemented to make
the limiter failsafe. The numerical treatment of initial and boundary conditions is
discussed in some detail. The initialization is performed using an FCT-constrained
L2 projection. The characteristic boundary conditions are imposed in a weak sense,
and an approximate Riemann solver is used to evaluate the fluxes on the boundary.
We also present an unconditionally stable semi-implicit time-stepping scheme and
an iterative solver for the fully discrete problem. The results of a numerical study
indicate that the nonlinearity and non-differentiability of the flux limiter do not in-
hibit steady state convergence even in the case of strongly varying Mach numbers.
Moreover, the convergence rates improve as the pseudo-time step is increased.

1 Introduction

The first successful finite element schemes for compressible flow problems were
developed by the Swansea and INRIA groups in the 1980s. The most prominent
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representative of these schemes is the two-step Taylor-Galerkin method [1, 43] and
its combination with FCT [42, 56, 57]. The early 1990s have witnessed the advent
of edge-based data structures [6, 44, 53, 58] that offer a number of significant ad-
vantages compared to the traditional element-based implementation. In the case of
P1 finite elements, the edge-based formulation is equivalent to a vertex-centered
finite volume scheme [58, 59]. This equivalence makes it possible to implement
approximate Riemann solvers and slope limiters in the context of finite element dis-
cretizations on simplex meshes [45–48, 51, 53]. However, the resulting schemes
require mass lumping and are sensitive to the orientation of mesh edges.

All classical high-resolution FEM are explicit and, therefore, subject to time step
restrictions. Implicit schemes have the potential of being unconditionally stable but
rely on the quality of the iterative solver for the nonlinear system. In particular, a
careful linearization/preconditioning of the discrete Jacobian operator is essential.
A semi-implicit solution strategy [9, 14, 66] and weak imposition of characteristic
boundary conditions [18] lead to an algorithm that converges to steady state solu-
tions at arbitrarily large CFL numbers [18, 19]. This is a remarkable result since the
use of nondifferentiable limiters is commonly believed to inhibit convergence.

The development of flux-corrected transport schemes for systems of equations is
more difficult than in the scalar case. A limiter designed to control the local max-
ima and minima of the conservative variables does not guarantee that the pressure
or internal energy will stay nonnegative. Likewise, the velocity is not directly con-
strained and may exhibit spurious fluctuations. Since the rate of transport depends
on the oscillatory velocity and pressure fields, undershoots and overshoots eventu-
ally carry over to the conservative variables. As a typical consequence, the speed of
sound becomes negative, indicating that the simulation is going to crash.

In this chapter, we review some recent advances in the design of implicit alge-
braic flux correction schemes for the Euler equations [18, 19, 32–34, 49]. After the
presentation of the standard Galerkin scheme, we discuss various forms of artifi-
cial dissipation and the above difficulties associated with flux limiting for systems
of equations. In particular, we present a synchronized FCT limiter that features a
node-based transformation to primitive variables and a failsafe control mechanism
inspired by the recent work of Zalesak [73]. Also, we address the treatment of non-
linearities and the implementation of initial/boundary conditions. A numerical study
is performed for a number of steady and unsteady inviscid flow problems in 2D.

2 The Euler Equations

The Euler equations of gas dynamics represent a system of conservation laws for
the mass, momentum, and energy of an inviscid compressible fluid

∂ρ

∂t
+∇ · (ρv) = 0, (1)

∂(ρv)
∂t
+∇ · (ρv⊗ v+ pI ) = 0, (2)
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∂(ρE)

∂t
+∇ · (ρEv+ pv) = 0, (3)

where ρ is the density, v is the velocity, p is the pressure, E is the total energy, and
I is the identity tensor. The system is closed with the equation of state

p = (γ − 1)

(
ρE − ρ|v|2

2

)
(4)

for an ideal polytropic gas with the heat capacity ratio γ . The default is γ = 1.4
(air).

The nonlinear system (1)–(3) can be written in the generic divergence form

∂U

∂t
+∇ · F= 0, (5)

where

U =
⎡

⎣
ρ

ρv
ρE

⎤

⎦ , F=
⎡

⎣
ρv

ρv⊗ v+ pI
ρEv+ pv

⎤

⎦ (6)

are the vectors of conservative variables and fluxes. It can be shown that [69]

F=AU, (7)

where A= ∂F
∂U

is the Jacobian tensor associated with the quasi-linear form of (5)

∂U

∂t
+A · ∇U = 0. (8)

Due to the hyperbolicity of the Euler equations, any directional Jacobian matrix
e ·A is diagonalizable and admits the factorization [24, 37, 69]

e ·A=RΛR−1, (9)

where Λ(e) is the diagonal matrix of eigenvalues and R(e) is the matrix of right
eigenvectors. In the 3D case, the eigenvalues of the 5× 5 matrix e ·A are given by

λ1 = e · v− c, (10)

λ2 = λ3 = λ4 = e · v, (11)

λ5 = e · v+ c, (12)

where c =√γp/ρ is the speed of sound. Thus, the solution to a Riemann problem
is a superposition of three waves traveling at speed e · v and two waves propagat-
ing at speeds ±c relative to the gas. Closed-form expressions for the eigenvectors
associated with each characteristic speed can be found, e.g., in [55].
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Let Ω ⊂ R
n, n ∈ {1,2,3} be a bounded domain. The solution to the unsteady

Euler equations is initialized by a given distribution of all variables

U(x, t)=U0(x) in Ω. (13)

Given a vector of “free stream” solution values U∞, characteristic boundary con-
ditions of Dirichlet or Neumann type can be defined in terms of the solution to the
Riemann problem with the interior state U and exterior state U∞, see Sect. 11.

In general, we impose Dirichlet boundary conditions on the boundary part ΓD

U =G(U,U∞) on ΓD (14)

and Neumann (normal flux) boundary conditions on the boundary part ΓN

n · F= Fn(U,U∞) on ΓN, (15)

where n is the unit outward normal. Note that the solution to the Riemann problem
depends not only on the prescribed boundary data but also on the unknown solution.

3 Group FEM Approximation

To begin with, we discretize the Euler equations using linear or multilinear finite
elements. After integration by parts, the variational formulation of (5) becomes

∫

Ω

(
w

∂U

∂t
−∇w · F

)
dx+

∫

Γ

wFnds = 0, ∀w. (16)

Since the test function w vanishes on ΓD , the surface integral reduces to that
over ΓN .

Within the framework of Fletcher’s [16] group finite element formulation, the ap-
proximate solution Uh ≈U and the numerical flux function Fh ≈ F are interpolated
using the same set of piecewise-polynomial basis functions {ϕi}. That is,

Uh(x, t) =
∑

j

Uj (t)ϕj (x), (17)

Fh(x, t) =
∑

j

Fj (t)ϕj (x). (18)

Inserting these approximations into the Galerkin weak form (16), one obtains a
system of semi-discretized equations for the time-dependent nodal values

∑

j

(∫

Ω

ϕiϕj dx
)

dUj

dt
=
∑

j

(∫

Ω

∇ϕiϕjdx
)
· Fj −

∫

Γ

ϕiFnds. (19)
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By the homogeneity property (7) of the Euler fluxes, we have

Fj = Aj Uj .

Thus, the matrix form of the semi-discrete problem can be written as follows:

MC

dU

dt
=KU+ S(U). (20)

The (n+ 2)× (n+ 2) blocks of the consistent mass matrix MC = {Mij } are defined
by Mij =mij I, where I stands for the identity matrix and

mij =
∫

Ω

ϕiϕj dx. (21)

Furthermore, the vector of boundary loads associated with node i is given by

Si =−
∫

Γ

ϕiFnds, (22)

and the formula for entries of the discrete Jacobian operator K = {Kij } reads

Kij = cji · Aj , cij =
∫

Ω

ϕi∇ϕj dx. (23)

Since
∑

j ϕj ≡ 1, the matrix of discrete derivatives C := {cij } has zero row sums

∑

j

cij = 0. (24)

Furthermore, integration by parts reveals that the coefficients cij and cji satisfy

cji =−cij +
∫

Γ

ϕiϕj n ds. (25)

The boundary term is symmetric and corresponds to an entry of the mass matrix for
the surface triangulation of Γ . In the case of (multi-)linear finite elements, the basis
function ϕi vanishes on Γ , unless xi is a boundary node. It follows that

cji =−cij , cii = 0, Si = 0 (26)

in the interior of Ω . The above properties of the discrete gradient operator C play
an important role in the derivation of edge-based data structures [27, 40, 59].
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4 Edge-Based Representation

Properties (24) and (26) make it possible to express the components of KU in terms
of edge contributions. The following representation is valid inside Ω

(KU)i =
∑

j �=i
eij · (Fj − Fi ), eij = cji − cij

2
. (27)

The numerical fluxes for an edge-based implementation are defined by [34, 59]

(KU)i =−
∑

j �=i
Gij , Gij = cij · Fi − cjiFj . (28)

For the derivation of the above flux decomposition for KU, we refer to [27, 34, 59].
As shown by Roe [54], the flux difference can be linearized as follows

Fj − Fi = Aij (Uj − Ui ). (29)

The edge Jacobian matrix Aij := A(ρij ,vij ,Hij ) is associated with a special set of
density-averaged variables known as the Roe mean values

ρij =√ρiρj , (30)

vij =
√
ρivi +√ρjvj√

ρi +√ρj

, (31)

Hij =
√
ρiHi +√ρjHj√

ρi +√ρj

, (32)

where H =E + p
ρ

denotes the stagnation enthalpy. The speed of sound is given by

cij =
√

(γ − 1)

(
Hij − |vij |2

2

)
. (33)

By virtue of (27) and (29), the following relationship holds for internal nodes

Kii =−
∑

j �=i
Kij , Kij = eij · Aij , j �= i. (34)

This representation of Kij turns out to be very useful when it comes to the design
of artificial viscosity operators for algebraic flux correction schemes (see the next
section). However, the assembly of K should be performed using definition (23).

By the hyperbolicity of the Euler equations, the directional Roe matrix eij · Aij

is diagonalizable with real eigenvalues. Invoking (9), we obtain the factorization

eij · Aij = |eij | RijΛij R−1
ij . (35)
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According to (10)–(12) the entries of the eigenvalue matrix Λij are given by

λ1 = vij − cij , (36)

λ2 = λ3 = λ4 = vij , (37)

λ5 = vij + cij . (38)

Here cij is the speed of sound (33) for Roe’s approximate Riemann solver, while

vij = eij · vij

|eij |
is the density-averaged velocity along the (virtual) edge connecting nodes i and j .

5 Artificial Viscosity Operators

In the chapter on algebraic flux correction for scalar conservation laws [31], we
constructed a nonoscillatory low-order scheme using row-sum mass lumping

ML := diag{mi I}, mi =
∑

j

mij (39)

and conservative postprocessing of the Galerkin operator K = {Kij }. For systems
of conservation laws, each block Kij is an (n+ 2)× (n+ 2) matrix. The blocks of
the artificial diffusion operator D := {Dij } are matrices of the same size. As in the
scalar case, the discrete Jacobian operator is modified edge-by-edge thus:

Kii := Kii − Dij , Kij := Kij + Dij ,

Kji := Kji + Dij , Kjj := Kjj − Dij .
(40)

Replacing K with L :=K +D, one obtains the low-order approximation to (20)

ML

dU

dt
= LU+ S(U). (41)

If all off-diagonal matrix blocks Lij are positive semi-definite, then such a low-order
scheme proves local extremum diminishing (LED) with respect to local character-
istic variables [34]. This condition is a generalization of the LED criterion for scalar
transport equations. In the case of a hyperbolic system it is less restrictive than the
requirement that all off-diagonal entries of L be nonnegative.

According to (34) and (35), the negative eigenvalues of Kij and Kji can be elim-
inated by adding tensorial artificial dissipation of the form [34]

Dij = |eij · Aij | := |eij | Rij |Λij |R−1
ij , (42)

where |Λij | is a diagonal matrix containing the absolute values of the eigenvalues.



200 D. Kuzmin et al.

Flux limiting in terms of characteristic variables requires that the diffusive and
antidiffusive fluxes be defined separately for each component of eij = (e1

ij , . . . , e
n
ij )

and Aij = (A1
ij , . . . , An

ij ). Thus, the above definition of Dij should be replaced with

Dij = |e1
ij A1

ij | + · · · + |enij An
ij |. (43)

In the 1D case, the low-order scheme with artificial viscosity of the form (42) or
(43) reduces to Roe’s approximate Riemann solver (see Appendix).

The cost of evaluating the Roe matrix Aij is rather high. An inexpensive alterna-
tive is the computation of Dij using the Jacobian at the arithmetic mean state

Aij :=A
(

Uj + Ui

2

)
. (44)

Banks et al. [5] present a numerical study of methods that use this linearization. In
particular, the expected order of accuracy is verified numerically. Importantly, the
replacement of the Roe mean values with the arithmetic mean does not make the
scheme nonconservative if this approximation is used in the definition of Dij only.

In particularly sensitive applications, the minimal artificial viscosity based on the
characteristic decomposition of Aij may fail to suppress spurious oscillations. This
is unacceptable if the flux limiter relies on the assumption that the local extrema of
the low-order solution constitute physically legitimate upper and lower bounds.

A possible remedy is the use of Rusanov-like scalar dissipation proportional to
the fastest characteristic speed [5, 73]. The straightforward definition is

Dij = dij I, dij = |eij |max
i
|λi |, (45)

where maxi |λi | = |eij |(|vij | + cij ) is the spectral radius of the Roe matrix. In our
experience, a more robust and efficient low-order scheme is obtained with [33]

Dij =max{dij , dji}I, dij = |eij · vj | + |eij |cj , (46)

where ci = √γpi/ρi is the speed of sound at node i. In the context of implicit
schemes, scalar dissipation may be used for preconditioning purposes even if tenso-
rial artificial viscosity of the form (42) or (43) is favored for accuracy reasons.

6 Algebraic Flux Correction

The semi-discrete Galerkin scheme (20) admits a conservative splitting into the
nonoscillatory low-order part (41) and an antidiffusive correction:

MC

dU

dt
=KU+ S(U) ⇐⇒ ML

dU

dt
= LU+ S(U)+ F(U), (47)
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where F(U) is the vector of raw antidiffusive fluxes. By definition of ML and D

Fi =
∑

j �=i
Fij , Fij =mij

(
dUi

dt
− dUj

dt

)
+ Dij (Ui − Uj ). (48)

In the process of flux correction, Fi is replaced with its limited counterpart

F̄i =
∑

j �=i
F̄ij , F̄ij := αij Fij , 0≤ αij ≤ 1. (49)

In Sect. 9, we discuss various generalizations of scalar limiting techniques to sys-
tems. All of them produce a constrained semi-discrete problem of the form

ML

dU

dt
=R(U), (50)

where R(U)= LU+ S(U)+ F̄(U) incorporates the nonlinear antidiffusive correction.
Let Un denote the vector of solution values at the time level tn = nΔt , where Δt

is a constant time step. Integration in time by the two-level θ -scheme yields

ML

Un+1 − Un

Δt
= θR

(
Un+1)+ (1− θ)R

(
Un
)
, (51)

where θ ∈ (0,1] is the implicitness parameter. In the fully discrete form of (48), the

time derivative dUi

dt is replaced with
Un+1

i −Un
i

Δt
and Dij (Ui − Uj ) becomes

θDn+1
ij

(
Un+1
i − Un+1

j

)+ (1− θ)Dn
ij

(
Un
i − Un

j

)
.

The structure of the constrained flux F̄ij depends on the adopted limiting strategy.

7 Solution of Nonlinear Systems

Following a common practice [9, 14, 66], we linearize the contribution of R(Un+1)

to the right-hand side of (51) about Un using the Taylor series expansion

R
(

Un+1)≈R
(

Un
)+

(
∂R

∂U

)n(
Un+1 − Un

)
. (52)

Plugging this approximation into (51), one obtains the linear algebraic system

[
ML

Δt
− θ

(
∂R

∂U

)n](
Un+1 − Un

)=R
(

Un
)
. (53)

If the steady-state solution is of interest, we use the backward Euler method
(θ = 1) and gradually increase the pseudo-time step Δt . When the solution begins
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to approach the steady state (R(U)= 0), the removal of the mass matrix can greatly
speed up the convergence process since (53) reduces to Newton’s method

−
(
∂R

∂U

)n(
Un+1 − Un

)=R
(

Un
)

(54)

in the limit of infinitely large (pseudo)-time steps. On the other hand, removing the
mass matrix too soon may have an adverse effect on the convergence rates [61].

Trépanier et al. [66] found it useful to freeze the Jacobian after the residuals reach
a prescribed tolerance. This can significantly reduce the cost of matrix assembly.

Neglecting the nonlinearity of L=K +D, we approximate the Jacobian by [18]

∂R

∂U
≈K +D+ ∂S

∂U
+ ∂ F̄

∂U
. (55)

If the blocks of the Galerkin transport operator K are defined by (23), the use of
K(Un) instead of K(Un+1) boils down to replacing the flux Fj = An+1

j Un+1
j with

the flux Fj = An
j Un+1

j . Thus, the above linearization about Un is conservative.
Since the vector of boundary fluxes S(U) depends on the solution of a Riemann

problem, its differentiation is a rather laborious process. For details, we refer to
Gurris [18] who derived a formula for ∂S

∂U using a repeated application of the chain
rule. His numerical study indicates that the implicit treatment of the weakly imposed
boundary conditions makes it possible to achieve unconditional stability.

The use of a non-differentiable flux limiter rules out the derivation of closed-
form expressions for ∂F

∂U . In principle, the antidiffusive term can be differentiated
numerically using finite differencing [49, 50]. However, the significant overhead
cost and the sensitivity to the choice of the free parameter restrict the practical utility
of this approach. Moreover, the resultant matrix is not as sparse as the low-order
Jacobian since the use of limiters widens the computational stencils. For this reason,
we currently favor a semi-explicit treatment of limited antidiffusion.

Instead of linearizing the nondifferentiable antidiffusive term about Un, one can
update it in an iterative fashion. Given an approximate solution U(m) ≈ Un+1 to (53),
a new approximation U(m+1) is obtained by solving the linear system

J
(

U(m)
)(

U(m+1) − Un
) = R

(
Un
)+ θ

(
F̄
(

U(m)
)− F̄

(
Un
))
, (56)

J (U) = ML

Δt
− θ

(
L(U)+ ∂S

∂U

)
. (57)

Due to the semi-explicit treatment of F̄(Un+1), the so-defined defect correction
scheme may converge rather slowly. However, it can be converted into a quasi-
Newton method using the Anderson convergence acceleration technique [26].

The repeated evaluation of the antidiffusive term can be avoided using a lineariza-
tion about the solution of the low-order system. This predictor-corrector strategy is
appropriate if the transient flow behavior dictates the use of small time steps. In this
case, the following algorithm [28, 33] is a cost-effective alternative to (53)
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1. Calculate the end-of-step solution UL ≈ Un+1 to the low-order system

J
(

Un
)(

UL − Un
)= L

(
Un

)
Un + S

(
Un
)
. (58)

2. Calculate the vector of raw antidiffusive fluxes Fij linearized about UL

Fij =mij

(
U̇L
i − U̇L

j

)+ Dij

(
UL
i − UL

j

)
, (59)

where U̇L
i is a low-order approximation to the time-derivative at node i

U̇L =M−1
L

[
L
(

UL
)

UL + S
(

UL
)]
. (60)

3. Apply the flux limiter and calculate the final solution Un+1

Un+1
i = UL

i +
1

mi

∑

j �=i
F̄ij . (61)

8 Solution of Linear Systems

In the 3D case, there are 5 unknowns (density, 3 momentum components, and en-
ergy) per mesh node. Hence, each linear system to be solved can be written as

⎡

⎢⎢⎢⎢
⎣

J11 J12 J13 J14 J15
J21 J22 J23 J24 J25
J31 J32 J33 J34 J35
J41 J42 J43 J44 J45
J51 J52 J53 J54 J55

⎤

⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢
⎣

Δu1
Δu2
Δu3
Δu4
Δu5

⎤

⎥⎥⎥⎥
⎦
=

⎡

⎢⎢⎢⎢
⎣

r1
r2
r3
r4
r5

⎤

⎥⎥⎥⎥
⎦

. (62)

Simultaneous update of all variables is costly in terms of CPU time and memory
requirements. The coupled system can be split into smaller subproblems using an
iterative method of block-Jacobi or block-Gauss-Seidel type. In the former case,
the new value of Δuk is calculated using Δul from the last outer iteration:

JkkΔu
(m+1)
k = rk −

∑

k �=l
JklΔu

(m)
l , Δu(0) := 0, (63)

where m is the iteration counter and k is the subproblem index. Replacing Δu
(m)
l

with Δu
(m+1)
l for l < k, one obtains the block-Gauss-Seidel method

JkkΔu
(m+1)
k = rk −

∑

l>k

JklΔu
(m)
l −

∑

l<k

JklΔu
(m+1)
l . (64)

This segregated solution strategy is easy to implement but may require many iter-
ations per time step. A more robust iterative solver for (62) can be designed using
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a Krylov-subspace or multigrid method equipped with a smoother/preconditioner
that involves solution of small coupled problems on elements/patches. In the next
chapter, we will use such a method to solve the discrete saddle point problem for
the finite element discretization of the incompressible Navier-Stokes equations.

9 Flux Limiting for Systems

The design of flux limiters for hyperbolic systems is more involved than that for
scalar conservation laws. If the density, momentum, and energy increments are lim-
ited separately, undershoots/overshoots are likely to arise in all quantities of interest.
The following remedies to this problem have been proposed [41, 42, 71–73]

• synchronization of the correction factors for selected control variables;
• transformations to nonconservative (primitive, characteristic) variables;
• a posteriori control and postprocessing of the flux-corrected solution.

In the synchronized version of the FCT limiter [41, 42], all components of the
raw antidiffusive flux Fij are multiplied by the same correction factor αij . No syn-
chronization of αij is required if a transformation to the local characteristic variables
is performed. However, this sort of flux correction is computationally expensive and
requires dimensional splitting for the diffusive and antidiffusive fluxes.

Limiters that constrain the primitive (density, velocity, pressure) or characteristic
variables are typically quite reliable but the involved linearizations may also cause
them to fail, no matter how carefully they are designed. While it is impossible to
rule out the formation of spurious maxima and minima a priori, they can be easily
detected and removed at a postprocessing step. This approach was introduced by
Zalesak [73] who used it to maintain the nonnegativity of pressures and internal
energies in a characteristic FCT method for the compressible Euler equations.

9.1 Transformation of Variables

We begin with the presentation of a symmetric limiter for a general set of dependent
quantities. In classical high-resolution schemes for the Euler equations, the required
transformations between the conservative and nonconservative variables are usu-
ally performed edge-by-edge [40, 71–73]. The solution-dependent transformation
matrix Tij = Tji is evaluated using a suitably defined average of Ui and Uj .

A very general limiting strategy for systems was proposed by Löhner [40]. Given
a tentative solution U and the corresponding vector of raw antidiffusive fluxes

Fij =
[
f

ρ
ij , fρvij , f

ρE
ij

]T
, (65)

the following algorithm can be used to calculate the synchronized correction factors
αij for a given set of possibly nonconservative control variables:
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1. Initialize the three auxiliary arrays for the generalized Zalesak limiter

P±i := 0, Q±i := 0, R±i := 1. (66)

2. For each pair of neighbor nodes, perform the local change of variables

F̂ij := Tij Fij , ΔWij := Tij (Uj − Ui ), (67)

F̂ji := −F̂ij , ΔWji := −ΔWij . (68)

3. Update the sums of positive/negative components to be limited

P±i,k := P±i,k + max
min

{
0, f̂ k

ij

}
, P±j,k := P±j,k + max

min
{
0, f̂ k

ji

}
. (69)

4. Update the upper/lower bounds for the sum of limited increments

Q±i,k := max
min

{
Q±i,k,Δwk

ij

}
, Q±j,k := max

min
{
Q±j,k,Δwk

ji

}
. (70)

5. Calculate the nodal correction factors for positive/negative edge contributions

R±i,k =min

{
1,

γiQ
±
i,k

P±i,k

}
, (71)

where γi > 0 is a positive scaling factor (γi =mi/Δt for generalized FCT).
6. Determine the edge correction factors for the given quantity of interest

αk
ij =min

{
Rk

ij ,R
k
ji

}
, Rk

ij =
{
R+i,k, if f̂ k

ij ≥ 0,

R−i,k, if f̂ k
ij < 0.

(72)

7. Multiply all components of Fij and Fji by the synchronized correction factor

αij =min
k

αk
ij . (73)

Instead of calculating αk
ij independently and taking the minimum, one can rede-

fine αk
ij as the correction factor for the raw antidiffusive flux [33]

Fk
ij := αk−1

ij Fk−1
ij . (74)

This sequential limiting procedure amounts to the multiplication of F0
ij := Fij by

αij = αk
ij · αk−1

ij · · ·α1
ij . (75)

In contrast to (73), the result depends on the order in which the correction factors
αk
ij are calculated. However, the raw antidiffusive fluxes (74) already include the net

effect of previous corrections, which makes the limiter less diffusive.
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In our experience, averaging across shocks and contact discontinuities may give
rise to unbounded solutions in some particularly sensitive problems. This has led us
to prefer a node-based approach to the transformation of variables for the synchro-
nized flux limiter [33]. In the revised version, we replace (67) and (68) with

F̂ij := TiFij , ΔWij := Tj Uj − TiUi , (76)

F̂ji := −Tj Fij , ΔWji := −ΔWij . (77)

Since the transformation matrices Ti and Tj are generally different, the transformed
antidiffusive fluxes are no longer skew-symmetric, i.e., F̂ji �= −F̂ij . However, the
flux-limited scheme remains conservative since the synchronized correction factor
αij is applied to the vector of original fluxes (65). It is neither necessary nor desir-
able to require that the increments to nonconservative variables be skew-symmetric.

The node-based approach makes the limiter more robust. First, the transformation
matrix Ti is the same for all antidiffusive fluxes into node i. Second, the upper
and lower bounds are defined using the correct nodal values of the nonconservative
variables. Moreover, the revised algorithm requires less arithmetic operations.

9.2 Limiting Primitive Variables

In this section, we describe the synchronized FCT limiter with node-based transfor-
mations to the primitive variables. The flux-corrected solution is given by

miUi =miUL
i +

∑

j �=i
αij Fij , (78)

where UL denotes the low-order predictor. To calculate αij , we define [33]

vi = (ρv)i
ρi

, pi = (γ − 1)

[
(ρE)i − |(ρv)i |2

2ρi

]
, (79)

fvij =
fρvij − vif

ρ
ij

ρi

, f
p
ij = (γ − 1)

[
f

ρE
ij +

|vi |2
2

f
ρ
ij − vi · fρvij

]
. (80)

Let uL
i be the low-order approximation to ρ, v, or p. The raw antidiffusive ‘flux’

from node j into node i is denoted by f u
ij . In accordance with the FCT philosophy,

the choice of the correction factor αu
ij must ensure that the limited antidiffusive

correction does not increase the local maxima and minima of uL. The node-based
approach to computation of αu

ij involves the following algorithmic steps [33]:

1. Compute the sums of positive/negative antidiffusive increments to node i

P+i =
∑

j �=i
max

{
0, f u

ij

}
, P−i =

∑

j �=i
min

{
0, f u

ij

}
. (81)
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2. Compute the distance to a local maximum/minimum of the low-order solution

Q+i = umax
i − uL

i , Q−i = umin
i − uL

i . (82)

3. Compute the nodal correction factors for the net increment to node i

R±i :=min

{
1,

miQ
±
i

ΔtP±i

}
. (83)

4. Define αu
ij = αu

ji so as to satisfy the LED constraints for nodes i and j

αu
ij =min{Rij ,Rji}, Rij =

{
R+i , if f u

ij ≥ 0,
R−i , if f u

ij < 0.
(84)

If all primitive variables are selected for limiting, the synchronized correction
factor αij for the explicit solution update (78) can be defined as [32, 41, 42]

αij =min
{
α
ρ
ij , α

v
ij , α

p
ij

}
(85)

or

αij = α
ρ
ijα

v
ijα

p
ij . (86)

In the multidimensional case, small velocity fluctuations in the crosswind direction
may result in the cancellation of the entire flux. To avoid this, we set αv

ij := 1 or
define αv

ij as the correction factor for the streamline velocity [33].

Since the change of variables in (79) and (80) involves a linearization about UL
i ,

there is no guarantee that the flux-corrected solution given by (61) will stay within
the original bounds, especially in the presence of large jumps. Therefore, our FCT
limiting strategy includes a postprocessing step in which all undershoots and over-
shoots are detected and removed. The first ‘failsafe’ flux limiter of this kind was
proposed by Zalesak (see [73], pp. 36 and 56). His recipe is very simple: “if, after
flux limiting, either the density or the pressure in a cell is negative, all the fluxes into
that cell are set to their low order values, and the grid point values are recalculated.”
It is tacitly assumed that the low-order solution is free of nonphysical values.

A similar approach can be used to enforce local FCT constraints in a failsafe
manner [33]. The flux-corrected value ui of the control variable u is acceptable if

umin
i ≤ ui ≤ umax

i . (87)

If any quantity of interest (density, velocity, pressure) has an undershoot/overshoot
at node i, then a fixed percentage of the added antidiffusive fluxes αij Fij and αjiFji

is removed until the offense is eliminated [33]. The number of correction cycles N

depends on the effort invested in the calculation of αij . If the synchronized FCT
limiter is applied to all primitive variables, then undershoots and overshoots are an
exception, so that N = 1 is optimal. On the other hand, 3–5 cycles may be appro-
priate in the case αij = α

ρ
ij or αij = α

p
ij . The choice of N affects only the amount
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of rejected antidiffusion. The bounds of the low-order solution are guaranteed to be
preserved even for αij ≡ 1. Hence, the failsafe corrector can not only reinforce but
also replace the synchronized FCT limiter, as demonstrated by the numerical study
in [33].

9.3 Limiting Characteristic Variables

The idea of flux limiting in terms of local characteristic variables dates back to
the work of Yee et al. [71, 72] on total variation diminishing (TVD) schemes for the
Euler equations. The traditional approach to implementation of such high-resolution
schemes in edge-based finite element codes is based on the reconstruction of local
1D stencils [2, 10, 40, 45, 56, 57]. The development of a genuinely multidimensional
characteristic limiter is complicated by the fact that the eigenvalues and eigenvec-
tors of the Jacobian matrices eij · Aij depend on the orientation of eij , whereas all
components of the sums P±i must correspond to the same set of local characteristic
variables. For this reason, we use artificial viscosity of the form (43) and limit the
antidiffusive fluxes associated with each coordinate direction independently.

In contrast to the synchronized FCT algorithm for primitive variables, it is worth-
while to use different correction factors for different waves. In this case, an edge-
based transformation of variables is required to keep the scheme conservative.

The multiplication by the matrix of left eigenvectors Lij = R−1
ij of a directional

Jacobian Ad
ij , 1≤ d ≤ n transforms Uj − Ui into the characteristic difference

ΔWij = R−1
ij (Uj − Ui ).

Since the local characteristic variables are essentially decoupled, the components of
ΔWij can be limited separately. If a one-sided limiting strategy is adopted, the sign
of the eigenvalue λk determines the upwind direction for the k-th wave. Let

I =
{
i, if λk ≥ 0,
j, if λk < 0.

(88)

In the process of flux limiting, a nodal correction factor R±I,k is applied to Δwk
ij

̂Δwk
ij =

{
R+I,kΔwk

ij , if Δwk
ij ≤ 0,

R−I,kΔwk
ij , if Δwk

ij > 0.
(89)

The multiplication by the matrix of right eigenvectors transforms the remaining
artificial viscosity (if any) to the conservative variables. The flux to be added is

Φ
(
edij Ad

ij , Uj − Ui

) := ∣
∣edij

∣
∣Rij |Λij |(ΔWij − Δ̂Wij ). (90)

Clearly, the use of dimensional splitting makes this sort of algebraic flux correc-
tion more expensive than the synchronized FCT algorithm. However, flux limiting in
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terms of local characteristic variables is very reliable and produces accurate results.
We refer to Zalesak [73] for a presentation of characteristic FCT limiters.

10 Constrained Initialization

The initialization of data is an important ingredient of numerical algorithms for
systems of conservation laws. If the initial data are prescribed analytically, it is es-
sential to guarantee that the numerical solution has the right total mass, momentum,
and energy when the simulation begins. The pointwise definition of nodal values

U0
i =U0(xi ) (91)

is generally nonconservative. This may result in significant errors if the computa-
tional mesh is too coarse in regions where U0 is discontinuous. On the other hand,
conservative high-order projections tend to produce undershoots and overshoots.

The first use of FCT in the context of constrained data projection (initialization,
interpolation, remapping) dates back to the work of Smolarkiewicz and Grell [62]
who introduced a class of nonconservative monotone interpolation schemes. Con-
servative FCT interpolations were employed by Váchal and Liska [67] and Liska
et al. [39]. Farrell et al. [12] introduced a bounded L2 projection operator for glob-
ally conservative interpolation between unstructured meshes. In the monograph by
Löhner ([40], pp. 257–260), the FCT limiter is applied to the difference between
the consistent and lumped-mass L2 projections. The latter serves as the low-order
method that satisfies the maximum principle for linear finite elements [12].

A general approach to synchronized FCT projections for systems of conserved
variables was presented in [33]. Let U denote the initial data or a numerical solution
from an arbitrary finite element space. The standard L2 projection is defined by

∫

Ω

whU
H
h dx=

∫

Ω

whU dx, ∀wh. (92)

The nodal values of the high-order approximation UH
h satisfy the linear system

MCUH = R, (93)

where MC = {mij I} is the consistent mass matrix and R is the load vector

Ri =
∫

Ω

ϕiU dx. (94)

If the functions ϕi and U are defined on different meshes, numerical integration can
be performed using a supermesh that represents the union of the two meshes [12].

The lumped-mass approximation to (93) is a linear system with a diagonal matrix

MLUL = R. (95)
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The so-defined low-order solution UL
h has the same ‘mass’ as UH

h but is free of
undershoots and overshoots, at least in the case of linear finite elements [12].

The difference between UH
i and UL

i admits the conservative flux decomposition

UH
i = UL

i +
∑

j �=i
Fij , Fij =mij

(
UH
i − UH

j

)
. (96)

The process of flux limiting involves the same algorithmic steps as the FEM-FCT
scheme for the Euler equations. The use of failsafe postprocessing is optional.

11 Boundary Conditions

The implementation of boundary conditions for the Euler equations is an issue of
utmost importance. The solution to a hyperbolic system is a superposition of several
waves traveling in certain directions at finite speeds. Hence, the proper choice of
boundary conditions depends on the wave propagation pattern [17, 24, 60, 69]. In
this section, we review the underlying theory and discuss the numerical treatment
of characteristic boundary conditions in an implicit finite element formulation.

11.1 Physical Boundary Conditions

The number of physical boundary conditions (PBC) to be imposed is determined
using a transformation to the local characteristic variables associated with the unit
outward normal n. The result is a set of five decoupled convection equations

∂wk

∂t
+ λk

∂wk

∂n
= 0, k = 1, . . . ,5, (97)

where wk are the so-called Riemann invariants and λk are the eigenvalues of the
directional Jacobian n ·A. The matrix-vector form of system (97) reads

∂W

∂t
+Λ

∂W

∂n
= 0. (98)

The matrix Λ= diag{λ1, . . . , λ5} and vector W = [w1, . . . ,w5]T are given by [69]

Λ= diag{vn − c, vn, vn, vn, vn + c} (99)

and

W =
[
vn − 2c

γ − 1
, s, vξ , vη, vn + 2c

γ − 1

]T

. (100)

Here vn = n · v is the normal velocity, vξ and vη are the two components of the
tangential velocity τ · v, c is the speed of sound, and s = cv log( p

ργ ) is the entropy.
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Since the evolution of the Riemann invariants is governed by pure convection
equations, a boundary condition is required for each incoming wave. Hence, the
number of PBC equals the number of negative eigenvalues Nλ. By virtue of (99),
the sign of λk depends on vn, as well as on the local Mach number

M = |vn|
c

.

The following types of boundaries may need to be considered when it comes to
formulating a well-posed boundary-value problem for the Euler equations:

• Supersonic inlet: vn < 0, M > 1. All eigenvalues are negative, so Nλ = 5.
• Supersonic outlet: vn > 0, M > 1. All eigenvalues are positive, so Nλ = 0.
• Subsonic inlet: vn < 0, M < 1. Only λ5 = vn + c is nonnegative, so Nλ = 4.
• Subsonic outlet: vn > 0, M < 1. Only λ1 = vn − c is negative, so Nλ = 1.
• Solid wall boundary: vn =M = 0. Only λ1 =−c is negative, so Nλ = 1.

In many cases, the Nλ boundary conditions are given in terms of the conservative
or primitive variables. It is also possible to prescribe the total enthalpy, entropy,
temperature, or inclination angle. These data define the “free stream” state U∞ for
the computation of the Dirichlet/Neumann boundary conditions (14) and (15).

11.2 Numerical Boundary Conditions

The need for numerical boundary conditions (NBC) arises whenever 0 < Nλ < 5
so that the boundary values and normal fluxes cannot be determined using the pre-
scribed PBC alone. The missing information is obtained by solving a Riemann prob-
lem. The internal state U is defined as the numerical solution to the Euler equations
at the given point. The external state U∞ can be obtained as follows [14, 60, 69]:

1. Convert the given numerical solution U to the Riemann invariants W .
2. Set W∞ :=W and overwrite the incoming Riemann invariants by PBC.
3. Given the modified vector W∞, calculate the free stream values U∞.

In contrast to cell-centered finite volume methods, there is no need for extrapo-
lation because the values of Uh are readily available at each boundary point.

The right-hand side G(U,U∞) of the Dirichlet boundary condition (14) is de-
fined as the exact or approximate solution to the boundary Riemann problem as-
sociated with the states U and U∞. Likewise, the normal flux Fn(U,U∞) for the
Neumann boundary condition (14) can be calculated using Toro’s [64] exact Rie-
mann solver or Roe’s approximate Riemann solver [54]. The latter approach yields

Fn(U,U∞)= n · F(U)+ F(U∞)

2
− 1

2

∣∣n ·A(U,U∞)
∣∣(U∞ −U), (101)

where A(U,U∞) is the Roe matrix for the states U and U∞. This approach to weak
imposition of characteristic boundary conditions is closely related to their numerical
treatment in finite volume and discontinuous Galerkin methods [9, 66].
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11.3 Practical Implementation

In a practical implementation, it is worthwhile to initialize W∞ by the vector of
free stream values and overwrite the Riemann invariants associated with nonneg-
ative eigenvalues by the corresponding components of W . Such an algorithm is
well-suited for boundaries of any type since it determines the direction of wave
propagation and the upstream values of the characteristic variables automatically.

The transformation of the internal state U to the vector of Riemann invariants W

is performed using definition (100). The inverse transformation is given by [60, 69]

ρ =
[
c2

γ
exp

(
−w2

cv

)] 1
γ−1

, (102)

ρv = ρ(vnn+ vξτ ξ + vητ η), (103)

ρE = p

γ − 1
+ ρ

2

(
v2
n + v2

ξ + v2
η

)
, (104)

where τ ξ and τ η are two unit vectors spanning the tangential plane, and

vn = w5 −w1

2
, vξ =w3, vη =w4,

c= γ − 1

4
(w5 −w1), p = ρc2

γ
.

If the physical boundary conditions are given in terms of primitive variables or other
quantities, a conversion to the Riemann invariants is required. The practical imple-
mentation of such boundary conditions depends on the type of the boundary.

11.3.1 Open Boundary Conditions

At a supersonic inlet, the free stream values of the conservative variables U∞ can be
prescribed without transforming to the Riemann invariants. At a supersonic outlet,
the exterior state is given by U∞ =U so that the Roe flux (101) reduces to

Fn(U,U)= n · F(U).

At a subsonic inlet, it is common to prescribe the density ρin, pressure pin, and
tangential velocity τ · vin. In this case, the Riemann invariants w3 and w4 are given,
whereas w2 = cv log(pin

ρ
γ
in

) is computable. The last incoming Riemann invariant is

w1 =w5 − 4

γ − 1

√
γpin

ρin

. (105)
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In the case of a subsonic outlet with a prescribed exit pressure pout , we have [60]

w1 =w5 − 4

γ − 1

√
γpout

ρout

, (106)

where ρout depends on the calculated interior density ρ and pressure p as follows:

ρout = ρ

(
pout

p

) 1
γ

.

The outgoing Riemann invariant w5 is evaluated using the trace of the finite element
solution. The open boundary conditions (105) and (106) are generally regarded as
more physical than a prescribed upstream value of the Riemann invariant w1.

11.3.2 Wall Boundary Conditions

At a solid surface, there is no convective flux across the boundary. Hence, the normal
velocity vn must vanish. The so-defined no-penetration/free slip condition

n · v= 0 (107)

constrains a linear combination of the three velocity components. The numerical
implementation of this condition in an implicit scheme presents a considerable dif-
ficulty if the boundary is not aligned with the axes of the coordinate system.

In finite element methods for incompressible flow problems, the free slip condi-
tion (107) is usually imposed in the strong sense using element-by-element trans-
formations to a local reference frame spanned by the normal and tangential vectors
[7, 11]. The same effect can be achieved using an iterative projection of the veloc-
ity vector on the tangential plane [32]. However, the semi-explicit treatment of the
wall boundary condition slows down the iterative solver and may result in a lack of
robustness. Therefore, a fully implicit treatment is to be preferred.

In the weak form of the free slip condition, the free stream values for the compu-
tation of Fn(U,U∞) are calculated using the mirror (reflection) condition

n · (v∞ + v)= 0.

The density, tangential velocity, and total energy remain unchanged. Thus

U∞ =
⎡

⎣
ρ

ρv∞
ρE

⎤

⎦ , v∞ = v− 2n(v · n).

Another popular weak form of the zero flux boundary condition is given by

Fn =
⎡

⎣
0

np
0

⎤

⎦ . (108)
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This version does not involve the solution of a Riemann problem and has been used
in FEM codes with considerable success [4, 9, 59]. However, the Roe flux (101)
constitutes a more physical wall boundary condition than (108). In any case, the
weak imposition of the free slip condition may give rise to a nonzero normal velocity
on the wall. This problem can be fixed by adding a penalty term [18].

11.3.3 Calculation of Surface Integrals

The imposition of natural boundary conditions requires the evaluation of the numer-
ical flux Fn(U,U∞) at each quadrature point x̂i . The exterior state U∞ is associated
with a ghost node x̂i,∞ located on the other side of the boundary. The ghost nodes
provide the free stream values of the Riemann invariants and play the same role as
image cells in cell-centered finite volume schemes for the Euler equations [66].

If a curved boundary is approximated using isoparametric (linear or bilinear) fi-
nite elements, then the normal vector n is generally discontinuous at the vertices
and edges of the surface triangulation. The boundary integrals can be assembled
element-by-element using the unique normal to the boundary of each cell [18]. How-
ever, the value of Fn(U,U∞) at x̂i should be obtained by interpolating the (unique)
nodal values to ensure consistency with the group FEM approximation (18). Other-
wise, numerical side effects may arise in the boundary layer and pollute the solution
in the interior of the computational domain. As a remedy, a unique normal direction
can be determined using a suitable averaging procedure [11, 49] or an analytical
description of the curved boundary. For a detailed discussion of solid wall boundary
conditions in curved geometries, we refer to Krivodonova and Berger [25].

12 Numerical Examples

The results presented in this section illustrate some properties of our algebraic flux
correction schemes for the Euler equations. We consider a suite of 2D benchmark
problems covering a relatively wide range of Mach numbers and boundary condi-
tions. The objective of the below numerical study is to investigate the dependence
of the error on the mesh size h and on the choice of the limiting strategy.

The accuracy of a numerical solution uh ≈ u is measured in the global norms

E1(u,h) =
∑

i

mi |u(xi )− ui | ≈ ‖u− uh‖1, (109)

E2(u,h) =
√∑

i

mi |u(xi )− ui |2 ≈ ‖u− uh‖2. (110)

The rate of grid convergence is illustrated by the expected order of accuracy

p = log2

(
Ei(u,2h)

Ei(u,h)

)
, i = 1,2. (111)
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To begin with, we will evaluate the performance of the linearized FCT algorithm
for unsteady compressible flow problems [28]. Next, we will investigate the conver-
gence behavior of a characteristic TVD-like limiter for steady-state computations
[29]. In this work, stationary solutions are obtained using pseudo-time-stepping.
For additional numerical examples, the interested reader is referred to [18, 33].

12.1 Shock Tube Problem

Sod’s shock tube problem [63] is a standard benchmark for the unsteady Euler equa-
tions. The domain Ω = (0,1) is initially separated by a membrane into two sections.
When the membrane is removed, the gas begins to flow into the region of lower
pressure. The initial condition for the nonlinear Riemann problem is given by

⎡

⎣
ρL

vL

pL

⎤

⎦=
⎡

⎣
1.0
0.0
1.0

⎤

⎦ ,

⎡

⎣
ρR

vR

pR

⎤

⎦=
⎡

⎣
0.125

0.0
0.1

⎤

⎦ , (112)

where the subscripts refer to the subdomains ΩL = (0,0.5) and ΩR = (0.5,1). The
reflective wall boundary conditions are prescribed at the endpoints of Ω .

The removal of the membrane at t = 0 releases a shock wave that propagates to
the right with velocity satisfying the Rankine-Hugoniot conditions. All of the prim-
itive variables are discontinuous across the shock which is followed by a contact
discontinuity. The latter represents a moving interface between the regions of dif-
ferent densities but constant velocity and pressure. A rarefaction wave propagates
in the opposite direction providing a smooth transition to the original values of the
state variables in the left part of the domain. Hence, the flow pattern in the shock
tube is characterized by three waves traveling at different speeds [35].

The dashed lines in Fig. 1 show the exact solution to the Riemann problem (112)
at the final time T = 0.231. This solution was calculated using the exact Riemann
solver HE-E1RPEXACT [65]. The numerical solution U0

h was initialized by means
of the FCT-constrained data projection (96) and advanced in time by the semi-
implicit Crank-Nicolson scheme with the time step Δt = h/10. For each algorithm
under consideration, a grid convergence study was performed on a sequence of uni-
form grids with mesh spacing h= 1/N for N = 100, 200, 400, 800, 1600, 3200.

All numerical solutions shown in Figs. 1(a)–(h) were calculated on a uniform
mesh of 100 linear finite elements. The results produced by the low-order schemes
(αij = 0) are nonosillatory but the excess numerical diffusion gives rise to strong
smearing of the moving fronts. In this example, Roe’s approximate Riemann solver
(Fig. 1(a)) performs slightly better than the Rusanov scalar dissipation (Fig. 1(b)).

The linearized FCT algorithm (58)–(61) produced the snapshots displayed in
Figs. 1(c)–(f). In this study, the correction factors αij were calculated via sequen-
tial limiting of the control variables listed in the parentheses. Similar results were
obtained with synchronization of the form (73). The computation of the low-order
predictor using Roe’s formula (42) was found to generate undershoots/overshoots
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Fig. 1 Shock tube problem: h = 10−2, Δt = 10−3. Snapshots of the density (blue), velocity
(green), and pressure (red) distribution at the final time T = 0.231 (Color figure online)
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Table 1 Shock tube problem: grid convergence of the low-order schemes (αij = 0)

h Roe’s scheme Rusanov’s scheme

E1(ρ,h) E1(u,h) E1(p,h) E1(ρ,h) E1(u,h) E1(p,h)

1/100 2.1788e−02 4.2199e−02 1.9789e−02 2.8687e−02 5.4016e−02 2.6282e−02

1/200 1.3969e−02 2.4904e−02 1.1995e−02 1.9468e−02 3.2518e−02 1.6138e−02

1/400 8.8233e−03 1.3737e−02 7.0753e−03 1.2659e−02 1.8557e−02 9.6411e−03

1/800 5.5562e−03 7.5261e−03 4.1293e−03 8.1083e−03 1.0478e−02 5.6589e−03

1/1600 3.4900e−03 4.0920e−03 2.3835e−03 5.1423e−03 5.8427e−03 3.2668e−03

1/3200 2.2003e−03 2.2017e−03 1.3609e−03 3.2579e−03 3.2178e−03 1.8593e−03

p = 0.67 p = 0.89 p = 0.81 p = 0.66 p = 0.86 p = 0.81

that carry over to the FCT solution even if the limiter is applied to all primitive vari-
ables (Fig. 1(c)). Synchronized limiting of all conservative variables was the only
FCT method to produce satisfactory results (not shown here, see Table 2) with the
Roe-type low-order scheme. In the case of the Rusanov scalar dissipation, nonoscil-
latory solutions were obtained with the density-pressure FCT limiter (Fig. 1(d)).

The failsafe control of density and pressure (see Sect. 9.2) makes the solutions
less sensitive to the choice of control variables for the base limiter. The nonoscilla-
tory results shown in Figs. 1(e)–(f) were obtained using the density-pressure post-
processing for the Roe-FCT scheme with αij (ρ,p) and αij (ρ,ρE), respectively.
The results in Figs. 1(g)–(h) indicate that it is even possible to deactivate the main
limiter, i.e., set αij := 1 and remove (a fraction of) the antidiffusive flux in regions
where the local FCT constraints (87) are violated. However, this practice is not gen-
erally recommended since it might trigger aggressive limiting at the postprocessing
step.

In contrast to high-resolution schemes of TVD type, the raw antidiffusive flux
(59) includes a contribution of the consistent mass matrix. The lumped-mass ver-
sion (U̇L := 0) of the FCT algorithm produces the solution shown in Fig. 1(h). The
superior phase accuracy of the consistent-mass Galerkin discretization justifies the
additional effort invested in the computation of the approximate time derivative (60).

The error norms for the density, pressure, and velocity fields calculated with the
above algorithms are listed in Tables 1, 2, 3 and 4. The expected order of accuracy
p was estimated by formula (111) using the solutions computed on the two finest
meshes. As expected, the largest errors are observed for the low-order approxima-
tions. The accuracy of Roe’s approximate Riemann solver is marginally better than
that of the Rusanov scheme. The rate of grid convergence for the density approaches
p = 2/3, which is in good agreement with the results presented in [5]. Tables 2, 3
and 4 confirm that the linearized FCT algorithm converges much faster than the
underlying low-order scheme. The expected order of accuracy attains values in the
range 0.9–1.1.

The presented grid convergence study sheds some light on various aspects of
flux limiting for the unsteady Euler equations. As a rule of thumb, constraining the
density and pressure or total energy is a good choice in the context of synchronous
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Table 2 Shock tube problem: grid convergence of FCT without failsafe correction

h Roe-type predictor, αij (ρ,ρE,ρv) Rusanov-type predictor, αij (ρ,p)

E1(ρ,h) E1(u,h) E1(p,h) E1(ρ,h) E1(u,h) E1(p,h)

1/100 7.2976e−03 1.1244e−02 5.6132e−03 9.2527e−03 1.0041e−02 4.6990e−03

1/200 3.8044e−03 6.8249e−03 2.9742e−03 5.1909e−03 6.2159e−03 2.5124e−03

1/400 1.9693e−03 3.3300e−03 1.4743e−03 2.8313e−03 3.0024e−03 1.2358e−03

1/800 1.0334e−03 1.5903e−03 7.2550e−04 1.4237e−03 1.4209e−03 6.0422e−04

1/1600 5.3461e−04 7.3201e−04 3.5412e−04 7.0374e−04 6.4491e−04 2.9243e−04

1/3200 2.8770e−04 3.3918e−04 1.7761e−04 3.5707e−04 2.9345e−04 1.4587e−04

p = 0.89 p = 1.11 p = 1.00 p = 0.98 p = 1.13 p = 1.00

Table 3 Shock tube problem: grid convergence of FCT with failsafe correction

h Roe-type predictor, αij (ρ,p) Roe-type predictor, αij (ρ,ρE)

E1(ρ,h) E1(u,h) E1(p,h) E1(ρ,h) E1(u,h) E1(p,h)

1/100 8.4389e−03 9.0475e−03 4.2509e−03 7.9186e−03 8.8199e−03 4.2180e−03

1/200 5.0820e−03 5.7128e−03 2.2982e−03 4.7613e−03 5.6378e−03 2.2879e−03

1/400 3.0545e−03 2.7739e−03 1.1361e−03 2.6349e−03 2.7383e−03 1.1309e−03

1/800 1.8737e−03 1.3183e−03 5.5785e−04 1.4212e−03 1.2924e−03 5.5345e−04

1/1600 1.1502e−03 5.9718e−04 2.7068e−04 7.0388e−04 5.8257e−04 2.6794e−04

1/3200 6.6805e−04 2.7102e−04 1.3611e−04 3.5656e−04 2.6259e−04 1.3413e−04

p = 0.78 p = 1.14 p = 0.99 p = 0.98 p = 1.15 p = 1.00

Table 4 Shock tube problem: grid convergence of Roe-type failsafe FCT for αij = 1

h Consistent mass matrix Lumped mass matrix

E1(ρ,h) E1(u,h) E1(p,h) E1(ρ,h) E1(u,h) E1(p,h)

1/100 8.4725e−03 9.2123e−03 4.3338e−03 8.9680e−03 1.0579e−02 5.0899e−03

1/200 5.1763e−03 5.8569e−03 2.3466e−03 5.4849e−03 6.3070e−03 2.6797e−03

1/400 3.0879e−03 2.8643e−03 1.1668e−03 3.2170e−03 3.0904e−03 1.3348e−03

1/800 1.9700e−03 1.3755e−03 5.7960e−04 1.9142e−03 1.4843e−03 6.5940e−04

1/1600 1.2025e−03 6.3730e−04 2.8494e−04 1.1215e−03 6.9581e−04 3.2554e−04

1/3200 7.5109e−04 3.0126e−04 1.4721e−04 6.4676e−04 3.3016e−04 1.6544e−04

p = 0.68 p = 1.08 p = 0.95 p = 0.79 p = 1.08 p = 0.98

FCT. The failsafe feature improves the robustness of the algorithm but may increase
the amount of numerical diffusion. To achieve optimal phase accuracy for time-
dependent problems, the raw antidiffusive flux must include the contribution of the
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Fig. 2 Radially symmetric
Riemann problem: coarse
mesh, 824 triangles, 453
vertices

consistent mass matrix. Of course, the overall performance of the algorithm also
depends on the accuracy of the time-stepping scheme and on the time step size.

12.2 Radially Symmetric Riemann Problem

The second transient benchmark [36] is a radially symmetric 2D counterpart of the
shock tube problem. Before an impulsive start, an imaginary membrane separates
the square domain Ω = (−0.5,0.5)× (−0.5,0.5) into the inner circle

ΩL =
{
(x, y) ∈Ω |

√
x2 + y2 < 0.13

}

and the complement ΩR =Ω\ΩL. Reflective boundary conditions are prescribed
on the boundary of Ω . The gas is initially at rest. Higher pressure and density are
maintained inside ΩL than outside. The interior and exterior states are given by

⎡

⎣
ρL

vL

pL

⎤

⎦=
⎡

⎣
2.0
0.0

15.0

⎤

⎦ ,

⎡

⎣
ρR

vR

pR

⎤

⎦=
⎡

⎣
1.0
0.0
1.0

⎤

⎦ .

The abrupt removal of the membrane at t = 0 gives rise to a radially expanding
shock wave driven by the pressure difference. The challenge of this test is to capture
the moving discontinuities while preserving the radial symmetry of the solution.

All computations are performed using linear finite elements on unstructured
meshes constructed via regular subdivision of the coarse mesh depicted in Fig. 2.
As explained in Sect. 10, it is advisable to initialize the numerical solution in a
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Fig. 3 Radially symmetric Riemann problem: initial density ρ0
h on the coarse mesh

conservative manner. The total mass and energy of the initial data are given by

∫

Ω

ρ dx = 1+ (0.13)2 · π ≈ 1.05309291584567,

∫

Ω

ρE dx = 2.5+ 35 · (0.13)2π ≈ 4.35825205459836.

Since the exact solution is discontinuous, the load vector (94) was assembled us-
ing adaptive cubature formulas [68]. The density profiles produced by 4 different
initialization techniques are shown in Figs. 3(a)–(d). It can readily be seen that the
consistent L2 projection fails to preserve the bounds of the initial data, while its
lumped counterpart gives rise to significant numerical diffusion. The synchronized
FCT limiter (96) with αij = αij (ρ,p) makes it possible to achieve a crisp resolution
of the discontinuous initial profile without generating undershoots or overshoots.

Table 5 reveals that the pointwise initialization of nodal values is nonconserva-
tive. The consistent-mass L2 projection preserves the total mass and energy but the
initial density exhibits undershoots and overshoots of about 20%. Moreover, the ini-
tial pressure attains negative values, which results in an immediate crash of the code.
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Table 5 Radially symmetric Riemann problem: constrained initialization on the coarse mesh
∫
Ω

ρ0
h dx

∫
Ω
(ρE)0

h dx min(ρ0
h) max(ρ0

h) min(p0
h) max(p0

h)

(a) 1.04799 4.17949 1.0 2.0 1.0 15.0

(b) 1.05309 4.35823 7.9845e−01 2.2239e+00 −1.8216e+00 1.8135e+01

(c), (d) 1.05309 4.35823 1.0 2.0 1.0 15.0

In contrast, the nodal values obtained with the lumped-mass L2 projection and the
flux-corrected version satisfy 1.0≤ ρ0

h ≤ 2.0 and 1.0≤ p0
h ≤ 15.0 as desired.

The evolution of the numerical solution initialized by the constrained L2 pro-
jection was studied on the mesh obtained with 4 global refinements. The Crank-
Nicolson time-stepping was employed with Δt = 2 · 10−3. Figures 4(a)–(d) display
snapshots of the density (left) and pressure (right) at the final time T = 0.13. These
solutions were obtained using the Roe tensorial dissipation and linearized FCT with
the density-pressure limiter. Remarkably, both the low-order solution (top) and its
flux-corrected counterpart (bottom) preserve the radial symmetry on the unstruc-
tured mesh. The symmetry plots shown in Figs. 4(e)–(f) show the nodal values
ρi = ρh(xi, yi) and pi = ph(xi, yi) versus distance to the origin. The presented
results are in a good agreement with the reference solutions computed using CLAW-
PACK [38].

12.3 Double Mach Reflection

A more challenging test for the unsteady Euler equations is the double Mach reflec-
tion problem of Woodward and Colella [70]. In this benchmark, a Mach 10 shock
impinges on a reflecting wall at the angle of 60◦ degrees. The computational domain
is the rectangle Ω = (0,4)× (0,1). The following pre-shock and post-shock values
of the flow variables are used to define the initial and boundary conditions [3]

⎡

⎢⎢
⎣

ρL

uL

vL
pL

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

8.0
8.25 cos(30◦)
−8.25 sin(30◦)

116.5

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

ρR

uR

vR
pR

⎤

⎥⎥
⎦=

⎡

⎢⎢
⎣

1.4
0.0
0.0
1.0

⎤

⎥⎥
⎦ . (113)

Initially, the post-shock values are prescribed in ΩL = {(x, y) | x < 1/6+ y/
√

3}
and the pre-shock values in ΩR =Ω\ΩL. The reflecting wall corresponds to 1/6≤
x ≤ 4 and y = 0. No boundary conditions are required along the line x = 4. On the
rest of the boundary, the post-shock conditions are prescribed for x < 1/6+ (1+
20t)/

√
3 and the pre-shock conditions elsewhere [3]. The so-defined values along

the top boundary describe the exact motion of the initial Mach 10 shock.
The density fields (30 isolines) depicted in Figs. 5, 6 and 7 were computed using

bilinear finite elements on a sequence of structured meshes with equidistant grid
spacings h = 1/64, 1/128, 1/256, and 1/512. Integration in time was performed
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Fig. 4 Radially symmetric Riemann problem: density (red) and pressure (blue) at T = 0.13 (Color
figure online)
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Fig. 5 Double Mach
reflection: isodensity contours
at T = 0.2; low-order
scheme, αij = 0

until T = 0.2 by the Crank-Nicolson scheme with the time step Δt = 64h · 10−4.
The low-order solution displayed in Fig. 5 was calculated using the Roe-type artifi-
cial viscosity. Due to strong numerical diffusion, the complex interplay of incident,
reflected, and Mach stem shock waves is resolved rather poorly, and so is the slip-
stream at the triple point. The use of FCT with synchronized limiting on primitive
(Fig. 6) or conservative (Fig. 7) variables yields a marked improvement without pro-
ducing ‘staircase structures’ or other artefacts observed by Woodward and Colella
[70].



224 D. Kuzmin et al.

Fig. 6 Double Mach
reflection: isodensity contours
at T = 0.2; unsafe FCTRoe ,
αij (ρ,p)

12.4 GAMM Channel

In the remainder of this section, we present the results of a numerical study for the
stationary Euler equations. To begin with, we simulate the steady transonic flow in
the GAMM channel with a 10% circular bump. For a detailed description of this
popular benchmark, we refer to Feistauer et al. [13]. The gas enters the channel at
free stream Mach number M∞ = 0.67 and accelerates to supersonic velocities as
it flows over the bump. The Mach number varies between approximately 0.22 and
1.41. An isolated shock wave forms in the local supersonic region. The inlet and
outlet lie in the region of subsonic flow. Hence, the results are sensitive to the choice
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Fig. 7 Double Mach
reflection: isodensity contours
at T = 0.2; unsafe FCTRoe ,
αij (ρ,ρE)

of physical and numerical boundary conditions. This makes the GAMM channel
problem rather challenging when it comes to computing steady-state solutions.

Unless mentioned otherwise, the free stream boundary values for all stationary
benchmark problems are given in the following dimensionless form [60]:

Variable Free stream value

ρ∞ 1

u∞ M∞
v∞ 0

p∞ 1
γ

E∞ M2∞
2 + 1

γ (γ−1)
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Fig. 8 GAMM channel:
(a) stationary Mach number
distribution and (b) the coarse
grid

Table 6 GAMM channel: relative L2 errors and grid convergence rates

Level NVT NEL ELow
2 pLow ELim

2 pLim

1 176 292 5.47 · 10−2 0.59 3.05 · 10−2 0.56

2 643 1168 3.64 · 10−2 0.64 2.07 · 10−2 1.04

3 2453 4672 2.34 · 10−2 0.59 1.01 · 10−2 0.99

4 9577 18688 1.55 · 10−2 0.61 5.07 · 10−3 1.45

5 37841 18688 1.01 · 10−2 1.85 · 10−3

6 150433 299008

The unstructured triangular mesh shown in Fig. 8(b) is successively refined to
construct the computational mesh for the GAMM channel. Table 6 lists the num-
ber of vertices (NVT) and elements (NEL) for up to 5 quad-tree refinements. The
stationary Mach number distribution computed with an algebraic flux correction
scheme of TVD type [18, 19, 29] on mesh level 6 is presented in Fig. 8(a). It can
readily be seen that the resolution of the shock wave is rather crisp and nonoscilla-
tory.

The numerical solution to the Euler equations was initialized by the above free
stream values and marched to the steady state using pseudo-time-stepping in con-
junction with the semi-implicit linearization procedure (see Sect. 7). At the initial
stage, we neglect the nonlinear antidiffusive term and begin with the inexpensive
computation of a low-order predictor. When the residuals of the low-order scheme
reach the prescribed tolerance, the limited antidiffusive correction is switched on,
and the iteration process continues until convergence to a stationary solution.

During the startup phase, the pseudo-time-stepping scheme runs at the moder-
ately large CFL number ν = 100. When the relative residual falls below 10−2, the
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Fig. 9 GAMM channel: convergence history for various CFL numbers on mesh level 4

linearization becomes sufficiently accurate, and ν can be chosen arbitrarily large. In
our experience, the semi-implicit algorithm converges even for ν =∞.

Figure 9 presents the convergence history for the flux-corrected Galerkin scheme
and its low-order counterpart. In either case, the Neumann-type boundary conditions
are imposed in a weak sense. The log-scale plots show the residual of the nonlin-
ear system versus the number of pseudo-time steps for various CFL numbers. The
employed mesh (refinement level 4) contains a total of 9,577 vertices.

Remarkably, convergence to the steady-state solution accelerates as the CFL
number increases. In the case of the low-order scheme, ν = ∞ delivers the best
convergence rates, whereby the norm of the residual falls below 10−12 after just ten
iterations. Small values of the CFL number imply slow convergence, whereas fast
and almost monotone error reduction is observed for large pseudo-time steps.

The flux-corrected Galerkin scheme exhibits a similar convergence behavior but
requires a larger number of nonlinear iterations. As the CFL number is increased,
the convergence rates improve until the threshold ν = 100 is reached. A further in-
crease of the pseudo-time step does not result in faster convergence. In contrast to
the findings of Trépanier et al. [66], the rate of convergence does not deteriorate but
stays approximately the same for all ν ≥ 100. However, the lagged treatment of the
non-differentiable antidiffusive term and the oscillatory behavior of the correction
factors produced by the limiter impose an upper bound on the rate of convergence.
A better preconditioning of the discrete Jacobian operator and/or the use of conver-
gence acceleration technique are likely to yield a further gain of efficiency.

The results of a grid convergence study for stationary solutions to the GAMM
channel problem are presented in Table 6. The relative L2 error defined as

Erel
2 =

‖Uh −U‖2

‖U‖2
(114)

is calculated using the reference solution U computed on mesh level 6. The effective
order of accuracy is p ≈ 0.6 for the low-order predictor and p ≈ 1.0 for the high-
resolution scheme. The higher accuracy of the flux-corrected solution justifies the
additional computational effort. The errors generated near the shock can be reduced
using adaptive mesh refinement based on a goal-oriented error estimate [30].
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Table 7 NACA 0012 airfoil:
Test cases Case α M∞

I 2◦ 0.63

II 1.25◦ 0.8

III 1◦ 0.85

A proper implementation of boundary conditions is crucial for the overall accu-
racy of a numerical scheme for the Euler equations. Errors caused by an inappro-
priate boundary treatment may propagate into the interior of the domain and inhibit
convergence to steady-state solutions. For an in-depth numerical study of the bound-
ary conditions for the GAMM channel problem, we refer to Gurris et al. [18, 19].
It turns out that the fully implicit treatment of weakly imposed boundary conditions
(see Sect. 11) leads to a much more robust and efficient implementation than the
predictor-corrector algorithm described in the first edition of this chapter [32].

13 NACA 0012 Airfoil

In the next example, we simulate the steady gas flow past a NACA 0012 airfoil. The
upper and lower surfaces are given by the function f± : [0,1.00893] !→R with

f±(x)=±0.6
(
0.2969

√
x − 0.126x − 0.3516x2 − 0.1015x4). (115)

We consider three test configurations labeled Case I–III. The corresponding values
of the free stream Mach number M∞ and inclination angle α are listed in Table 7.

The outer boundary of the computational domain is a circle of radius 10 centered
at the tip of the airfoil. The unstructured coarse mesh and a zoom of the reference
solution for Case II are displayed in Fig. 10. The stationary Mach number distri-
bution is in a good agreement with the numerical results presented in [13, 23, 32,
52].

The low-order solution is initialized by the free stream values, and a few itera-
tions with the CFL number ν = 10 are performed before increasing the pseudo-time
step. As before, the low-order predictor serves as an initial guess for the algebraic
flux correction scheme equipped with the characteristic limiter of TVD type.

The nonlinear convergence history for mesh level 2 and the results of a grid con-
vergence study for Case 2 are presented in Fig. 11 and Table 8, respectively. As
in the previous example, the semi-implicit pseudo-time-stepping scheme converges
faster as the CFL number is increased. In the case of ν =∞, the residual falls below
10−15 in 20 iterations. The high-resolution scheme exhibits similar convergence be-
havior, although the total number of iterations is much larger. It takes approximately
200 iterations for the residual to reach the tolerance 10−8. Increasing the CFL num-
bers beyond the threshold ν = 100 yields just a marginal improvement. The errors
for ν = 100, 1000, and∞ are almost identical but considerably smaller than those
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Fig. 10 NACA 0012 airfoil:
coarse mesh and the Mach
number distribution (zoom)

for ν = 1 and 10. The effective order of accuracy is about 0.5 for the low-order
scheme and 1.0 for the characteristic FEM-TVD scheme (see Table 8).

The drag and lift coefficients for all test cases are displayed in Table 9. They
agree well with the available reference data [8, 15, 52], although the lift is slightly
underestimated. This fact can be attributed to the relatively small size of the compu-
tational domain. It was shown in [8, 52] that the value of the lift coefficient tends to
increase with the distance to the artificial far field boundary. The results presented
therein were computed with far field distances of up to 2048 chords, while the far
field boundary of our domain is located as few as 10 chords away from the airfoil.
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Fig. 11 NACA 0012 airfoil: convergence history for various CFL numbers on mesh level 2

Table 8 NACA 0012 airfoil: relative L2 errors and grid convergence rates

Level NVT NEL ELow
2 pLow ELim

2 pLim

1 2577 4963 4.08 · 10−2 0.51 1.68 · 10−3 1.02

2 10117 19852 2.86 · 10−2 0.46 8.27 · 10−4 1.02

3 40086 79408 2.08 · 10−2 2.68 · 10−4

4 159580 317632

Table 9 NACA 0012 airfoil: drag and lift coefficients for all configurations

(a) Case I (b) Case II (c) Case III

Level CD CL Level CD CL Level CD CL

1 2.8194 · 10−3 0.2791 1 2.0043 · 10−2 0.3065 1 5.2434 · 10−2 0.3205

2 3.5473 · 10−4 0.2977 2 1.9198 · 10−2 0.3169 2 5.3217 · 10−2 0.3400

3 1.2927 · 10−4 0.3071 3 1.9501 · 10−2 0.3199 3 5.4087 · 10−2 0.3441

4 1.1355 · 10−4 0.3120 4 1.9933 · 10−2 0.3200 4 5.4636 · 10−2 0.3436

14 Converging-Diverging Nozzle

In the last numerical example, we simulate the transonic flow in a converging-
diverging nozzle. The free slip boundary condition (107) is prescribed on the upper
and lower walls of the nozzle defined by the function g± : [−2,8] !→R with [23]

g±(x)=

⎧
⎪⎨

⎪⎩

±1 if −2≤ x ≤ 0,

± cos( πx
2 )+3
4 if 0 < x ≤ 4,

±1 if 4 < x ≤ 8.

(116)

At the subsonic inlet (x =−2, −1≤ y ≤ 1), the free stream Mach number equals
M∞ = 0.3. To facilitate comparison with the results presented by Hartmann and
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Table 10
Converging-diverging nozzle:
mesh properties

Level NVT NEL

1 33 20

2 105 80

3 369 320

4 1377 1280

5 5313 5120

6 20865 20480

7 82689 81920

Table 11 Grid convergence study: outflow boundary condition

Level NVT NEL NVTout Eout
2 pout

5 5313 5120 33 2.50 · 10−3 1.32

6 20865 20480 65 1.00 · 10−3 1.12

7 82689 81920 129 4.62 · 10−4

Houston [23], we define the free stream pressure as p∞ = 1 rather than p∞ = 1
γ

. At

the subsonic outlet (x = 8, −1≤ y ≤ 1), the exit pressure pout = 2
3 is prescribed as

explained in Sect. 11.3.1. As the nozzle converges, the gas is accelerated to super-
sonic velocities. After entering the diverging part, the flow begins to decelerate and
passes through a shock before becoming subsonic again [23].

A mesh of bilinear elements is generated from a structured coarse mesh using
global refinements. The numbers of vertices and elements for 7 levels of refinement
are listed in Table 10. Figure 12 displays the numerical solution computed on mesh
level 7. There is a good agreement with the results obtained by Hartmann [22].

To assess the numerical error in the outlet boundary condition pout = 2
3 , we

present the pressure distribution at the outlet Γout in Fig. 13. The relative L2 er-
ror

Eout
2 =

‖p− pout‖2,Γout

‖pout‖2,Γout

(117)

and the effective order of accuracy pout for mesh levels 5–7 are listed in Table 11,
where NVTout is the number of nodes at the outlet. It can be seen that the errors
are very small, even on a relatively coarse mesh. As the mesh is refined, the errors
shrink. This illustrates the consistency of the proposed boundary treatment.

15 Conclusions

This chapter sheds some light on the aspects of algebraic flux correction for systems
of conservation laws. We extended the scalar limiting machinery to the compressible
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Fig. 12 Converging-diverging nozzle: FEM-TVD solution on mesh level 7

Fig. 13
Converging-diverging nozzle:
exit pressure distribution

Euler equations and discussed various implementation details (initial and bound-
ary conditions, linearization techniques, iterative solvers etc). Furthermore, we pre-
sented a new approach to constraining the primitive variables in synchronized FCT
algorithms. It differs from other flux limiters for systems in that the transformation
of variables is performed node-by-node rather than edge-by-edge. The generalized
Zalesak limiter was equipped with a simple failsafe corrector designed to preserve
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the bounds of the low-order solution. A numerical study was performed to illustrate
the practical utility of the proposed limiting techniques for the Euler equations.

In summary, flux limiting for hyperbolic systems may require (i) a careful choice
of the variables to be controlled, (ii) a suitable synchronization of the correction
factors, and (iii) a mechanism that makes it possible to ‘undo’ the antidiffusive cor-
rection whenever it turns out to be harmful. The accuracy and efficiency of the code
depend on the employed linearizations. Moreover, the implementation of character-
istic boundary conditions can make or break the numerical algorithm. All of these
issues must be taken into account when it comes to solving real-life problems.

Acknowledgements The authors would like to thank Stefan Turek (Dortmund University of
Technology), John Shadid (Sandia National Laboratories), and Mikhail Shashkov (Los Alamos
National Laboratory) for many stimulating discussions and useful suggestions.

Appendix

In this appendix, we derive the artificial diffusion operator for the piecewise-linear
Galerkin approximation to the one-dimensional Euler equations

∂U

∂t
+ ∂F

∂x
= 0. (118)

In the 1D case, we have

U =
⎡

⎣
ρ

ρv

ρE

⎤

⎦ , F =
⎡

⎣
ρv

ρv2 + p

ρHv

⎤

⎦ . (119)

The differentiation of F by the chain rule yields the equivalent quasi-linear form

∂U

∂t
+A

∂U

∂x
= 0, (120)

where A= ∂F
∂U

is the Jacobian matrix. It is easy to verify that

A=
⎡

⎢
⎣

0 1 0
1
2 (γ − 3)v2 (3− γ )v γ − 1

1
2 (γ − 1)v3 − vH H − (γ − 1)v2 γ v

⎤

⎥
⎦ . (121)

The eigenvalues and right/left eigenvectors of A satisfy the system of equations

Ark = λkrk, lkA= λklk, k = 1,2,3 (122)

which can be written in matrix form as AR =RΛ and R−1A=ΛR−1. Thus,

A=RΛR−1, Λ= diag{v− c, v, v+ c} (123)
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in accordance with (9). The matrices of eigenvalues and eigenvectors are given by

Λ= diag{v− c, v, v+ c}, (124)

R =
⎡

⎣
1 1 1

v− c v v+ c

H − vc 1
2v

2 H + vc

⎤

⎦= [r1, r2, r3], (125)

and

R−1 =
⎡

⎢
⎣

1
2 (b1 + v

c
) 1

2 (−b2v − 1
c
) 1

2b2

1− b1 b2v −b2
1
2 (b1 − v

c
) 1

2 (−b2v + 1
c
) 1

2b2

⎤

⎥
⎦=

⎡

⎣
l1
l2
l3

⎤

⎦ , (126)

where

b1 = b2
v2

2
, b2 = γ − 1

c2
.

On a uniform mesh of linear finite elements, the coefficients of the lumped mass
matrix ML and of the discrete gradient operator C are given by

mi =Δx, cij =
{

1/2, j = i + 1,
−1/2, j = i − 1.

(127)

The lumped-mass Galerkin approximation is equivalent to the central difference
scheme which can be written in the generic conservative form

dUi

dt
+ Fi+1/2 − Fi−1/2

Δx
= 0, (128)

where

Fi+1/2 = Fi + Fi+1

2
.

The numerical flux of the low-order scheme with Di+1/2 defined by (42) is

Fi+1/2 = Fi + Fi+1

2
− 1

2
|Ai+1/2|(Ui+1 − Ui ), (129)

where Ai+1/2 is the 1D Roe matrix. The so-defined approximation is known as Roe’s
approximate Riemann solver [54]. A detailed description of this first-order scheme
can be found in many textbooks on gas dynamics [24, 37, 64]. Roe’s method fails
to recognize expansion waves and, therefore, may give rise to entropy-violating so-
lutions (rarefaction shocks) in the neighborhood of sonic points. Hence, some ad-
ditional numerical diffusion may need to be applied in regions where one of the
characteristic speeds approaches zero [20, 21]. This trick is called an entropy fix.

The use of scalar dissipation (46) leads to a Rusanov-like low-order scheme with

Fi+1/2 = Fi + Fi+1

2
− ai+1/2

2
(Ui+1 − Ui ), (130)
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where ai+1/2 denotes the fastest characteristic speed. Zalesak [73] defines it as

ai+1/2 = |vi | + |vi+1|
2

+ ci + ci+1

2
.

For reasons explained in [5], our definition of the Rusanov flux (130) is based on

ai+1/2 :=max{|vi | + ci, |vi+1| + ci+1}.
This formula yields a very robust and efficient low-order method for FCT [33].
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Algebraic Flux Correction III

Incompressible Flow Problems

Stefan Turek and Dmitri Kuzmin

Abstract This chapter illustrates the use of algebraic flux correction in the con-
text of finite element methods for the incompressible Navier-Stokes equations and
related models. In the convection-dominated flow regime, nonlinear stability is en-
forced using algebraic flux correction. The numerical treatment of the incompress-
ibility constraint is based on the ‘Multilevel Pressure Schur Complement’ (MPSC)
approach. This class of iterative methods for discrete saddle-point problems unites
fractional-step/operator-splitting methods and strongly coupled solution techniques.
The implementation of implicit high-resolution schemes for incompressible flow
problems requires the use of efficient Newton-like methods and optimized multi-
grid solvers for linear systems. The coupling of the Navier-Stokes system with scalar
conservation laws is also discussed in this chapter. The applications to be consid-
ered include the Boussinesq model of natural convection, the k–ε turbulence model,
population balance equations for disperse two-phase flows, and level set methods for
free interfaces. A brief description of the numerical algorithm is given for each prob-
lem.

1 Introduction

One of the most fundamental models in fluid mechanics is the incompressible
Navier-Stokes equations for the velocity u and pressure p of a Newtonian fluid

∂u
∂t
+ u · ∇u− νΔu+∇p = f,

∇·u= 0,
(1)
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where ν is the kinematic viscosity of the fluid and f is a given external force. In
contrast to compressible flow models, there is no equation of state. The constant
density ρ is “hidden” in the modified pressure p which adjusts itself instantaneously
so as to render the velocity field u divergence-free. The solution to (1) is sought in
a bounded domain Ω ⊂R

d, d = 2,3 on a finite time interval (0, T ]. The choice of
initial and boundary conditions depends on the particular application.

The Navier-Stokes equations (NSE) describe an amazing variety of fluid flows
and represent a ‘grand challenge’ problem of profound importance to mathemati-
cians, physicists, and engineers. It is not surprising that the NSE were among the
seven Millennium Problems selected by the Clay Mathematics Institute in 2000.
The associated $1,000,000 prize is to be awarded for “substantial progress toward
a mathematical theory which will unlock the secrets hidden in the Navier-Stokes
equations.” During the first decade of the XXI century, no major breakthrough was
achieved on the theoretical side of this enterprise. However, a lot of progress has
been made in the development of numerical methods for the Navier-Stokes equa-
tions and their applications in Computational Fluid Dynamics (CFD).

Models based on the incompressible Navier-Stokes equations are widely used in
applied mathematics and engineering sciences. The nonlinearity of the convective
term, the incompressibility constraint, and the possible coupling of (1) with other
equations make the numerical implementation of such models rather challenging.
Numerical instabilities may be caused not only by the dominance of convective
terms at high Reynolds numbers but also by the velocity-pressure coupling or by the
numerical treatment of sources/sinks. In many applications, the flow is turbulent and
takes place in a domain of complex geometrical shape. Additional difficulties are
associated with the presence of moving boundaries, free interfaces, or unresolvable
small-scale features. All peculiarities of a given model must be taken into account
when it comes to the design of reliable and efficient numerical methods.

The performance of CFD software depends not only on the accuracy of the un-
derlying discretization techniques but also on the choice of iterative solvers, data
structures, and programming concepts. Explicit schemes are easy to implement and
parallelize but give rise to severe time step restrictions. In the case of an implicit
scheme, one has to solve sparse nonlinear systems for millions of unknowns at each
time step. The computational cost can be reduced by using optimal preconditioners,
multigrid solvers, local mesh refinement, and adaptive time step control. Last but
not least, parallelization of the code is a must for many real-life applications.

The development of improved numerical algorithms for the incompressible
Navier-Stokes equations has been actively pursued for more than 50 years. The num-
ber of publications on this topic is overwhelming. For a comprehensive overview,
the reader is referred to the book by Gresho et al. [22]. In many cases, numerical
solutions to the NSE are accurate enough to look realistic. The result of a 2D sim-
ulation for the laminar flow around a cylinder is shown in Fig. 1(a). The snapshot
exhibits a remarkably good agreement with the experimental data in Fig. 1(b). How-
ever, a quantitative comparison of drag and lift coefficients produced by different
codes reveals significant differences in their accuracy and efficiency [63].

A current trend in CFD is to combine the ‘basic’ Navier-Stokes equations (1)
with more or less sophisticated engineering models for industrial applications. Ad-
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Fig. 1 Flow around a
cylinder: (a) numerical
simulation with FEATFLOW

[78], (b) experimental data
(source: Van Dyke’s ‘Album
of Fluid Motion’ [89])

ditional equations are included to describe turbulence, nonlinear fluids, combustion,
detonation, multiphase flow, free and moving boundaries, fluid-structure interaction,
weak compressibility, and other effects. Some of these extensions will be discussed
in the present chapter. All of them require a very careful choice of numerical ap-
proximations and iterative solution techniques. In summary, the main ingredients of
a ‘perfect’ CFD code for a generalized Navier-Stokes model are as follows:

• Discretization: adaptive high-resolution schemes, discrete maximum principles;
• Solvers: robust and efficient iterative methods for linear and nonlinear systems;
• Implementation: optimal data structures, hardware-specific code, parallelization.

The availability and compatibility of these components would make it possible to
attain high accuracy with a relatively small number of unknowns. Alternatively, dis-
crete problems of the same size could be solved more efficiently. The marriage of
accurate numerical methods and fast iterative solvers would make it possible to ex-
ploit the potential of modern computers to the full extent and improve the MFLOP/s
rates of incompressible flow solvers by orders of magnitude. Hence, algorithmic
aspects play an increasingly important role in contemporary CFD research.

This chapter begins with a brief review of the Multilevel Pressure Schur Com-
plement (MPSC) approach to solving the incompressible Navier-Stokes equations
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at high and low Reynolds numbers. Next, the coupling of the basic flow model with
additional transport equations is discussed in the context of the Boussinesq approx-
imation for natural convection problems. Algebraic flux correction is shown to be
a useful tool for enforcing positivity on unstructured meshes in 3D. In particular,
a positivity-preserving implementation of the standard k–ε turbulence model is de-
scribed. The application of the proposed algorithms to multiphase flow models is
illustrated by a case study for population balance equations and free surface flows.

2 Discretization of the Navier-Stokes Equations

The incompressible Navier-Stokes equations are an integral part of all mathematical
models to be considered in this chapter. First of all, we discretize (1) in space and
time. For our purposes, it is convenient to begin with the time discretization. As a
time-stepping method, we will use an implicit two-level θ -scheme (backward Euler
or Crank-Nicolson) or the fractional-step θ -scheme proposed by Glowinski.

Let Δt denote the time step for advancing the solution from the time level tn

to the time level tn+1 := tn +Δt . The value of Δt may be chosen adaptively. The
semi-discrete version of (1) can be written in the following generic form [78]:

Given u(tn) find u= u(tn+1) and p = p(tn+1) such that

[
I + θΔt(u · ∇ − νΔ)

]
u+Δt∇p = g, ∇ · u= 0 in Ω, (2)

where

g= [
I − θ1Δt

(
u
(
tn
) · ∇ − νΔ

)]
u
(
tn
)+ θ2Δtf

(
tn+1)+ θ3Δtf

(
tn
)
. (3)

The values of the parameters θ and θi , i = 1,2,3 depend on the time-stepping
scheme. For example, θ = θ2 = 1, θ1 = θ3 = 0 for the backward Euler method.

Next, let us discretize the above problem in space using the finite element method
(FEM). The algorithms to be presented in this chapter are also applicable to finite
difference and finite volume approximations since the structure of the discrete prob-
lems is the same. We favor the finite element approach because the applications we
have in mind require the use of high-order discretizations on unstructured meshes.
Moreover, the FEM is backed by a solid mathematical theory that makes it possible
to obtain rigorous a posteriori error estimates for adaptation in space and time.

The Galerkin finite element approximation to (2) is derived from a variational
form of the semi-discretized Navier-Stokes equations. The discretization in space
begins with the generation of a computational mesh Th for the domain Ω . As usual,
the subscript h refers to the local size of mesh cells (triangles or quadrilaterals in 2D,
tetrahedra or hexahedra in 3D). Inside each cell, the numerical solution is defined in
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Fig. 2 Nodal points of the
nonconforming finite element
pair Q̃1/Q0 in 2D

terms of polynomial basis functions. Let Vh and Qh denote the finite-dimensional
spaces for the velocity and pressure approximations, respectively. The discretization
of (2) is stable if Vh and Qh satisfy the Babuška–Brezzi (BB) condition [20]

min
qh∈Qh

max
vh∈Vh

(qh,∇ · vh)

‖qh‖0 ‖∇vh‖0
≥ γ > 0 (4)

with a mesh–independent constant γ . If the use of equal-order interpolations is de-
sired, additional stabilization terms must be included (see, e.g., [28]).

The lowest-order finite element approximations satisfying the above inf-sup
condition are the nonconforming Crouzeix-Raviart (P̃1/P0) and Rannacher-Turek
(Q̃1/Q0) elements [11, 62]. In either case, the degrees of freedom for the velocity
are associated with edge/face mean values, whereas the pressure is approximated in
terms of cell mean values. A sketch of the nodal points for a quadrilateral Q̃1/Q0
element is shown in Fig. 2. The benefits of using low-order nonconforming approx-
imations include a relatively small number of unknowns and the availability of effi-
cient multigrid solvers which are sufficiently robust in the whole range of Reynolds
numbers, even on nonuniform and highly anisotropic meshes [64, 78]. Last but not
least, algebraic flux correction is readily applicable to P̃1 and Q̃1 elements [41].

The most popular inf-sup stable approximation of higher order is the Taylor-
Hood (P2/P1 or Q2/Q1) element. In our experience, the Q2/P1 element is a better
choice for non-simplex meshes [12]. Since no algebraic flux correction schemes
are currently available for higher-order finite elements, the Q2/P1 version of our
Navier-Stokes solver is stabilized using continuous interior penalty techniques [56,
86].

The vectors of discrete nodal values for the velocity and pressure will also be
denoted by u and p. The nonlinear discrete problem is formulated as follows:

Given un find u= un+1 and p = pn+1 such that

Au+ΔtBp = g, BT u= 0, (5)

where

g= [
M − θ1ΔtN

(
un
)]

un + θ2Δtfn+1 + θ3Δtfn . (6)
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Here M is the (consistent or lumped) mass matrix, B is the discrete gradient
operator, and −BT is the discrete divergence operator. The matrix A is given by

A=M − θΔtN(u), (7)

where

N(u)=K(u)+ νL,

K(u) is the discrete transport operator and L is the viscous part of the stiffness
matrix. The nonlinear operator N(u) may also include artificial diffusion due to
algebraic flux correction or other stabilization/shock-capturing techniques.

The discretization of the stationary Navier-Stokes equations also leads to a
nonlinear system of the form (5). To use the same notation for steady and time-
dependent flow problems, we replace (7) with the more general definition

A= αM − θΔtN(u). (8)

The discrete evolution operator given by (7) corresponds to α = 1. The steady-state
approximation is defined by the parameter settings α = 0, θ = 1, Δt = 1.

The design of efficient iterative methods for the above discrete problem involves
a linearization of N(u) or iterative solution of the nonlinear system using fixed-
point defect correction or Newton-like methods. Special techniques (explicit or im-
plicit underrelaxation, line search, Anderson acceleration) may be implemented to
achieve and speed up convergence. When it comes to the numerical treatment of
the incompressibility constraint, one has a choice between a strongly coupled ap-
proach (simultaneous computation of u and p) and fractional-step algorithms (pro-
jection schemes [8, 91], pressure correction methods [16, 58]). The abundance
of choices has generated a great variety of incompressible flow solvers that ex-
hibit considerable differences in terms of their complexity, robustness, and effi-
ciency.

The Multilevel Pressure Schur Complement (MPSC) formulation to be presented
below makes it possible to put many existing solution algorithms into a common
framework and combine their advantages. In particular, the iterative solver may be
configured in an adaptive manner so as to achieve the best run-time characteristics
for a given problem. For a more detailed presentation of the MPSC paradigm and
additional numerical examples, we refer to the monograph by Turek [78].

3 Pressure Schur Complement Solvers

The linearized form of the fully discrete problem (5), as well as the linear systems
to be solved at each iteration of a nonlinear scheme, can be written as

[
A ΔtB

BT 0

][
u
p

]
=
[

g
0

]
. (9)
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This is a typical saddle point problem in which the pressure p acts as the Lagrange
multiplier for the discretized incompressibility constraint.

The Schur complement equation for the pressure can be derived using a formal
elimination of the velocity unknowns. The discrete form of ∇ · u= 0 is

BT u= 0, (10)

where u is the solution to the discretized momentum equation, that is,

u=A−1(g−ΔtBp). (11)

Thus, an equivalent formulation of the discrete saddle-point problem (9) reads:

Au = g−ΔtBp, (12)

BT A−1Bp = 1

Δt
BT A−1g. (13)

Since the right-hand side of (12) depends on the solution to (13), the two sub-
problems should actually be solved in the reverse order:

1. Solve the pressure Schur complement (PSC) equation (13) for p.
2. Substitute p into the momentum equation (12) and compute u.

In the fully nonlinear version, the Schur complement operator S := BT A−1B de-
pends on the solution to (12), so a number of outer iterations are performed.

The practical implementation of the two-step algorithm also requires a number of
inner iterations. Since the matrix A−1 is full, the assembly and storage of S would
be prohibitively expensive in terms of CPU time and memory requirements. Thus,
it is imperative to solve the PSC equation in an iterative way. For instance, consider
a preconditioned Richardson’s method based on the following basic iteration

p(l) = p(l−1) +C−1
[

1

Δt
BT A−1g− Sp(l−1)

]
, (14)

where l = 1,2, . . . ,L is the iteration counter, C−1 is a suitable approximation
to S−1, and the expression in the brackets is the residual of the PSC equation.

By definition of S, an equivalent form of the pressure correction equation (15) is

p(l) = p(l−1) +C−1 1

Δt
BT A−1[g−ΔtBp(l−1)]. (15)

In practice, the matrices A and C are “inverted” by solving a linear system. Thus,
the implementation of (15) can be split into the following basic tasks:
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1. Given the pressure p(l−1), solve the discrete momentum equation

Au(l) = g−ΔtBp(l−1). (16)

2. Given the velocity u(l), solve the pressure correction equation

Cq(l) = 1

Δt
BT u(l). (17)

3. Add the pressure increment q(l) to the current approximation

p(l) = p(l−1) + q(l). (18)

The number of pressure correction cycles L can be fixed or variable. The iterative
process may be terminated when the increments and residuals become small enough.
Using C := S, one obtains the solution to (9) in one step (L= 1). The assembly of C
can be avoided using a GMRES-like iterative solver that operates with matrix-vector
products. The evaluation of Cy = BT A−1By would involve an iterative solution
of the linear system Ax = By followed by the matrix-vector multiplication Cy :=
BT y. This procedure must be repeated as many times as necessary to reach the
prescribed tolerance for the residual of the PSC equation. Hence, the computational
cost per time step is likely to be very high even if multigrid acceleration is employed.

In many cases, the matrix-free ‘inversion’ of C := S is impractical. In particular,
the cost per time step is always the same, although a good initial guess is available
when the time steps are small. In this case, the discrete evolution operator

A=M − θΔtN(u)≈M +O(Δt) (19)

represents a well-conditioned perturbation of the symmetric positive-definite mass
matrix M . Hence, the discrete momentum equation can be solved efficiently for
small Δt . However, the condition number of the PSC operator is given by

cond(S)= cond
(
BT

[
M +O(Δt)

]−1
B
)≈ cond(L)=O

(
h−2) (20)

and does not improve when the time step is refined. The invariably high cost of
solving the “elliptic” pressure Schur complement equation makes C := S a poor
choice when it comes to simulation of unsteady flows with small time steps.

A computationally efficient Schur complement preconditioner for time-dependent
flow problems can be designed using approximations of the form

C := BT Ã−1B, (21)

where Ã ≈ A is a matrix that can be ‘inverted’ in an efficient way. By (20), the
condition number of the PSC operator is dominated by the elliptic part. Thus, the
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preconditioner can be defined using the symmetric positive definite matrix

Ã :=M − θΔtνL. (22)

By (19), a usable preconditioner for high Reynolds number flows is given by

Ã :=M. (23)

Replacing M with a lumped mass matrix ML, one obtains a sparse approximation
to the Schur complement operator. Another simple choice is the diagonal matrix

Ã := diag(A). (24)

In general, the formula for Ã should be as simple as possible but not simpler. Sparse
approximations like C := BT M−1

L B or C := BT diag(A)−1B rely on the diagonal
dominance of A. The total number of iterations increases at large time steps, and
convergence may fail if the off-diagonal part of A can no longer be neglected.

The preconditioning of (15) by a global matrix of the form (21) is called the
global pressure Schur complement approach [78]. A typical implementation is based
on the fractional-step algorithm (16)–(18). The well-known representatives of such
segregated incompressible flow solvers include discrete projection schemes [15, 23,
60, 77], various modifications of the SIMPLE method, and Uzawa-like algorithms.
For an overview of segregated methods, we refer to [16] and references therein.

An alternative to the sequential update of the velocity and pressure unknowns is
the solution of small coupled subproblems. This solution strategy is recommended
for steady-state computations and low Reynolds number flows. It should also be
considered if the Navier-Stokes system is coupled with a RANS turbulence model
or another set of convection-diffusion equations. If the variables are updated in a
segregated manner, strong two-way coupling may result in slow convergence. In
this case, it is worthwhile to replace (21) with a sum of local preconditioners

C−1 :=
∑

i

P T
i S−1

i Pi, (25)

where Si := BT
i A−1

i Bi is the Schur complement matrix for a local subproblem that
corresponds to a small subdomain (a single element or a patch of elements) Ωi . The
multiplication by the transformation matrix Pi picks out the degrees of freedom
associated with Ωi , whereas the multiplication by PT

i locates the global degrees of
freedom to be updated after solving a local subproblem of the form Sixi = Piy.

The basic iteration (15) preconditioned by (25) is called the local pressure Schur
complement method [78]. The embedding of “local solvers” into an outer iteration
loop of Jacobi or Gauss–Seidel type has a lot in common with domain decomposi-
tion methods but multilevel PSC preconditioners of the form (25) do not require a
special treatment of interface conditions. A typical representative of such schemes
is the Vanka smoother [90] which is widely used in the multigrid community.
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As a matter of fact, it is possible to combine global PSC (“operator splitting”)
and local PSC (“domain decomposition”) methods in a general-purpose CFD code.
This can be accomplished by using additive preconditioners of the form

C−1 :=
∑

i

αiC
−1
i .

In what follows, we briefly discuss the design of such preconditioners and present
the resulting algorithms. The convergence of these basic iteration schemes can be
accelerated by using them as preconditioners for Krylov subspace methods (CG,
BiCGStab, GMRES) or smoothers for a multigrid solver. The latter approach leads
to a family of Multilevel pressure Schur complement (MPSC) methods that prove
robust and efficient, as demonstrated by the benchmark computations in [63].

4 Global MPSC Approach

The construction of globally defined additive preconditioners for the Schur comple-
ment operator S = BT A−1B is motivated by the following algebraic splitting

A= αM + βK(u)+ γL, (26)

where β =−θΔt and γ = νβ . Consider C := BT Ã−1B , where Ã is an approxima-
tion to A. The above decomposition of A into the reactive (M), convective (K), and
viscous (L) part suggests the use of a similar splitting for C−1. Let

• CM be an approximation to the reactive part BT M−1B ,
• CK be an approximation to the convective part BT K−1B ,
• CL be an approximation to the viscous part BT L−1B .

The preconditioner CM is well-suited for computations with small time steps. CK is
optimal for steady flows at high Reynolds numbers, and CL is optimal for steady
flows at low Reynolds numbers. Hence, a general-purpose PSC preconditioner can
be defined as a suitable combination of the above. In particular, we consider

C−1 := α′C−1
M + β ′C−1

K + γ ′C−1
L , (27)

where α′ ∈ [0, α], β ′ ∈ [0, β], γ ′ ∈ [0, γ ] are parameters that can be used to activate,
deactivate, and blend partial preconditioners depending on the flow regime.

To achieve the best overall performance, the meaning of ‘optimality’ has to be
defined more precisely. Clearly, the most accurate preconditioner for each subprob-
lem is the one that does not involve any approximations. In principle, even a full
matrix of the form BT Ã−1B can be “inverted” using a matrix-free iterative solver
(see above). However, simpler partial preconditioners are likely be more efficient
smoothers in the context of a multigrid method. The MPSC solver is well-designed
if each subproblem can be solved efficiently and the convergence rates are not sen-
sitive to the parameter settings and geometric properties of the mesh. Optimal pre-
conditioners satisfying these criteria are introduced and analyzed in [78].
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At high Reynolds numbers, the use of small time steps is dictated by the physical
scales of flow motion. Thus, the lumped mass matrix ML is a reasonable approxi-
mation to A, and the sparse matrix C := BT M−1

L B may be used as a preconditioner
for the basic iteration (15). The practical implementation of the PSC cycle

p(l) = p(l−1) + [
BT M−1

L B
]−1 1

Δt
BT A−1[g−ΔtBp(l−1)] (28)

is based on the fractional-step algorithm (16)–(18) and can be interpreted as a dis-
crete projection scheme [15, 23, 60, 77]. An additional step is included to enforce
the incompressibility constraint after the last iteration. The algorithm becomes:

1. Given the pressure p(l−1), solve the “viscous Burgers” equation

Au(l) = g−ΔtBp(l−1). (29)

2. Given the velocity u(l), solve the “pressure Poisson” equation

BT M−1
L Bq(l) = 1

Δt
BT u(l). (30)

3. Add the pressure increment q(l) to the current approximation

p(l) = p(l−1) + q(l). (31)

To enforce BT u= 0, perform the divergence-free L2 projection

u= u(l) −ΔtM−1
L Bq(l). (32)

The projection step is included because the intermediate velocity u(l) is cal-
culated using an approximate pressure p(l−1) and is generally not (discretely)
divergence-free. Multiplying (32) by BT and using (30), we obtain

BT u= BT u(l) −ΔtBT M−1
L Bq(l) = 0. (33)

It can be shown that BT M−1
L B corresponds to a mixed discretization of the Lapla-

cian operator [23]. If just one basic iteration is performed, algorithm (29)–(32) has
the structure of a classical projection scheme for the time-dependent incompressible
Navier-Stokes equations. In particular, a discrete counterpart of Chorin’s method [8]
is obtained with the trivial initial guess p(0) = 0. The choice p(0) = p(tn) leads to
the discrete version of the second-order accurate van Kan scheme [91].

The derivation of continuous projection methods involves the use of operator
splitting and the Helmholtz decomposition of the intermediate velocity [21, 60].
Replacing differential operators with matrices, one obtains a discrete projection
scheme of the form (29)–(32). The advantages of the algebraic approach include
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• applicability to discontinuous pressure approximations,
• consistent treatment of boundary conditions (no splitting),
• alleviation of spurious boundary layers for the pressure,
• convergence to the fully coupled solution as l increases,
• possibility of using other global PSC preconditioners.

On the negative side, discrete projection schemes lack inherent stabilization
mechanisms, whereas the continuous Chorin and van Kan methods may be used
with equal-order (P1/P1) interpolations if the time step is not too small [59].

The vectorizable global MPSC schemes are more efficient than coupled solvers
in the high Reynolds number regime. If the discrete evolution operator A is domi-
nated by the reactive part, it is sufficient to perform just one pressure Schur comple-
ment iteration per time step. The number of inner iterations for the viscous Burgers
equation (29) can also be as small as 1 since u(tn) is a good initial guess.

If an optimized multigrid method is used to solve the pressure Poisson prob-
lem (29), the total cost per time step is just a small fraction of that for a coupled
solver. However, the sparse matrix BT M−1

L B may become a poor approximation
to BT A−1B at large time steps. Therefore, the local MPSC approach presented in
the next section is a better choice for low Reynolds number flows and steady-state
computations.

5 Local MPSC Approach

In contrast to the global MPSC approach, local Schur complement preconditioners
make it possible to update the velocity and pressure in a strongly coupled fashion.
In this section, we explain the underlying design philosophy and practical imple-
mentation. As already mentioned, the basic idea is to solve small coupled subprob-
lems associated with patches of degrees of freedom. We define a patch as a small
subset of the vector of unknowns. The solutions to the local subproblems are used
to correct the corresponding subsets of the global solution vector. The so-defined
block-Jacobi or block-Gauß-Seidel iteration provides a very robust smoother for a
multilevel solution strategy [13]. The local MPSC algorithm is amenable to a paral-
lel implementation that exploits the fast cache of modern processors.

The coefficients of local subproblems for the multilevel “domain decomposition”
method are extracted from the global matrices using a restriction matrix Pi that picks
out the degrees of freedom associated with the i-th patch. We define

[
Ai ΔtBi

BT
i 0

]
:= Pi

[
A ΔtB

BT 0

]
PT
i . (34)

Thus, the ‘boundary conditions’ for subdomains are also taken from the global ma-
trices. The local Schur complement matrix for the i-th subproblem is given by

Si = BT
i A−1

i Bi . (35)
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The block-Jacobi version of the local PSC method can be formulated as follows:

Given u(l−1) and p(l−1), assemble the defect of the discrete problem (9)

[
r(l−1)

s(l−1)

]
=
[

g
0

]
−
[

A ΔtB

BT 0

][
u(l−1)

p(l−1)

]
(36)

and perform one basic iteration with the additive PSC preconditioner

[
u(l)

p(l)

]
=
[

u(l−1)

p(l−1)

]
+ω(l)

∑

i

P T
i

[
Ãi ΔtBi

BT
i 0

]−1

Pi

[
r(l−1)

s
(l−1)
i

]
. (37)

The local stiffness matrix Ãi matrix is chosen to be an approximation to Ai . The
default is Ãi :=Ai . The relaxation parameter ω(l) can be fixed or chosen adaptively.

The practical implementation of (37) begins with the solution of local problems

[
Ãi ΔtBi

BT
i 0

][
v(l)
i

q
(l)
i

]

= Pi

[
r(l−1)

s(l−1)

]
. (38)

Next, the calculated local increments are inserted into the global vectors

[
v(l)

q(l)

]
=
∑

i

P T
i

[
v(l)
i

q
(l)
i

]

. (39)

Finally, the velocity and pressure approximations are updated thus:

[
u(l)

p(l)

]
=
[

u(l−1)

p(l−1)

]
+ω(l)

[
v(l)

q(l)

]
. (40)

If some degrees of freedom are shared by two or more patches, a weighted av-
erage of the corresponding local increments is inserted into the global vector. The
simplest strategy is to overwrite the contributions of previously processed patches
or to calculate the arithmetic mean over all patch contributions.

The local subproblems (38) are so small that they can be solved using Gaussian
elimination. A further reduction in the size of the linear system is offered by the
Schur complement formulation of the local subproblem. The preconditioner

C−1
i :=

[
BiÃ

−1
i Bi

]−1 (41)

is a full matrix but its size depends on the number of pressure unknowns only. If
the patch Ωi contains just a moderate number of degrees of freedom, then the small
matrix Ci is likely to fit into the processor cache. The local PSC problem can be
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solved very efficiently making use of hardware–optimized BLAS libraries. The cor-
responding velocity increment can be recovered as explained in Sect. 3.

In a sequential code, the block-Jacobi form of the basic iteration may be re-
placed with a block-Gauß-Seidel relaxation that calculates the local residuals us-
ing the latest solution values. Both versions are likely to perform well as long as
there are no strong mesh anisotropies. However, severe convergence problems may
occur on meshes with sharp angles and/or large aspect ratios. The local MPSC ap-
proach makes it possible to avoid the potential troubles by “hiding” the anisotropic
mesh cells inside macroelements that have a regular shape. Several adaptive block-
ing strategies for generation of such macromeshes are described in [64, 78].

6 Multilevel Solution Strategy

The presented PSC schemes are particularly efficient if a multilevel solution strategy
is adopted. To begin with, consider an abstract linear system of the form

ANuN = fN . (42)

The subscript N refers to the number of approximation levels. In geometric multi-
grid methods, these levels are characterized by the mesh size h. Let Ak and fk

denote the matrix and the right-hand side for the level number k = 1, . . . ,N − 1.
The convergence of a basic iteration scheme on finer levels can be significantly ac-
celerated by a few iterations on coarser levels. The multilevel solution algorithm
can be interpreted as a hierarchical preconditioner for the slowly converging basic
solver.

The main ingredients of a (geometric) multigrid method for solving (42) are:

• matrix–vector multiplication routines for the operators Ak, k = 1, . . . ,N ,
• an inexpensive smoother (basic iteration scheme) and a coarse grid solver,
• prolongation I k

k−1 and restriction I k−1
k operators for grid transfer.

Let u0
k denote the initial guess for the k-level iteration MPSC(k,u0

k, fk). The
so-defined multigrid cycle yields an approximate solution to the linear system

Akuk = fk.

On the coarsest level, the number of unknowns is typically so small that the
discrete problem A1u1 = f1 can be solved directly. The result is

MPSC
(
1, u0

1, f1
)=A−1

1 f1.

For all other levels of approximation (k > 1), the following algorithm is used [78]:
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1. Presmoothing

Given u0
k , perform m basic iterations (smoothing steps) to obtain um

k .

2. Coarse grid correction

Restrict the residual of the discrete problem to the coarse grid

fk−1 = I k−1
k

(
fk −Aku

m
k

)
.

Set u0
k−1 = 0 and calculate ui

k−1 recursively for i = 1, . . . , p

ui
k−1 =MPSC

(
k − 1, ui−1

k−1, fk−1
)
.

3. Relaxation and update

Correct um
k using a prolongation of the coarse grid solution

um+1
k = um

k + αkI
k
k−1u

p

k−1.

4. Postsmoothing

Given um+1
k , perform m smoothing steps to obtain um+1+n

k .

The relaxation parameter αk may be fixed or chosen adaptively so as to minimize
the error in a certain norm. Using the discrete energy norm, one obtains

αk =
(fk −Aku

m
k , I k

k−1u
p

k−1)k

(AkI
k
k−1u

p

k−1, I
k
k−1u

p

k−1)k
.

After sufficiently many cycles on level N , the above multigrid algorithm yields
the converged solution to (42). An extension to the discrete saddle point problem
(9) can be performed using a global or local pressure Schur complement approach.

The global MPSC approach corresponds to solving the generic system (42) with

AN := BT A−1B, uN := p, fN := 1

Δt
BT A−1g.

The basic iteration is given by (15). After solving the Schur complement equation
for the pressure p, the velocity u is updated. The bulk of CPU time is spent on
matrix-vector multiplications for smoothing, defect calculation, and adaptive coarse
grid correction. The multiplication by C = BT Ã−1B requires an iterative solution
of a linear system, unless Ã is a diagonal matrix. The choice C = BT M−1

L B leads
to a discrete projection scheme (16)–(18) that requires solving a viscous Burgers
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equation and a Poisson-like equation. Both subproblems can be solved efficiently
using linear multigrid methods. For the reasons explained in Sect. 4, the global
MPSC approach is recommended for unsteady flows at high Reynolds numbers.

The local MPSC approach corresponds to solving the generic system (42) with

AN :=
[

A ΔtB

BT 0

]
, uN :=

[
u
p

]
, fN :=

[
g
0

]
.

The basic iteration is the block-Jacobi method given by (37) or the block-Gauß-
Seidel version of the local PSC method. The cost-intensive part is the smoothing
step, as in the case of standard multigrid techniques for elliptic problems. Local
MPSC schemes lead to very robust solvers for coupled problems. This solution
strategy is recommended for flows at low and intermediate Reynolds numbers.

The presented MPSC solvers have been implemented in the open-source soft-
ware package FEATFLOW [79]. The source code and documentation are available at
http://www.featflow.de. Further algorithmic details (adaptive coarse grid correction,
grid transfer operators, nonlinear iteration techniques, time step control, implemen-
tation of boundary conditions) can be found in the monograph by the first author
[78]. Some programming strategies, data structures, and guidelines for the develop-
ment of a hardware-oriented code are presented in [80–82, 84].

7 Coupling with Scalar Equations

In many practical applications, the Navier-Stokes equations are coupled with a sys-
tem of conservation laws for scalar quantities transported with the flow. In the con-
text of turbulence modeling, the additional variables may represent the turbulent
kinetic energy k, its dissipation rate ε, or the components of the Reynolds stress
tensor. The evolution of temperatures, concentrations, and volume fractions is also
governed by convection-dominated transport equations with coefficients that depend
on the solution to the basic flow model. The discrete maximum principle for these
additional equations can be enforced using algebraic flux correction [38].

To explain the ramifications of a two-way coupling with scalar equations, we
consider the Boussinesq model of natural convection. The weakly compressible flow
induced by temperature gradients is described by the Navier-Stokes system

∂u
∂t
+ u · ∇u+∇p = νΔu+ T eg, ∇ · u= 0, (43)

where T is the temperature, and eg stands for the unit vector directed opposite to
the gravitational acceleration g. The temperature equation is given by

∂T

∂t
+ u · ∇T = dΔT . (44)

http://www.featflow.de


Algebraic Flux Correction III 255

In the nondimensional form of this model, the viscosity and diffusion coefficient

ν =
√

Pr

Ra
, d =

√
1

Ra Pr

depend on the Rayleigh number Ra and Prandtl number Pr. A detailed description
of the Boussinesq model and the parameter settings for the MIT benchmark problem
(natural convection in a differentially heated enclosure) can be found in [9].

7.1 Finite Element Discretization

Adding the buoyancy force and the temperature equation to the discretized Navier-
Stokes equations, one obtains a nonlinear algebraic system of the form

Au(u)u+ΔtMT T +ΔtBp = fu, (45)

BT u = 0, (46)

AT (u)T = fT . (47)

The subscripts u and T are used to distinguish between the evolution operators
and right-hand sides of the momentum and temperature equations. As before, the
matrices Au and AT can be decomposed into a reactive, convective, and diffusive
part

Au(v) = αuMu + βuKu(v)+ γuLu, (48)

AT (v) = αT MT + βT KT (v)+ γT LT . (49)

The finite element spaces and discretization techniques for u and T may be chosen
independently. For example, the temperature may be discretized with linear finite
elements even if Q̃1/Q0 or Q2/P1 elements are employed for the Navier-Stokes
part. Moreover, different stabilization techniques may be used for Ku and KT .

The generic matrix form of the discretized Boussinesq model (45)–(47) reads
⎡

⎣
Au(u) ΔtMT ΔtB

0 AT (u) 0
BT 0 0

⎤

⎦

⎡

⎣
u
T

p

⎤

⎦=
⎡

⎣
fu
fT

0

⎤

⎦ . (50)

This generalization of (9) can be solved using a global or local MPSC algorithm.

7.2 Global MPSC Algorithm

In the case of unsteady buoyancy-driven flows, the equations of the Boussinesq
model (50) can be solved in a segregated manner. A discrete projection method
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for the Navier-Stokes equations can be combined with an algebraic flux correction
scheme for the temperature equation using outer iterations to update the unknown
coefficients. The decoupled solution of the two subproblems makes it possible to de-
velop software in a modular way making use of optimized multigrid solvers. More-
over, the time step can be chosen individually for each subproblem.

In the simplest implementation, one outer iteration per time step is performed.
Given the velocity un, temperature T n, and pressure pn at the time level tn, the
following fractional-step algorithm is used to advance the solution in time [87]:

1. Solve the viscous Burgers equation

Au(ũ)ũ= fu −ΔtMT T
n −ΔtBpn.

2. Solve the Pressure-Poisson equation

BT M−1
L Bq = 1

Δt
BT ũ.

3. Correct the velocity and pressure

un+1 = ũ−ΔtM−1
L Bq,

pn+1 = pn + q.

4. Solve the temperature equation

AT

(
un+1, T n+1)T n+1 = fT .

Since the matrix Au(ũ) depends on the unknown solution ũ to the discrete momen-
tum equation, the system is nonlinear. We solve it using iterative defect correction or
a Newton-like method. The discrete problem associated with the temperature equa-
tion is also nonlinear if algebraic flux correction is performed. Nonlinear solvers
and convergence acceleration techniques for such systems are discussed in [38].

7.3 Local MPSC Algorithm

A generalization of the local MPSC approach can be used in situations when the
above fractional-step algorithm proves insufficiently robust. The local problems are
formulated using a restriction of the approximate Jacobian matrix associated with
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the nonlinear system (50). The structure of this matrix is as follows [64, 78]:

J
(
σ,u(l)

)=
⎡

⎣
Au(u(l))+ σR(u(l)) ΔtMT ΔtB

σR(T (l)) AT (u(l)) 0
BT 0 0

⎤

⎦ . (51)

The nonlinearity of the convective term gives rise to the ‘reactive’ part R which
represents a solution-dependent mass matrix and may cause severe convergence
problems. For this reason, we multiply R by an adjustable parameter σ . The choice
σ = 1 corresponds to Newton’s method. Setting σ = 0, one obtains the fixed-point
defect correction scheme. In either case, the linearized problem is solved using a
fully coupled multigrid solver equipped with a local MPSC smoother of ‘Vanka’
type [64]. The global matrix J (σ,u(l)) is decomposed into small blocks

Ji = PiJP T
i

associated with patches of regular shape. The smoothing of the global defect vector
is performed patchwise by solving the corresponding local subproblems.

The size of the local matrices can be further reduced by using the Schur com-
plement approach. For simplicity, consider the case σ = 0 (an extension to σ > 0 is
straightforward). Using (47) to eliminate the temperature in (45), we obtain

Auu= fu −ΔtMT A
−1
T fT −ΔtBp. (52)

Next, we use (52) to eliminate the velocity in the discretized continuity equation

BT u= BT A−1
u

[
fu −ΔtMT A

−1
T fT −ΔtBp

]= 0. (53)

Thus, the pressure Schur complement equation associated with (50) reads

BT A−1
u Bp = BT A−1

u

[
1

Δt
fu −MT A

−1
T fT

]
. (54)

At the local subproblem level, the matrix Ji is replaced with the Schur complement
preconditioner Ci that has the same size as in the case of the basic Navier-Stokes
system. After solving the local PSC equation and updating the pressure, the velocity
and temperature increments are calculated and added to the global vectors.

The local MPSC algorithm is more difficult to implement than the fractional-step
method presented in Sect. 7.2. However, the coupled solution strategy has a num-
ber of attractive features. Above all, steady-state solutions can be obtained without
resorting to pseudo-time stepping. In the case of unsteady flows at low Reynolds
numbers, the strongly coupled treatment of local subproblems makes it possible to
use large time steps without any loss of robustness. On the other hand, the conver-
gence behavior of multigrid solvers with Newton-type linearization may turn out to
be unsatisfactory, and the computational cost per outer iteration is rather high com-
pared to the global MPSC algorithm. The performance of both solution techniques
is illustrated by the numerical study for the MIT benchmark problem [87].
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8 Case Study: Turbulent Flows

Turbulence plays an important role in many incompressible flow problems. Since
direct numerical simulation (DNS) of turbulent flows is unaffordable for Reynolds
numbers of practical interest, eddy viscosity models based on the Reynolds Aver-
aged Navier-Stokes (RANS) equations are commonly employed in CFD codes.

This section describes a numerical implementation of the k–ε model that has
been in use since the 1970s. To model the effect of unresolved velocity fluctuations,
the viscous part of the Navier-Stokes equations is replaced with

∇ · (ν + νT )
[∇u+ (∇u)T

]
,

where νT is the turbulent eddy viscosity. In the standard k–ε model [50], νT depends
on the turbulent kinetic energy k and its dissipation rate ε as follows:

νT = Cμ

k2

ε
, Cμ = 0.09.

The evolution of k and ε is governed by the convection-diffusion-reaction equations

∂k

∂t
+∇ ·

(
uk− νT

σk

∇k
)
= Pk − ε, (55)

∂ε

∂t
+∇ ·

(
uε− νT

σε

∇ε
)
= ε

k
(C1Pk −C2ε), (56)

where Pk = νT
2 |∇u + ∇uT |2 is responsible for the production of k. The involved

empirical constants are given by C1 = 1.44, C2 = 1.92, σk = 1.0, σε = 1.3.
The above equations are nonlinear and strongly coupled, which makes them very

sensitive to the choice of numerical algorithms. In particular, the discretization pro-
cedure must be positivity-preserving because negative values of the eddy viscosity
would produce numerical instabilities and eventually result in a crash of the code.

8.1 Positivity-Preserving Linearization

In our implementation of k–ε model, the incompressible Navier-Stokes equations
are discretized using the nonconforming Q̃1/Q0 element pair. Standard Q1 ele-
ments are employed for k and ε. The discretization of (59)–(60) yields [41, 42]

Ak(u, νT )k = fk, (57)

Aε(u, νT )ε = fε. (58)

The use of algebraic flux correction for the convective terms is not sufficient for
positivity preservation. Indeed, nonphysical negative values can also be produced
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by the right-hand sides fk and fε . As shown by Patankar [58], a negative slope
linearization of sink terms is required to maintain positivity.

To write the equations of the k–ε model in the desired form, we introduce

γ = ε

k
.

The negative slope linearization of (59)–(60) is based on the representation [47]

∂k

∂t
+∇ ·

(
uk− νT

σk

∇k
)
+ γ k = Pk, (59)

∂ε

∂t
+∇ ·

(
uε− νT

σε

∇ε
)
+C2γ ε = γC1Pk, (60)

where νT and γ are evaluated using the solution from the last outer iteration [42].
After solving the linearized equations (59) and (60), the new values k(l) and ε(l)

are used to calculate the linearization parameter γ (l) for the next outer iteration,
if any. The associated eddy viscosity νT is bounded below by a certain fraction of
the laminar viscosity 0 < νmin ≤ ν and above by νmax = lmax

√
k, where lmax is the

maximum admissible mixing length (the size of the largest eddies, e.g., the width of
the domain). In our implementation, the limited mixing length

l∗ =
{
Cμ

k3/2

ε
, if Cμk

3/2 < εlmax,

lmax, otherwise
(61)

is used to calculate the turbulent eddy viscosity by the formula

νT =max{νmin, l∗
√
k}. (62)

The corresponding linearization parameter γ is given by

γ = Cμ

k

νT
. (63)

The above representation makes it possible to avoid division by zero and obtain
bounded nonnegative coefficients without manipulating the values of k and ε.

8.2 Initial Conditions

It is not always easy to find reasonable initial values for the k–ε model. If the veloc-
ity is initialized by zero, it takes the flow some time to become turbulent. Therefore,
we use a constant eddy viscosity ν0 during a startup phase that ends at a certain time
t∗ > 0. The values to be assigned to k and ε at t = t∗ depend on the choice of ν0 and
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on the mixing length l0 ∈ [lmin, lmax], where the threshold parameter lmin is related
to the size of the smallest admissible eddies. Given ν0 and l0, we define

k0 =
(
ν0

l0

)2

, ε0 = Cμ

k
3/2
0

l0
. (64)

Alternatively, the initial values of k and ε can be estimated with a zero-equation
turbulence model or defined using an extension of the boundary conditions.

8.3 Boundary Conditions

The k–ε model is very sensitive to the choice and numerical implementation of
boundary conditions. In particular, an improper near-wall treatment can render the
algorithm useless. The right choice of inflow values is also important. For this rea-
son, we discuss the imposition of boundary conditions in some detail.

At the inflow boundary Γin , the values of all variables are commonly prescribed:

u= g, k = c∞|u|2, ε = Cμ

k3/2

l0
on Γin, (65)

where c∞ ∈ [0.003,0.01] and |u| stands for the magnitude of the velocity vector.
At the outlet Γout, the normal derivatives of all variables are set equal to zero

n · [∇u+∇uT
]= 0, n · ∇k = 0, n · ∇ε = 0 on Γout. (66)

In the context of finite element methods, the normal derivatives appear in the surface
integrals that result from integration by parts in the variational form of the governing
equations. These integrals do not need to be assembled if homogeneous Neumann
(“do-nothing”) boundary conditions of the form (66) are prescribed.

On a fixed solid wall Γw , the velocity must satisfy the no-penetration condition

n · u= 0 on Γw. (67)

In laminar flow models, the tangential velocity is also set equal to zero, so that the
no-slip condition u = 0 holds on Γw . To avoid the need for resolving the viscous
boundary layer in turbulent flow simulations, the boundary condition for the tan-
gential direction is frequently given in terms of the wall shear stress

tw = n · σ − (n · σ · n)n, σ = ν
[∇u+∇uT

]
. (68)

If tw is prescribed on Γw , then (67) is called the free slip condition because the
tangential velocity is defined implicitly and its value is generally unknown.

The practical implementation of the free-slip condition is nontrivial, unless the
boundary of the domain is aligned with the axes of the Cartesian coordinate system.
In contrast to the no-slip condition, (67) constrains a linear combination of several
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velocity components whose boundary values are unknown. Therefore, standard im-
plementation techniques do not work. The free-slip condition can be implemented
using element-by-element transformations to a local coordinate system aligned with
the wall [17]. However, this strategy requires substantial modifications of the code.
In our current implementation, we drive the normal velocities to zero in an iterative
way using projections of the form u := u − (n · u)n [41]. Other implementation
techniques are discussed in [40] in the context of compressible flow problems.

8.4 Wall Functions

To complete the problem statement, we still have to prescribe the tangential stress
tw , as well as the boundary conditions for k and ε on the wall Γw . Note that the
equations of the standard k–ε model are invalid in the near-wall region, where the
Reynolds number is rather low and viscous effects are dominant. To bridge the gap
between the no-slip boundaries and the region of turbulent flow, analytical solutions
to the boundary layer equations are frequently used to determine the values of tw ,
k, and ε near the wall. The use of logarithmic wall laws leads to the following set of
boundary conditions to be prescribed at a small distance y from the wall Γw

tw =−u2
τ

u
|u| , k = u2

τ√
Cμ

, ε = u3
τ

κy
, (69)

where κ = 0.41 is the von Kármán constant. The friction velocity uτ is given by

|u|
uτ

= 1

κ
logy+ + β, y+ = uτ y

ν
. (70)

The value of the parameter β depends on the wall roughness (β = 5.2 for smooth
walls). The above logarithmic relationship is valid for 11.06≤ y+ ≤ 300.

The use of wall functions implies that a thin boundary layer of width y is re-
moved, and the equations of the k–ε model should be solved in the reduced domain.
Since the local Reynolds number y+ is proportional to y, the wall distance should
be chosen carefully. It is common to apply the wall laws (69) at the first internal
node or integration point. However, the so-defined y depends on the mesh size and
may fall into the viscous sublayer where (70) is invalid.

Another possibility is to adapt the mesh so that the location of boundary nodes
always corresponds to a fixed value of y+ which should be as small as possible
for accuracy reasons. Taking the smallest value for which the logarithmic law still
holds, one can neglect the width of the removed boundary layer and avoid mesh
adaptation [25, 47]. In this case, the nodes located on the wall Γw should be treated

as if they were shifted by the distance y = y+ν
uτ

in the normal direction.
As explained in [25], the smallest wall distance for the definition of y+ corre-

sponds to the point where the logarithmic layer meets the viscous sublayer. At this
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point, the linear relation y+ = |u|
uτ

and the logarithmic law (70) must hold, whence

y+ = 1

κ
logy+ + β. (71)

This nonlinear equation can be solved iteratively. The resulting value of the param-
eter y+ (for the default settings κ = 0.41, β = 5.2) is given by y+∗ ≈ 11.06.

The relationship between y+∗ and the friction velocity uτ becomes very simple:

uτ = |u|
y+∗

. (72)

On the other hand, the wall boundary condition for k implies that

uτ = C0.25
μ

√
k. (73)

Following Grotjans and Menter [25], we use a combination of the above to define

tw =− uτ

y+∗
u, uτ =max

{
C0.25

μ

√
k,
|u|
y+∗

}
. (74)

This definition of tw is consistent with (69) and prevents the momentum flux from
going to zero at separation/stagnation points [25]. The natural boundary condition
for the wall shear stress is used to evaluate the surface integral

∫

Γw

tw ·wds =−
∫

Γw

uτ

y+∗
u ·wds, (75)

where w is the test function for the Galerkin weak form of the momentum equation.
By (69), the wall function for the turbulent eddy viscosity νT is given by

νT = Cμ

k2

ε
= κuτ y = κy+∗ ν. (76)

This relation is satisfied automatically if the wall functions for k and ε are im-
plemented in the strong sense. However, the use of Dirichlet boundary conditions
implies that the values of k and ε depend on u via the friction velocity uτ = |u|

y+∗
but

there is no feedback. The result is an unrealistic one-way coupling.
To release the boundary values of k and ε and let them influence the tangential

velocity via (74)–(75), the wall functions must be implemented in a weak sense.
Differentiating (69), one obtains the Neumann boundary conditions [25]

n · ∇k =−∂k

∂y
= 0,

n · ∇ε =− ∂ε

∂y
= u3

τ

κy2
= ε

y
.

(77)
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The unknown wall distance y can be expressed in terms of the turbulent eddy vis-
cosity νT = κuτ y, which yields a natural boundary condition of Robin type

n · ∇ε = κuτ

νT
ε, uτ = C0.25

μ

√
k. (78)

The surface integrals associated with the Neumann boundary condition are given by
∫

Γw

νT

σk

(n · ∇k)w ds = 0, (79)

∫

Γw

νT

σε

(n · ∇ε)w ds =
∫

Γw

κuτ

σε

εw ds. (80)

Alternatively, the strong form of the wall law ε = u3
τ

κy
= u4

τ

κy+∗ ν
can be used to pre-

scribe a Dirichlet boundary condition for ε or evaluate the right-hand side of (80).
If the wall functions for ε and/or k are prescribed in a weak sense, it is essential

to calculate νT and Pk using the strong form of the wall law. That is, the correct
value of the turbulent eddy viscosity is given by (76), while the production term

Pk = u3
τ

κy
= u4

τ

κy+∗ ν
(81)

is in equilibrium with the dissipation rate. The friction velocity uτ is defined by (74).

8.5 Chien’s Low-Re k–ε Model

Logarithmic laws provide a reasonably accurate description model of the flow in the
near-wall region avoiding the need for costly integration to the wall. The derivation
is only valid for flat-plate boundary layers and developed flow conditions but wall
functions of the form (69) are frequently used in more general settings with con-
siderable success. An obvious drawback to this approach is the assumption that the
viscous sublayer is very thin. Clearly, it is no longer safe to apply the wall functions
on Γw if the wall distance associated with the constant y+∗ becomes too large.

A robust, albeit costly, alternative to wall laws is the use of damping functions
that provide a smooth transition from laminar to turbulent flow. In Chien’s low-
Reynolds number k–ε model [7], the turbulent eddy viscosity is redefined thus:

νT = Cμfμ

k2

ε̃
, fμ = 1− exp

(−0.0115y+
)
, (82)

ε̃ = ε− 2ν
k

y2
. (83)

This popular model is supported by the DNS results which indicate that the ratio
fμ = νT ε̃

Cμk2 is not a constant but a function approaching zero at the wall.
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The following modification of (59)–(60) is used in Chien’s model [7]

∂k

∂t
+∇ ·

(
uk− νT

σk

∇k
)
+ αk = Pk, (84)

∂ε̃

∂t
+∇ ·

(
uε̃− νT

σε

∇ ε̃
)
+ βε̃ = γC1f1Pk, (85)

where the coefficients and damping functions are given by

α = γ + 2ν

y2
, β = C2f2γ + 2ν

y2
exp

(−0.5y+
)
,

γ = ε̃

k
, f1 = 1, f2 = 1− 0.22 exp

(
k2

6νε̃

)2

.

(86)

In contrast to wall functions, the boundary conditions on Γw are very simple:

u= 0, k = 0, ε̃ = 0 on Γw. (87)

Note that the sink terms in (84) and (85) have positive coefficients, as required
by Patankar’s rule [58]. The value of y+ is a function of the friction velocity:

y+ = uτ y

ν
, uτ =max

{
C0.25

μ

√
k,
√|tw|

}
. (88)

The wall shear stress tw is calculated using (68). Note that the computation of y+
requires knowing the wall distance y. In the current implementation, we calculate
it using a brute-force approach. More efficient techniques for computing distance
functions can be found in the literature on level set methods (see Sect. 10).

8.6 Numerical Examples

To verify the above implementation the k–ε model, we perform a numerical study
for two test problems. The first one is used to validate the code for Chien’s low-
Reynolds number k–ε (LRKE) model. In the second example, we use the LRKE so-
lution to evaluate the results obtained with logarithmic wall functions implemented
as Dirichlet (DIRBC) and Neumann (NEUBC) boundary conditions.

8.6.1 Channel Flow Problem

In the first example, we simulate the turbulent channel flow at Reτ = 395 based on
the friction velocity uτ , half of the channel width d , and kinematic viscosity ν. The
reference data for this well-known benchmark problem are provided by the DNS
results of Kim et al. [36]. In order to obtain the developed flow conditions required
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Fig. 3 Channel flow: local
mesh refinement in the
boundary layer

Fig. 4 Channel flow: LRKE
solutions vs. Kim’s DNS
results for Reτ = 395

for validation, the inflow and outflow boundary conditions for the reduced domain
were swapped repeatedly so as to emulate periodic boundary conditions.

The equations of the LRKE model are solved with the 3D code on a hexahedral
mesh of 50,000 elements. Due to the need for high resolution, local mesh refinement
is performed in the near-wall region, as shown in Fig. 3. The distance from the wall
boundary to the nearest interior point corresponds to y+ ≈ 2. The numerical results
for this test are presented in Fig. 4. The profiles of the nondimensional quantities

u+ = ux

uτ

, k+ = k

u2
τ

, ε+ = εν

u4
τ

are in a good agreement with the DNS results [36] for this benchmark. The calcu-
lated profiles of u+ and ε+ are particularly close to the reference data.
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Fig. 5 Backward facing step: a 2D view of the computational mesh in the xy-plane

Fig. 6 Backward facing step: steady-state distribution of k for Re= 47,625. (a) reference solution
[33], (b) DIRBC solution, (c) NEUBC solution, (d) LRKE solution

8.7 Backward Facing Step

In the second example, we simulate the turbulent flow past a backward facing step
in 3D. The definition of the Reynolds number Re = 47,625 is based on the step
height H , mean inflow velocity umean, and kinematic viscosity ν. The objective is
to evaluate the performance of the k–ε model with three different kinds of near-wall
treatment: LRKE vs. DIRBC and NEUBC implementation of wall functions.

All simulations are performed on the same mesh that consists of approximately
260,000 hexahedral elements. Local mesh refinement is performed in the near-wall
region and behind the step (see Fig. 5). A comparison of the steady-state solutions
for the turbulent kinetic energy k and eddy viscosity νT with the reference solution
from [33] is presented in Figs. 6 and 7. Significant differences between the solu-
tions computed using the strong and weak form of logarithmic wall functions are
observed even in the “eyeball norm.” DIRBC was found to produce disappointing
results, whereas the accuracy of the NEUBC solution is similar to LRKE.

An important evaluation criterion for this popular test problem is the recircula-
tion length defined as LR = xr/H . For the implementation based on wall functions
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Fig. 7 Backward facing step: steady-state distribution of νT for Re= 47,625. (a) reference solu-
tion [33], (b) DIRBC solution, (c) NEUBC solution, (d) LRKE solution

Fig. 8 Backward facing step:
distribution of cf along the
lower wall, Re= 47,625

implemented as Dirichlet boundary conditions, this integral quantity can be readily
inferred from the distribution of the skin friction coefficient

cf = u2
τ

u2
mean

ux

|ux |
on the bottom wall (see Fig. 8). The recirculation length predicted by LRKE and
NEUBC is underestimated (LR ≈ 5.4). The computational results published in the
literature exhibit the same trend (5.0 < LR < 6.5, see [25, 33, 74]). On the other
hand, the implementation of wall functions in the strong sense yields LR ≈ 7.1,
which matches the experimentally measured recirculation length (LR ≈ 7.1, see
[35]). Unfortunately, this perfect agreement turns out to be a pure coincidence.

In Fig. 9, the calculated velocity profiles for 6 different distances from the step
are compared to one another and to the experimental data from Kim’s thesis [35].
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The corresponding profiles of k and ε are displayed in Fig. 10 and Fig. 11, respec-
tively. This comparative study indicates that NEUBC yields essentially the same
results as Chien’s low-Reynolds number model, whereas the use of DIRBC leads to
a significant discrepancy, especially at small distances from the step. It is also worth
mentioning that the presented profiles of ε do not suffer from spurious undershoots
which are frequently observed in other computations. This can be attributed to the
positivity-preserving treatment of the convective terms and sinks in our algorithm.

9 Case Study: Population Balances

The hydrodynamic behavior of a polydisperse two-phase flow can be described by
a RANS model for the continuous phase coupled with a population balance model
for the size distribution of the disperse phase (bubbles, drops, or particles). Pop-
ulation balance equations (PBEs) describe crystallization processes, liquid-liquid
extraction, gas-liquid dispersions, and polymerization, to name just a few important
applications. The implementation of PBE models in CFD software adds an extra
dimension to the problem, which increases the complexity of the code and incurs
exorbitant computational costs. For this reason, examples of RANS-PBE multiphase
flow models have been rare. In addition to our own work [3] to be presented here,
we mention the Multiple Size Group (MUSIG) model [48] implemented in the com-
mercial code ANSYS CFX and the recent publications by John et al. [26, 34] who
used algebraic flux correction of FCT type to enforce positivity preservation.

9.1 Mathematical Model

The PBE for gas-liquid or liquid-liquid flows is an integro-differential transport
equation for a probability density function f that depends on certain internal prop-
erties of the disperse phase. In the case of polydisperse bubbly flows, the internal
coordinate of primary interest is the volume υ of the bubble, and f (x, t, υ) is the
probability that a bubble of volume υ will occupy location x at time t . The number
density Nab and volume fraction αab of bubbles with υ ∈ [υa,υb] are given by

Nab(x, t) =
∫ υb

υa

f (x, t, υ) dυ, (89)

αab(x, t) =
∫ υb

υa

f (x, t, υ)υ dυ. (90)

The changes in the bubble size distribution are caused by convection in the physi-
cal space and by bubble-bubble interactions (breakage and coalescence) that change
the profile of f along the internal coordinate. Let ug(x, t, υ) denote the average ve-
locity of bubbles that may be defined by adding an empirical slip velocity uslip(m)
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to the solution u(x, t) of the RANS model for the continuous phase. For simplicity,
we assume that the slip velocity is constant, i.e., bubbles of all sizes are moving with
the same velocity ug . The general form of population balance equation reads

∂f

∂t
+∇ ·

(
ugf − νT

σT

∇f
)
= B+ +B− +C+ +C−, (91)

where νT is the turbulent eddy viscosity and σT is the turbulent Schmidt number.
The terms in the right-hand side of (91) describe the changes of f due to breakage

(B) and coalescence (C) phenomena. The superscripts “+” and “−” are used to
distinguish between sources and sinks. In this study, we use the models developed
by Lehr et al. [44, 45] with some modifications proposed in [5]. Let rB and rC

denote the kernel functions that describe the rates of breakage and coalescence,
respectively. The modeling of B± and C± is based on the assumption that

• the probability that a parent bubble of volume υ will break up to form two daugh-
ter bubbles of volumes υ̃ and υ − υ̃ is given by rB(υ, υ̃)f (υ),
• the probability that two bubbles of volumes υ̃ and υ − υ̃ will coalesce to form a

bubble of volume υ is given by rC(υ − υ̃, υ̃)f (υ̃)f (υ − υ̃).

Integrating the breakage and coalescence rates over all bubble sizes, one obtains

B+ +B− +C+ +C− =
∫ ∞

υ

rB(υ, υ̃)f (υ̃) dυ̃ − f (υ)

υ

∫ υ

0
υ̃rB(υ̃, υ) dυ̃

+ 1

2

∫ υ

0
rC(υ̃, υ − υ̃)f (υ̃)f (υ − υ̃) dυ̃

− f (υ)

∫ ∞

0
rC(υ̃, υ)f (υ̃) dυ̃. (92)

The model is closed by the choice of the kernel functions rB and rC , see [5, 44, 45].

9.2 Discretization of PBEs

In our algorithm [3], the population balance equation (92) is discretized using the
method of classes which corresponds to a piecewise-constant approximation along
the υ-coordinate. In the case of n classes, the pivot volumes are defined by

υi = υminq
i−1, i = 1, . . . , n (93)

where υmin is the volume of the smallest “resolved” class and q is a scaling factor.
The class width Δυi is defined as the length of the interval [υL

i , υU
i ], where [3]

υU
i = υi + 1

3
(υi+1 − υi), υL

i = υi − 2

3
(υi − υi−1). (94)
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The method of classes transforms the integro-differential equation (92) into a
system of n coupled transport equations for the class probability densities fi

∂fi

∂t
+∇ ·

(
ugfi − νT

σT

∇fi

)

=
n∑

j=i
rBi,j fjΔυj − fi

υi

i∑

j=1

υj r
B
j,iΔυj + 1

2

i∑

j=1

rCj,kfjfkΔυj

− fi

n∑

j=1

rCj,ifjΔυj , i = 1, . . . , n. (95)

The number density and volume fraction of bubbles in the i-th class are given by

Ni = fiΔυi, αi = fiυiΔυi = fiNi.

Multiplying (95) by υiΔυi , one obtains a system of transport equations for the class
holdups αi . This transformation leads to a conservative scheme such that the dis-
cretized source terms are balanced by the discretized sink terms, and the total holdup
of the disperse phase is not affected by breakage or coalescence. We tacitly assume
that the bubbles are incompressible so that the conservation of volume is equiva-
lent to the conservation of mass. The number density is generally not conserved but
the results of Buwa and Ranade [5] indicate that this inconsistency has hardly any
influence on the specific interfacial area and the average bubble size.

The discretization of the bubble size distribution is conservative if a source in the
equation for one class appears as a sink in the equation for another class. To verify
this, consider a bubble of class i that breaks up into bubbles of classes j and k such
that υi = υj + υj . The increments to the three right-hand sides sum to zero:

i: −
(
υj r

B
i,jΔυj

fi

υi

)
υiΔυi −

(
υkr

B
i,kΔυk

fi

υi

)
υiΔυi = −rBi,jαi

υjΔυj

υi

− rBi,kαi

υkΔυk

υi

,

j : +(υj r
B
i,j fiΔυi

)
υjΔυj = rBi,j αi

υjΔυj

υi

,

k: +(υkr
B
i,kfiΔυi

)
υkΔυk = rBi,kαi

υkΔυk

υi

.

Next, suppose that bubbles of the j -th and k-th class coalesce to form a bubble
of class i. The gains and losses in the three classes are as follows:

i: +1

2

(
rCj,kfjfkΔυj + rCk,j fkfjΔυk

)
υiΔυi,

j : −(fj r
C
j,kfkΔυk

)
υjΔυj =−rCj,kαjfkΔυk,

k: −(fkr
C
k,j fjΔυj

)
υkΔυk =−rCk,jαkfjΔυj .
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Fig. 12 Coupling of PBE with the turbulent flow model for the continuous phase

Suppose that all classes have the same width, that is, Δυi =Δυj =Δυk . Using
the fact that υi = υj + υk , we obtain the following relationship

1

2

(
rCj,kfjfkΔυj + rCk,j fkfjΔυk

)
(υj + υk)Δυi = rCj,kαjfkΔυk + rCk,jαkfjΔυj

which proves that the source and sink terms due to coalescence are also balanced.
In our implementation, the discretization of the internal coordinate is performed

using nonuniform grids. To maintain the conservation of volume under coalescence,
we calculate the sinks for every possible pair of classes and add their absolute values
to the equation for the class that contains the emerging bubble. By this definition,
the sources and sinks sum to zero, so that the total volume remains unchanged.

9.3 Integration of PBE in CFD Codes

The implementation of PBE in an existing CFD code calls for a block-iterative solu-
tion strategy. The diagram in Fig. 12 illustrates the coupling effects that arise when a
PBE model is combined with the algorithm described in Sect. 8. In addition to the in-
ternal couplings within the Navier-Stokes system (C1 and C2), the k–ε model (C3),
and the PBE transport equations (C4), the two-way couplings between these blocks
must be taken into account (C5-C7). To reduce the computational cost, we currently
neglect the influence of the disperse phase on the continuous phase and make a num-
ber of other simplifying assumptions (see below). The one-way coupling is a good
approximation for flows driven by pressure and/or shear-induced turbulence. The
numerical treatment of buoyancy-driven bubbly flows was addressed in [43] in the
context of a drift-flux model with a two-way interphase coupling.

9.4 Numerical Examples

To our knowledge, there is no standard benchmark problem for population balance
models coupled with the fluid dynamics of turbulent two-phase flows. In this section,
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Fig. 13 Turbulent pipe flow: radial profiles of the axial velocity (left), turbulent dissipation rate
(middle), and turbulent viscosity (right)

we study the influence of turbulence on the bubble size distribution in a turbulent
3D pipe flow. The main quantity of interest is the Sauter mean diameter d32 defined
as the diameter of the sphere that has the same volume/surface area ratio as the
entire ensemble. To show the potential of the CFD-PBE model in the context of an
industrial application, we simulate the flow through a Sulzer static mixer SMVTM.
The results are compared to experimental data provided by Sulzer Chemtech Ltd.

9.4.1 Turbulent Pipe Flow

Turbulent pipe flow is well suited for testing population balance models with one
spatial and one internal coordinate [27]. The preliminary validation of our algorithm
was performed on a 3D version of this problem [3]. The continuous phase is water
flowing through a 1 m long pipe of diameter d = 3.8 cm. The incompressible fluid
that constitutes the droplets of the disperse phase has similar physical properties
(density and viscosity). Due to this assumption, the interphase slip and buoyancy
effects are neglected. That is, both phases are assumed to move with the mixture
velocity which is calculated using the k–ε turbulence model. The Reynolds number
for this simulation is Re= dw

ν
= 114,000, where w stands for the bulk velocity. The

computational mesh is generated using a 2D to 3D extrusion of the mesh for the
circular cross section. Each layer consists of 1,344 hexahedral elements.
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Fig. 14 Turbulent pipe flow: Sauter mean diameter d32 at x = {0,0.06,0.18,0.33,0.6}

Fig. 15 Turbulent pipe flow: droplet size distribution (left) and radial variation of the Sauter mean
diameter (right) at x = {0,0.06,0.18}

The calculated radial profiles of the axial velocity, turbulent dissipation rate, and
eddy viscosity for the developed flow pattern are presented in Fig. 13. The results of
the turbulent flow simulation determine the velocity and the breakage/coalescence
rates for the population balance model. The CFD-PBE simulations are performed
for 30 classes with nonuniform spacing that corresponds to the discretization factor
q = 1.7. The feed stream is generated by a circular sparger of diameter 2.82 cm that
produces droplets of diameter din = 1.19 mm. At the inlet, the volume fraction of
droplets equals αin = 0.55. In the region of fully developed flow, the total holdup
of the disperse phase has the constant value αtot = 0.30. Moreover, the droplet size
distribution reaches an equilibrium under the developed flow conditions.

Figure 14 displays the distribution of the Sauter mean diameter d32 in five cross
sections. For better visualization, the axis scaling x : y : z = 10 : 1 : 1 is employed
in this diagram. Note that the equilibrium is attained at a short distance from the
inlet. The distributions of the droplet size distribution and the radial profiles of the
Sauter mean diameter for x = {0,0.06,0.18} are presented in Fig. 15. The diagrams
in Fig. 16 show the size distribution at the outlet and Sauter mean diameter along
the x-axis for radii r = {0,R/3,2R/3}. As expected, a high concentration of larger
droplets is observed in the middle of the pipe, where the flow is fully turbulent and
ε is relatively small. The concentration of smaller droplets is higher in the near-wall
region, where ε is relatively large. The holdup distributions for three representative
droplet classes (small, medium, and large) are presented in Fig. 17. The correspond-
ing droplet diameters are given by 0.49 mm, 1.70 mm, and 4.90 mm.
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Fig. 16 Turbulent pipe flow: droplet size distribution at the outlet (left) and longitudinal variation
of the Sauter mean diameter at r = {0,R/3,2R/3} (right)

Fig. 17 Turbulent pipe flow: holdups of small (top), medium (middle), and large (bottom) droplets

9.4.2 Static Mixer SMVTM

Static mixers are used in industry to disperse immiscible liquids as they flow around
mixer elements rigidly installed in a tubular housing. The mechanical simplicity of
static mixers makes them an attractive alternative to rotating impellers. Moreover,
the dissipation of frictional energy in the packing is more uniform, and so is the
resultant drop size distribution [61]. This homogeneity can be attributed to the stable
flow pattern that depends on the geometry of the internal parts. The Sulzer SMVTM
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Fig. 18 Geometry of the
SMVTM static mixer

Table 1 Physical properties
of the phases flowing in the
SMVTM static mixer

Water Oil

ρ (kg m−3) 1000 847

ν (kg m−1s−1) 1× 10−3 32× 10−3

σ (N m−1) 72× 10−3 21× 10−3

mixing elements consist of intersecting corrugated plates and channels. This design
leads to fast and efficient dispersive mixing in the turbulent flow regime.

Many experimental and computational studies of laminar and turbulent static
mixers can be found in the literature. For a detailed review, we refer to Thakur et
al. [73]. Our interest in this industrial application is driven by the desire to explore
the capabilities of the developed simulation tools. The complex geometry of the
static mixer SMVTM, as shown in Fig. 18 justifies the combination of a multidi-
mensional flow model with PBEs. The inlet condition is that of a water-oil mixture
with oil holdup αij = 0.1, Sauter mean diameter d32 = 10−3 m, and inflow speed
vin = 1 m/s. The physical properties of the two phases are listed in Table 1. The
mixture is treated as a single fluid with density and viscosity defined as a weighted
average of those for oil and water. The weights are given by the corresponding vol-
ume fractions.

Computations are performed on a mesh that consists of approximately 50,000
hexahedral elements. Due to the high computational cost, a one-way coupling be-
tween the flow and the PBEs is assumed. The simulation run begins with the com-
putation of a steady-state solution for the turbulent flow field, see Fig. 19. The con-
verged velocity and turbulent dissipation rate are used to solve the PBEs for 45
classes. The discretization constant equals q = 1.4 and the smallest droplets have
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Fig. 19 The vertical velocity component (left) and turbulent dissipation rate (right)

Fig. 20 Distribution of the Sauter mean diameter d32 for all classes (left) and droplet ensembles
with d32 ∈ [0.62,0.63] mm (right)
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Fig. 21 Experimental and numerical results for the holdup with 45 (left) and 15 (right) classes

the diameter of 0.5 mm. The distributions of the Sauter mean diameter d32 and
droplet ensembles with d32 ∈ [0.62,0.63] mm are displayed in Fig. 20.

For comparison purposes, we also present the experimental data provided by
Sulzer Chemtech Ltd. The measurements are performed in the cross section right
after the mixer element, and the detected droplets are assigned to the correspond-
ing discrete classes. Since the number of classes for the numerical simulation is too
large to obtain a representative number of droplets for each class, both numerical
solutions and the measured data are mapped onto a size distribution with 15 classes,
see Fig. 21. The results indicate that the CFD-PBE model provides a fairly good de-
scription of the population dynamics in turbulent mixtures. However, further effort
is required to improve the accuracy of the model and of the numerical algorithms.
This research will be continued in collaboration with Sulzer Chemtech Ltd.

10 Case Study: Interfacial Dynamics

Population balance models yield just a rough statistical estimate of the size dis-
tribution in gas-liquid and liquid-liquid dispersions. The position, shape, and size
of individual drops or bubbles cannot be determined using such a model. To re-
solve the microscopic scales, the incompressible Navier-Stokes equations for the
two immiscible fluids must be solved on subdomains separated by a moving bound-
ary. The position of the interface is generally unknown and must be determined as
a part of the problem. In this section, we describe level set methods that provide
an implicit description of the interface and make it possible to solve a wide range
of free boundary problems (deformation of drops/bubbles, breaking surface waves,
slug flow, capillary microreactors, dendritic crystal growth) on fixed meshes.
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10.1 The Level Set Method

The idea behind modern level set methods, as described in [55, 66, 67], is an implicit
representation of the interface Γ (t) in terms of a scalar variable ϕ(x, t) such that

Γ (t)= {
x |ϕ(x, t)= 0

}
. (96)

For practical purposes it is worthwhile to define ϕ as the signed distance function

ϕ(x, t)=±dist
(
x,Γ (t)

)
. (97)

As a useful byproduct, one obtains the globally defined normal and curvature

n= ∇ϕ|∇ϕ| , κ =−∇ · n. (98)

Since |ϕ(x, t)| is the (shortest) distance from x to Γ (t), it may serve as an indicator
of interface proximity for adaptive mesh refinement techniques [2, 37].

It can be shown that the evolution of ϕ is governed by the transport equation

∂ϕ

∂t
+ u · ∇ϕ = 0. (99)

The velocity field u is obtained by solving the generalized Navier-Stokes system

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p+∇ · (μ[∇u+ (∇u)T

])+ f|Γ , (100)

∇ · u = 0, (101)

where f|Γ is an interfacial force. The density ρ and viscosity μ are assumed to be
constant in the interior of each phase and have a jump across Γ . We have

ρ(x, t)= ρ1 + (ρ2 − ρ1)H(x, t), (102)

μ(x, t)= μ1 + (μ2 −μ1)H(x, t). (103)

The value of the discontinuous Heaviside function H depends on the sign of ϕ

H(ϕ,x, t)=
{

1, if ϕ(x, t) > 0,

0, if ϕ(x, t) < 0.
(104)

In numerical implementations, regularized approximations to H are employed.
In most existing level set codes, equations (99)–(101) are discretized using finite

difference or finite volume approximations on structured meshes. However, the last
decade has witnessed a lot of progress in the development of FEM-based level set
algorithms [32, 46, 52, 57, 68, 75, 93]. In particular, discontinuous Galerkin meth-
ods have become popular in recent years [14, 24, 49]. The advantages of the finite
element approach include the ease of mesh adaptation and the availability of a robust
variational method for the numerical treatment of surface tension [1, 29].
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10.2 Reinitialization

Even if the level set function ϕ is initialized using definition (97), it may cease to
be a distance function as time evolves. In many situations, this is undesirable or un-
acceptable. First, nonphysical displacements of the interface and large conservation
errors are likely to arise. Second, the lack of the distance function property has an
adverse effect on the accuracy of numerical approximations to normals and curva-
tures. Third, if the gradients of ϕ become too steep, approximate solutions to (99)
may be corrupted by spurious oscillations or excessive numerical diffusion.

The usual way to prevent a deterioration of the level set function is a postprocess-
ing step known as ‘reinitialization’ or ‘redistancing.’ The purpose of this correction
is to restore the distance function property of ϕ without changing its zero level set.
Of course, it is possible to recalculate the distance from each mesh point to the
interface. Such a ‘direct’ reinitialization is straightforward but computationally ex-
pensive, even if restricted to a narrow band around Γ . Alternatively, the distance
function property can be enforced by solving the Eikonal equation

|∇ϕ| = 1 (105)

subject to ϕ = 0 on Γ (t)= {x | ϕ̃(x, t)= 0}, where ϕ̃ is the level set function before
reinitialization. The most popular techniques for solving (105) are fast sweeping
methods [76], fast marching methods [65, 66], and the hyperbolic PDE approach
[72]. In the latter method, equation (105) is treated as the steady-state limit of

∂ϕ

∂τ
+w · ∇ϕ = sign(ϕ̃), w= sign(ϕ̃)

∇ϕ
|∇ϕ| . (106)

The solution to this nonlinear equation is initialized by ϕ̃ and marched to the steady
state. In practice, it is enough to restore the distance function property in a narrow
band around the interface. Hence, a few pseudo-time steps are sufficient.

For stability reasons, the discontinuous sign function is typically replaced with a
smooth approximation. This practice may result in a loss of accuracy and displace-
ments of Γ . In the interface local projection method of Parolini [57], finite element
techniques are employed to perform direct reinitialization in the interface region.
The corrected values of ϕ provide the boundary conditions for the subsequent solu-
tion of (106) in a reduced domain, where sign(ϕ̃) has no jumps.

To avoid the need for postprocessing, Ville et al. [93] replace (99) and (106) with
a single transport equation. The so-defined ‘convected’ level set method leads to an
elegant and efficient algorithm. We also subscribe to the viewpoint that convection
and reinitialization should be combined as long as there is no fail-safe way to fix ϕ

when the damage is already done. This has led us to develop a variational level set
method in which the Eikonal equation (105) is treated as a constraint for the level
set transport equation [39]. The nonlinear Lagrange multiplier term

∫

Ω

λ∇ϕ · ∇wΔx (107)
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added to the weak form of (99) corrects the gradients by adding artificial diffusion
(λ > 0) or antidiffusion (λ < 0) whenever |∇ϕ| > 1 or |∇ϕ| < 1, respectively. In
our experience, no flux limiting is required since ϕ remains smooth. A detailed
description of the Lagrange multiplier approach will be presented elsewhere [39].

10.3 Mass Conservation

A major drawback of level set algorithms is the lack of mass conservation. Indeed,
ρ(ϕ) given by (102) may fail to satisfy the nonlinear continuity equation

∂ρ(ϕ)

∂t
+∇ · (uρ(ϕ))= 0. (108)

As an alarming consequence, the volume of incompressible fluids may change in an
unpredictable manner. In particular, this is likely to happen when evolving interfaces
undergo topological changes such as coalescence or breakup.

Both transport and redistancing may be responsible for mass conservation errors
in level set algorithms. To some extent, these errors can be reduced by using more
accurate numerical schemes and adaptive mesh refinement techniques [53]. Many
tricks for improving the conservation properties of level set algorithms have been
proposed in recent years [14, 46, 68, 71, 88]. Again, the usual approach relies on
the use of postprocessing techniques designed to preserve the total volume

V (t)=
∫

Ω

H(ϕ,x, t)Δx= V (0), ∀t ≥ 0, (109)

where H is the Heaviside function defined by (104). Smolianski [71] enforces this
constraint by adding a constant cϕ to the nonconservative approximation

ϕ̄ = ϕ + cϕ,

∫

Ω

H(ϕ + cϕ,x, t)Δx= V (0). (110)

This level correction ensures global mass conservation but there is a danger that the
lost mass will reappear in a wrong place. If one fluid consists of multiple discon-
nected components, global conservation does not ensure that the mass/volume of
each component is conserved. Clearly, manipulations of the form (110) are inappro-
priate in such situations. In our opinion, an incorrect distribution of mass is more
harmful than (readily identifiable) mass conservation errors.

Lesage and Dervieux [46] proposed a localized mass corrector in which the con-
stant cϕ is multiplied by the nodal residual of a dual level set equation. If the mass
is conserved in a control volume around node i, then the value of ϕi remains un-
changed. However, the corrections to other nodes depend on the global constant cϕ ,
which implies that the distribution of the lost mass may still be incorrect.

In the conservative level set method of Olsson and Kreiss [54], ϕ is replaced with
a regularized Heaviside function. This definition makes the algorithm akin to the
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phase field (diffuse interface) method. Due to the presence of a steep front and the
absence of Cahn-Hilliard terms, the use of flux limiting is a must. A finite difference
TVD scheme is used to solve the transport equation in the original publication [54].
In the context of a finite element approximation, the conservative level set method
can be implemented using algebraic flux correction of FCT or TVD type.

10.4 Surface Tension

The overall accuracy of level set algorithms depends not only on the computation of
ϕ but also on the numerical treatment of the surface tension force

f|Γ (x, t)= σκnδ(x, t), (111)

where σ is a surface tension coefficient and δ is the Dirac delta function localizing
the effect of f|Γ to Γ . The normal n and curvature κ are given by (98).

In a finite element code, the values of n and κ can be obtained using variational
recovery techniques [30]. A better approach to the numerical treatment of surface
tension effects is based on the following fact from differential geometry:

κn=ΔidΓ ,

where idΓ is the identity mapping on Γ and Δ is the Laplace-Beltrami operator

Δf := ∇ · (∇f ), ∇f := ∇f − (n · ∇f )n.

The contribution of (111) to the weak form of the momentum equation (100) is
calculated using the definition of δ(x, t) and integration by parts [1, 29, 30]

∫

Ω

f|Γ ·wΔx=−
∫

Γ

σ∇x · ∇w ds. (112)

Since a fully explicit treatment of this term leads to a capillary time step restriction,
we follow the semi-implicit approach proposed by Bänsch [1] in the context of a
front-tracking method. Plugging xn+1 = xn +Δtun+1 into (112), we obtain

fσ =−
∫

Γ n

σ∇x · ∇w ds −Δt

∫

Γ n

σ∇un+1 · ∇w ds. (113)

Note that the second term is linear in un+1 and has the structure of a discrete diffu-
sion operator. In contrast to the fully explicit approach, the discretization becomes
more stable for large values of σ , as shown by the numerical study in [29, 30].

Following Hysing [29, 30], we evaluate fσ using the continuum surface force
(CSF) approximation [4]. By definition of the Dirac delta function, we have

fσ =−
∫

Ω

σ∇x · ∇wδnΔx−Δt

∫

Ω

σ∇un+1 · ∇wδnΔx. (114)
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Since δ is singular, numerical integration is performed using a regularized delta
function. Given an approximate distance function ϕ, we define

δε(x)= max{0, ε− |ϕ|}
ε2

, (115)

where ε is a small parameter. Note that there is no need to know the position of Γ

that would be difficult to determine for bilinear and higher-order elements.
Sussman and Ohta [70] have recently found another promising way to achieve

unconditional stability in a numerical implementation of stiff surface tension terms.
Their algorithm is based on the concept of volume preserving motion by mean cur-
vature. Reportedly, it offers a speed-up by a factor 3–5 for a given accuracy.

10.5 Putting It All Together

The above presentation of the level set method reveals that its practical implemen-
tation involves many choices and tradeoffs. The most important components are the
solver for the Navier-Stokes equations with discontinuous coefficients, the numer-
ical approximation of the level set transport equation, mechanisms for maintaining
the distance function property and mass conservation, the method for computation
of normals and curvatures, and the numerical treatment of surface tension.

In the parallel 3D code developed by our group at the TU Dortmund, the incom-
pressible Navier-Stokes equations are solved using a generalization of the discrete
projection scheme described in Sect. 4. The velocity and pressure are discretized us-
ing Q̃1/Q0 or Q2/P1 elements. The level set equation is solved with a FEM-TVD
scheme for continuous Q1 elements [30, 32] or an upwind-biased P1 discontinuous
Galerkin (DG) method without any extra stabilization [85]. A variety of methods
have been implemented to solve the Eikonal equation at the reinitialization step for
the Q1 version [31]. The DG approach makes it possible to reinitialize ϕ without
displacing the free interface. The gradient of the piecewise-linear solution is con-
stant inside each cell. To enforce |∇ϕ| = 1, we correct the slopes in elements crossed
by the interface and solve (106) elsewhere, see [85] for details. The implementation
of the surface tension force is based on the semi-implicit algorithm presented in
Sect. 10.4. The option of solving contact angle problems is also provided.

10.6 Numerical Examples

In the absence of analytical solutions (which are very difficult to derive for interfa-
cial two-phase flows) benchmarking is the only way to verify the developed method.
Pure numerical benchmarks are of little help if no quantitative comparisons can be
made. A visual inspection alone is rarely, if ever, sufficient for validation purposes.
To illustrate this, consider the bubble shapes shown in Fig. 22. These shapes were



286 S. Turek and D. Kuzmin

Fig. 22 Rising bubble simulation: numerical solutions produced by 6 codes

Fig. 23 Rising bubble benchmark: results for (a) Test 1 and (b) Test 2

calculated by six different codes with identical problem formulations. Ideally, the
six solutions should be identical on fine meshes. Unfortunately, this is not the case.
The shapes are quite similar but it is impossible to tell which solutions, if any, are re-
ally correct. In order to identify the good ones, one must replace the “eyeball norm”
with some quantitative criteria for measuring the accuracy of simulation results.

10.6.1 Two-Dimensional Rising Bubble

In a recent paper [32], we proposed a new benchmark for interfacial two-phase
flows. In collaboration with two other groups, we simulated a two-dimensional bub-
ble rising in a liquid column. Two parameter constellations were considered. In the
first test, the densities and viscosities of the two phases differ by a factor of 10, and
the surface tension coefficient is chosen large enough to hold the bubble together.
At the final time, the bubble assumes a typical ellipsoidal shape that was predicted
very well by all codes under investigation, see Fig. 23(a). In the second test, the
density and viscosity ratios are as large as 1000 and 100, respectively. Moreover,
the value of the surface tension coefficient is reduced. The bubble shape falls into
the skirted/dimpled ellipsoidal-cap regime, and a breakup occurs before the final
time, see Fig. 23(b). The topological changes of the interface make this test rather
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Table 2 3D rising bubble: empirical vs. simulated Reynolds numbers for Cases B, C, D

Case Shape Mo Eo ReE ReS RemAl2 RemAl3 RemBl3 RemBl4

B Ellipsoidal 0.100 9.71 4.6 4.3 5.50 5.50 5.60 5.60

C Skirted 0.971 97.1 20.0 18.0 17.7 18.0 18.0 18.0

D Dimpled 1000 97.1 1.5 1.7 2.00 2.03 2.03 2.03

challenging. All computational details (geometry, initial and boundary conditions,
parameter values) and the reference data for both cases are available online [6].

Since the publication of rising bubble benchmark, several other groups have con-
tributed their results. It turned out that many different interface capturing techniques
(level set, volume of fluid, phase field) produce very similar results. We remark that
the rationale for developing a 2D test configuration was not an accurate prediction of
physical reality (2D bubbles do not exist in nature) but the computation of reference
solutions for evaluation of CFD software and underlying numerical methods.

10.6.2 Three-Dimensional Rising Bubble

The 3D version of our level set code has also been tested on a rising bubble problem
[85]. The settings for this simulation correspond to test cases B, C, and D defined in
the paper by van Sint Annaland et al. [92]. The proportions of the bubble diameter d
and domain dimensions ax × ay × az are (db : ax : ay : az)= (3 : 10 : 10 : 20). The
bubble undergoes significant deformations but does not break up. The densities and
viscosities of the two immiscible fluids differ by a factor of 100. The values of the
surface tension coefficient σgl and gravitational acceleration gz are given in terms
of the dimensionless Eötvös and Morton numbers defined as in [10]

Eo= gzΔρgld
2
b

σgl

, Mo= gzμ
4
l Δρgl

ρ2
l σgl

. (116)

The Reynolds number associated with the terminal rise v∞ velocity is defined by

Re= ρlv∞db

μl

. (117)

In order to assess the dependence of the bubble shape and v∞ on the mesh size,
simulations were performed with two different meshes and two levels of refinements
for each mesh (2, 3 for mesh A and 3, 4 for mesh B). The equilibrium bubble shapes
shown in Fig. 24 indicate that the employed mesh resolution is sufficient, especially
in the cases B and D. The measured and calculated values of the Reynolds number
for all cases are listed in Table 2. The empirical data of Clift et al. [10] and simu-
lation results of van Sint Annaland [92] are shown in the columns labeled ReE and
ReS , respectively. The last 4 columns show our results obtained on meshes A and B
for refinement levels 2–4. Although these results are essentially mesh-independent,
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Fig. 24 3D rising bubble: equilibrium shapes (left) and snapshots of the deforming bubble (right)

ReS exhibits a better correlation with ReE . Since no grid convergence studies were
performed in [92], it is unclear if the values of ReS have also converged. This state
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Fig. 25 Droplet dripping: a
sketch of the domain around
the capillary

of affairs illustrates the urgent need for a collaborative research effort aimed at the
development of a new 3D benchmark for interfacial two-phase flows.

10.6.3 Droplet Dripping

In the last numerical example, we simulate the process of droplet dripping in a liq-
uid stream [85]. In the corresponding experimental setup, the continuous phase is
a glucose-water mixture and the disperse phase is silicon oil. The dripping mode is
characterized by relatively low volumetric flow rates and by the fact that the droplets
are generated in the near vicinity of the capillary, so that the stream length is compa-
rable to the size of the generated droplets. Since the temperature is kept at a constant
value during the whole experiment, the densities and viscosities of the two phases
are also constant. The experimental studies performed by the group of Prof. Walzel
(BCI, TU Dortmund) provide the average values of target quantities like the droplet
size, droplet generation frequency, and the stream length. These experimental data
make it possible to validate the 3D simulation results to be presented below.

The geometry of the domain around the capillary is sketched in Fig. 25. The
problem dimensions measured in decimeters (dm) are as follows:

domain dimensions 0.3× 0.3× 1.2
inner capillary radius R1 = 0.015
outer capillary radius R2 = 0.030
primary phase inlet radius R3 = 0.15

The physical properties of the continuous (C) and disperse (D) phase are given by

ρC = 1340 kg m−3 = 1.34 kg dm−3,

ρD = 970 kg m−3 = 0.97 kg dm−3,
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μC = μD = 500 m Pa s= 0.050 kg dm s−1,

gz = −9.81 m s−2 =−98.1 dm s−2,

σ = 0.034 N m−1 = 0.034 kg s−2.

The inflow boundary conditions are given in terms of the volumetric flow rates

V̇C =
∫ R3

R2

(
2πra1(R3 − r)(r −R2)

)
dr

= −2πa1

[
r4

4
− (R2 +R3)

r3

3
+R2R3

r2

2

]R3

R2

= πa1

6
(R2 +R3)(R3 −R2)

3

and

V̇D =
∫ R1

0

(
2πra2(R1 − r)(R1 + r)

)
dr = 2πa2

[
R2

1r
2

2
− r4

4

]R1

0
= πa2

2
R4

1 .

The parabolic velocity profile at the inflow boundary is defined by the formula

w =
⎧
⎨

⎩

a2(R1 − r)(R1 + r), if 0 < r < R1,

a1(R3 − r)(r −R2), if R2 < r < R3,

0, otherwise.

The parameter values a1 = 10.14 dm−1 s−1, a2 = 763.7 dm−1 s−1 correspond to

V̇C = 99.04 ml min−1 = 99.04 cm3 min−1 = 99.04
10−3 dm3

60 s

= 1.65 · 10−3 dm3 s−1,

V̇D = 3.64 ml min−1 = 3.64 cm3 min−1 = 3.64
10−3dm3

60 s
= 6.07 · 10−5 dm3 s−1.

The above operating conditions lead to a pseudo-steady dripping mode. The mea-
sured frequency of droplet formation is f = 0.60 Hz (cca 0.58 Hzexp), the diameter
of the generated droplets is d = 0.058 dm (cca 0.062 dmexp), and the maximum
stream length is L= 0.102 dm (cca 0.122 dmexp). The process of droplet dripping
is illustrated by the diagrams and photographs in Fig. 26. The agreement between
the simulation results and physical reality is remarkably good. In this study, we
used the Q2/P1/P1 version of the 3D code. The total holdup of the disperse phase
evolves as shown in Fig. 27. The slope of the lines that correspond to the experimen-
tal data is given by q = 6.07 · 10−5 dm3 s−1. The measured and simulated holdups
follow the same trend, although the optional mass correction step was deactivated.
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Fig. 26 Droplet dripping: 3D simulation (top) vs. experiment (bottom)

Fig. 27 Total holdup of the disperse phase: 3D simulation vs. experiment

11 Conclusions

In this chapter, we presented a family of multilevel pressure Schur complement
methods for the incompressible Navier-Stokes equations. The coupling of the ba-
sic flow model with (systems of) scalar transport equations was illustrated by the
case studies for the k–ε turbulence model, population balance equations, and level
set algorithms. This survey covers a small but representative selection of incom-
pressible problems that can be solved efficiently using the proposed tools. The cur-
rent research activities of our groups cover a wide range of other applications such
as particulate and granular flows [51, 56], viscoelastic fluids [12], computational
hemodynamics [18], benchmarking for fluid-structure interaction [83], chemotaxis
problems [69], and GPU computing [19, 82], to name just a few.
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The design of professional CFD software for grand-challenge industrial prob-
lems requires an optimal interaction of discretization methods, iterative solvers, and
software engineering aspects. The overall performance of the code depends on all
of these components. Obtaining quantitatively accurate results in a computation-
ally efficient manner is still an issue even for scalar convection-dominated transport
problems and laminar flow models. The mathematical challenges of today include
the extension of algebraic flux correction schemes to higher-order finite elements
and tensor-valued transport operators, hp-adaptivity in space and time, rigorous a
posteriori error estimation, and model-dependent improvements.

The optimization of iterative solvers for linear and nonlinear systems requires
a further analysis of Newton-like methods, convergence acceleration techniques,
monolithic multigrid solvers, and domain decomposition methods for parallel com-
puting. Furthermore, the importance of benchmark computations and grid con-
vergence studies cannot be overemphasized. We invite the reader to visit our
CFD benchmarking site [6], get familiar with the test cases and propose new
ones.

In addition to the above mathematical challenges, the growing demands of the
CFD industry require a further investment in the development of hardware-oriented
implementation techniques for modern computer architectures. The main bottleneck
to high performance is not the actual data processing but slow memory access (see
[80] for a critical discussion). For this reason, the actual MFLOP/s rates are typi-
cally very low compared to the theoretical peak performance. A major gain of ef-
ficiency can be achieved, for example, by using cache-based implementation tech-
niques and exploiting the tensor product structure of stencils for block-structured
grids. Such a hardware-oriented approach may yield an overall speedup factor of
up to 1000 even on a single processor. On top of that, the use of optimal paral-
lelization strategies may boost the performance of the code by further orders of
magnitude.

In light of the above, the key to achieving optimal performance in the context
of implicit finite element flow solvers lies in shifting the distribution of CPU times
from costly memory access tasks (assembly of matrices/right-hand sides/residuals,
adaptive mesh refinement/coarsening) toward more arithmetic-intensive work (so-
lution of sparse linear systems). High-performance computing techniques based on
this philosophy are already available and prove remarkably efficient [81].

In recent years, graphics processing units (GPUs) have become a popular tool for
scientific computing. The contributions of our group include a GPU- and multicore-
oriented implementation technique for geometric multigrid solvers [19]. Sparse
matrix-vector multiplications are utilized throughout the multigrid pipeline: in the
coarse-grid solver, in smoothers, and even in grid transfer operators. The current
implementation can handle several low- and high-order finite element spaces in
2D and 3D. On a single GPU, we achieve speedups by nearly an order of mag-
nitude compared to a multithreaded CPU code. We conclude that the practical im-
plementation of a numerical algorithm may be as important as the choice of its
mathematical components. This means that the methods of scientific computing
will continue to evolve following the technological trends in computer architec-
ture.
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Algebraic Flux Correction and Geometric
Conservation in ALE Computations

Guglielmo Scovazzi and Alejandro López Ortega

Abstract In this chapter, we describe the important role played by the so-called
Geometric Conservation Law (GCL) in the design of Flux-Corrected Transport
(FCT) methods for Arbitrary Lagrangian-Eulerian (ALE) applications. We propose
a conservative synchronized remap algorithm applicable to arbitrary Lagrangian-
Eulerian computations with nodal finite elements. Unique to the proposed method
is the direct incorporation of the geometric conservation law (GCL) in the result-
ing numerical scheme. We show how the geometric conservation law allows the
proposed method to inherit the positivity preserving and local extrema diminish-
ing (LED) properties typical of FCT schemes for pure transport problems. The ex-
tension to systems of equations which typically arise in meteorological and com-
pressible flow computations is performed by means of a synchronized strategy. The
proposed approach also complements and extends the work of the first author on
nodal-based methods for shock hydrodynamics, delivering a fully integrated suite
of Lagrangian/remap algorithms for computations of compressible materials un-
der extreme load conditions. Numerical tests in multiple dimensions show that the
method is robust and accurate in typical computational scenarios.

1 Introduction

Arbitrary Lagrangian-Eulerian (ALE) algorithms (see Hirt et al. [20], Donea et
al. [10]) utilize computational grids (or meshes) which are neither fixed (Eulerian)
nor tied to the motion of the deformable medium (Lagrangian). ALE strategies are
often used in applications which involve fluid/structure interaction problems (see,
e.g., Donea et al. [10], Lesoinne and Farhat [35], Forster et al. [17]), shock hydro-
dynamics (see instead Benson [2, 4]), and, more recently, transport problems for
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climate/meteorological simulations as discussed by Smolarkiewicz and Margolin
[59] and references therein.

There are fundamentally two different approaches in ALE methods. The first is
to solve in a single stage (monolithically) the ALE equations (see, e.g., Masud and
Hughes [48] or Lesoinne and Farhat [35]). The second is instead to adopt an operator
splitting procedure (see Donea et al. [10], Benson [3]): A pure Lagrangian compu-
tation is initially performed, then the nodes of the Lagrangian mesh are repositioned
to improve the overall grid quality (rezoning), and finally the numerical solution is
transferred from the old to the new grid. This last step is usually termed remap, and,
more specifically, consists in transferring the numerical solution from a given mesh
to a similar mesh with the same connectivity but different node locations.

Here we specifically focus on local continuous remapping, that is remapping that
takes place at each time step in ALE computations, and is based on the solution of
local problems under the assumption that mesh displacements are small. An alterna-
tive remap strategy (not discussed here) is global remapping, in which no assump-
tion is made on the magnitude of mesh displacements and a global, conservative
(constrained) interpolation problem is solved (see, e.g., Kuzmin et al. [34]).

In this chapter, we describe the important role played by the so-called Geometric
Conservation Law (GCL) in the design of Flux-Corrected Transport (FCT) methods
for ALE applications. The concept of a GCL, originally introduced by Lesoinne and
Farhat [35] in the context of finite element/volume methods, has been recognized of
great importance for the robustness and accuracy of ALE computations. In simple
terms, the GCL is a consistency relationship between the change of volume of mov-
ing computational cells and the discrete divergence of the mesh velocity field.

Margolin and Shashkov [46, 47] pointed out that precise connections between
advection algorithms for transport problems and continuous remap algorithms had
yet to be completely understood. We show here how the GCL is the missing link
necessary to bridge this theoretical gap, and that it is possible to cast a continu-
ous remap problem as a pure transport problem, provided that the GCL is exactly
satisfied in the discrete equations.

We would also like to point out that the GCL has recently being recognized as a
fundamental ingredient in the proof of a priori error estimates for high-order finite
element discretizations in ALE computations of the advection-diffusion equation by
Bonito et al. [6].

One unique aspect of the approach discussed here is the explicit incorporation
of the GCL into the discrete FCT equations, a feature which enables the overall al-
gorithm to inherit conservation and local extremum diminishing (LED) properties
typical of FCT schemes for pure transport problems. The scope of the present chap-
ter is to present a thorough overview of a new class of GCL-compatible algorithms,
stemming from the recent work of López Ortega and Scovazzi [40].

We propose a synchronized remap strategy based on flux-corrected transport al-
gorithms, and in particular algebraic FCT methods (originally developed by Kuzmin
and Turek [30], Kuzmin et al. [31–34], Kuzmin [29]).

We point out, however, that the main concepts presented can easily be extended to
the case of monolithic ALE (as in the work of Boiarkine et al. [5]) and general FCT
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methods based on finite volume (FV) or finite difference (FD) discretizations (such
as the ones originally developed by Boris and Book [7–9], Zalesak [62], Löhner et
al. [37–39]).

The proposed method also complements the work in Scovazzi et al. [54, 55], Sco-
vazzi [51], on Lagrangian shock hydrodynamics with nodal-based finite elements,
and shows the feasibility of a suite of computational methods for shock hydrody-
namics on nodal-based discretizations.

The exposition is organized as follows: Section 2 introduces a novel (to the au-
thors’ knowledge) continuum mechanics interpretation of ALE remap and the con-
tinuous version of the GCL. Section 3 describes the basic discretization of the con-
tinuum equations. Sections 4 and 5 present the proposed methodology first in the
case of scalar equations and then in the case of systems of equations, respectively.
Results from numerical tests in one, two, and three dimensions are presented in
Sect. 6 and conclusions are summarized in Sect. 7.

2 General Concepts in Arbitrary Lagrangian-Eulerian Remap

ALE remap is the algorithmic procedure by which, on a fixed computational do-
main, data associated with a given computational grid (or mesh) is transferred onto
a different grid with the same connectivity and improved quality. Remap is usually
combined with Lagrangian algorithms to provide flexible and robust computational
tools for fluid transport, as in Smolarkiewicz and Margolin [59], or shock hydro-
dynamics, as in Donea et al. [10], Benson [3], Dukowicz and Baumgardner [11],
Dukowicz and Kodis [12], Dukowicz and Padial [13], Maire et al. [45], Kucharik et
al. [28], Loubère et al. [42, 43], Galera et al. [19].

2.1 A Continuum Mechanics View on Remap

At the continuum level, a differential equation can be associated to the remap pro-
cess. For this purpose a few definitions from continuum mechanics have to be intro-
duced. Let the open set Ωχ ⊂ R

nd (where nd is the number of spatial dimensions)
denote the initial configuration of the mesh domain to be remapped, and let χ ∈Ωχ

denote the position vector of a particle associated with the initial configuration of
the mesh. For example, nodes of the mesh, barycenters of elements, etc., can be
considered as particles. We can also define an open portion ωχ ⊂ Ωχ as a subset
of the mesh domain. For example, the interior of a single element or of a cluster of
elements can define a portion.

In many situations of practical interest the remap procedure does not change the
morphology of the boundary ∂Ωχ of Ωχ . This happens every time the boundary
motion is prescribed as pure slip, with no material inflow/outflow. On the contrary,
an interior portion ωχ will in general change its position as a result of the remap.
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Fig. 1 Interpretation of the mesh remap motion ϕ̂τ . In (a), ϕ̂τ is characterized as a family of
maps parametrized with τ . An element portion ωχ is remapped into ω= ϕ̂τ (ωχ ). In general, mesh
particles do not need to deform along straight paths, but indeed they do when linear interpolation is
used to represent ϕ̂τ . (b) shows the initial and final configurations of the mesh. Black lines represent
the initial state of the mesh, and red lines the final state. The initial and final configurations of a
mesh portion (a single element in this case) are represented by the shaded areas in light blue and
light red, respectively (Color figure online)

Using the classical notation of continuum mechanics, the mesh motion (or remap
motion) can be defined as

ϕ̂ : ωχ → ω= ϕ̂(ωχ ), ∀ωχ ⊂Ωχ , (1)

χ !→ x = ϕ̂τ (χ)= ϕ̂(χ , τ ), ∀χ ∈ ωχ , τ ∈ [0,1]. (2)

The scalar τ is a parameter used to span the family of mesh deformations ϕ̂τ , and
the notations ϕ̂τ (χ) and ϕ̂(χ , τ ) can be used interchangeably. For τ = 0 the mesh
is in its initial configuration (i.e., ϕ̂0 = I , or ϕ̂0(ωχ ) = ωχ ). For τ = 1, the mesh
is in its final configuration (i.e., ϕ̂1(ωχ )= ω). Values of τ within the open interval
(0,1) indicate intermediate configurations of the mesh. Figure 1 shows a graphical
interpretation of the concepts presented so far. In particular,

û= ∂ϕ̂τ (χ)

∂τ

∣∣∣∣
χ

(3)

indicates the mesh displacement for a mesh particle initially located at χ . We can
also define the mesh deformation gradient

F̂ =∇χ

(
ϕ̂τ (χ)

)
, (4)

and the mesh deformation Jacobian determinant

Ĵ = det(F̂ ) > 0, (5)

which represents the relative change in volume undergone by an infinitesimal por-
tion of the mesh domain under the mesh map ϕ̂τ .
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Remark 1 In light of the above definition of ϕ̂τ , it would be wrong to interpret τ as
time. There is in fact no concept of time in the context of ALE remap.

2.2 The Differential Remap Equation

Using the previous definitions, the remap differential equation for a scalar field
ρ(x)= ρ(ϕ̂τ (χ)) reads:

∂ρ

∂τ

∣∣
∣∣
x

= 0. (6)

This simple equation expresses the fact that the mesh deformation should leave ρ

unchanged, if observed from a reference frame fixed in space (Eulerian). This fact is
also implicitly expressed by the dependency of ρ only on x. Equation (6) is mean-
ingful for sufficiently smooth mesh deformations, and is the basis of the proposed
numerical approach. Using the chain rule of differentiation, the following classical
identity holds:

∂ρ(ϕ̂(χ , τ ))

∂τ

∣∣∣∣
χ

= ∂ρ

∂τ

∣∣∣∣
x

+ û · ∇xρ, (7)

where ∇x is the spatial (Eulerian) gradient. This formula is a generalization of the
relation between the Eulerian and Lagrangian derivatives of a field. Equation (6) can
therefore be recast as

∂ρ(x, τ )

∂τ

∣∣∣∣
χ

− û · ∇xρ = 0, (8)

and its interpretation becomes clear looking at Fig. 1. Suppose an observer is “sit-
ting” on a node initially located at position χ and is transported by the node as the
mesh reaches its final configuration. Then the measured rate of change of the field ρ

at that node is related to the spatial gradient of ρ by how much the node displaces.
This concept serves as the ground for a loose interpretation of the remap stage as
advection. In reality, remap and advection are not equivalent, as will become clear
momentarily.

Remark 2 Equation (8) is a general relationship, which is always true in the case
of smooth fields, even for very large displacements of the mesh. It will be clear
subsequently that specific discretizations of (8) may impose some limitations on the
magnitude of the mesh displacements. Nonetheless, as long as the mesh motion map
is smooth and well-posed (invertible), (8) is always correct.
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2.3 Geometric Conservation Law

In its continuum (differential) form, the geometric conservation law expresses the
compatibility between the rate of relative volume change Ĵ−1∂Ĵ /∂τ |χ and the di-
vergence of the mesh displacement field û:

∂Ĵ

∂τ

∣∣∣∣
χ

= Ĵ ∇x· û. (9)

This relation can be derived from standard calculus identities (for complete details,
see, e.g., López Ortega and Scovazzi [40]). A more intuitive integral form is ob-
tained by integrating (9) over a portion ωχ of the domain Ωχ , using the Gauss
theorem and the fact that Ĵdωχ = dω:

d

dτ

(∫

ω

dω

)
=
∫

ωχ

∂Ĵ

∂τ

∣∣∣∣
χ

dωχ =
∫

ω

∇x · ûdω=
∫

∂ω

û · nd(∂ω), (10)

where n denotes the outward-pointing normal along the boundary ∂Ω of Ω . Thus,
(10) relates the change in volume of the remapped portion ω of the initial domain
Ωχ to the engulfment of new regions of the domain due to the displacement of the
remapped mesh.

2.4 Conservative Remap Equations

In general, remap algorithms need to preserve some basic conservation properties.
Now (6) or (8) are not written in conservative form and their direct discretization
with a finite difference/element/volume method would not be globally conservative.
Assume that ρ is a conserved variable, meaning that the integral of ρ over Ω must
be conserved through the remap procedure (e.g., ρ may indicate the mass density of
a material, and its integral, the total mass of the mechanical system). Summing the
product of (9) and ρ with the product of Ĵ and (8) leads to

∂(Ĵ ρ)

∂τ

∣∣∣∣
χ

− Ĵ∇x · (ρû)= 0, (11)

which is a conservation statement for remap. This is evident by integration of (11)
over ωχ , namely,

∫

ωχ

∂(Ĵ ρ)

∂τ

∣∣∣∣
χ

dωχ −
∫

ωχ

Ĵ∇x · (ρû)dωχ = 0. (12)

Then, recalling ωχ is independent of τ and applying the Gauss divergence theorem,

d

dτ

(∫

ω

ρdω

)
= d

dτ

(∫

ωχ

Ĵ ρdωχ

)
=
∫

ω

∇x · (ρû)dω=
∫

∂ω

ρû · nd(∂ω). (13)
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Equation (13), whenever the boundary integral vanishes, leads to a global conserva-
tion statement for the integral of ρ.

Remark 3 We reiterate that equations (6) (or (8)) do not lead to discrete integral
conservation statements. Moreover, the integral conservation statement results from
a combination of (6) (or (8)) and the geometric conservation law (9).

2.5 Boundary Conditions

Equation (11) needs to be complemented with appropriate boundary conditions. For
the sake of simplicity, and without loss of generality, only the case in which the
boundary does not deform will be considered, that is

û · n= 0 on ∂Ωχ . (14)

In this case, boundary conditions may not be specified. Alternatively, it is possible
to impose Dirichlet boundary conditions of the type

ρ
(
ϕ̂−1

τ (x)
)= ρ̄(χ) on ∂Ωχ . (15)

This amounts to enforce that the solution does not change under remap at the bound-
ary of the computational domain.

Remark 4 In the case of ALE shock hydrodynamics, computations are performed
as a sequence of alternating Lagrangian and remap stages (continuous remap). Then
condition (14) is equivalent to impose that the boundary of the domain Ω undergoes
pure Lagrangian motion. In this case, no boundary conditions are typically imposed
for the density and internal energy, while strong Dirichlet conditions of the type (15)
are imposed for the velocity component normal to the boundary.

3 A Geometrically-Conservative Second-Order Remap

The sections that follow are devoted to the presentation of the discrete approxima-
tion to the remap equations using a geometrically-conservative FCT method.

3.1 A Conservative Nodal-Based Finite Element Formulation

A conservative finite element formulation can be developed by testing equation (11)
on a space of appropriate variations. In particular, the rest of the paper is focused on
piecewise-linear globally-continuous approximations. Consider the scalar equation
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(11), with Dirichlet boundary conditions given as in Sect. 2.5. In this case, ∂Ω ≡
∂Ωχ , and consequently, the trial space S h and test space V h are given by

S h ={ψh ∈ C0(Ωχ ) :ψh ∈P1(ωχ;e), ψh = ρ̄(χ) on ∂Ωχ

}
, (16)

V h ={ψh ∈ C0(Ωχ ) :ψh ∈P1(ωχ;e), ψh = 0 on ∂Ωχ

}
, (17)

where P1(ωχ;e) is the space of piecewise-linear functions over the element do-
main ωχ;e , and ρ̄ is the Dirichlet boundary condition. If no boundary conditions are
specified, then the trial/test spaces coincide and take the form

S h =V h = {
ψh ∈ C0(Ωχ ) :ψh ∈P1(ωχ;e)

}
. (18)

Incidentally, (16)–(17) and (18) lead to the same variational statement, which is
readily obtained testing (11) against a member of V h. Namely, given a mesh dis-
placement field û, seek ρh ∈S h such that, ∀ψh ∈ V h,

∫

Ωχ

ψh(χ)
∂(Ĵ ρh(ϕ̂τ (χ))

∂τ

∣∣∣∣
χ

dΩχ = d

dτ

∫

Ωχ

ψhρhĴdΩχ

=
∫

Ωχ

ψh∇x ·
(
ρhû

)
ĴdΩχ . (19)

The last equality in (19) can be used to derive an integration procedure in the fash-
ion of space-time integration algorithms (see, e.g., Scovazzi et al. [54], Scovazzi
[49–51], Scovazzi and Love [53], Hulme [21], Jamet [25], Aziz and Monk [1] and
references therein). Integrating along τ and changing reference frames in the left-
hand-side yields

∫

Ω

ψh
(
ϕ̂−1

1 (x)
)
ρh(x)dΩ −

∫

Ωχ

ψh(χ)ρh(χ)dΩ

=−
∫ 1

0

(∫

Ωχ

∇xψ
h(χ) · (ρhû

)
ĴdΩχ

)
dτ, (20)

where integration by parts has been performed on the right-hand-side, accounting
for boundary conditions. This equation represents the foundation of our algorithmic
approach, and many remap algorithms found in the literature fall under this general
framework (see, e.g., Fressmann and Wriggers [18], Benson [2–4], Donea et al. [10],
Dukowicz and Baumgardner [11], Dukowicz and Kodis [12], Dukowicz and Padial
[13], Maire et al. [45], Margolin and Shashkov [46, 47], Vàchal et al. [61], Vàchal
and Liska [60], Liska et al. [36]). The spatial discretization has already been chosen
by defining the variational spaces V h and S h, the remaining step is the choice of
an appropriate approximation space and quadrature formulas along τ .

Remark 5 (Conservation) The variational formulation (20) is globally conservative.
In fact, when homogeneous Neumann conditions are assumed (no normal flux of the
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solution ρ across the boundary), the unit constant function over the entire domain
Ωχ is in the test space. Consequently, for this test function choice, the integral on
the right-hand-side of (20) vanishes, leading to the global conservation statement

∫

Ω

ρh(x)dΩ =
∫

Ωχ

ρh(χ)dΩ. (21)

3.2 Approximation of the Mesh Motion and Mesh Displacements

The map ϕ̂ is discretized making use of a piecewise linear discretization in space
and (pseudo-)time, namely

ϕ̂h
τ (χ)=

nnp∑

A=1

(
τ ϕ̂1(χA)+ (1− τ)ϕ̂0(χA)

)
NA(χ), (22)

where NA(χ) is the finite element shape function centered at node A, and nnp is the
total number of nodal mesh points. In particular NA is continuous, piecewise-linear
and of compact support, that is NA(χB) = δAB (the Kronecker delta tensor, such
that δAB = 1 if A= B , and δ = 0 if A �= B). Furthermore, the shape function basis
has the partition of unity property, that is

∑
A NA = 1. By definition (3), equation

(22) also implies

û(χ)=
nnp∑

A=1

(
ϕ̂1(χA)− ϕ̂0(χA)

)
NA(χ)=

nnp∑

A=1

û(χA)NA(χ), (23)

independent of the parameter τ . Recall that û is a datum in the remap problem, since
the new mesh positioning is chosen based on mesh quality considerations.

3.3 A Group Finite Element Approach

Effective remap algorithms need to maintain a number of important algorithmic
properties. Global conservation has already been mentioned as a fundamental re-
quirement. In addition, second-order accuracy is deemed necessary in practical ap-
plications. In order to satisfy these requirements a simple approach is to adopt an
algorithm similar to the space-time discretizations presented in Scovazzi et al. [54,
55], Scovazzi [49–51], Scovazzi and Love [53] (see also references therein), with
appropriate modifications to take advantage of the particular structure of the remap
problem. Specifically, the test space will be given by the tensor product of spatial
functions in V h with piecewise-constant functions in τ , while the trial (solution)
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space will be given by the tensor product of spatial functions in S h with piecewise-
linear, continuous functions in τ . Consequently, a natural discretization for ρh is
analogous to the one for mesh motion, that is,

ρh
(
ϕ̂τ (χ)

)=
nnp∑

A=1

(
τρ1(χA)+ (1− τ)ρ0(χA)

)
NA(χ), (24)

with ρτ (χA) the nodal value of ρh for τ = 0,1. This definition can be combined
with (23) to discretize the product ρhû.

However, as will appear clear in what follows, the so-called group finite ele-
ment formulation of Fletcher [14] is more advantageous in obtaining a discretely
conservative algorithm, particularly when adopting an FCT method for a system of
equations. This amounts to choose:

ρh
(
ϕ̂τ (χ)

)
û(χ) =

nnp∑

A=1

(
τρ

(
ϕ̂1(χA)

)

+ (1− τ)ρ
(
ϕ̂0(χA)

))
û(χA)NA

(
ϕ̂τ (χ)

)
. (25)

Needless to say, our goal is to obtain a computationally efficient algorithm. With
this purpose in mind, and only for the integral term in the right-hand-side of (20),
it is possible to further approximate ρh by replacing the linear interpolation with a
τ -average reminiscent of a trapezoidal integration rule

ρh
(
ϕ̂τ (χ)

)
û(χ)=

nnp∑

A=1

ρh(ϕ̂0(χA))+ ρh(ϕ̂1(χA))

2
û(χA)NA

(
ϕ̂τ (χ)

)
. (26)

Using the original definition (24) is more involved computationally, but does not
yield an improvement in order of accuracy. Combining all previous discretization
choices, we obtain the following discrete system:

V1ρ1 − V0ρ0 = K̄

(
ρ1 + ρ0

2

)
, (27)

where

V(·) = [V(·);AB ], (28)

V(·);AB =
∫

Ωχ

NA(χ)NB(χ)Ĵ
(
ϕ̂(·)(χ)

)
dΩχ

=
∫

ϕ̂(·)(Ωχ )

NA

(
ϕ̂(·)(χ)

)
NB

(
ϕ̂(·)(χ)

)
dΩ, (29)

K̄=
∫ 1

0
K(τ )dτ =

[∫ 1

0
KAB(τ)dτ

]
(30)
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KAB(τ)= CAB(τ) · ûB (no sum), (31)

CAB(τ)=−
∫

Ωχ

∇xNA(χ)NB(χ)Ĵ
(
ϕ̂τ (χ)

)
dΩχ

=−
∫

ϕ̂τ (Ωχ )

∇xNANBdΩ, (32)

ρ(·) = {ρ(·);A}, (33)

with ûB = û(χB) and ρ(·);A = ρh(ϕ̂(·)(χA)).

Remark 6 The partition-of-unity property of the finite element shape functions, that
is
∑

A NA = 1, directly implies
∑

A CAB = 0.

Remark 7 It can be proven (see, e.g., López Ortega and Scovazzi [40]), that if A is
not a boundary node, CAB has the skew-symmetry property, that is CAB =−CBA,
which in turn implies

∑
B CAB = 0. As a consequence, CAA = 0 for interior nodes,

which also implies that the diagonal entries of K̄ are zero (this fact can also be
proved directly using Gauss theorem along a single coordinate direction, see again
López Ortega and Scovazzi [40]).

3.4 Discretization of the Geometric Conservation Law

It is also important to realize that substituting into (27) a constant solution ρh in
space and time, we obtain the discretization of the geometric conservation law (10),
namely,

VL
1 − VL

0 =Σ[K̄], (34)

where VL
1 , VL

0 , Σ[K̄], are lumped, row-sum matrices obtained from V1, V0, and K̄.
Respectively:

VL
(·) =

[

diag

( nnp∑

B=1

V(·);AB

)]

, (35)

and, for a given matrix M= [MAB ], the operator Σ[·] computes the row-sum diago-
nal matrix

Σ[M] =
[

diag

( nnp∑

B=1

MAB

)]

. (36)

Note in particular that, due to the boundary conditions on û,

nnp∑

B=1

V(·);AB =
nnp∑

B=1

∫

Ωχ

NA(χ)NB(χ)Ĵ
(
ϕ̂(·)(χ)

)
dΩχ =

∫

ϕ̂(·)(Ωχ )

NAdΩ, (37)



310 G. Scovazzi and A. López Ortega

nnp∑

B=1

K̄AB =
nnp∑

B=1

(∫ 1

0
CAB(τ) · ûBdτ

)
=−

(∫ 1

0

(∫

Ωχ

∇xNA · ûĴdΩχ

)
dτ

)

=
(∫ 1

0

(∫

ϕ̂τ (Ωχ )

NA∇x · ûdΩ

)
dτ

)
. (38)

Remark 8 Σ[K̄] =∑
B K̄AB can be interpreted as a weak variational projection of

the divergence of the displacement field onto the nodal shape function space.

Remark 9 An algorithm which embeds the geometric conservation law is always
capable of representing a constant solution, independently of the mesh motion cho-
sen. Algorithms which do not abide the geometric conservation law would instead
introduce spurious numerical distributions of sources/sinks in the computational do-
main, causing the numerical solution to oscillate around the constant state. It will be
shown momentarily that the geometric conservation law is essential in guaranteeing
local extremum diminishing (LED) properties for flux-corrected transport remap.

4 Flux Corrected Synchronized Remap for Scalar Fields

Equations (27) and (34) are the basis for a synchronized, nodal-based, flux corrected
remap (FCR) method described next. The derivations which follow show how the
step-by-step integration of the discrete GCL (34) in previous work on algebraic FCT
methods by Kuzmin [29], Kuzmin et al. [31, 32, 34], Kuzmin and Turek [30], leads
to an conservative, accurate and LED-preserving FCR method.

We would also like to mention that Vàchal and Liska [60] have applied the ideas
of FCT to classical staggered discretization arising in traditional shock hydrodynam-
ics algorithms. In that case, thermodynamic variables, such as density and internal
energy, are approximated as piecewise-constant fields and the linear momentum is
collocated at the nodes of the computational grid. This results in different discrete
remap operators needed to transfer momentum and thermodynamic quantities be-
tween meshes. In our approach, instead, all variables are collocated at the nodes of
the mesh, and all conserved variables are remapped using the same discrete opera-
tors, with clear advantages from the point of view of computational efficiency. Our
approach also encompasses the repair paradigm of Margolin and Shashkov [46, 47]
by means of the fail safe approach described in Kuzmin et al. [34], of much simpler
implementation.

The discussion is initially focused on the scalar case, and will later extend to
systems of conservation laws. Equation (27) is a linear system and can be directly
solved:

ρ1 =
(

V1 − 1

2
K̄

)−1(
V0 + 1

2
K̄

)
ρ0. (39)

However, because (39) is derived from a Bubnov-Galerkin formulation of the vari-
ational remap problem, that is a non-monotone centered discretization, oscillations
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are to be expected. Additionally, the inversion of a linear system may result com-
putationally inefficient for large scale application of remap strategies in conjunction
with explicit dynamics algorithms. We propose to address the former issue using an
FCR approach, and the latter using a predictor/multi-corrector strategy.

4.1 Low-Order Discretization

The first stage in the development of the FCR algorithm is to assemble a conser-
vative low-order scheme which provides positivity preserving and local extrema
diminishing (LED) properties (see Jameson [22–24]) at the expense of lowering nu-
merical accuracy. In addition, the low-order scheme must be compatible with the
discretization (stencil) of the Galerkin high-order scheme it is derived from. As
shown by Kuzmin and Turek [30] and in Chap. 6 of the book by Kuzmin et al. [33],
such low-order scheme can be derived from (27) by row-sum lumping the matri-
ces V0 and V1, and augmenting the matrix K̄ by an appropriate algebraic diffusion
matrix D̄. Namely, the low-order scheme can be expressed as:

VL
1 ρlow

1 − VL
0 ρ0 = L̄ρlow

1/2 , (40)

where L̄= K̄+ D̄, VL
(·);AA

=∑
B VAB , ρlow

1/2 = 1/2(ρlow
1 + ρ0), and the superscript

low stands for low order.

4.2 Positivity Properties and the Algebraic Diffusion Matrix

Positivity is a very valuable property in algorithms used to simulate systems of
conservation laws, in which some solution variables (e.g., density, pressure, internal
energy) must always preserve a positive sign. The low-order scheme can be written
as:

Aρlow
1 = Bρ0, (41)

with A= VL
1 − 1/2L̄ and B= VL

0 + 1/2L̄. Assuming ρ0 is an array with positive en-
tries, the same property is desirable for the remapped array ρlow

1 . This is equivalent
to require that A−1B is a positive matrix (a matrix with positive entries), condition
which is satisfied if A is a so-called M-matrix and B is positive (BAB ≥ 0). Sufficient
conditions for A to be an M-matrix are:

AAA ≥ 0, (42a)

AAB ≤ 0, for B �=A, (42b)

AAA ≥−
∑

B �=A
AAB. (42c)
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Condition (42c) is usually referred as diagonal dominance, and must hold either for
all rows or, in the case A is irreducible, for at least one row.

Following Kuzmin and Turek [30] or Chap. 6 of Kuzmin et al. [33], we de-
sign a positive scheme by constructing a matrix D̄ so that it behaves as an alge-
braic diffusion operator. In addition, the proposed approach yields a conservative,
local extrema diminishing algorithm. D̄ = [D̄AB ] being a diffusion matrix implies
symmetry (i.e., D̄AB = D̄BA). Conservation requires that

∑
B D̄AB =∑

A D̄AB = 0,
that is D̄ should not perturb any discrete global conservation statements. In particu-
lar, the previous requirements entail D̄AA =−∑B �=A D̄AB , where

∑
F �=G is short-

hand notation for
∑nnp

F=1,F �=G. A simple approach to deriving a matrix D̄ from K̄ is

to enforce D̄AB = max(−K̄AB,−K̄BA,0), for A �= B , and D̄AA =−∑A�=B D̄AB =
−∑B �=A D̄AB (see Kuzmin and Turek [30]).

Remark 10 By construction, D̄AB ≥ 0, for B �= A, and, consequently, D̄AA ≤ 0.
Again, by construction, L̄AB ≥ 0 for B �=A.

As shown in full detail in López Ortega and Scovazzi [40], the previous definition
of the matrix D̄ yields a matrix A which satisfies exactly (42a)–(42c). With regard
to the matrix B, the condition BAB ≥ 0 is clearly satisfied when B �= A, since the
off-diagonal entries of B are just the off-diagonal entries of L̄, while the condition
BAA ≥ 0 leads to a Courant-Friedrichs-Lewy (CFL) condition for positivity, namely
minA(VL

0;AA
− 1/2D̄AA) > 0, which restricts the magnitude of the mesh displace-

ments.

4.3 Discrete Geometric Conservation Law

It is now important to appreciate the role played by the geometric conservation
law (34) in the context of the proposed algebraic FCR approach. The discussion
in this and the following sections differs from and extends the classical work on
algebraic FCT schemes of Kuzmin and Turek [30], Kuzmin et al. [31–34], Kuzmin
[29]. Consider the difference between (40) and the product of ρlow

1/2 and (34):

VL
1 ρlow

1 − VL
0 ρ0 − ρlow

1/2

(
VL

1 − VL
0

)= (
K̄−Σ[K̄] + D̄

)
ρlow

1/2 , (43)

or, after a few simple algebraic manipulations,

VL
1/2

(
ρlow

1 − ρ0
)= L̂ρlow

1/2 , (44)

where VL
1/2 = 1/2(VL

1 + VL
0 ) and L̂= K̂+ D̄ with K̂= K̄−Σ[K̄].

Remark 11 By definition, K̂ and L̂ have zero row sum. In addition, the off-diagonal
entries of L̂ are non-negative, by construction of D̄.
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It is at this point crucial to observe that if VL
1 is computed using (35) and satisfies

(34) exactly, then (40) and (44) are exactly equivalent. Linear simplex-type finite el-
ements (i.e., line elements in one dimension, triangular elements in two dimensions
and tetrahedral elements in three dimensions) exactly satisfy (34), provided that one
and two quadrature points are used along the τ coordinate for evaluating (38) in
two and three dimensions, respectively. For a detailed proof of this statement, see
Lesoinne and Farhat [35], Formaggia and Nobile [15, 16] or Scovazzi and Hughes
[52] and references therein.

Because the spatial integrals in (38) cannot be integrated exactly for general mesh
geometries in the case of quadrilateral or hexahedral linear elements, we will always
make the choice of computing VL

1 using (34) rather than (35). This approach ensures
that the lumped volume matrix VL

1 is always compatible with a geometric conserva-
tion law irrespective of the type of finite element adopted.

Remark 12 Note that the geometric conservation law somewhat supersedes the con-
dition on diagonal dominance on A discussed in Sect. 4.2. In fact, in the context of
the present method, condition (42c) translates into:

VL
1;AA −

1

2
(K̄AA + D̄AA)≥ 1

2

∑

B �=A
(K̄AB + D̄AB), (45)

that is,

VL
1/2;AA = VL

1;AA −
1

2

∑

B

K̄AB ≥ 1

2

∑

B

D̄AB = 0. (46)

Now VL
1/2;AA

≥ 0 by definition, and, consequently, the geometric conservation law
implies A is diagonally dominant.

4.3.1 Geometric Conservation and Local Extremum Diminishing Properties

A numerical scheme is LED if it prevents the creation of new local extrema with
respect to the distribution of extrema in the initial solution as discussed by Jameson
[22–24], Kuzmin and Turek [30], Kuzmin et al. [33]. It is very important to realize
at this point that the change in mesh geometry during remap prevents the direct
application of the standard FCT methodology for pure transport problems based on
the premise that VL

1 = VL
0 (as developed, e.g., in Kuzmin and Turek [30] and Chap. 6

of Kuzmin et al. [33]).
The forthcoming discussion shows that satisfaction of the geometric conservation

law allows the proposed FCR scheme to inherit the LED properties of the FCT
schemes it is derived from. Typically, the LED properties are discussed in the semi-
discrete context (see again Kuzmin and Turek [30] and Chap. 6 of Kuzmin et al.
[33]). For a transport problem, this means that the equations are discretized in time



314 G. Scovazzi and A. López Ortega

but not in space. In the case of remap, this is equivalent to applying discretization in
space but not along the τ coordinate. Namely,

∂τ
(
VL
τ ρlow

)= Lρlow, (47)

where L = K + D, with DAB = max(−KAB,−KBA,0). K is defined in (31) and
differs from K̄, as its entries are not integrated along τ . Note however that D and
D̄ and L and L̄ share the same properties, as integration along τ does not change
the sign of matrix entries. Analogously, the semi-discrete version of the geometric
conservation law reads

∂τVL
τ =Σ[K]. (48)

Proceeding as in Sect. 4.3, by taking the difference of (47) and the product of ρlow

and (48), and rearranging terms, the semi-discrete version of (44) is obtained:

∂τρ
low = (

VL
τ

)−1
Lρlow, (49)

or, in components,

∂τρ
low
A = 1

VL
τ ;AA

∑

B �=A
LAB

(
ρlow
B − ρlow

A

)
, (50)

where we have used the fact that LAA = −∑B �=A LAB , since L has zero row sum.
By construction, the off-diagonal entries of L are non-negative, and, in addition,
the sparsity pattern of L is given by the local compact support of the linear shape
functions NA’s. In particular, the only non-zero entries of L are in correspondence of
neighboring nodes (i.e., nodes connected by a common element). In conclusion, if
the solution ρlow has a maximum at node A, then ∂τ ρ

low
A ≤ 0, since ρlow

B −ρlow
A ≤ 0

for every node B in the neighborhood of A. The case of a minimum is analogous,
and this concludes the classical proof of LED properties in Jameson [22–24].

In the fully-discrete context of the proposed FCR approach, the previous argu-
ment can be applied to (44) using (34), namely,

ρlow
1;A − ρlow

0;A =
1

VL
1/2;A

nnp∑

A=1

L̂ABρlow
1/2;B

= 1

VL
1/2;A

∑

B �=A
L̂AB

(
ρlow

1/2;B − ρlow
1/2;A

)
. (51)

Remark 13 It is fundamental to observe that if the geometric conservation law is
not respected, then (40) is not equivalent to (44), and, as a result, (51) does not hold.

4.3.2 Geometric Conservation and Accuracy

When the matrix D is set to zero, the higher order method is recovered. Using again
the geometric conservation law, (43) and (44) lead to the two equivalent discrete
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equations for the higher-order scheme:

VL
1 ρ1 − VL

0 ρ0 = K̄ρ1/2, (52)

VL
1/2(ρ1 − ρ0) = K̂ρ1/2, (53)

where the last equation is in advective form. To be more specific, because K̂ has zero
sum, it is analogous to a matrix obtained in the case of advection due to a divergence-
free convective field. Hence, the theory developed in Kuzmin et al. [33] directly
applies. Specifically, since piecewise-linear finite elements are used in obtaining
(53), the theory of finite element indicates that the proposed high-order method is
second-order accurate, in terms of truncation error.

4.4 An Efficient Predictor/Multi-corrector Scheme

The simplest possible predictor/multi-corrector version of (40) reads:

VL
1 ρ

low;(i+1)
1 − VL

0 ρ0 = (K̄+ D̄)ρ
low;(i)
1/2 , (54)

where (i + 1) and (i) indicate the current and previous iterate of the solution,
ρ
low;(i)
1/2 = 1/2(ρlow;(i)

1 + ρ0), and VL
1 is computed according to (34). In practice,

the first pass of the predictor/multi-corrector scheme is a classical explicit Euler
step, while successive corrections allow the scheme to reach second-order accuracy
in τ . The positivity properties of the scheme are easily derived by observing that the
first step of (54) corresponds to (41) with A= VL

1 and B= VL
0 + L̄. The analysis of

LED properties is more delicate, as the equation corresponding to (43) reads:

VL
1 ρ

low;(i+1)
1 − VL

0 ρ0 − ρ
low;(i)
1/2

(
VL

1 − VL
0

)= (
K̄−Σ[K̄] + D̄

)
ρ
low;(i)
1/2 , (55)

that is

VL
1/2

(
ρ
low;(i+1)
1 − ρ0

)= L̂ρ
low;(i)
1/2 − (

ρ
low;(i+1)
1/2 − ρ

low;(i)
1/2

)(
VL

1 − VL
0

)
. (56)

This means that only in the limit of a large number of iterations the predictor/multi-
corrector shares the same LED properties of the original algorithms from which
it is derived. However, the presence of the term (ρ

low;(i+1)
1/2 − ρ

low;(i)
1/2 )(VL

1 − VL
0 )

did not produce any spurious maxima/minima to be formed in any of the numerical
simulations performed, no matter how few iterations were performed. The computa-
tions presented subsequently were performed with one predictor and two corrector
passes.

4.5 High-Order Anti-diffusive Fluxes

As shown in the previous section, the low-order solution obtained from (40) prevents
the over/undershoots possibly generated by the original high-order scheme, but it is
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in general overly diffusive. In FCT methods, an appropriate local convex combi-
nation of the low- and high-order solutions is taken to obtain the best compromise
between accuracy and robustness (monotonicity). The first step is to write the so-
called anti-diffusive fluxes, which are the numerical fluxes that yield the high-order
scheme when added to the low-order scheme. Namely,

P = {PA}, (57)

PA =
∑

B �=A
fAB, (58)

fAB = −D̄AB(ρ1/2;B − ρ1/2;A)

−V1;AB(ρ1;B − ρ1;A)+ V0;AB(ρ0;B − ρ0;A) (no sum), (59)

where we have used the fact that the D̄ has zero sum (D̄AA =−∑B �=A D̄AB ) and the

property of the row-sum lumped volume matrices, for which VL
(·);AA

=∑
B V(·);AB ,

so that V(·);AA − VL
(·);AA

=∑
B �=A V(·);AB . In the context of finite element approxi-

mations, the term fAB can be interpreted as an internodal anti-diffusive flux, that is
the anti-diffusive contribution of node B on the change of value in the solution at
node A.

Remark 14 Note that, by construction, fAB = −fBA, ensuring that the high-order
anti-diffusive fluxes maintain the overall conservation properties of the resulting
algorithm.

An appropriate convex combination of low- an high-order fluxes is then taken by
weighting each internodal flux fAB with a coefficient αAB ∈ [0,1], so that a higher-
order non-oscillatory solution is obtained. The choice of αAB is performed using a
limiting strategy due to Zalesak [62].

4.6 Zalesak’s Limiter

The aim of the Zalesak’s limiting strategy is to preserve the positivity and LED
properties of the low-order fluxes while increasing the overall order of accuracy of
the method when the solution is smooth. To this end, we first split the total flux PA

in positive and negative contributions:

P±A =
∑

B �=A

max
min
{0, fAB}. (60)

In practice, the flux P±A represents the total negative/positive contribution to the
solution at node A, which, in turn, may be responsible for undershoots/overshoots.
One then uses the terms

Q+A = VA

(
ρmax
A − ρA

)
, (61)
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Q−A = VA

(
ρmin
A − ρA

)
(62)

to estimate a distance from the solution and the local maxima/minima. For the it-
erative algorithm, monotonicity is enforced by estimating Q±A using the maximum
and minimum of the previous iterate (i) at τ = 1 and the initial solution at τ = 0.
This procedure slightly extends the approach presented in Chap. 6 of Kuzmin et
al. [33], in which the terms Q±A are computed using only the low-order scheme. To
estimate the maximum and minimum values ρmax

A and ρmin
A , we just have to look

at the neighboring nodes because the shape functions have compact support. Note
also that, by definition, P+A ≥ 0, P−A ≤ 0, Q+A ≥ 0, and Q−A ≤ 0. We then define the
portion of the flux P±A which can be accepted in or out of a node without producing
overshoots or undershoots:

R±A =
{

min{1,Q±A/P±A} if P±A �= 0,

1 if P±A = 0.
(63)

In order to prevent overshoots or undershoots, the following weights on the fluxes
fAB must be used:

αAB =
{

min{R+A,R−B } if fAB ≥ 0,

min{R−A,R+B } if fAB < 0,
(64)

where the minima help enforce the most restrictive condition between the inflow flux
at node A and outflow flux at node B (and vice versa). Note that, by definition (64),
αAB = αBA, which implies global conservation of the overall scheme, since the low-
order scheme is conservative and the limited anti-diffusive fluxes are conservative
(antisymmetric).

Remark 15 (Prelimiting) As an initialization step before performing Zalesak’s lim-
iting, all fluxes satisfying fAB(ρA − ρB) < 0 are set to 0, to prevent the nominally
anti-diffusive fluxes to be dissipative. This is a standard approach in FCT methods
for pure transport problems (see Chap. 6 of Kuzmin et al. [33] for details in the
context of finite element formulations and Zalesak [62] for the original conceptual-
ization).

4.7 Algorithmic Implementation

The proposed scheme stems from the work of Kuzmin et al. [31], but with the im-
portant difference that the geometric conservation law is incorporated at each stage
of the computational procedure. Here is the sequence of steps:

1. Use the discrete GCL (34) to update the nodal volumes:

VL
1 − VL

0 =Σ[K̄]. (65)
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2. Solve iteratively (54):

VL
1 ρ

low;(i+1)
1 − VL

0 ρ0 = (K̄+ D̄)ρ
low;(i)
1/2 . (66)

Note that unless otherwise stated, numerical computations were performed with
one predictor pass and two corrector passes. A single corrector pass would be
sufficient to achieve second-order accuracy, but an additional corrector pass was
found beneficial in further improving the quality of the solution.

3. Compute the antidiffusive fluxes (59), and the parameters αAB using Zalesak’s
limiter.

4. Add antidiffusive fluxes to the low order solution computed in step 1:

VL
1;AAρ1;A = VL

1;AAρ
low
1;A +

∑

B �=A
αAB fAB. (67)

Remark 16 The proposed implementation is not the only possible choice. A differ-
ent implementation using an iterated remap strategy is presented in full detail by
López Ortega and Scovazzi [40].

5 Flux Corrected Synchronized Remap for Systems of Equations

The proposed FCR iterative algorithm can be extended to a multivariable system,
and the main focus will be on systems of equations arising in shock hydrodynamics
applications. Let us denote by U = [ρ,ρv, ρE]T the vector of conserved variables,
where ρ indicates the material density, v the velocity, and E = e+ v · v/2 the total
energy, with e the internal energy. In this case, the conservative form of the remap
equations simply reads

∂(ĴU)

∂τ

∣∣∣∣
χ

− Ĵ∇x · (U ⊗ û)= 0, (68)

where U⊗ û is the generalized flux associated with the mesh displacement. A group
finite element approximation can be constructed as

U
(
ϕ̂(χ)

) =
nnp∑

A=1

UANA

(
ϕ̂(χ)

)
, (69)

where UA = U(ϕ̂(χA)). Consequently, the previous discussion generalizes natu-
rally to the case of a system of equations, by simply applying the flux-corrected
remap strategy to each individual component of the solution vector U .

There are only a number of specific issues related to the synchronization of the
FCR procedure among the various equations and the interpretation of LED proper-
ties. In general applications, one is never interested in the LED properties for linear
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momentum and total energy, which are guaranteed by a trivial, component-wise ex-
tension of the scalar FCR procedure. Rather, one is interested in the LED properties
for a set of primitive variables, which are typically the density, the velocity and the
internal energy. Of these three LED requirements, the one on the velocity is usually
not crucial, since the sign of the velocity components is not in general predetermined
in complex flow computations. However, the density and internal energy have phys-
ical and thermodynamical meaning only if they are positive. The aim of this section
is the development of a reliable FCR strategy preserving positivity and LED proper-
ties for density and internal energy. We also note that the discussion here is simply
aimed at remap, and is fundamentally different from Kuzmin et al. [31], in which
the full solution of Euler systems is pursued with FCT approaches in the Eulerian
context.

5.1 Low-Order Scheme

The low-order procedure extends the approach presented in the scalar case. In this
case, we generate a single diffusion matrix D̄ and we then apply it to each of the
conservative equations to prevent the oscillations of conserved variables. We found
in practice that the action of this diffusion operator was also sufficient to prevent
the oscillations of the primitive variables. Because the low-order scheme is a trivial
vectorization of the scalar case, we leave the details to the reader.

5.2 Anti-diffusive Correction and Zalesak’s Limiter for Systems of
Conservation Laws

Let fρAB , fρv

AB , and fρEAB denote the anti-diffusive fluxes computed for density, linear
momentum, and total energy. Taking inspiration from Kuzmin et al. [34] and using
linearization (by means of Frechét differentiation), we can obtain expressions for
the velocity and internal energy fluxes in terms of the momentum and total energy
fluxes, namely:

fvAB =
fρv

AB − vAfρAB

ρA

, (70)

feAB =
fρEAB − vA · fρv

AB + 1/2vA · vAfρAB − eAfρAB

ρA

, (71)

where vA = v(ϕ̂(χA)) and eA = e(ϕ̂(χA)). Note that the primitive variables fluxes
do not necessarily maintain the anti-symmetric property of the conserved variables
fluxes. In fact, given the previous definitions, feAB �= −feBA. This is not a problem
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however, as long as the definition of Pe;±
A is modified appropriately,

Pe;±
A =

∑

B �=A

max
min

{
0, feAB,−feBA

}
, (72)

and similarly for each of the components of the velocity cumulative flux Pv;±
A . Anal-

ogously,

Qe;+
A = VA

(
emax
A − eA

)
, (73)

Qe;−
A = VA

(
emin
A − eA

)
, (74)

and similarly for Qv;±
A . Finally, in order to synchronize Zalesak’s limiting proce-

dure for the system of equations, the limiting weights αAB are defined as αAB =
min{αρ

AB,αe
AB}, implementing the most restrictive condition between the density

and internal energy equations. The weights αAB are then used to limit the conser-
vative antidiffusive fluxes fρAB , fρv

AB , and fρEAB . This approach was first explored by
Löhner et al. [38] and produced numerical results of very good quality.

Remark 17 (Frame invariance) The choice of not incorporating the weights associ-
ated with the velocity equation in the computation of the final weights αAB is made
to preserve frame invariance properties of the overall formulation. In fact, directly
limiting each component of the velocity field, as often done in the literature (see,
e.g., Kuzmin et al. [33]), would result in destroying the frame invariance properties
of the resulting formulation. While in pure Eulerian computations this aspect can
be overlooked, in arbitrary Eulerian-Lagrangian computations it may lead to erratic
behavior of the numerical discretization, as documented by Scovazzi [49, 50], Sco-
vazzi and Love [53]. In the proposed algorithm, the weights αAB are applied to the
entire vector of momentum anti-diffusive fluxes, and preserve the vector structure
of the equations. The reader can easily check that even if a change of reference
frame is performed, the nodal low-order and the anti-diffusive fluxes will remain
unchanged. This is in fact the key to the overall frame invariance of the proposed
remap algorithm.

In summary, our proposed solution strategy proceeds as follows: First the geo-
metric conservation law is updated, followed by the density, momentum and total
energy, using the αAB ’s derived using the vector Zalesak’s limiting procedure. From
the nodal momentum and the nodal density, the nodal velocity is computed. Using
the total energy, the density and the velocity, the nodal internal energy is finally
obtained. This approach is conservative and proved reliable in computations.

5.3 Fail-Safe Approach

The linearization performed clearly induces some approximation in the limiting pro-
cedure and overshoots or undershoots may be still present (although usually fairly
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small). Kuzmin et al. [34] proposed a strategy to correct this issue as follows: If
an overshoot/undershoot occurs at a node A, then the weights of the anti-diffusive
fluxes are reduced at that node and its neighbors B’s. In particular, the weights
αAB ’s are iteratively reduced by a certain fraction of the initial weight (one third
in our computations), until the overshoot/undershoot disappears. In the worst case
scenario, the weight is reduced to zero. More details can be found in Kuzmin et al.
[34]. We note that in most tests the fail-safe procedure was not required. We also
point out that the in the proposed context, the fail-safe approach has some relation to
the repair algorithm of Shashkov and Wendroff [57], Margolin and Shashkov [47],
but is of much simpler implementation.

6 Numerical Results

Extensive remap tests for the proposed FCR algorithm are presented next. The nu-
merical tests are performed in the case of scalar and vector quantities in one, two,
and three dimensions, and have been collected in the vast literature of remap al-
gorithms, and in particular from Loubère and Shashkov [41], Shashkov and Lip-
nikov [58], Kucharik et al. [27], Knupp et al. [26], Maire et al. [45], Margolin and
Shashkov [46, 47], Vàchal et al. [61], Vàchal and Liska [60], and Liska et al. [36].
As already mentioned in Sect. 4.7, unless otherwise stated, all tests were performed
solving iteratively (54) with one predictor pass and two corrector passes.

6.1 One-Dimensional Tests

In the first battery of tests presented remap is performed for a single scalar field in
one dimension, and comprehensive error convergence studies are included.

6.1.1 Rezoning Strategy

The mesh motion is based on a cyclic rezone strategy described in Liska et al. [36],
and Margolin and Shashkov [46, 47]. Each of the mesh nodes displaces according
to

x(ε, t) = xmin + (xmax − xmin)ε̃(ε, τ ), (75)

ε̃(ε, τ ) = (
1− α(τ)

)
ε+ α(τ)ε3, (76)

α(τ) = sin 4πτ

2
, (77)

for 0 ≤ ε ≤ 1 and 0 ≤ τ ≤ 1. The node positions are xk
A = x(εA, τ

k) where
εA = (A − 1)/nel and τ k = k/kmax , with A = 1,2, . . . , nel + 1 = nnp , and k =
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Fig. 2 Mesh motion for
nel = 24 and kmax = 16. Each
element completes two
sinusoidal displacement
cycles

0,1, . . . , kmax . Here nnp = nel + 1 is the number of nodes, nel is the number
of elements, and kmax the number of pseudo-time steps. Tests are run for nel =
64,128,256 with kmax = 5nel , so that the ratio between the mesh spacing and the
increment in τ remains unchanged (equivalently, the mesh CFL number is constant
under refinement). In Fig. 2 the mesh motion is shown for nel = 24 and kmax = 16.

Additional tests were also performed with the randomly perturbed mesh motion
suggested in Margolin and Shashkov [46, 47]. These tests show the same quali-
tative and quantitative behavior of the cyclic rezoning, and are not reported here
for the sake of brevity. In particular, the proposed algorithm matches very well in
performance the schemes proposed in Margolin and Shashkov [46, 47], and Liska
et al. [36].

Remark 18 In general, randomized mesh motion is valuable in assessing conver-
gence rates, as they prevent error cancellations that may lead to unexpected super-
convergence results. However, it is the opinion of the authors that the randomized
mesh motion proposed in Margolin and Shashkov [46, 47], and Liska et al. [36] pre-
vents nodes to undergo very large displacements (compared with the cyclic mesh
motion proposed in the same references), and is less effective in testing the overall
robustness of remap algorithms. The cyclic remap utilized here was chosen because
it prevents error cancellations while still allowing large cumulative mesh displace-
ments.

6.1.2 Remap of Scalar Fields

Four scalar tests were initially performed. As shown in Fig. 3, the first three tests
consist, respectively, in remapping a discontinuous (square), a triangular (peak),
and a Gaussian (smooth) profiles, all in the range [0,1]. The fourth test involves
remapping a sinusoidal function, with range in the interval [−1,1]. In Fig. 3, the
low-order and the FCR schemes are qualitatively compared with the exact solutions
of the four tests for a grid with nel = 128 and kmax = 640. Detailed error compar-
ison and convergence rates are presented in Table 1. The scheme compares well
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Fig. 3 Remapped solutions for an initial square, triangular, Gaussian and sinusoidal shapes. The
FCR solution is compared with the low-order solution

Table 1 L1-error, L2-error and convergence rates for the various tests shown in Fig. 3. Conver-
gence rates are computed using the errors for nel = 512 and nel = 1024

nel Mesh

Square Triangle Gaussian Sine

L1 L2 L1 L2 L1 L2 L1 L2

64 2.103e−1 2.364e−1 8.863e−2 1.063e−1 7.412e−2 7.303e−2 4.236e−3 6.892e−3

128 1.292e−1 1.859e−1 3.680e−2 0.472e−1 1.435e−2 1.779e−2 0.900e−3 1.824e−3

256 0.790e−1 1.456e−1 1.497e−2 0.225e−1 0.287e−2 0.460e−2 0.194e−3 0.504e−3

512 0.484e−1 1.139e−1 0.562e−2 0.105e−1 0.063e−2 0.130e−2 0.043e−3 0.145e−3

1024 0.298e−1 0.891e−1 0.210e−2 0.050e−1 0.014e−2 0.038e−2 0.010e−3 0.043e−3

Rate 0.6997 0.3543 1.4150 1.0704 2.1531 1.7581 2.1031 1.7459

to (and sometimes surpasses) current state-of-the-art implementations by Margolin
and Shashkov [46, 47], Maire et al. [45], and Liska et al. [36] in terms of error
magnitude and convergence rates.
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Fig. 4 Remapped FCR
solution for the scalar
exponential jump test for
different levels of mesh
refinement

Table 2 L1-error, L2-error,
and convergence rates for the
scalar exponential shock
problem. Convergence rates
are computed between the
current and lower level of
refinement (e.g., the rate for
nel = 128 is computed
comparing errors at nel = 64
and nel = 128)

nel Mesh

L1-error L2-error

Error Rate Error Rate

64 4.684e0 3.412e0

128 3.161e0 0.5672 2.952e0 0.2090

256 1.757e0 0.8473 2.126e0 0.4733

512 1.027e0 0.7750 1.649e0 0.3665

1024 0.599e0 0.7762 1.278e0 0.3677

A more demanding test found in the literature is the exponential shock (see
Liska et al. [36], Margolin and Shashkov [46, 47], and Vàchal and Liska [60]),
in which the initial solution profile is given by an exponential increase followed by
a shock and loosely represents the density profile due to a blast. Convergence of
the remapped solution for the FCR algorithm can be compared in Fig. 4 for three
pairs of (nel, kmax). Results show that this algorithm avoids terracing of the solu-
tion, which is a common phenomenon in FCT-type algorithms in combination with
Zalesak’s limiter (see Kuzmin et al. [31]). Numerical errors are presented in Ta-
ble 2.

6.1.3 Remap of Vector Fields

Two one-dimensional multivariable tests are described in Liska et al. [36] and
Vàchal and Liska [60]. In the first test, the initial condition vector is given by a
discontinuity in density, velocity and internal energy. In the second test, a vector
extension of the scalar exponential jump is proposed, in which the density jump is
complemented by discontinuous linear functions for the velocity and internal en-
ergy. More details can be found in Liska et al. [36], and Vàchal and Liska [60].



Algebraic Flux Correction and Geometric Conservation 325

Table 3 L1-error, L2-error and convergence rates for the remap of a discontinuous vector field.
Convergence rates are computed using the errors for nel = 512 and nel = 1024

nel Mesh

L1 L2

ρ v e ρ v e

64 8.161e−2 3.556e−2 2.322e−2 2.669e−1 1.295e−1 8.945e−2

128 5.013e−2 2.184e−2 1.425e−2 2.096e−1 1.015e−1 7.005e−2

256 3.082e−2 1.344e−2 0.888e−2 1.644e−1 0.795e−1 5.490e−2

512 1.902e−2 0.833e−2 0.546e−2 1.289e−1 0.624e−1 4.311e−2

1024 1.184e−2 0.523e−2 0.346e−2 1.011e−1 0.490e−1 3.396e−2

Rate 0.6872 0.6746 0.6521 0.3505 0.3488 0.3422

Table 4 L1-error, L2-error and convergence rates for the vector exponential shock problem. Con-
vergence rates are computed using the errors for nel = 512 and nel = 1024

nel Mesh

L1 L2

ρ v e ρ v e

64 4.541e0 3.769e−1 2.097e−1 3.201e0 2.606e−1 1.552e−1

128 3.233e0 1.939e−1 1.007e−1 2.784e0 1.993e−1 1.119e−1

256 1.815e0 1.116e−1 0.564e−1 2.029e0 1.570e−1 0.864e−1

512 1.028e0 0.675e−1 0.333e−1 1.585e0 1.261e−1 0.676e−1

1024 0.599e0 0.409e−1 0.198e−1 1.236e0 1.009e−1 0.531e−1

Rate 0.7771 0.7228 0.7500 0.4060 0.3568 0.3817

The numerical results are obtained with Zalesak’s limiting only applied to density
and internal energy. No limiting is performed on the velocity components, as it
would violate the invariance properties of the algorithm under general rotations,
and, at the same time, would increase more than twice the computational cost in
three-dimensions. The failsafe algorithm is used to avoid possible overshoots and
undershoots.

Figure 5 and Table 3 show results for the discontinuous field. This test confirms
that limiting the density and internal energy is sufficient for the monotonicity preser-
vation of all the variables of the system.

Figure 6 shows results for the vector exponential shock test. The algorithm pro-
duces smooth results where the initial solution has an exponential behavior and an
good resolution close to the peak. Table 4 contains the relative error in the L1 and
L2-norms.

The conclusion drawn from this first set of one-dimensional tests is that the
FCR algorithm shows very good robustness and accuracy in all problems tested and
avoids the terracing phenomenon that is observed in other FCT-type algorithms.
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Fig. 5 Remap of discontinuous vector field. Density, linear momentum and total energy are con-
served. Note the monotonicity of all variables, in spite of the fact that only internal energy and
density are limited

6.2 Multi-dimensional Tests

In this section, we extend up to three dimensions many of the one-dimensional tests
of the previous sections.

6.2.1 Rezoning Strategies

Computations were performed using three rezoning strategies, denoted R1, R2, and
R3, respectively.
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Fig. 6 Remap of the vector version of the exponential shock with FCR. Constraining of multiple
variables does not seem to influence the peak value for the density when compared to the previous
results for a single scalar variable

R1: Orthogonal decoupled mesh motion. This first strategy was suggested by Mar-
golin and Shashkov [46, 47] and is only used in two-dimensional tests. It
is based on taking a tensor product of one-dimensional displacement fields.
Namely, for τ ∈ [0,1], and ξ1, ξ2 ∈ [0,1]:

x1(ξ1, τ ) = x1;min + (x1;max − x1;min)ξ̃1(ξ1, τ ), (78a)

x2(ξ2, τ ) = x2;min + (x2;max − x2;min)ξ̃2(ξ2, τ ), (78b)

ξ̃1(ξ1, τ ) =
(
1− α(τ)

)
ξ1 + α(τ)ξ3

1 , (78c)
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Fig. 7 Nodal mesh
displacements associated with
the R1, R2 and R3 rezoning
strategies, for a 64× 64 grid

ξ̃2(ξ2, τ ) =
(
1− α(τ)

)
ξ2 + α(τ)ξ2

2 , (78d)

α(τ) = sin 4πτ

2
, (78e)

where xi and ξi (i = 1,2) are components along the ith axis of the physical
and parent reference frame, respectively, and are defined analogously to the
one-dimensional case. Observe that orthogonality of mesh edges is preserved
throughout rezoning. Also, note that the initial and final configurations of the
mesh coincide. A plot of the deformed mesh at some τ = 0.15 is shown in
Fig. 7(a).

R2: Coupled sinusoidal rezoning. This second approach, also proposed by Mar-
golin and Shashkov [46, 47], is based on coupled non-orthogonal displace-
ments of the mesh by means of tensor products of sinusoidal functions. Namely,
for τ ∈ [0,1] and ξi ∈ [0,1]:

xi(ξi, τ ) = xi;min + (xi;max − xi;min)ξ̃i (ξ , τ ), (79a)

ξ̃i (ξ , τ ) = ξi + α(τ)

(
nd∏

m=1

sin (2πλξm)

)

, (79b)

α(τ) =
{
τ/Δ if 0≤ τ ≤ 0.5,
(1− τ)/Δ if 0.5 < τ ≤ 1,

(79c)
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with λ= 1.0 and Δ= 5.0. Also, in this case, the initial and final configurations
of the mesh coincide. A plot of the deformed mesh at τ = 0.5 is shown in
Fig. 7(b).

R3: A variation on R2. The third rezoning strategy is very similar to the second. The
same mesh motion is used, with λ= 4.0 and Δ= 30.0. A plot of the deformed
mesh at τ = 0.5 is shown in Fig. 7(c).

6.2.2 Two- and Three-Dimensional Remap of Scalar Fields

We propose two/three-dimensional extensions of the scalar one-dimensional tests,
given by the following initial conditions for the scalar field ρ in the domain
[−0.5,0.5] × [−0.5,0.5]:

ρ1(x) =
{

1, if r(x)≤ r0,

0, otherwise,
(80)

ρ2(x) =
{

1− r(x)/r0, if r(x)≤ r0,

0, otherwise,
(81)

where

r(x)= ‖x‖2 =
√

x · x =
√√
√√

nd∑

m=1

x2
i , and r0 = 0.25.

Additionally,

ρ3(x) =
nd∏

m=1

sin (2πxi). (82)

These initial conditions are stated so that they apply in both the two- and three-
dimensional context. In what follows, we will refer to ρ1 as the “top hat” function,
to ρ2 as the “cone” function, and to ρ3 as the “sine” function. Similar notation will
be used in the three-dimensional tests.

Starting with the two-dimensional tests, the top hat and cone initial conditions
have been remapped using the R1 rezoning strategy, while the sinusoidal function
has been remapped using the R2 rezoning strategy. Results are shown in Tables 5
and 6, and Fig. 8. We tested the algorithms on two types of grids. Grids of the first
type are made of regular structured quadrilateral elements (squares, in particular) at
various levels of resolution. Grids of the second type are obtained by subdividing
each of the square elements of grids of the first type into two triangular elements,
without a preferential direction.

This battery of tests shows that the convergence rates closely match the corre-
sponding one-dimensional tests, and that the proposed remap approach is insensitive
to the choice of quadrilateral or triangular elements.
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Table 5 L1-error and convergence rate of the FCR method for the two-dimensional tests on top
hat, cone, and tensor product of sinusoidal functions. Convergence rates are computed using the
errors for nel = 128×128 and nel = 256×256. Note also that “Q4” stands for four-node quadrilat-
eral elements and “T3” stands for three-node triangular elements. The top hat and cone initial con-
ditions have been remapped using R1 rezoning, while the sinusoidal function has been remapped
using the R2 rezoning

nel Mesh

Top hat Cone Sine

Q4 T3 Q4 T3 Q4 T3

64× 64 3.715e−2 3.807e−2 2.473e−3 2.560e−3 1.207e−3 1.509e−3

128× 128 2.290e−2 2.288e−2 0.884e−3 0.879e−3 0.275e−3 0.365e−3

256× 256 1.397e−2 1.396e−2 0.315e−3 0.314e−3 0.066e−3 0.093e−3

Rate 0.7132 0.7124 1.4886 1.4857 2.0560 1.9789

Table 6 L2-error and convergence rate of the FCR method for two-dimensional tests on top hat,
cone, and tensor-product of sinusoidal functions. Convergence rates are computed using the errors
for nel = 128× 128 and nel = 256× 256. Note also that “Q4” stands for four-node quadrilateral
elements and “T3” stands for three-node triangular elements. The top hat and cone initial conditions
have been remapped using R1 rezoning, while the sinusoidal function has been remapped using the
R2 rezoning

nel Mesh

Top hat Cone Sine

Q4 T3 Q4 T3 Q4 T3

64× 64 1.067e−1 1.081e−1 6.900e−3 7.110e−3 2.334e−3 2.516e−3

128× 128 0.836e−1 0.836e−1 2.993e−3 2.979e−3 0.787e−3 0.853e−3

256× 256 0.652e−1 0.651e−1 1.343e−3 1.338e−3 0.276e−3 0.295e−3

Rate 0.3596 0.3601 1.1566 1.1544 1.5138 1.5306

For the sake of completeness, three-dimensional tests were also performed, on
the cubic domain [−0.5,0.5]× [−0.5,0.5]× [−0.5,0.5]. All computations utilized
the R2 rezoning, with meshes at various levels of resolution. Due to the computa-
tional burden, we used coarser meshes with respect to the two-dimensional compu-
tations.

Results are presented in Tables 7 and 8, and compare well to the results in one
and two dimensions, possibly with the exception of the top hat function tests. The
explanation for this behavior is due to the fact that the finest grid used (80×80×80)
is not sufficient to enter the asymptotic convergence range of the numerical errors.
Hence, we cannot expect the convergence rates of this case to exactly match the
two-dimensional case, computed on comparatively much finer grids.
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Fig. 8 Solutions for the remap of the top hat and cone functions using the R1 rezone approach on
the 64× 64-element mesh. “Q4” stands for four-node quadrilateral elements and “T3” stands for
three-node triangular elements

Table 7 L1-error and convergence rate for three-dimensional tests on top hat, cone, and tensor-
product sinusoidal functions. Convergence rates are computed using the errors for nel = 40× 40×
40 and nel = 80× 80× 80. All solutions are obtained using the R2 rezoning. Note also that “H8”
stands for eight-node hexahedral elements and “T4” stands for four-node tetrahedral elements

nel Mesh

Top hat Cone Sine

H8 T4 H8 T4 H8 T4

10× 10× 10 1.452e−2 1.555e−2 1.179e−3 1.260e−3 3.028e−2 3.887e−2

20× 20× 20 1.034e−2 1.035e−2 0.854e−3 0.816e−3 1.083e−2 1.175e−2

40× 40× 40 0.796e−2 0.786e−2 0.345e−3 0.356e−3 0.278e−2 0.327e−2

80× 80× 80 0.532e−2 0.528e−2 0.120e−3 0.133e−3 0.065e−2 0.084e−2

Rate 0.5811 0.5753 1.5169 1.4186 2.1071 1.9578

6.2.3 Two- and Three-Dimensional Remap of Vector Fields

A two-dimensional version of the vector discontinuity remap test can be defined
using the following initial distributions of density velocity and internal energy, in
the domain [0,1] × [0,1]:

ρ(x, y)= e(x, y) =
{

2, if y > (x − 0.4)/0.3,

1, if y ≤ (x − 0.4)/0.3,
(83)

v(x, y) =
{
(2,−0.6), if y > (x − 0.4)/0.3,

(1,−0.3), if y ≤ (x − 0.4)/0.3.
(84)
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Table 8 L2-error and convergence rate for three-dimensional tests on top hat, cone, and tensor-
product sinusoidal functions. Convergence rates are computed using the errors for nel = 40× 40×
40 and nel = 80 × 80 × 80. All solutions obtained using the R2 rezoning. Note also that “H8”
stands for eight-node hexahedral elements and “T4” stands for four-node tetrahedral elements

nel Mesh

Top hat Cone Sine

H8 T4 H8 T4 H8 T4

10× 10× 10 5.898e−2 6.177e−2 6.190e−3 6.319e−3 4.905e−2 5.927e−2

20× 20× 20 5.154e−2 5.075e−2 3.800e−3 3.658e−3 1.615e−2 1.740e−2

40× 40× 40 4.751e−2 4.714e−2 1.802e−3 1.814e−3 0.442e−2 0.504e−2

80× 80× 80 3.954e−2 3.946e−2 0.793e−3 0.801e−3 0.135e−2 0.158e−2

Rate 0.2650 0.2566 1.1841 1.1803 1.7103 1.6733

Fig. 9 Density and internal energy solution for the two-dimensional vector shock discontinuity
test. The mesh motion has been performed using the R1 rezoning

Results from this test using the R1 rezone strategy are shown in Fig. 9 and Tables
9 and 10, for the same computational grids used in the previous two-dimensional
tests. Also in this case the error convergence rates compare well with the one-
dimensional case. This test was extended also to the three dimensional domain
[0,1] × [0,1] × [0,1], using the following initial conditions

ρ(x, y, z)= e(x, y, z) =
{

2, if y > (1.2x + z− 1.1)/0.31,

1, if y ≤ (1.2x + z− 1.1)/0.31,
(85)
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Table 9 L1-relative error and convergence rates for the two-dimensional vector shock problem.
Convergence rates are computed using the errors for nel = 128× 128 and nel = 256× 256. The
mesh motion has been performed using the R1 rezoning

nel Mesh

ρ v e

Q4 T3 Q4 T3 Q4 T3

64× 64 4.554e−2 5.771e−2 5.895e−2 7.457e−2 4.733e−2 5.968e−2

128× 128 2.904e−2 3.023e−2 3.730e−2 3.879e−2 2.977e−2 3.092e−2

256× 256 1.850e−2 1.955e−2 2.357e−2 2.485e−2 1.869e−2 1.965e−2

Rate 0.6504 0.6286 0.6622 0.6425 0.6714 0.6537

Table 10 L2-relative error and convergence rates for the two-dimensional vector shock problem.
Convergence rates are computed using the errors for nel = 128× 128 and nel = 256× 256. The
mesh motion has been performed using the R1 rezoning

nel Mesh

ρ v e

Q4 T3 Q4 T3 Q4 T3

64× 64 1.192e−1 1.355e−1 1.452e−1 1.645e−1 1.632e−1 1.844e−1

128× 128 0.954e−1 0.975e−1 1.164e−1 1.189e−1 1.305e−1 1.331e−1

256× 256 0.765e−1 0.789e−1 0.933e−1 0.961e−1 1.042e−1 1.072e−1

Rate 0.3193 0.3062 0.3191 0.3063 0.3240 0.3123

v(x, y, z) =
{
(2,−0.6,−0.3), if y > (1.2x + z− 1.1)/0.31,

(1,−0.3,0.0), if y ≤ (1.2x + z− 1.1)/0.31,
(86)

also depicted in Fig. 10. Numerical errors and convergence rates are presented in
Tables 11 and 12, and show good agreement with the one- and two-dimensional
tests.

We conclude this section with a two-dimensional extension of the vector ex-
ponential shock problem. This test mimics the remapping of a Sedov blast flow
and a similar version of it, limited however to only the density and momentum
equations was presented in Liska et al. [36]. The domain is given by the square
[−0.5,0.5] × [−0.5,0.5], with initial fields specified as:

ρ(x, y) =
{
ε+ 6

(
r
r0

)8
, if r < r0,

1+ ε, otherwise,
(87)

v(x, y) =
{

0.83x, if r < r0,

0, otherwise,
(88)
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Table 11 L1-relative error and convergence rates for the three-dimensional vector shock problem.
Convergence rates are computed using the errors for nel = 40× 40× 40 and nel = 80× 80× 80

nel Mesh

ρ v e

H8 T4 H8 T4 H8 T4

10× 10× 10 3.666e−2 3.627e−2 6.252e−2 6.327e−2 4.396e−2 4.502e−2

20× 20× 20 2.901e−2 2.942e−2 4.831e−2 4.874e−2 3.309e−2 3.320e−2

40× 40× 40 1.996e−2 2.032e−2 3.285e−2 3.330e−2 2.221e−2 2.243e−2

80× 80× 80 1.277e−2 1.309e−2 2.095e−2 2.137e−2 1.411e−2 1.432e−2

Rate 0.6443 0.6345 0.6487 0.6401 0.6548 0.6467

Table 12 L2-relative error and convergence rates for the three-dimensional vector shock problem.
Convergence rates are computed using the errors for nel = 40× 40× 40 and nel = 80× 80× 80

nel Mesh

ρ v e

H8 T4 H8 T4 H8 T4

10× 10× 10 9.328e−2 9.402e−2 1.241e−1 1.261e−1 1.426e−1 1.460e−1

20× 20× 20 8.820e−2 8.970e−2 1.149e−1 1.164e−1 1.298e−1 1.311e−1

40× 40× 40 7.504e−2 7.625e−2 0.967e−1 0.981e−1 1.084e−1 1.095e−1

80× 80× 80 6.074e−2 6.180e−2 0.779e−1 0.791e−1 0.869e−1 0.880e−1

Rate 0.3051 0.3030 0.3133 0.3107 0.3183 0.3153

Fig. 10 Three-dimensional
vector shock discontinuity
remap test. Color plot of the
initial density solution on a
unit cube domain. It is clearly
visible the outline of the
discontinuity separating the
domain in two regions where
the density has values ρ = 2
(red) and ρ = 1 (blue),
respectively. An identical
initial condition is used for
the internal energy (Color
figure online)
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Table 13 L1-relative error and convergence rates for the two-dimensional vector exponential
shock problem. Convergence rates are computed using the errors for nel = 512 × 512 and
nel = 1024× 1024. The mesh motion has been performed using the R3 rezoning

nel Mesh

ρ v e

Q4 T3 Q4 T3 Q4 T3

64× 64 5.539e−2 5.122e−2 7.340e−3 6.855e−3 9.469e−3 9.185e−3

128× 128 3.690e−2 3.618e−2 4.466e−3 4.241e−3 3.519e−3 3.492e−3

256× 256 2.417e−2 2.368e−2 2.741e−3 2.623e−3 1.819e−3 1.802e−3

512× 512 1.534e−2 1.501e−2 1.660e−3 1.617e−3 1.061e−3 1.057e−3

1024× 1024 0.949e−2 0.880e−2 0.100e−3 0.092e−3 0.064e−3 0.059e−3

Rate 0.6928 0.7702 0.7281 0.8215 0.7347 0.8406

Table 14 L2-relative error and convergence rates for the two-dimensional vector exponential
shock problem. Convergence rates are computed using the errors for nel = 512 × 512 and
nel = 1024× 1024. The mesh motion has been performed using the R3 rezoning

nel Mesh

ρ v e

Q4 T3 Q4 T3 Q4 T3

64× 64 2.290e−1 2.185e−1 2.574e−2 2.468e−2 2.781e−2 2.688e−2

128× 128 2.028e−1 2.019e−1 2.196e−2 2.111e−2 2.009e−2 1.947e−2

256× 256 1.737e−1 1.719e−1 1.808e−2 1.755e−2 1.596e−2 1.556e−2

512× 512 1.436e−1 1.420e−1 1.449e−2 1.427e−2 1.260e−2 1.243e−2

1024× 1024 0.1150e−1 0.1102e−1 1.1408e−2 1.090e−2 0.985e−2 0.944e−2

Rate 0.3207 0.3653 0.3448 0.3885 0.3550 0.3968

e(x, y) =
{

0.25+ 3
(
1− r

r0

)
, if r < r0,

0, otherwise,
(89)

with r0 = 0.375, and ε = 10−3. Note that ε > 0 is introduced to avoid the occurrence
of a zero density at the origin of the domain, which will cause divisions by zero in
the algorithm. The mesh was displaced using the R3 rezoning strategy. Convergence
rates, which closely match the one-dimensional case, are presented in Tables 13
and 14. Plots of the remapped densities and energies are presented in Fig. 11. The
numerical results of this last test confirm the trends already outlined in previous
sections, and demonstrates the feasibility of the proposed approach in more complex
realistic scenarios.
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Fig. 11 Density and internal energy solution for the two-dimensional exponential shock test. The
mesh motion has been performed using the R3 rezoning. Note that the energy peak value is pre-
served as the mesh does not displace at the origin

6.3 Arbitrary Lagrangian Eulerian Computations of
Two-Dimensional Sedov Test

We conclude the presentation of numerical computations using the proposed remap
strategy in the context of ALE mesh movement, to test performance with regard to
preservation of symmetry and directionality of vector fields.

A complete study of performance in the ALE case is beyond the scope of the
present chapter, and will be the object of future developments. Here, we show the
results of a two-dimensional blast test (see Sedov [56]) performed comparing the
Lagrangian method described in Scovazzi et al. [55] and an arbitrary Lagrangian-
Eulerian (ALE) approach. The ALE method is obtained by applying the continuous
remap described here after each step of the Lagrangian method described in Scov-
azzi et al. [55].

The mesh is repositioned using a simple iterative approach that has the purpose
of improving mesh quality by smoothing. Let us denote by x(j)

1 = x(j)(τ = 1) the

j th iterate of the new nodal coordinates of the mesh. Likewise VL;(i)
1 and V(i)

1 , re-
spectively, are the lumped and consistent mass matrices associated with the basis
of piecewise linear nodal finite element shape functions, constructed over the ith
iterate of the mesh configuration. The mesh is repositioned as follows:

{
VL;(i)

1 x(i+1)
1 = V(i)

1 x(i)
1 ,

x(0)
1 = x0,

(90)
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Fig. 12 Velocity vector plots
for Lagrangian and ALE
simulations of a Sedov test on
a 45× 45 mesh of
quadrilaterals

where x0 = x(τ = 0). Rewriting (90) as

x(i+1)
1 = x(i)

1 +
(
V(i)

1

)−1(
V(i)

1 − VL;(i)
1

)
x(i+1)

1 (91)

it is easy to verify the well-known fact that the term V(i)
1 − VL;(i)

1 has the discrete
structure of a Laplacian viscosity operator. Hence, the proposed rezoning method
acts as a smoothing on the mesh nodal positions. Three rezoning iterations were
performed after each Lagrangian step in the computations.
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Fig. 13 Velocity vector plots
for Lagrangian and ALE
simulations on a 45× 45
mesh of quadrilaterals with
every element subdivided into
four triangles

In Figs. 12 and 13, velocity vector plots are presented for quadrilateral and trian-
gular meshes. Quantitative results are shown in Figs. 14 and 15.

The solution of the Sedov test has radial symmetry, and, in principle, the tangen-
tial component of the velocity should be zero. Due to numerical errors, the small
values of the tangential velocity components are present in Lagrangian computa-
tions (red dots). It is evident in Fig. 15 that the remap step (blue dots) does not
amplify such errors.
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Fig. 14 Lagrangian (red dots) versus ALE (blue dots) computations of the classical Sedov test:
Density and internal energy. The blue and red dots represent the solution angularly projected along
the radial coordinate. The exact solution is shown as a black continuous line (Color figure online)

Note also that due to the symmetry of the mesh, the tangential component of
the velocity must be symmetric with respect to the horizontal axis. This property is
also preserved discretely through remap. It is also worthwhile to observe that the
error in global angular momentum is within machine accuracy (the global angular
momentum should be conserved in the Sedov test). The importance of angular mo-
mentum preservation in shock hydrodynamics computations is discussed in Love
and Scovazzi [44].

7 Summary

We have developed a conservative synchronized ALE remap approach for com-
putations on nodal finite elements. The proposed method leverages the geometric
conservation property, with important implications on stability, accuracy, and local
extremum diminishing properties. The method complements very well the work of
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Fig. 15 Lagrangian (red dots) versus ALE (blue dots) computations of the classical Sedov test:
Velocity components. The blue and red dots represent the solution angularly projected along the
radial coordinate. The exact solution is shown as a black continuous line (Color figure online)

the first author on Lagrangian shock hydrodynamics with nodal-based finite ele-
ments (Scovazzi et al. [54, 55], Scovazzi [51]), and shows the feasibility of a suite
of computational methods for shock hydrodynamics on nodal-based discretizations.
Extensive testing in one, two, and three dimensions has been presented to evaluate
the performance of the proposed algorithm.
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Constrained-Optimization Based Data Transfer

A New Perspective on Flux Correction

Pavel Bochev, Denis Ridzal, Guglielmo Scovazzi, and Mikhail Shashkov

Abstract We formulate a new class of optimization-based methods for data trans-
fer (remap) of a scalar conserved quantity between two close meshes with the same
connectivity. We present the methods in the context of the remap of a mass density
field, which preserves global mass (the integral of the density over the computational
domain). The key idea is to formulate remap as a global inequality-constrained op-
timization problem for mass fluxes between neighboring cells. The objective is to
minimize the discrepancy between these fluxes and the given high-order target mass
fluxes, subject to constraints that enforce physically motivated bounds on the asso-
ciated primitive variable. In so doing, we separate accuracy considerations, han-
dled by the objective functional, from the enforcement of physical bounds, handled
by the constraints. The resulting second-order, conservative, and bound-preserving
optimization-based remap (OBR) formulation is applicable to general, unstructured,
heterogeneous grids. Under some weak requirements on grid proximity we prove
that the OBR algorithm preserves linear fields in one, two and three dimensions. The
chapter also examines connections between the OBR and the flux-corrected remap
(FCR), which can be interpreted as a modified version of OBR (M-OBR), with the
same objective but a smaller feasible set. The feasible set for M-OBR (FCR) is
given by simple box constraints derived by using a “worst-case” scenario approach,
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which may result in loss of linearity preservation and ultimately accuracy for some
grid motions. The optimality of the OBR solution means that, given a set of tar-
get fluxes and a distance measure, OBR finds the best possible approximations of
these fluxes with respect to this measure, which also satisfy the physically moti-
vated bounds. In this sense, OBR can serve as a natural benchmark for evaluating
the accuracy of existing and future numerical methods for data transfer with respect
to a given class of flux reconstruction methods and flux distance measures. In this
context, we perform numerical comparisons between OBR, FCR and iFCR (a ver-
sion of FCR which utilizes an iterative procedure to enhance the accuracy of FCR
numerical fluxes).

1 Introduction

The problem of transferring data between computational grids under specific con-
straints arises in the computational sciences in many contexts (see, e.g., Laursen and
Heinstein [13], Bochev and Day [4], Carey et al. [6]). Among the main applications,
we focus on Arbitrary Lagrangian-Eulerian (ALE) methods (see Hirt et al. [9]) as
the primary motivation for this work.

ALE methods based on so-called continuous remap involve three separate
phases: (i) the Lagrangian update of the solution, including displacements of the
computational grid; (ii) rezoning (repositioning) of the computational grid in order
to reduce grid distortion accrued during the Lagrangian motion; and (iii) conser-
vative interpolation (remap) of the Lagrangian solution onto the rezoned grid. For-
mally, it is possible to run ALE algorithms primarily in the Lagrangian mode with
the occasional rezone/remap taking place only when the grid becomes too distorted.
However, an alternative computational strategy that combines the best properties of
Eulerian and Lagrangian methods is to perform rezoning and remapping at every
time step (from which the terminology, continuous remapping).

An important property of the continuous rezone strategy is that individual grid
movements can be limited to small perturbations of the Lagrangian (old) mesh, and,
in turn, that conserved quantities are exchanged only between neighboring cells.
In this case, the remap step is localized to neighborhoods of old mesh cells and
eliminates expensive global search operations required to locate new cells in the
old mesh. Note also that, since remap is performed at every time step, the accu-
racy of the continuous-rezone ALE strongly depends on the quality of the remap
phase.

In what follows, we focus on the second-order conservative and bound-
preserving remap of a scalar conserved quantity between two close meshes with
the same connectivity. On each cell of the old mesh we are given the mean value of
the primitive variable that is an otherwise unknown positive scalar function (“den-
sity”). The conserved variable is the product of this mean value and the cell volume
(“mass”). The objective is to find an accurate approximation of the conserved vari-
able on the new mesh such that the density, approximated by the remapped cell
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mass divided by the volume of the new cell, satisfies physically motivated bounds.
In summary, we seek solutions to the remap problem which possess the following
properties:

(P1) Conservation of total mass;
(P2) Preservation of linearity;
(P3) Preservation of local bounds for the primitive variable (namely, density).

Specifically, property (P1) is a fundamental requirement for remap, while property
(P2) is a statement of accuracy. It requires the remap algorithm to recover exact
masses in the new cells whenever the old masses correspond to a linear density
function. Property (P3) accounts for the fact that physically motivated bounds are
imposed on the primitive variable rather than on the conserved quantity. In the con-
tinuous rezone setting, every new cell is contained in the union of its Lagrangian
prototype and its neighbors. The minimum and maximum mean density values on
these Lagrangian cells provide natural lower and upper bounds for the mean density
value on the new cell.

Conservation of total mass (P1) is guaranteed if the remap is discretely stated in
mass flux form, as indicated by Margolin and Shashkov [17].

Two strategies are commonly used in existing remappers to fulfill (P2) and (P3).
The first one employs slope-limited bound-preserving reconstruction of the primi-
tive variable, as presented in Dukowicz and Kodis [8], Jones [10], Miller et al. [19].
This first approach suffers from two main drawbacks: On the one hand, many of
the slope limiters in wide use today are not linearity-preserving on irregular grids,
as shown in Berger et al. [2]; on the other hand slope limiters usually impose geo-
metric restrictions on the mesh (e.g., cell alignment, logically structured grids, etc.)
The second strategy relaxes the bound-preserving requirement in the reconstruction,
and in turn the geometric conditions on the mesh. The approach then proceeds with
a mass re-distribution to satisfy (P3), see e.g., Kucharik et al. [11], Margolin and
Shashkov [18], Loubere and Shashkov [15], Loubere et al. [16]. Unfortunately, both
bound-preserving reconstruction and mass “repair” tend to obscure the sources of
discretization errors and make the analysis of accuracy more complex.

The alternative approach pursued here relies as well on the mass flux form of
remap to provide (P1), but achieves (P2) and (P3) without bound-preserving recon-
struction or mass post-processing. This is because the remap step is rephrased as a
global inequality-constrained optimization problem for mass fluxes between neigh-
boring cells. The objective is to minimize the discrepancy between these fluxes and
the given target mass fluxes, subject to constraints that enforce physically motivated
bounds on the primitive variable (density).

This strategy is expected to be more robust, flexible and asymptotically ac-
curate than the other two approaches mentioned for the following reasons. First,
optimization-based remap (OBR) finds a global optimal solution from a feasible set
defined by the local bounds, i.e. OBR always finds the best possible, with respect
to the target fluxes, remapped quantity that also satisfies these bounds. Therefore, it
does not rely on local “worst-case” assumptions, which can reduce the accuracy, as
both bound-preserving reconstruction and mass redistribution.
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Second, OBR can be easily adapted to different problems by choosing the most
appropriate target fluxes and discrepancy measures (norms) for these problems.

Third, OBR enforces the local bounds (P3) by a set of linear inequalities, which
are completely impervious to the shape of the cells in the mesh. Therefore, in princi-
ple, OBR can be applied to arbitrary grids, including grids comprising of polygons
or polyhedra.

It is important to mention at this point that Rider and Kothe [20] and Berger et
al. [2] used constrained optimization in lieu of standard limiters to define a bound-
preserving reconstruction method on general cells. In that work the least-squares
gradient recovery on a cell is constrained by the local minimum and maximum
of the data, i.e., the limiting remains based on local “worst-case” assumptions. In
contrast, we pose the entire remap problem as a globally constrained minimiza-
tion problem in which all bounds are considered simultaneously. This possibility
was first brought up in Liska et al. [14]. Using ideas from flux-corrected transport
(FCT, see e.g. Kuzmin et al. [12]) these authors developed a flux-corrected remap
(FCR) algorithm. Then, they interpreted FCR as “a process of replacing a global
constrained optimization problem by series of local constrained optimization prob-
lems by considering the worst case scenario”. Liska et al. [14] did not examine in
detail this connection, and left open the question about the preservation of linearity
in FCR.

The material that follows is aimed at presenting the key components of the pro-
posed approach in detail, and to ultimately demonstrate that the global inequality-
constrained optimization strategy leads to robust, accurate and efficient remappers.
For this reason, we use the Euclidean norm to measure the flux discrepancy and de-
fine the target fluxes using density reconstruction that is exact for linear functions.
While not the only possible choices, the former leads to differentiable objectives
and the latter provides the preservation of linearity (P2).

Furthermore, we show that under some fairly weak requirements on mesh prox-
imity OBR satisfies (P2) on arbitrary unstructured grids in one, two and three di-
mensions, including grids with polygonal or polyhedral cells.

We also clarify the intuitive interpretation of FCR given in Liska et al. [14]. We
show that the FCR solution coincides with the solution of a modified version of
OBR (M-OBR), which has the same objective but a simpler set of box constraints
derived from the OBR constraints by using a “worst-case” scenario. FCR is then
viewed as an approximate solution procedure for OBR, which seeks minimizers in a
reduced feasible set. Because M-OBR (FCR) has a smaller feasible set, preservation
of linearity may be lost and accuracy may suffer for some grid configurations.

Numerical studies confirm these conjectures, showing that for certain types of
grids FCR defaults to a first-order accurate scheme, while OBR achieves the the-
oretically best possible accuracy (second order) for a linearity-preserving scheme.
We also present examples of grids in one and two dimensions for which OBR is lin-
earity preserving when FCR is not, and grids for which OBR preserves (P3) when
FCR does not. These trends also extend to the case of iterated FCR (iFCR), a re-
cursive algorithm derived from standard FCR, in which the low-order remap fluxes
are sequentially updated using the most recent FCR monotone iterate. The iFCR
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Fig. 1 Outline of the contents of the chapter and the main flow of the presentation

algorithm is clearly more expensive than the simple FCR algorithm, but provides a
more challenging benchmark for testing the accuracy of OBR.

Our analysis also explains why the FCR fluxes are required to be convex com-
binations of low and high-order fluxes, without appealing to analogies with FCT.
We show that the convexity requirement is introduced implicitly when the OBR
constraints are approximated by simpler box constraints. This restricts the opti-
mal solution of the global M-OBR problem to convex combinations of low-order
and high-order fluxes. Because FCR is a solution procedure for the M-OBR prob-
lem, the convexity requirement becomes part of the “formula” for the optimal solu-
tion.

The chapter is organized as follows (see also Fig. 1 for a roadmap of the pre-
sentation of the material). Notation and a formal statement of the remap problem
is presented in Sect. 2, and the new optimization-based formulation of remap is
developed in Sect. 3. There we also establish sufficient conditions for the preser-
vation of linearity in OBR. Connections between OBR, FCR, and iFCR are exam-
ined in Sect. 4. Sections 5 and 6 discuss implementation details of OBR and FCR.
Section 7 presents three instructive computational examples, and Sect. 8 focuses
on numerical estimates of convergence rates and assessment of the OBR perfor-
mance.
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2 The Remap Problem

2.1 Notation

In what follows Ω ⊂R
d , d = 1,2,3, denotes an open bounded domain with a Lips-

chitz continuous boundary ∂Ω . Bold face lower case Roman symbols denote points
in the computational domain with x ∈Ω reserved for the independent variable. The
symbol Kh(Ω) stands for a conforming partition of Ω into K cells κi , i = 1, . . . ,K ,
with volumes and barycenters given by

V (κi)=
∫

κi

dV and bi =
∫
κi

xdV

V (κi)
, (1)

respectively. S(Kh) is the set of all sides in the mesh Kh(Ω), and S(κi) is the sub-
set of S(Kh) associated with cell κi . A side can be oriented in two different ways,
which we refer to as positive and negative. We assume that each side σi ∈ S(Kh) is
endowed with a unique positive or negative orientation ωi . It is convenient to asso-
ciate ωi with the numeric values +1 and −1, for positively and negatively oriented
sides, respectively. We recall that conforming partitions of Ω consist of cells that
cover the domain without gaps or overlaps. The partition Kh(Ω) can be uniform or
nonuniform, and the cells are not required to have the same shape or to be convex.
For instance, in two dimensions Kh(Ω) can contain triangles, quadrilaterals and
convex and non-convex polygons. This makes our approach applicable to a wide
range of grids and methodologies. For example, we can think of a two-dimensional
AMR grid (see, e.g., Berger and Colella [3]) as consisting of quadrilaterals and (de-
generate) polygons, while in three dimensions (see, e.g., Bell et al. [1]) such grids
will contain cubes and polyhedra.

We assume that Ω is endowed with two different grid partitions Kh(Ω) and
K̃h(Ω) having the same connectivity. In the context of ALE methods we refer to
Kh(Ω) as the old or Lagrangian grid and K̃h(Ω) as the new or rezoned1 grid.
Quantities defined on the new grid will have the tilde accent, e.g. f̃ , whereas the
quantities on Kh(Ω) will have no accent. The cells on the new grid are denoted by
κ̃i , with barycenters b̃i , i = 1, . . . ,K . Because Kh(Ω) and K̃h(Ω) have the same
connectivity, it is convenient to assume that the new cells are numbered in the same
order as the old cells. Therefore, the Lagrangian prototype of the rezoned cell κ̃i is
the cell κi .

The neighborhood N(κi) of κi comprises of the cell κi itself and all its neighbors,
i.e. those cells in Kh(Ω) that share a vertex (in 1D), vertex or edge (in 2D) and ver-
tex, edge or face (in 3D) with κi . The remap problem is stated under the assumption
that the rezoned grid satisfies the locality condition

κ̃i ⊂N(κi), for all i = 1, . . . ,K, (2)

1Typically, in a continuous rezone ALE the rezoned grid is close to the Lagrangian but has better
geometric quality.
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that is, each rezoned cell κ̃i is contained in N(κi), the neighborhood of its La-
grangian prototype. Here the relation κ̃i ⊂ N(κi) is interpreted geometrically (in
contrast to its set-relational definition).2 In the context of ALE methods, assump-
tion (2) corresponds to using the continuous rezone strategy. Finally, I denotes the
operator that returns the index of a cell, i.e. I (κi) =I (̃κi) = i. The extension of
this operator to sets of cells is natural, e.g.

I
(
N(κi)

)= {
I (κi)|κi ∈N(κi)

}

is the set of all indices of the cells in N(κi).
For completeness, we review the specialization of some notation to one-

dimensional domains Ω = [a, b] where a < b are real numbers. In this case Kh(Ω)

is defined by a set of K + 1 points a = x0 < x1 < · · · < xK−1 < xK = b, the La-
grangian cells are the intervals κi = [xi−1, xi] and their volumes are V (κi)= hi =
xi − xi−1. The new grid K̃h(Ω) comprises of rezoned cells κ̃i = [̃xi−1, x̃i] such that
a = x̃0 < x̃1 < · · ·< x̃K−1 < x̃K = b. In one dimension, (2) assumes a particularly
simple form:

κ̃i ⊂ (κi−1 ∪ κi ∪ κi+1) for i = 2, . . . ,K − 1,

κ̃1 ⊂ (κ1 ∪ κ2) and κ̃K ⊂ (κK−1 ∪ κK),

or

κ̃i ⊂ [xi−2, xi+1] for i = 2, . . . ,K − 1,

κ̃1 ⊂ [a, x2] and κ̃K ⊂ [xK−2, b].
An equivalent form of the locality condition is given by

xi−1 ≤ x̃i ≤ xi+1, i = 1, . . . ,K − 1. (3)

Material in this chapter also requires some notation for Euclidean spaces R
n.

We use Roman and Greek symbols with an arrow accent, and bold face Roman
capitals for vectors and matrices, respectively, e.g., "c ∈ R

n, "F ∈ R
n, "λ ∈ R

n, and
A ∈Rn×m. The superscript (·)T indicates vector and matrix transposition. The Eu-
clidean inner product, 〈·, ·〉 : RN → R, is 〈"a, "b〉 = "aT"b, and the Euclidean norm
‖"a‖2

2 = 〈"a, "a〉 = "aT"a. We use the Euclidean space notation to state algebraic forms
of the optimization problems and for various coefficient vectors.

2In this chapter, we use the set-relational definitions and the corresponding geometric interpreta-
tions of ⊂, ⊆, ∪, ∩, \ and ∈ interchangeably. Their meaning will be clear from the context. In
particular, relations between entities defined on K̃h(Ω) and those defined on Kh(Ω) only make
sense when interpreted geometrically relative to the common domain Ω .
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2.2 Statement of the Remap Problem

We recall the formal statement of mass-density remap following Margolin and
Shashkov [17], Liska et al. [14]. We assume that there is a positive function
ρ(x) > 0, referred to as density, that is defined on Ω and whose values on the bound-
ary ∂Ω are known. The only information given about ρ(x) in the interior of Ω is its
mean value on the old cells:

ρi =
∫
κi
ρ(x)dV

V (κi)
.

Equivalently, we can write

ρi = mi

V (κi)
or mi = ρiV (κi) (4)

where

mi =
∫

κi

ρ(x)dV

is the (old) cell mass. Here we have implicitly assumed that the initial distribution
of ρ(x) is known exactly, and that the previous integral represents the exact mass
associated with cell i. The total mass is

M =
∫

Ω

ρ(x)dV =
K∑

i=1

∫

κi

ρ(x)dV =
K∑

i=1

mi =
K∑

i=1

ρiV (κi).

For further reference we note that the mean density on every Lagrangian cell κi
trivially satisfies the bounds

ρmin
i ≤ ρi ≤ ρmax

i , (5)

where

ρmin
i =

⎧
⎪⎪⎨

⎪⎪⎩

min
j∈I (N(κi ))

{ρj } if κi ∩ ∂Ω = ∅,

min
{

min
j∈I (N(κi ))

{ρj }, min
x∈N(κi)∩∂Ω

ρ(x)
}

if κi ∩ ∂Ω �= ∅
(6)

and

ρmax
i =

⎧
⎪⎪⎨

⎪⎪⎩

max
j∈I (N(κi ))

{ρj } if κi ∩ ∂Ω = ∅,

max
{

max
j∈I (N(κi ))

{ρj }, max
x∈N(κi)∩∂Ω

ρ(x)
}

if κi ∩ ∂Ω �= ∅.
(7)

In words, for cells that do not intersect the boundary ∂Ω , the values of ρmin
i and

ρmax
i give the smallest and the largest mean densities in the neighborhood of κi ,
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respectively. For cells adjacent to the boundary, ρmin
i is the smaller of the smallest

mean cell density in the cell neighborhood and the smallest density on the bound-
ary segment N(κi) ∩ ∂Ω ; ρmax

i is defined analogously. Bounds for the cell masses
follow from (4) and (5):

ρmin
i V (κi)=mmin

i ≤mi ≤mmax
i = ρmax

i V (κi) ∀κi ∈Kh(Ω). (8)

A formal statement of the mass-density remap problem is as follows.

Definition 1 (Remapping of mass-density) Given mean density values ρi on the old
grid cells κi , find accurate approximations m̃i for the masses of the new cells κ̃i ,

m̃i ≈ m̃ex
i =

∫

κ̃i

ρ(x)dV ; i = 1, . . . ,K, (9)

such that the following conditions hold:

(R1) The total mass is conserved:

K∑

i=1

m̃i =
K∑

i=1

mi =M.

(R2) If the exact density ρ(x) is a linear function on all of Ω , then the remapped
masses are exact:

m̃i = m̃ex
i =

∫

κ̃i

ρ(x)dV ; i = 1, . . . ,K. (10)

(R3) Given approximate masses m̃i on the new cells, define ρ̃i = m̃i/V (̃κi). Let
ρmin
i and ρmax

i be the quantities defined in (6)–(7). Then the bounds

ρmin
i ≤ ρ̃i ≤ ρmax

i

and

ρmin
i V (̃κi)= m̃min

i ≤ m̃i ≤ m̃max
i = ρmax

i V (̃κi) (11)

hold on every new cell κ̃i . �

Requirements (R1)–(R3) in Definition 1 are derived from the desired remap proper-
ties (P1)–(P3). (R1) and (R2) are formal statements of (P1) and (P2), whereas (R3)
follows from the bounds in (5) and (8), and the locality assumption (2). Therefore,
the last requirement is specific to a continuous rezone strategy and may have to be
modified for other settings. Such a modification is beyond the scope of this chapter.
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3 A Constrained Optimization Formulation of the Remap
Problem

In this section we develop an inequality-constrained optimization formulation of
remap that satisfies requirements (R1)–(R3). The conservation of total mass (R1)
is the simplest one. For any two grids that satisfy the locality assumption (2), the
new cells have the following representation (cf. Margolin and Shashkov [17, equa-
tion (3.9)]):

κ̃i =
(
κi ∪

⋃

j∈I (N(κi ))

κ̃i ∩ κj

)∖( ⋃

j∈I (N(κi ))

κi ∩ κ̃j

)
. (12)

Using (12) we can express the exact masses of the new cells in flux form

m̃ex
i =mi +

∑

j∈I (N(κi ))

F ex
ij , (13)

where the (exact) fluxes are (cf. Margolin and Shashkov [17, equation (3.12)])

F ex
ij =

∫

κ̃i∩κj
ρ(x)dV −

∫

κi∩κ̃j
ρ(x)dV . (14)

Formula (14) implies that the exact mass fluxes are antisymmetric: F ex
ij = −F ex

ji .
Assume that Fij are approximate mass fluxes that are also antisymmetric

Fij =−Fji . (15)

Using these fluxes in (16) yields a formula for the approximation of the new cell
masses

m̃i =mi +
∑

j∈I (N(κi ))

Fij , (16)

which preserves the total mass, i.e. satisfies (R1) in Definition 1. To satisfy (R2) we
introduce the notion of high-order target mass fluxes

FH
ij =

∫

κ̃i∩κj
ρH
j (x)dV −

∫

κi∩κ̃j
ρH
i (x)dV, (17)

where ρH
i (x) is a density reconstruction on κi that is exact for linear functions. If

ρ(x) is linear, then FH
ij = F ex

ij , i.e., the target fluxes coincide3 with the exact fluxes
for linear functions. In this case, using (16) with the target fluxes gives the exact
new cell masses, i.e., (R2) holds. However, if ρ(x) is not linear, using FH

ij in (16)
will likely lead to violation of (R3), especially when ρ(x) is not smooth. We then

3In practice, this also means that the integrals in (17) should be approximated by quadratures that
are exact for linear functions.
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constrain the set of approximate fluxes Fij introduced in (15)–(16) by the global
system of linear inequalities

m̃min
i ≤mi +

∑

j∈I (N(κi ))

Fij ≤ m̃max
i ; i = 1, . . . ,K, (18)

obtained by substituting the approximate mass in (11) with the flux form formula
(16). By construction, any Fij that solves (18) produces new cell masses that satisfy
(R3). To summarize,

• using the flux form (16) guarantees the conservation of total mass (R1);
• using (16) with the target fluxes FH

ij ensures preservation of linearity (R2);
• using (16) with fluxes Fij which solve (18) secures the preservation of local

bounds (R3).

We use optimization to reconcile the last two properties. Let us regard the fluxes Fij

as the unknowns, the inequalities (18) as the constraints, and the minimization of
the Euclidean distance4 between the target and the unknown fluxes as the objective.
The resulting constrained optimization problem reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Fij

K∑

i=1

∑

j∈I (N(κi ))

(Fij − FH
ij )2

subject to

Fij =−Fji, i = 1, . . . ,K, j ∈I (N(κi))

m̃min
i ≤mi +

∑

j∈I (N(κi ))

Fij ≤ m̃max
i , i = 1, . . . ,K.

(19)

Explicit enforcement of the antisymmetry constraint by using only the fluxes Fpq

for which p < q simplifies the optimization problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
Fij

K∑

i=1

∑

j∈I (N(κi ))

i<j

(Fij − FH
ij )2

subject to

m̃min
i −mi ≤

∑

j∈I (N(κi ))

i<j

Fij −
∑

j∈I (N(κi ))

i>j

Fji ≤ m̃max
i −mi, i = 1, . . . ,K,

(20)
where we have also moved mi to the left and right of the chain of inequalities. Any
feasible point of (20) satisfies (R1) and (R3) by construction.

We proceed to show that (20) has a non-empty feasible set, i.e., there is always a
non-trivial optimal solution, and that the optimal solution preserves linear densities.

4The Euclidean distance is used for simplicity. The objective can be defined using any valid dis-
tance function (or, equivalently, norm).
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Theorem 1 Assume that Kh(Ω) and K̃h(Ω) are such that the locality condition (2)
holds. For any given set of masses mi and associated densities ρi = mi/V (κi) on
Kh(Ω) there exist antisymmetric fluxes {Fij } which satisfy the inequality constraints
in (20), resp (19).

Proof We need to show that there are antisymmetric fluxes Fij such that

ρmin
i V (κ̃i)≤ ρiV (κi)+

∑

κj∈Ni

Fij ≤ ρmax
i V (κ̃i).

Fix a cell index 1≤ i ≤K , and choose ρ̂j , for κj ∈Nj according to

ρmin
i ≤ ρ̂j ≤ ρmax

i for j �= i and ρ̂i = ρi. (21)

The representation formula (12) motivates the following definition:

Fij = ρ̂jV (κ̃i ∩ κj )− ρ̂iV (κi ∩ κ̃j ). (22)

Clearly, Fij =−Fji . Using the fluxes (22)

ρiV (κi)+
∑

κj∈Ni

Fij = ρi

[
V (κi)−

∑

j �=i
V (κi ∩ κ̃j )

]
+
∑

j �=i
ρ̂jV (κ̃i ∩ κj )

= ρiV (̃κi ∩ κi)+
∑

j �=i
ρ̂jV (κi ∩ κ̃j )=

∑

κj∈Ni

ρ̂jV (κ̃i ∩ κj ).

From κ̃i =⋃
κj∈Ni

(̃κi ∩ κj ) and the bounds in (21) it follows that

∑

κj∈Ni

ρ̂jV (̃κi ∩ κj )≤ ρmax
i

∑

κj∈Ni

V (̃κi ∩ κj )= ρmax
i V (̃κi);

∑

κj∈Ni

ρ̂jV (̃κi ∩ κj )≥ ρmin
i

∑

κj∈Ni

V (̃κi ∩ κj )= ρmin
i V (̃κi),

which proves the theorem. �

Preservation of linearity (R2) requires the target fluxes FH
ij to be in the feasible

set of (20) whenever ρ(x) is linear, i.e.,

m̃min
i −mi ≤

∑

j∈I (N(κi ))

i<j

FH
ij −

∑

j∈I (N(κi ))

i>j

FH
ji ≤ m̃max

i −mi, i = 1, . . . ,K. (23)

The proof of this fact requires a simple technical result.

Lemma 1 Let n > 0 be an integer and let "c ∈ Rn be an arbitrary fixed vector. For
any closed and bounded set of points P ⊂R

n

min
x∈P

("cTx
)= min

x∈H (P )

("cTx
)

and max
x∈P

("cTx
)= max

x∈H (P )

("cTx
)
, (24)
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where H (P ) is the convex hull of P .

Proof The real-valued function "cTx is continuous on R
n. The set P is closed and

bounded, which implies that "cTx attains its minimum and maximum over P . Since
the convex hull of a closed and bounded set is closed and bounded, see Rockafellar
[21, Theorem 17.2], the same is true for H (P ).5

The function "cTx is linear, hence both convex and concave. The claim of the
lemma follows from a standard result on the supremum of convex (infimum of con-
cave) functions, see e.g. Rockafellar [21, Theorem 32.2]. �

The following theorem provides sufficient conditions on mesh movement for (23)
to hold.

Theorem 2 Assume the locality condition (2) and suppose that the exact density
ρ(x) is linear in all of Ω . Let Bi denote the set of barycenters of the Lagrangian
cells in N(κi),

Bi =
{
bj |j ∈I

(
N(κi)

)}
,

and let b̃i be the barycenter of the rezoned cell κ̃i . Sufficient conditions for the target
fluxes to be in the feasible set of (20), that is for (23) to hold, are

b̃i ∈H (Bi) if κi ∩ ∂Ω = ∅, (25)

b̃i ∈H
(
Bi ∪

(
N(κi)∩ ∂Ω

))
if κi ∩ ∂Ω �= ∅, (26)

where H (·) denotes the convex hull.

Proof Because ρ(x) is linear and the density reconstruction is exact for linear func-
tions it follows that the remapped mass equals the exact mass on every rezoned cell
κ̃i :

m̃i =mi +
∑

j∈I (N(κi ))

i<j

FH
ij −

∑

j∈I (N(κi ))

i>j

FH
ji =mi +

∑

j∈I (N(κi ))

i<j

F ex
ij −

∑

j∈I (N(κi ))

i>j

F ex
ji = m̃ex

i .

Therefore, proving that (23) holds reduces to showing that

m̃min
i ≤ m̃ex

i ≤ m̃max
i for all i = 1, . . . ,K. (27)

Recalling ρ(x)= c0 + "cTx and using the barycenter formula (1) yields

m̃ex
i =

∫

κ̃i

(
c0 + "cTx

)
dV = c0V (̃κi)+ "cT

[∫

κ̃i

xdV

]

5This guarantees that taking min and max in (24) is well-defined. Otherwise, the correct statement
of this result should involve inf and sup.
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= c0V (̃κi)+ "cT

[∫
κ̃i

xdV

V (̃κi)

]
V (̃κi)=

(
c0 + "cTb̃i

)
V (̃κi).

We consider two cases, κi ∩ ∂Ω = ∅ and κi ∩ ∂Ω �= ∅.
Case 1: Suppose κi ∩ ∂Ω = ∅. Using

ρmin
i = min

j∈I (N(κi ))
{ρj } and ρmax

i = max
j∈I (N(κi ))

{ρj },

the barycenter formula yields

m̃min
i = min

j∈I (N(κi ))

[∫
κj
(c0 + "cTx)dV

V (κj )

]
V (̃κi)= min

bj∈Bi

(
c0 + "cTbj

)
V (̃κi)

for the lower bound and

m̃max
i = max

j∈I (N(κi ))

[∫
κj
(c0 + "cTx)dV

V (κj )

]
V (̃κi)= max

bj∈Bi

(
c0 + "cTbj

)
V (̃κi)

for the upper bound in (27). From Lemma 1 it follows that

min
bj∈Bi

(
c0 + "cTbj

)= min
x∈H (Bi)

(
c0 + "cTx

)
(28)

and

max
bj∈Bi

(
c0 + "cTbj

)= max
x∈H (Bi)

(
c0 + "cTx

)
. (29)

Consequently, whenever κi ∩ ∂Ω = ∅, (27) is equivalent to

min
x∈H (Bi)

(
c0 + "cTx

)≤ (
c0 + "cTb̃i

)≤ max
x∈H (Bi)

(
c0 + "cTx

)
. (30)

A sufficient condition for (30) is given by (25), see Fig. 2.
Case 2: Suppose κi ∩ ∂Ω �= ∅. We have

ρmin
i =min

{
min

j∈I (N(κi ))
{ρj }, min

x∈N(κi)∩∂Ω
(
c0 + "cTx

)}

and

ρmax
i =max

{
max

j∈I (N(κi ))
{ρj }, max

x∈N(κi)∩∂Ω
(
c0 + "cTx

)}
.

Using again the barycenter formula, we obtain

ρmin
i =min

{
min
x∈Bi

(
c0 + "cTx

)
, min

x∈N(κi)∩∂Ω
(
c0 + "cTx

)}

and

ρmax
i =max

{
max
x∈Bi

(
c0 + "cTx

)
, max

x∈N(κi)∩∂Ω
(
c0 + "cTx

)}
.
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Fig. 2 The level sets of
ρ(x)= c0 + "cTx are
perpendicular to ∇ρ(x)= "c
and the extrema of ρ(x) are
achieved along the parallel
lines "c⊥L and "c⊥U shown in the
plot. Therefore, inequality
(30) holds for all points
between the two lines, while
(25) requires b̃i to remain in
the convex hull H (Bi) (the
gray hexagon)

In other words,

m̃min
i = min

x∈Bi∪(N(κi )∩∂Ω)

(
c0 + "cTx

)
V (̃κi)

and

m̃max
i = max

x∈Bi∪(N(κi )∩∂Ω)

(
c0 + "cTx

)
V (̃κi).

Treating Bi ∪ (N(κi)∩∂Ω) as a set of points in R
n, another application of Lemma 1

gives

m̃min
i = min

x∈H (Bi∪(N(κi )∩∂Ω))

(
c0 + "cTx

)
V (̃κi)

and

m̃max
i = max

x∈H (Bi∪(N(κi )∩∂Ω))

(
c0 + "cTx

)
V (̃κi).

Therefore, whenever κi ∩ ∂Ω �= ∅, a sufficient condition for (27) is given by (26).
This concludes the proof. �

Remark 1 The sufficient condition (26) can be replaced by more restrictive condi-
tions of the type

b̃i ∈H (Bi ∪ Si) if κi ∩ ∂Ω �= ∅,
where Si ⊆ (N(κi)∩∂Ω), i.e. Si is any (for example, finite) set of points taken from
the boundary segment N(κi)∩ ∂Ω .

Remark 2 The sufficient conditions (25) and (26) are not in any way dependent on
the cell shape. As a result, the statement of Theorem 2 applies to general grids,
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Fig. 3 Examples of mesh motions which satisfy and violate, respectively, the sufficient condition
for the preservation of linearity in Theorem 2. (a) the neighborhood N(κi) consisting of 9 square
cells, the Lagrangian prototype of κ̃i with vertices (p,q, r, s), its barycenter (the diamond), the set
Bi (the solid dots), and its convex hull H (Bi) (the dotted square); (b) an admissible rezoned grid
for which b̃i ∈H (Bi); (c) an inadmissible rezoned grid for which b̃i /∈H (Bi). In (b) and (c) κ̃i is
the cell with vertices (p′,q′, r′, s′). All cells in (a)–(c) satisfy the locality condition (2). Note that
the rezoned cell in (b) violates κ̃i ⊂H (Bi) which is necessary and sufficient for Van Leer slope
limiting to recover linear functions as shown by Swartz [23], but which is not required for the OBR
formulation

including grids which contain, e.g., non-convex polytopes. This allows to use OBR
for a wider range of mesh partitions of Ω .

Simple examples showing mesh motions that comply with or violate condition
(25) are shown in Fig. 3. It is worth pointing out that a similar but more restrictive
condition κ̃i ⊂H (Bi) is necessary and sufficient for linear functions to be pre-
served under Van Leer slope limiting; see Swartz [23]. The center pane in Fig. 3
provides an example for which κ̃i � H (Bi) but b̃i ∈H (Bi), i.e. Van Leer slope
limiting does not preserve linear functions whereas OBR does.

4 OBR, Modified-OBR (M-OBR), and Connection with
Flux-Corrected Remap (FCR)

In this section we establish connections between the global OBR problem (20) and
the FCR algorithm by Liska et al. [14]. The FCR algorithm is formulated by defining
the mass fluxes in (16) to be convex combinations of so-called low-order and high-
order fluxes; the low-order fluxes are assumed to satisfy the local bounds. We will
have more to say about this assumption later. The first step is to rewrite (20) in
terms of the same low-order and high-order fluxes as in FCR. The reformulation
of OBR amounts to a change of variables that leaves the solution of (20) intact but
places the OBR problem in a form that can be compared with FCR. The second step
approximates the constraints in OBR by a set of inequalities which are sufficient
for the original constraints to hold but have a simpler structure. This step gives rise
to a modified version of OBR, termed M-OBR, in which the original objective is
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minimized over a subset of the original OBR feasible set. The final step entails
showing that the optimal solution of M-OBR coincides with the FCR solution.

4.1 Reformulation of the Optimization-Based Remap

The low-order fluxes in FCR are defined by the formula

FL
ij =

∫

κ̃i∩κj
ρL
j (x) dV −

∫

κi∩κ̃j
ρL
i (x) dV, (31)

using a piecewise constant reconstruction ρL
i (x) of the old mesh values ρi , i.e.

ρL
i (x)= ρi ∀x ∈ κi, i = 1, . . . ,K.

Using these fluxes in formula (16) gives a low-order approximation of the mass in
the rezoned cell κ̃i .

m̃L
i =mi +

∑

j∈I (N(κi ))

i<j

FL
ij −

∑

j∈I (N(κi ))

i>j

FL
ji . (32)

Because FL
ij are computed using exact cell intersections, the new masses satisfy the

local bounds, see Margolin and Shashkov [17, Sect. 3]

m̃min
i ≤ m̃L

i ≤ m̃max
i . (33)

The high-order fluxes in the FCR are defined by the same formula (17) as our target
fluxes. Therefore we change the variables in (20) according to

Fij = (1− aij )F
L
ij + aijF

H
ij = FL

ij + aij dFij , (34)

where dFij = FH
ij − FL

ij . The coefficients aij are the new variables for the opti-
mization problem. It easy to see that antisymmetry of the fluxes implies symmetry
of the new variables: aij = aji . However, the change of variables does not introduce
any additional constraints on aij . As before, we enforce the symmetry constraint by
using only coefficients apq for which p < q .

Under the change of variables (34) the terms in the objective functional assume
the form

Fij − FH
ij = FL

ij + aij dFij − FH
ij = (aij − 1)dFij .
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Using (32) and (34) we rewrite the constraints as follows:

m̃i = mi +
∑

j∈I (N(κi ))

i<j

Fij −
∑

j∈I (N(κi ))

i>j

Fji

= mi +
∑

j∈I (N(κi ))

i<j

(
FL
ij + aij dFij

)−
∑

j∈I (N(κi ))

i>j

(
FL
ji + ajidFji

)

=
(
mi +

∑

j∈I (N(κi ))

i<j

FL
ij −

∑

j∈I (N(κi ))

i>j

FL
ji

)
+

∑

j∈I (N(κi ))

i<j

aij dFij −
∑

j∈I (N(κi ))

i>j

ajidFji

= m̃L
i +

∑

j∈I (N(κi ))

i<j

aij dFij −
∑

j∈I (N(κi ))

i>j

ajidFji .

From (33) it follows that

Q̃min
i := m̃min

i − m̃L
i ≤ 0 and Q̃max

i := m̃max
i − m̃L

i ≥ 0. (35)

We write the transformed constraints using these quantities as

Q̃min
i ≤

∑

j∈I (N(κi ))

i<j

aij dFij −
∑

j∈I (N(κi ))

i>j

ajidFji ≤ Q̃max
i , i = 1, . . . ,K. (36)

In summary, after changing variables according to (34), the OBR problem (20) as-
sumes the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
aij

K∑

i=1

∑

j∈I (N(κi ))

i<j

(1− aij )
2(dFij )

2

subject to

Q̃min
i ≤

∑

j∈I (N(κi ))

i<j

aij dFij −
∑

j∈I (N(κi ))

i>j

ajidFji ≤ Q̃max
i , i = 1, . . . ,K.

(37)

Problems (20) and (37) are completely equivalent. For example, the global min-
imizer aij = 1 of (37), sans constraints, corresponds to Fij = FH

ij , which is the
global minimizer of (20), sans constraints. Note also that the choice aij = 0 satisfies
the constraints, due to (35). The sufficient conditions in Theorem 2 guarantee that
aij = 1 are in the feasible set of (37) when the exact density ρ(x) is a linear function
in all of Ω .

4.2 The M-OBR Formulation

In this section we modify (37) to another inequality-constrained optimization prob-
lem, termed M-OBR, in which the same objective is minimized subject to a set of
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simple box constraints. The box constraints are sufficient for the original inequality
constraints in (37) to hold and are derived by following the same reasoning as in
Liska et al. [14]. To this end, we define the quantities

P−i =
dFij≤0∑

j∈I (N(κi ))

i<j

dFij −
dFji≥0∑

j∈I (N(κi ))

i>j

dFji ≤ 0; P+i =
dFij≥0∑

j∈I (N(κi ))

i<j

dFij −
dFji≤0∑

j∈I (N(κi ))

i>j

dFji ≥ 0;

(38)

D−i =
⎧
⎨

⎩

Q̃min
i

P−i
if P−i < 0,

0 if P−i = 0
and D+i =

⎧
⎨

⎩

Q̃max
i

P+i
if P+i > 0,

0 if P+i = 0.
(39)

Using these quantities we reduce the constraints in (37) to a set of box constraints
in three steps.

In the first step we replace the upper and lower bounds in the constraints of (37)
by D−i P−i and D+i P+i , respectively:

D−i P−i ≤
∑

j∈I (N(κi ))

i<j

aij dFij −
∑

j∈I (N(κi ))

i>j

ajidFji ≤D+i P+i , i = 1, . . . ,K. (40)

In the second step we split (40) into two parts, according to the signs of the flux
differentials:

(a) D−i P−i ≤
dFij≤0∑

j∈I (N(κi ))

i<j

aij dFij −
dFji≥0∑

j∈I (N(κi ))

i>j

ajidFji ≤ 0,

(b) 0≤
dFij≥0∑

j∈I (N(κi ))

i<j

aij dFij −
dFji≤0∑

j∈I (N(κi ))

i>j

ajidFji ≤D+i P+i ,

i = 1, . . . ,K. (41)

Finally, using definition (38), we reduce (41) to a set of box constraints by applying
the upper and the lower bounds componentwise:

(a)

{
D−i dFij ≤ aij dFij ≤ 0 for i < j , dFij ≤ 0,

D−i dFji ≥ ajidFji ≥ 0 for i > j , dFji ≥ 0,

(b)

{
0≤ aij dFij ≤D+i dFij for i < j , dFij ≥ 0,

0≥ ajidFji ≥D+i dFji for i > j , dFji ≤ 0,

i = 1, . . . ,K, j ∈I
(
N(κi)

)
.

(42)
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Using the box constraints (42) in lieu of the original set of inequalities in (37) yields
the modified OBR problem (M-OBR)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
aij

K∑

i=1

∑

j∈I (N(κi ))

i<j

(1− aij )
2(dFij )

2

subject to

(a)

{
D−i dFij ≤ aij dFij ≤ 0 for i < j, dFij ≤ 0,

D−i dFji ≥ ajidFji ≥ 0 for i > j, dFji ≥ 0,

(b)

{
0≤ aij dFij ≤D+i dFij for i < j, dFij ≥ 0,

0≥ ajidFji ≥D+i dFji for i > j, dFji ≤ 0,

i = 1, . . . ,K, j ∈I
(
N(κi)

)
.

(43)

We are now ready to study the connections of the global M-OBR formulation (43)
with the OBR problem (37). The first result shows that (43) always has a solution.

Proposition 1 The feasible set of the modified OBR problem (43) is non-empty.

Proof The inequalities in (43) are always satisfied for aij = 0 because D−i ≥ 0 and
D+i ≥ 0 for all i = 1, . . . ,K . Therefore, the feasible set of (43) always contains at
least one point. �

We note that aij = 0 results in Fij = FL
ij , which corresponds to a low-order mass

remap or, using an advection parlance, to a “donor-cell” solution of the remap prob-
lem. Thus, at the least, the M-OBR problem admits the same solution as a conven-
tional low-order local remapper.

The following theorem examines the relationship between M-OBR and OBR.

Theorem 3 The feasible set of the M-OBR formulation (43) is a subset of the feasi-
ble set of the OBR formulation (37).

Proof The feasible sets of the OBR and M-OBR problems are given by

UO =
{
aij ∈R|(36) hold for i = 1, . . . ,K and j ∈I

(
N(κi)

)}
,

and

UM =
{
aij ∈R|(42) hold for i = 1, . . . ,K and j ∈I

(
N(κi)

)}
,

respectively. To show that UM ⊆UO define the intermediate sets

UA =
{
aij ∈R|(40) hold for i = 1, . . . ,K and j ∈I

(
N(κi)

)}
,
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and

UB =
{
aij ∈R|(41) hold for i = 1, . . . ,K and j ∈I

(
N(κi)

)}
,

corresponding to the first and the second stages in the transformation of the OBR
constraints to the box constraints of M-OBR.

To prove the theorem we will show that

UM ⊆UB ⊆UA ⊆UO.

Step 1: UM ⊆UB . Let {aij } ∈UM . Summing up the inequalities in (42) yields

dFij≤0∑

j∈I (N(κi ))

i<j

D−i dFij −
dFji≥0∑

j∈I (N(κi ))

i>j

D−i dFji ≤
dFij≤0∑

j∈I (N(κi ))

i<j

aij dFij −
dFji≥0∑

j∈I (N(κi ))

i>j

ajidFji ≤ 0,

0≤
dFij≤0∑

j∈I (N(κi ))

i<j

aij dFij −
dFji≥0∑

j∈I (N(κi ))

i>j

ajidFji ≤
dFij≤0∑

j∈I (N(κi ))

i<j

D+i dFij −
dFji≥0∑

j∈I (N(κi ))

i>j

D+i dFji .

From (38) we see that the left hand side in the first inequality equals D−i P−i and the
right hand side in the second inequality is D+i P+i . Therefore, inequalities (41) hold
for {aij }, i.e. {aij } ∈UB . This proves the inclusion UM ⊆UB .

Step 2: UB ⊆UA. Assume that {aij } ∈UB . Summing up inequalities (a) and (b)
in (41) gives

D−i P−i ≤
dFij≤0∑

j∈I (N(κi ))

i<j

aij dFij −
dFji≥0∑

j∈I (N(κi ))

i>j

ajidFji +
dFij≥0∑

j∈I (N(κi ))

i<j

aij dFij −
dFji≤0∑

j∈I (N(κi ))

i>j

ajidFji

≤D+i P+i

from where it follows that (40) hold for {aij }, i.e. {aij } ∈UA. This proves the inclu-
sion UB ⊆UA.

Step 3: UB ⊆UO . Finally, let {aij } ∈UA. Note that

Q̃min
i ≤D−i P−i and D+i P+i ≤ Q̃max

i .

Therefore, inequalities (36) hold for {aij }, i.e. {aij } ∈UO . This proves the inclusion
UA ⊆UO . �

Remark 3 Since the M-OBR feasible set is contained in the OBR feasible set due
to Theorem 3, it follows that the OBR solution is always at least as accurate as the
M-OBR solution.
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4.3 FCR and M-OBR: Two Equivalent Algorithms

In this section we show that the M-OBR formulation is equivalent to the FCR algo-
rithm in Liska et al. [14]. For convenience, below we summarize the FCR formula-
tion for the mass-density remap. Full details can be found in [14, Sect. 3].

The original motivation for FCR is to replace a global optimization problem such
as OBR by a series of local problems. To this end, FCR restricts the mass fluxes in
(16) to convex combinations of the low-order and the high-order target fluxes, i.e.

Fij = (1− aij )F
L
ij + aijF

H
ij = FL

ij + aij dFij , (44)

where aij = aji and 0≤ aij ≤ 1. The convexity assumption is motivated by analo-
gies with the FCT approach of Kuzmin et al. [12] for advection. Except for this
requirement, formula (44) is identical to the change of variables in (34). In the FCR
algorithm the approximate mass fluxes in (44) are computed using the following
values for the unknown coefficients:

aij =
{

min{D+i ,D−j ,1} if dFij > 0,

min{D−i ,D+j ,1} if dFij < 0,
1≤ i, j ≤K and i < j. (45)

For completeness, one can set aij = 1 whenever dFij = 0. In Liska et al. [14] it is
shown that (45) is sufficient for the local mass-density bounds in (36) to hold.

We proceed to show that the solution of the global M-OBR problem is also given
by (45). This fact establishes the equivalence of FCR and M-OBR and is a direct
consequence of the following theorem.

Theorem 4 The M-OBR formulation (43) is equivalent to the following set of inde-
pendent, single-variable, constrained optimization problems: for 1 ≤ i, j ≤ K and
i < j solve

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
aij

(1− aij )
2(dFij )

2

subject to

0≤ aij ≤
{

min{D+i ,D−j } if dFij > 0,

min{D−i ,D+j } if dFij < 0.

(46)

Proof A flux differential dFij , i < j , can be negative, zero or positive. If dFij = 0,
we denote the variable aij as free, because the box constraint in (42) holds for any
value of aij . Note that the terms associated with free variables do not contribute to
the objective, because (1 − aij )

2(dFij )
2 = 0. It follows that all free variables can

be eliminated6 from the optimization problem. Thus, without loss of generality we
may assume that dFij �= 0.

6For a complete match with FCR we can set all free variables to 1.
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It is easy to see that whenever dFij �= 0, the associated variable aij enters in
exactly one constraint of type (a) and one constraint of type (b). Solving the in-
equalities for aij gives

0≤ aij ≤D+i and 0≤ aij ≤D−j

for i < j and dFij > 0, and

0≤ aij ≤D−i and 0≤ aij ≤D+j

for i < j and dFij < 0. Succinctly,

0≤ aij ≤
{

min{D+i ,D−j } if dFij > 0,

min{D−i ,D+j } if dFij < 0,
1≤ i, j ≤K and i < j

is a new set of box constraints that is completely equivalent to (43). Because each
of the terms in the objective functional depends on only one variable, it follows that
(43) decouples into the set of independent, single-variable, constrained optimization
problems given in (46). �

The equivalence of FCR and M-OBR easily follows.

Corollary 1 The solution {aij } of the M-OBR problem (43) is given by the FCR
formula (45).

Proof To find the solution of the M-OBR problem we set all free variables to 1. The
rest of the variables are computed by solving the decoupled optimization problems
in (46). For a given pair of indices i < j let Dij ≥ 0 denote the upper bound in
the constraint of the optimization problem for the variable aij . The cost functional
(1 − aij )

2(dFij )
2 in this problem represents a parabola with the vertex at (1,0).

Therefore, the constrained minimum is achieved at the smaller of the two values
aij = 1 or aij = Dij . It follows that whenever dFij �= 0, the solution of the opti-
mization problem in (46) is given by formula (45). �

4.4 iFCR: An Iterative Extension of FCR

For the purpose of numerical comparisons, we introduce a variation of the stan-
dard FCR algorithm, called iterated FCR (iFCR), originally proposed by Schär and
Smolarkiewicz [22]. The key idea of iFCR is that, by definition, FCR fluxes en-
sure monotonicity of the solution, and can be reused as base low-order fluxes for
an additional FCR flux computation. This process can be repeated ad infinitum. The
advantage of iFCR over FCR is mainly in accuracy, at the price of increased com-
putational cost, as the FCR flux computation has to be repeated at each iteration of
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Table 1 Outline of the iFCR algorithm

Initialize solution field with initial conditions.

Predictor: Compute FCR fluxes Fij using (44) and (45).

Define F
(0)
ij = Fij and F

L;(0)
ij = FL

ij .

For k = 0, . . . , kmax (iFCR loop begins)

Replace F
L;(k+1)
ij = F

(k)
ij .

Corrector: Compute F
(k+1)
ij using (44) and (45).

End (iFCR loop ends)
Exit

the method. iFCR represents a more challenging benchmark in the analysis of per-
formance of the OBR approach, and, of course—in the limit for a large number of
iterations—may easily surpass in cost the OBR algorithm itself. The iFCR approach
is described in Table 1.

5 Algorithms I: Exact Cell Intersection Versus Swept Region
Flux Computations

Until now all our considerations were based on the exact cell intersection formula
(12). This means that in order to implement the corresponding OBR and FCR al-
gorithms we would have to find the intersections between the cells on the old and
new meshes, which is computationally expensive. Instead, we implement the OBR
and FCR algorithms using swept regions as in Margolin and Shashkov [17, Sect. 4].
These are the regions swept by the movement of the sides of the old cells. As a re-
sult, the swept regions are completely determined by the coordinates of the old and
new nodes and do not require the computation of cell intersections.

Recall that S(κi) is the set of all sides in cell κi . Each side σj has unique orienta-
tion ωj =+1, or −1, which induces orientation on the associated swept region Σj .
The idea of the swept region approximation is to allow mass exchanges only be-
tween cells that share a side. In this case, the new cell masses can be approximated
by the formula

m̃i =mi +
∑

j∈I (S(κi ))

ωjFj , (47)

where summation is over the sides of the cell and Fj are mass fluxes corresponding
to the (signed) swept regions Σj associated with side σj .

Our implementation of OBR and FCR uses (47) in lieu of the cell-intersection
formula (16). Let Σj denote the swept region associated with side σj of cell κi . We
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define the target (high-order) fluxes as7

FH
j =

∫

Σj

ρH
j (x)dV, (48)

where ρH
j is a density reconstruction that is exact for linear functions. One can

show that using formula (47) with the fluxes defined in (48) gives the exact cell
masses whenever the density is linear (see Margolin and Shashkov [17]). This means
that the preservation of linearity in OBR remains in full force when the method is
implemented using swept regions, instead of exact cell intersections.

The situation with FCR is somewhat more complicated. In addition to the high-
order fluxes (48) this method also uses the low order fluxes

FL
j =

∫

Σj

ρL
j (x) dV . (49)

It turns out that when the low-order approximations of the new cell masses are
computed using (47) and (49), instead of (16) and (31), there is no guarantee that
these masses will satisfy the bounds (33), see Margolin and Shashkov [17]. Addi-
tional restrictions on the mesh movement are required to ensure that these bounds
hold. A sufficient condition for (33) is that the area of the old cell κi is greater than
the sum of the absolute values of all negatively signed swept regions (see Margolin
and Shashkov [17, p. 279]).

The fact that (33) can be violated when FCR is implemented using swept regions
has important consequences. Without (33) holding, the two OBR formulations (20)
and (37) are still equivalent. However, we cannot carry out the steps in Sect. 4.2,
which reduced (37) to the M-OBR formulation (43). Therefore, violation of (33) in-
validates Proposition 1, Theorems 3–4, and Corollary 1. What this means in practice
is that the feasible set in (43) may become void, in which case the M-OBR problem
has no solution. As a result, the FCR solution defined in (45) ceases to be connected
to the global OBR optimization problem (20) and is not guaranteed to be in its feasi-
ble set. The practical dimension of this fact is that the FCR solution may violate the
local bounds. Section 7.3 provides an instructive example in two dimensions that
shows the loss of monotonicity when FCR is implemented using swept regions.

6 Algorithms II: Solution Techniques for the OBR Problem

We discuss optimization techniques for the solution of the OBR problem assuming
a swept-region approximation. In compact matrix/vector notation problem (20) has

7Because side nodes can move in different directions swept regions are not simple extrusions of
the sides, which can complicate the computation of integrals. Using Green’s theorem, integrals of
polynomials over swept regions can be replaced by integrals of higher-degree polynomials over
the (lower-dimensional) boundaries of these regions, see Margolin and Shashkov [17], Dukowicz
and Kodis [8]. This provides an efficient way to compute the fluxes, regardless of the shape of the
swept regions.
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the form

min
"F∈RM

1

2

( "F − "FH
)T( "F − "FH

)

subject to "bmin ≤A "F ≤ "bmax,

(50)

where M denotes the number of unique flux variables, F̃ h
ij . We also define "F ∈

R
M , "FH ∈ R

M , "bmin ∈ R
K and "bmax ∈ R

K such that "Fι(i,j) = F̃ h
ij , "FH

ι(i,j) = F̃ T
ij ,

("bmin)i =mmin
i − m̃i and ("bmax)i =mmax

i − m̃i , respectively, where ι is an indexing
function. Finally we let A ∈RK×M be a matrix with entries−1, 0 and 1 defining the
inequality constraints in (20) or a related proxy (see swept-region approximation,
Bochev et al. [5, Sects. 4.1, 4.2]). The matrix A is typically very sparse, with M >K

in 2D and 3D. We abbreviate the nonnegative orthant as Rm+ = {x ∈Rm : x≥ 0}.
Rather than solving (50) directly, we focus on its dual formulation. This allows us

to reformulate the problem into a simpler, bound-constrained optimization problem.

Theorem 5 Given the definitions of "FH ∈ R
M , "bmin ∈ R

K , "bmax ∈ R
K , and A ∈

R
K×M from above, let us define Jp :RM→R and Jd :R2K→R as

Jp( "F)= 1

2

∥∥ "F − "FH
∥∥2

2

and

Jd("λ, "μ)= 1

2

∥∥AT"λ−AT "μ∥∥2
2 −

〈"λ, "bmin −A "FH
〉− 〈 "μ,−"bmax +A "FH

〉
.

Then, we have that

min
F∈RM

{
Jp( "F) : "bmin ≤A "F ≤ "bmax

}= min
("λ, "μ)∈R2K+

{
Jd("λ, "μ)

}

where we call the first problem the primal and the second problem the dual. Fur-
thermore,

{ "FH +AT("λ∗ − "μ∗)}= arg min
F∈RM

{
Jp( "F) : "bmin ≤A "F ≤ "bmax

}

whenever
("λ∗, "μ∗) ∈ arg min

("λ, "μ)∈R2K+

{
Jd("λ, "μ)

}
.

Proof We begin with the observation that Jp denotes a strictly convex, continuous
function and that { "F ∈RM : "bmin ≤A "F ≤ "bmax} denotes a bounded, closed, convex
set. Therefore, a unique minimum exists and is attained. Furthermore, since there
exists an "F such that "bmin < A "F < "bmax, we satisfy Slater’s constraint qualification.
This tells us that strong duality holds, which implies that the Lagrangian dual exists
and possesses the same optimal value as the original problem.
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Based on this knowledge, we notice that

min
F∈RM

{
Jp( "F) : "bmin ≤A "F ≤ "bmax

}

= min
F∈RM

max
("λ, "μ)∈R2K+

{
Jp( "F)− 〈A "F − "bmin, "λ〉 − 〈"bmax −AF, "μ〉}

= max
("λ, "μ)∈R2K+

min
F∈RM

{
Jp( "F)− 〈 "F,AT("λ− "μ)

〉+ 〈"bmin, "λ〉 − 〈"bmax, "μ〉
}
.

Next, we consider the function J :RM→R where

J ( "F)= Jp( "F)− 〈 "F,AT("λ− "μ)
〉

and ("λ, "μ) ∈R2K are fixed. We see that J is strictly convex. Therefore, it attains its
unique minimum when ∇J = 0. Specifically, when

"F − "FH −AT("λ− "μ)= 0,

which occurs if and only if

"F = "FH +AT("λ− "μ).

Therefore, we may find the optimal solution to our original problem with this equa-
tion when ("λ, "μ) are optimal. In addition, we may use this knowledge to simplify
our derivation of the dual. Let ω=AT("λ− "μ) and notice that

max
("λ, "μ)∈R2K+

min
F∈RM

{
Jp( "F)− 〈 "F,AT("λ− "μ)

〉+ 〈bmin, "λ〉 − 〈bmax, "μ〉
}

= max
("λ, "μ)∈R2K+

{
Jp

( "FH +ω
)− 〈 "FH +ω,ω)

〉+ 〈bmin, "λ〉 − 〈bmax, "μ〉
}

= max
("λ, "μ)∈R2K+

{
1

2
‖ω‖2

2 −
〈 "FH ,ω

〉− ‖ω‖2
2 + 〈bmin, "λ〉 − 〈bmax, "μ〉

}

= max
("λ, "μ)∈R2K+

{
−1

2

∥∥AT("λ− "μ)
∥∥2

2 −
〈
A "FH , "λ− "μ〉+ 〈bmin, "λ〉 − 〈bmax, "μ〉

}

= min
("λ, "μ)∈R2K+

{
1

2

∥∥AT("λ− "μ)
∥∥2

2 +
〈
A "FH , "λ− "μ〉− 〈bmin, "λ〉 + 〈bmax, "μ〉

}

= min
("λ, "μ)∈R2K+

{
1

2

∥∥AT"λ−AT "μ∥∥2
2 −

〈"λ, "bmin −A "FH
〉− 〈 "μ,−"bmax +A "FH

〉
}

= min
("λ, "μ)∈R2K+

{
Jd("λ, "μ)

}
.

Hence, we see the equivalence between our two optimization problems and note
that the equation "F = "FH +AT("λ− "μ) allows us to find an optimal primal solution
given an optimal solution to the dual. �
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Although the primal problem is strictly convex and possesses a unique optimal
solution, the dual formulation does not. Rather, the dual problem is convex, but not
strictly convex, so multiple minima may exist. Second, our formula for reconstruct-
ing the primal solution from the dual depends on an optimal dual solution. If the
solution to the dual is not optimal, the reconstruction formula may generate infeasi-
ble solutions. With these points in mind, we require two additional definitions before
we may proceed to our optimization algorithm.

Definition 2 We define the diagonal operator, Diag :Rm→R
m×m, as

[
Diag(x)

]
ij
=
{

xi , i = j,

0, i �= j.

Definition 3 For some symmetric, positive semidefinite H ∈ R
m×m and some

"b ∈Rm, we define the operator vH,"b :Rm→R
m as

vH,"b(x)=
{

xi , [Hx+ "b]i ≥ 0,

1, [Hx+ "b]i < 0.

When both H and "b are clear from the context, we abbreviate this function as v.

In order to solve the dual optimization problem, we use a simplified version of
the locally convergent Coleman-Li algorithm (Coleman and Li [7]). The key to this
algorithm follows from the following lemma.

Lemma 2 Let H ∈Rm×m be symmetric, positive semidefinite and let "b ∈Rm. Then,
for some x∗ ≥ 0, we have that

x∗ ∈ arg min
x∈Rm+

{
1

2
〈Hx,x〉 + 〈"b,x〉

}
⇐⇒ Diag

(
v
(
x∗
))(

Hx∗ + "b)= 0.

Proof We begin with the observation that since H is symmetric, positive semidefi-
nite, the problem

min
x∈Rm+

{
1

2
〈Hx,x〉 + 〈"b, x〉

}

represents a convex optimization problem with a coercive objective and a closed,
convex set of constraints. Therefore, a minimum exists and the first order optimality
conditions become sufficient for optimality.

In the forward direction, we assume that we have an optimal pair (x∗, "λ∗) that
satisfy the first order optimality conditions,

Hx∗ + "b− "λ∗ = 0,

x∗ ≥ 0, "λ∗ ≥ 0,
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Diag
(
x∗
)"λ∗ = 0.

According to these equations, "λ∗ =Hx∗+ "b and "λ∗ ≥ 0. This implies that Hx∗+ "b ≥
0. Therefore, according to the definition of v, [Diag(v(x∗))]ii = x∗i for all i. This
tells us that

[
Diag

(
v
(
x∗
))(

Hx∗ + "b)]
i
= x∗i

[
Hx∗ + "b]

i
= x∗i "λ∗i = 0

where the final equality follows from our fourth optimality condition, complemen-
tary slackness.

In the reverse direction, we assume that Diag(v(x∗))(Hx∗ + "b) = 0 for some
x∗ ∈Rm+. Since the problem

min
x∈Rm+

{
1

2
〈Hx,x〉 + 〈"b,x〉

}

represents a convex optimization problem, it is sufficient to show that the first order
optimality conditions hold for x∗ and some "λ∗. Of course, we immediately see that
we satisfy primal feasibility since x∗ ≥ 0 by assumption.

Due to the definition of v, our initial assumption implies that Hx∗ + "b ≥ 0. If
this were not the case, then there would exist an i such that [Hx∗ + "b]i < 0. In this
case, we see that [v(x∗)]i = 1 and that [Diag(v(x∗))(Hx∗ + "b)]i = [Hx∗ + "b]i <
0, which contradicts our initial assumption. Therefore, Hx∗ + "b ≥ 0. As a result,
let us set "λ∗ = Hx∗ + "b. This allows us to satisfy our first optimality condition,
Hx∗ + "b− "λ∗ = 0 as well as our third, "λ∗ ≥ 0.

In order to show that we satisfy complementary slackness, we combine our initial
assumption as well as our knowledge that Hx∗ + "b ≥ 0 to see that

0 = Diag
(
v
(
x∗
))(

Hx∗ + "b)

= Diag
(
x∗
)(

Hx∗ + "b)

= Diag
(
x∗
)"λ∗.

Therefore, we satisfy our final optimality condition and, hence, x∗ denotes an opti-
mal solution to the optimization problem. �

The above lemma allows us to recast a bound-constrained, convex quadratic op-
timization problem into a piecewise differentiable system of equations. In order to
solve this system of equations, we apply Newton’s method. Before we do so, we
require one additional definition and a lemma.

Definition 4 For some symmetric, positive semidefinite H ∈ R
m×m and some

"b ∈Rm, we define the operator KH,"b :Rm→R
m×m as

[
KH,"b(x)

]
ij
=
{

1, [Hx+ "b]i ≥ 0,
0, [Hx+ "b]i < 0.
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When both H and "b are clear from the context, we abbreviate this operator as K .

Lemma 3 Let H ∈ Rm×m be symmetric, positive definite, "b ∈ Rm, and define the
function J :Rm→R as

J (x)=Diag
(
v(x)

)
(Hx+ "b).

Then, we have that

J ′(x)=K(x)Diag(Hx+ "b)+Diag
(
v(x)

)
H.

Proof Let us begin by assessing the derivative of v. We notice that

[
v(x+ t "η)]

i
=
{

xi + t "ηi, [Hx+ b]i ≥ 0,
1, [Hx+ b]i < 0.

Therefore, from a piecewise application of Taylor’s theorem, we see that

[
v′(x)"η]

i
=
{ "ηi, [Hx+ b]i ≥ 0,

0, [Hx+ b]i < 0.

Next, we apply a similar technique to J . Let us define g : Rm→ R so that g(x)=
Hx+ "b. Then, we see that

J (x+ t "η) = Diag
(
v(x+ t "η))(H(x+ t "η)+ "b)

= Diag
(
v(x)+ tv′(x)"η+ o

(|t |))(Hx+ "b+ t "η)
= Diag

(
v(x)

)
g(x̄)+ t

(
Diag

(
v(x)

)
H"η+Diag

(
v′(x)"η)g(x̄))+ o

(|t |).
Hence, from a piecewise application of Taylor’s theorem, we have that

J ′(x)"η = Diag
(
v(x)

)
H"η+Diag

(
v′(x)"η)(Hx+ "b)

= Diag
(
v(x)

)
H"η+K(x)Diag(Hx+ "b)"η.

Therefore, J ′(x)=K(x)Diag(Hx+ "b)+Diag(v(x))H. �

The preceding lemma allows us to formulate Newton’s method where we seek a
step "p ∈ Rm such that J ′(x) "p =−J (x). Although the operator J ′(x) is well struc-
tured, it is nonsymmetric. We symmetrize the system as follows.

Definition 5 For some symmetric, positive semidefinite H ∈ R
m×m and some

"b ∈Rm, we define the operator DH,"b :Rm+ →R
m×m as

DH,"b(x)=Diag
(
vH,"b(x)

)1/2
.

When both H and "b are clear from the context, we abbreviate this operator as D.
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Lemma 4 Let H ∈Rm×m be symmetric, positive semidefinite and let "b ∈Rm. Then,
we have that

(
K(x)Diag(Hx+ "b)+Diag

(
v(x)

)
H
) "p =−Diag

(
v(x)

)
(Hx+ "b)

⇐⇒ (
K(x)Diag(Hx+ "b)+D(x)HD(x)

)"q =−D(x)(Hx+ "b)
where "p =D(x)"q .

Proof Notice that

0 = (
K(x)Diag(Hx+ "b)+Diag

(
v(x)

)
H
) "p+Diag

(
v(x)

)
(Hx+ "b)

= (
K(x)Diag(Hx+ "b)+D(x)2H

) "p+D(x)2(Hx+ "b)
= D(x)

((
D(x)−1K(x)Diag(Hx+ "b)+D(x)H

) "p+D(x)(Hx+ "b))

= D(x)
((
D(x)−1K(x)Diag(Hx+ "b)+D(x)H

)
D(x)"q +D(x)(Hx+ "b))

= D(x)
((
K(x)Diag(Hx+ "b)+D(x)HD(x)

)"q +D(x)(Hx+ "b)),
which occurs if and only if

0= (
K(x)Diag(Hx+ "b)+D(x)HD(x)

)"q +D(x)(Hx+ "b)
since D(x) is nonsingular. �

Properly, we require a line search to ensure feasible iterates. However, we can
be far more aggressive in practice. In order to initialize the algorithm, we use the
starting iterate of ("λ, "μ)= ("0, "0). This corresponds to a primal solution where "F =
"FH . Since the optimal solution to the primal problem is close to the target "FH , we
expect the optimal solution to the dual problem to reside in a neighborhood close
to zero. As a result, Newton’s method should converge quadratically to the solution
with a step size equal to one. Therefore, we ignore the feasibility constraint and
always use a unit step size. Sometimes, this allows the dual solution to become
slightly infeasible, but the amount of infeasibility tends to be small. In practice,
the corresponding primal solution is always feasible and produces good results. In
order to allow infeasible solutions, we must use the original formulation of Newton’s
method rather than the symmetric reformulation. Namely, the operator D becomes
ill-defined for infeasible points.

When we combine the above pieces, we arrive at the final algorithm (Table 2).

7 A Few Instructive Examples

In this section we present three numerical examples that illustrate the advantages
of the OBR formulation in comparison to the M-OBR formulation. Because, as
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Table 2 Dual algorithm for the solution of the remap problem

1. Define H ∈R2K×2K and b ∈R2K as

H=
[

AAT −AAT

−AAT AAT

]

, "b=
[

A "FH − "bmin

−A "FH + "bmax

]

.

2. Initialize x= "0.
3. Until ‖Diag(v(x))(Hx + "b)‖ becomes small or we exceed a fixed number of itera-

tions.
a. When feasible, solve

(
K(x)Diag(Hx+ "b)+D(x)HD(x)

)"q =−D(x)(Hx+ "b)
and set "p =D(x)"q. Otherwise, solve

(
K(x)Diag(Hx+ "b)+Diag

(
v(x)

)
H
) "p =−Diag

(
v(x)

)
(Hx+ "b).

b. Set x= x+ "p.

shown in Corollary 1, the solution of the M-OBR problem (43) is equivalent to the
one given by the FCR algorithm, our study effectively compares and contrasts the
fundamental properties of OBR and FCR; henceforth, we denote the M-OBR/FCR
methods and algorithms by the common acronym M-OBR (FCR).

Most notably, the three examples reveal that the conditions on the mesh mo-
tion for OBR, given in Theorem 2, are much less restrictive than those for M-OBR
(FCR). First, we demonstrate on a simple three-cell example in one spatial dimen-
sion that for certain mesh motions M-OBR (FCR) does not preserve the shape of
a given density function, while OBR does. Second, we construct a related exam-
ple for which M-OBR (FCR) does not preserve linear density functions under mesh
motions admissible by OBR. Finally, we give a 9-cell example in two spatial dimen-
sions for which a commonly used M-OBR (FCR) algorithm based on swept regions,
see Sect. 5, does not preserve monotonicity, while OBR does. In the following, we
refer to Sect. 3 for relevant notation.

We will also compare some of the numerical results with the iFCR algorithm. In
particular, unless otherwise specified, iFCR(k) indicates the k-th iterate of the iFCR
algorithm.

7.1 An Example of Mesh Movement in Which OBR Preserves
Shape and M-OBR (FCR) Does Not

The goal of this section is to show that the smaller feasible set of the M-OBR (FCR)
formulation (43) can limit its ability to accurately preserve the shape of a given
density function. To this end we design a “torture” test example that shows how the
shape of a given “peak” density function can be changed by M-OBR (FCR) into a
step-function profile. Of course, because M-OBR (FCR) and FCR are equivalent,
the same will hold true for the FCR solution.
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Fig. 4 Specification of the
“torture” test for shape
preservation. The new mesh
is defined by compressing the
middle cell of the old mesh.
The mean density values are
subject to the conditions that
ρ1 > ρ3 and that ρ2 is the
largest value. The results
reported in this section
correspond to
Δ1 =Δ2 = 0.14, ρ1 = 80,
ρ2 = 100, ρ3 = 0, and
ρb

1 = ρb
3 = 0

A schematic of the torture test is shown in Fig. 4. The computational domain is
given by the unit interval, Ω = [0,1]. The old mesh Kh(Ω) is defined by a uniform
partition of the unit interval into 3 cells using the vertices x1 = 0, x2 = 1/3, x3 = 2/3
and x4 = 1. The nodes of the new mesh K̃h(Ω) are set to x̃1 = x1, x̃2 = x2 +Δ1,
x̃3 = x3−Δ2 and x̃4 = x4, where Δ1 > 0 and Δ2 > 0 are such that Δ1+Δ2 < 1/3;
see Fig. 4. In other words, the new mesh is defined by compressing the middle cell
of the old mesh. Note that K̃h(Ω) satisfies the locality assumption (3) and that

x2 < x̃2 and x̃3 < x3. (51)

To complete the specification of the torture test we prescribe the mean density
values ρ1, ρ2, ρ3 on the old cells and boundary values ρb

1 = 0, ρb
3 = 0 at the end-

points. The mean density values are subject to the conditions

ρ1 > ρ3, ρ2 ≥ ρ1, and ρ2 ≥ ρ3. (52)

Specific numbers will be given momentarily. To explain these choices it is necessary
to examine the structure of the feasible set of (37) and its modification (43), special-
ized to the torture test. As before, we follow the rule that the antisymmetry of fluxes
and the symmetry of coefficients aij are enforced by using index pairs {i, j} for
which i < j . In the case of the torture test, which has three cells, there are two such
pairs, given by {1,2} and {2,3}. Therefore, the independent fluxes are F12 and F23,
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Fig. 5 Structure of the OBR (left pane) and M-OBR (FCR) (right pane) feasible sets when dF12
and dF23 are positive. The strips between the pairs of lines marked by OBR(1), OBR(2) and
OBR(3) correspond to the three inequality constraints in (53). The lines marked by OBR(2) have
positive slopes given by dF12/dF23. The lines marked by M-OBR(U1) and M-OBR(U2) represent
the two upper bounds in the two inequality constraints in (54), respectively. The lower bounds
correspond to the coordinate axes and are identified by M-OBR(L1) and M-OBR(L2), respectively.
The shadows point towards the interiors of the domains defined by the constraints. It is evident that
the feasible set of M-OBR (FCR) is a subset of the feasible set of OBR

the unknown coefficients are a12 and a23, and the OBR problem (37) specializes to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
a12,a23

{
(1− a12)

2(dF12)
2 + (1− a23)

2(dF23)
2}

subject to

(1) Q̃min
1 ≤ a12dF12 ≤ Q̃max

1 ,

(2) Q̃min
2 ≤ a23dF23 − a12dF12 ≤ Q̃max

2 ,

(3) Q̃min
3 ≤−a23dF23 ≤ Q̃max

3 .

(53)

Regarding the M-OBR (FCR) formulation (37), a simple but tedious calculation
shows that dF12 > 0 and dF23 > 0 whenever (i) the middle cell is compressed, i.e.
(51) holds, and (ii) the first condition in (52) holds, i.e. ρ1 > ρ3. As a result, the
M-OBR (FCR) problem assumes the form

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min
a12,a23

{
(1− a12)

2(dF12)
2 + (1− a23)

2(dF23)
2}

subject to

(1) 0≤ a12 ≤min
{
D+1 ,D−2

}
,

(2) 0≤ a23 ≤min
{
D+2 ,D−3

}
.

(54)

The left and the right panes in Fig. 5 show cartoons of the feasible sets of (53)
and (54), respectively. The horizontal and the vertical axes in these plots corre-
spond to the unknowns a12 and a23, respectively. The strips between the pairs of
lines marked by OBR(1), OBR(2) and OBR(3) correspond to the three inequality
constraints in (53). Note that the slope of the lines marked by OBR(2) is given
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Table 3 Control points for the feasible sets of the OBR (53) and the M-OBR (FCR) (54) problems
and their values for Δ1 =Δ2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb

1 = ρb
3 = 0

Point A B C D E F

Definition
Q̃min

1
dF12

Q̃max
1

dF12

Q̃max
3−dF23

Q̃min
3−dF23

Q̃max
2

dF23

Q̃min
2−dF12

Value −25.04 4.10 −20.53 8.62 0.00 3.28

by dF12/dF23 and is therefore positive. The lines marked by M-OBR(U1) and M-
OBR(U2) represent the two upper bounds in the two inequality constraints in (54),
respectively. The lower bounds coincide with the coordinate axes and are marked
by M-OBR(L1) and M-OBR(L2), respectively.

The relation between the two feasible sets can be understood by examining the
points A, B, C, D, E and F. The first pair of points corresponds to the lower and
upper bounds on a12 imposed by the first constraint in (53). The second pair, i.e.,
C, and D, corresponds to the lower and upper bounds on a23 imposed by the third
constraint in (53). The last two points correspond to the intercepts of the lines as-
sociated with the upper and lower bounds in the second constraint in (53) with the
vertical and horizontal coordinate axes, respectively. The definitions of these points
and their values corresponding to the actual test data used in the study are summa-
rized in Table 3.

To explain the construction of the torture test, note that the shape of the M-OBR
(FCR) feasible set is completely determined by the positions of E and F along the
vertical and the horizontal coordinate axes. This is a consequence of the worst-case
analysis used to derive the constraints of (54). Consequently, by moving E to the
origin the M-OBR (FCR) feasible set can be reduced to a line extending from the
origin to point F. This removes the point (1,1) from the feasible set and forces
the M-OBR (FCR) formulation to pick a solution that corresponds to remap by
low-order fluxes. By moving E to the origin we also shrink the OBR feasible set.
However, because the lines corresponding to the second constraint have positive
slopes, they can be chosen in such a way that (1,1) remains in this feasible set.

In order to move E to the origin we need to set Q̃max
2 /dF23 = 0. It is not hard to

see that this is true whenever (i) the middle cell is compressed, i.e. (51) holds, and
(ii) the second condition in (52), i.e. ρmax

2 = ρ2 holds.
Figure 6 compares the OBR and M-OBR (FCR) solutions on the new mesh for

Δ1 = Δ2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and boundary values ρb
1 = ρb

3 = 0.
Table 4 shows the corresponding values of the lower and the upper inequality bounds
as well as the values of the flux differentials in (53)–(54).

The initial density function has the shape of a “peak” and is shown in the top pane
of Fig. 6. The bottom pane in Fig. 6 shows clearly that the OBR solution preserves
this shape on the new mesh. However, as one can see from the middle pane in Fig. 6,
the M-OBR (FCR) solution changes the shape of the peak to a step-function profile
on the new mesh. We note that the iFCR(2) method delivers results identical to those
of the OBR method.
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Fig. 6 Initial density
function (top pane), M-OBR
(FCR) solution (middle pane)
and OBR solution (bottom
pane) for Δ1 =Δ2 = 0.14,
ρ1 = 80, ρ2 = 100, ρ3 = 0,
and ρb

1 = ρb
3 = 0. The OBR

solution preserves the shape
of the original density
function, while the M-OBR
(FCR) solution does not. The
iFCR(2) method delivers
results identical to those of
the OBR method

Table 4 Numerical values
for the lower and the upper
bounds and the flux
differentials in (53)–(54)
corresponding to
Δ1 =Δ2 = 0.14, ρ1 = 80,
ρ2 = 100, ρ3 = 0, and
ρb

1 = ρb
3 = 0

i = 1 i = 2 i = 3

Q̃min
i −40.66 −5.33 −14.00

Q̃max
i 6.66 0.00 33.33

dFi,i+1 1.62 1.62 —

The constraint sets of (53) and (54) for this example are compared in Fig. 7. We
see that (1,1) is included in the former but not in the latter. This is a consequence
of the worst-case analysis used to obtain the constraint set in (54).

7.2 An Example in Which OBR Preserves Linear Densities and
M-OBR (FCR) Does Not

In this section, we investigate the differences between OBR and M-OBR (FCR)
concerning the preservation of linear density functions. The basic setup is closely
related to the previous example. The specification of the computational mesh is
identical. The density function is given by

ρ(x)= x, 0≤ x ≤ 1,
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Fig. 7 Level sets of the objective functional and the feasible sets of problems (53) and (54) for
Δ1 = Δ2 = 0.14, ρ1 = 80, ρ2 = 100, ρ3 = 0, and ρb

1 = ρb
3 = 0. The regions between horizontal

(magenta), slanted (red) and vertical (blue) lines on the left pane correspond to the first, second
and third constraints in the OBR problem (53). Their intersection (red region) gives the OBR
feasible set which contains the point (1,1). The feasible set of M-OBR (FCR) is given by the solid
horizontal segment (black) and does not contain the point (1,1). The right pane shows a zoom of
the OBR and M-OBR (FCR) feasible sets (Color figure online)

i.e. ρ1 = 1/6, ρ2 = 1/2, ρ3 = 5/6, ρb
1 = 0 and ρb

2 = 1. We consider a series of
compression increments Δ1, Δ2 given by

Δ1 =Δ2 = �− 1

6�
,

where � = {7,8,9,10,100,1000}, resulting in �-fold compressions of the middle
cell.

The initial linear density function is remapped onto the compressed mesh and
then back onto the original mesh, where we record the L2 error between the thus
obtained and the original density. Table 5 clearly shows that while OBR preserves
linear densities for arbitrary compressions of the middle cell, M-OBR (FCR) is
linearity-preserving only for �≤ 8. The iFCR algorithm, for a large number of iter-
ations, recaptures the behavior of OBR.

The root cause for the loss of the linearity preservation in this example is the
same as for the loss of shape preservation in the last section. The M-OBR (FCR)
problem (54) preserves linearity if and only if the unconstrained minimizer (1,1) of
the functional in (54) is included in its feasible set. When the middle cell is com-
pressed the feasible set of M-OBR (FCR) shrinks and eventually ceases to contain
the point (1,1).

Ultimately, the loss of linearity preservation in the M-OBR (FCR) is a function
of the mesh movement. To prevent the loss of this important property we recom-
mend that M-OBR (FCR) implementations include the following test to determine
the admissible mesh motions. Given a candidate new mesh, compute the quantities
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Table 5 L2 errors in the OBR, M-OBR (FCR) and iFCR remap of a linear density function in
one dimension, for different compression ratios � : 1 of the middle cell. Errors close to machine
precision are highlighted. OBR preserves linear densities for arbitrarily compressed middle cells,
while M-OBR (FCR) does not. iFCR is linearity preserving given a sufficient, possibly very large,
number of iterations

�= 7 �= 8 �= 9 �= 10 �= 100 �= 1000

OBR 1.67e−16 0 3.20e−17 3.58e−17 1.63e−16 1.95e−14

FCR 4.53e−17 3.58e−17 2.32e−03 4.46e−03 2.09e−02 2.25e−02

iFCR(2) 1.24e−16 1.57e−16 1.57e−16 1.57e−16 3.31e−02 3.87e−02

iFCR(20) 1.24e−16 1.57e−16 1.57e−16 1.57e−16 1.92e−16 3.30e−02

iFCR(200) 1.24e−16 1.57e−16 1.57e−16 1.57e−16 1.92e−16 1.69e−15

Fig. 8 Euclidean norm of the difference (vertical axes) between the computed iFCR and OBR
fluxes for problems (53) and (54) for increasing numbers of iFCR iterations (horizontal axes). The
compression of the middle cell is given by Δ1 =Δ2 ∈ {0.1660 (black), 0.1661 (red), 0.1662 (blue),
0.1663 (green), 0.1664 (gray), 0.1665 (cyan)}. The density profile is ρ1 = 80, ρ2 = 100, ρ3 = 0,
and ρb

1 = ρb
3 = 0. We use logarithmic (top pane) and linear scales (bottom pane). In this example,

OBR recovers the high-order target flux (Color figure online)

P−i , D−i and P+i , D+i defined in (38)–(39), for the monomial x in one dimension,
monomials x and y in two dimensions and monomials x, y and z in three dimen-
sions. Accept the mesh if and only if D−i ≥ 1 and D+i ≥ 1, whenever P−i < 0 and
P+i > 0, respectively. This condition guarantees that aij = 1 are in the feasible set
of the M-OBR (FCR) problem (46).

We also investigated whether the good performance of the iFCR algorithm for
large number of iterations depends on OBR recovering the high-order flux in com-
putations. Figures 8 and 9 show detailed computations in which it is clear that sim-
ilar results between iFCR and OBR can be obtained also in the case in which OBR
does not recover the target fluxes. This indicates that for a sufficiently large number
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Fig. 9 Euclidean norm of the difference (vertical axes) between the computed iFCR and OBR
fluxes for problems (53) and (54) for increasing numbers of iFCR iterations (horizontal axes). The
compression of the middle cell is given by Δ1 =Δ2 ∈ {0.1660 (black), 0.1661 (red), 0.1662 (blue),
0.1663 (green), 0.1664 (gray), 0.1665 (cyan)}. The density profile is ρ1 = 80, ρ2 = 82, ρ3 = 0, and
ρb

1 = ρb
3 = 0. We use logarithmic (top pane) and linear scales (bottom pane). In this example, OBR

does not recover the high-order target flux, yet the iFCR flux converges to the OBR flux, suggesting
that iFCR may be a solution procedure for OBR (Color figure online)

of iterations the iFCR solution converges to the OBR solution. Our conjecture is that
iFCR may be a solution procedure for OBR.

7.3 OBR Preserves Monotonicity When M-OBR (FCR) Does Not

Motivated by the one-dimensional examples we devise a simple 9-cell test that ex-
amines the fundamental properties of OBR and M-OBR (FCR) in two dimensions.
The test is a tensor-product version of the one-dimensional torture test. The com-
putational domain is given by the product of unit intervals, Ω = [0,1] × [0,1]. The
old mesh Kh(Ω) is defined by a uniform partition of the unit intervals in x and y

direction into 3 cells using the vertices x1 = 0, x2 = 1/3, x3 = 2/3 and x4 = 1 and
y1 = 0, y2 = 1/3, y3 = 2/3 and y4 = 1, respectively. The nodes of the new mesh
K̃h(Ω) are set to

x̃1 = x1, x̃2 = x2 +Δx
1, x̃3 = x3 −Δx

2, x̃4 = x4,

ỹ1 = y1, ỹ2 = y2 +Δ
y

1, ỹ3 = y3 −Δ
y

2, ỹ4 = y4,

where Δ
x,y

1 > 0 and Δ
x,y

2 > 0 are such that Δx
1 +Δx

2 < 1/3 and Δ
y

1 +Δ
y

2 < 1/3. In
other words, as in one spatial dimension, the new mesh is defined by compressing
the middle cell of the old mesh. Note that the new mesh satisfies conditions (25)–
(26), i.e. is admissible by OBR.
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Fig. 10 A 3×3 uniform
initial grid (left pane) and the
“compressed” grid (right
pane) with a 4×4-fold
compression of the middle
cell

Table 6 Monotonicity of OBR, M-OBR (FCR), the donor-cell method and iFCR, implemented
using swept regions, with respect to the remap of a linear density function in two dimensions, for
different compression ratios � × � : 1 of the middle cell. OBR is bound-preserving throughout,
while M-OBR (FCR) and the donor-cell method are not. iFCR is monotone given a sufficient
number of iterations. For iFCR(n) we select the smallest number of iterations n resulting in a
bound-preserving remap, for compression ratios �× � : 1, with � ∈ {15,16,100}, respectively

�= 5 �= 6 �= 7 �= 14 �= 15 �= 16 �= 100

OBR � � � � � � �
FCR � � � � – – –

Donor-cell � – – – – – –

iFCR(2) � � � � � – –

iFCR(4) � � � � � � –

iFCR(721) � � � � � � �

We examine both monotonicity (for OBR, M-OBR (FCR) and the donor-cell
method based on swept regions) as well as the preservation of linear densities (for
OBR and M-OBR (FCR)). For monotonicity studies, we employ a single remap
from the original to the compressed mesh, while for the study of linearity preserva-
tion the density is additionally remapped back onto the original mesh. We point out
that M-OBR (FCR) and the swept-region donor-cell method use the same compu-
tation of low-order fluxes. Monotonicity violations are detected based on the viola-
tions of inequality constraints in (20).

The density function is given by

ρ(x, y)= x, 0≤ x, y ≤ 1.

We study a series of compression increments Δ
x,y

1 , Δx,y

2 given by

Δ
x,y

1 =Δ
x,y

2 = �− 1

6�
,

where �= {5,6,7,14,15,16,100} for the monotonicity study and for the linearity
preservation study, �= {3,4,5,15,16,100}, amounting to �× �-fold compressions
of the middle cell. An illustration for �= 4 is shown in Fig. 10.

Our first observation is that neither the donor-cell method nor M-OBR (FCR) pre-
serve monotonicity for certain mesh motions admissible by OBR, see Table 6. This
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Table 7 L2 errors in the OBR, M-OBR (FCR) and iFCR remap of a linear density function in
two dimensions, for different compression ratios �× � : 1 of the middle cell. Errors close to ma-
chine precision are highlighted. OBR preserves linear densities for arbitrarily compressed middle
cells, while M-OBR (FCR) does not. For iFCR(n) we select the smallest number of iterations n

resulting in a linearity-preserving remap, for the compression ratios �×� : 1, with � ∈ {4,15,100},
respectively

�= 3 �= 4 �= 5 �= 15 �= 16 �= 100

OBR 1.36e−16 3.90e−16 2.91e−16 7.99e−16 3.33e−15 2.08e−13

FCR 1.32e−16 4.34e−03 1.06e−02 4.33e−02 4.60e−02 1.97e−01

iFCR(2) 1.36e−16 3.90e−16 6.65e−04 4.07e−02 4.36e−02 1.30e−01

iFCR(20) 1.36e−16 3.90e−16 2.91e−16 7.99e−16 3.00e−03 1.20e−01

iFCR(834) 1.36e−16 3.90e−16 2.91e−16 7.99e−16 3.33e−15 2.08e−13

Fig. 11 Linear density ρ(x, y) = x remapped from the uniform 3 × 3 grid to the compressed
“torture” grid with �= 16. Left to right: the donor-cell method, M-OBR (FCR), OBR. It is clear
that OBR gives the best density approximation

result is not surprising in view of the condition on mesh motion for the swept-region
donor-cell method given in Margolin and Shashkov [17, p. 279], which is violated
for meshes associated with �≥ 6. Table 6 also reveals that M-OBR (FCR) succeeds
in “repairing” the loss of monotonicity inherited from the donor-cell method for
6≤ �≤ 14, but eventually loses monotonicity for �≥ 15.

Table 7 indicates that the loss of linearity preservation in M-OBR (FCR) sets in
at fairly low compressions of the middle cell (�≥ 4) and is therefore not directly re-
lated to the loss of monotonicity in the swept-region low-order fluxes, which occurs
at � ≥ 6. This observation is in agreement with one-dimensional results, where the
low-order fluxes are computed based on exact cell intersections and are therefore
provably bound-preserving as long as the locality assumption (3) is satisfied, and
where M-OBR (FCR) nevertheless fails to preserve linear densities for compressive
mesh motions.

In contrast to M-OBR (FCR) and the donor-cell method, OBR is monotonicity
and linearity preserving in all our tests. Note also that the iFCR method requires a
large number of iterations to recover the OBR solution. The differences between the
methods are illustrated for the compression parameter �= 16 in Figs. 11 and 12.
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Fig. 12 Linear density ρ(x, y) = x remapped from the uniform 3 × 3 grid to the compressed
“torture” grid with �= 16. Left to right: iFCR(2), iFCR(10), iFCR(200). Given a sufficient number
of iterations, iFCR recovers the OBR result from Fig. 11

8 Computational Studies

The purpose of this section is an in-depth comparison of accuracy, robustness and
computational cost of OBR and M-OBR (FCR). These attributes are assessed on a
series of convergence studies in two dimensions involving (i) smooth cyclic remap
on grids with moderate displacements and (ii) cyclic remap on grids with large dis-
placements.

8.1 Methodology for the Estimation of Convergence Rates of
Remap Algorithms

The convergence studies in this section are designed to assess the asymptotic ac-
curacy of the OBR and M-OBR (FCR) algorithms in the context of a continuous
rezone strategy. In this case, the appropriate notion of remap error and convergence
rates can be defined with the help of a cyclic remap test as in Margolin and Shashkov
[17]. The precise methodology used in the chapter is described below.

A cyclic remap test simulates continuous rezone by performing remap over a
parametrized sequence of grids Kr

h(Ω), r = 0, . . . ,R, such that the following three
conditions are satisfied:

• Every Kr
h(Ω), r = 1, . . . ,R, is topologically equivalent to the initial grid K0

h(Ω),
i.e. all grids in the sequence have the same number of cells and the same connec-
tivity as K0

h(Ω).
• Any two consecutive grids Kr−1

h (Ω), Kr
h(Ω) satisfy the locality assumption (2).

• The first and the last grids coincide, i.e., K0
h(Ω)=KR

h (Ω).

The integer R is the number of remap steps. Its reciprocal 1/R can be thought of
as a “pseudo-time” step which defines the temporal resolution of the cyclic remap
test. The total resolution of the test is specified by the pair (K,R), where K is the
number of cells in K0

h(Ω).
Given a cyclic mesh sequence {Kr

h(Ω)}Rr=0, called a cyclic grid, with total reso-
lution (K,R), let "ρr ∈RK denote the approximate density solution on Kr

h(Ω), and
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‖ ·‖ be a given norm on R
K . The remap error on {Kr

h(Ω)}Rr=0 is defined by the norm
of the density difference on the first and the last grids in the sequence, i.e.

E
(
ρ; ‖ · ‖,K,R

)= ∥∥ "ρ0 − "ρR
∥∥. (55)

This definition is justified by the fact that K0
h(Ω)=KR

h (Ω), and so the difference
between the first and last solutions provides a measure of the total error accrued by
the remap algorithm.

To compute the remap error E (ρ; ‖ · ‖,K,R) in (55) we use three norms sug-
gested in Margolin and Shashkov [17]. Note that in the case of cyclic remap one
does not need to know the exact density distribution to compute the numerical er-
ror, which can be instead calculated by comparing the initial and final cell densities.
Given an arbitrary vector "φ ∈RK these norms are defined as follows:

‖ "φ‖2 =
(

K∑

i=1

φ2
i V (κi)

)1/2

, ‖ "φ‖1 =
K∑

i=1

|φi |V (κi), ‖ "φ‖∞ = max
0≤i≤K

|φi |.
(56)

If "φ is a piecewise constant approximation of a given scalar function φ(x), then
these norms are discrete approximations of the L2, L1 and L∞ norms on Ω , re-
spectively.

Once the appropriate notion of remap error is defined, the estimate of conver-
gence rates proceeds in the usual fashion: we compute remap errors using a se-
quence of cyclic grids with increasing resolution and then estimate the slope of
the curve representing the log-log plot of the remap error versus the spatial reso-
lution of the cyclic grid. To this end we use least-squares regression fit. Specifi-
cally, for a sequence of cyclic grids with resolutions (Kq,Rq), q = 1, . . . ,Q and
the corresponding remap errors E q = E (ρ; ‖ · ‖,Kq,Rq), the rate of convergence
νq is estimated by least-squares regression, i.e. by solving the minimization prob-
lem

{
νq,ωq

}= arg min
q∑

i=1

(
logE q + ν logRq −ω

)2
, 1 < q ≤Q. (57)

8.2 Smooth Cyclic Remap on Grids with Moderate Displacements

The cyclic grids and the density functions for this study are adopted from Margolin
and Shashkov [17], Liska et al. [14]. Specifically, for a given number R of remap
steps and r = 0, . . . ,R the mesh node positions in Kr

h(Ω) are given by

xr
ij = x(ξi, ηj , tr ), yr

ij = y(ξi, ηj , tr ), 0≤ i ≤Nx, 0≤ j ≤Ny, (58)
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where Nx and Ny are the numbers of cells in x and y direction, respectively,
x(ξ, η, t) and y(ξ, η, t) are coordinate maps and

ξi = i

Nx

, i = 0, . . . ,Nx; ηj = j

Ny

, j = 0, . . . ,Ny; and

tr = r

R
, r = 0, . . . ,R,

are the initial (uniform) grid coordinates and the sequence of pseudo-time steps,
respectively. We define two sets of coordinate maps. The first set is given by

x(ξ, η, t) = (
1− α(t)

)
ξ + α(t)ξ3; (59a)

y(ξ, η, t) = (
1− α(t)

)
η+ α(t)η2; (59b)

α(t) = sin(4πt)

2
. (59c)

It generates a sequence of rectangular, tensor-product (logically Cartesian) grids.
The second set is

x(ξ, η, t)= ξ + α(t) sin(2πξ) sin(2πη); (60a)

y(ξ, η, t)= η+ α(t) sin(2πξ) sin(2πη); (60b)

with

α(t)=
{
t/5 if t ≤ 5,

(1− t)/5 if t ≤ 5.
(60c)

The grids defined by (60a)–(60b) are logically Cartesian but not rectangular. One
can show that for any 0≤ t ≤ 1 the grids generated by (59a)–(59c) and (60a)–(60c)
are valid (see Margolin and Shashkov [17]).

Convergence rates are estimated as follows. First, we use (58) to define a se-
quence of Q cyclic grids where Q= 4, q = 1, . . . ,Q, with total resolutions (Kq ≡
N

q
x × N

q
y ,R

q) given by (64× 64,320), (128× 128,640), (256× 256,1280), and
(512 × 512,2560), respectively. Thus, the total resolution is increased by a factor
of (2× 2,2) in every subsequent set. Then, for every norm in (56) we compute the
errors

E q = E
(
ρ; ‖ · ‖,Kq,Rq

)
, q = 1,2,3,4,

and solve (57) with {E 1,E 2}, {E 1,E 2,E 3}, and {E 1,E 2,E 3,E 4}. This approach
yields three increasingly accurate estimates of the convergence rates in each norm.

This estimation procedure is applied to three different density functions sug-
gested in Margolin and Shashkov [17]: the “sine”

ρ(x, y)= 1+ sin(2πx) sin(2πy), (61)
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Table 8 OBR and M-OBR (FCR) errors and convergence rate estimates for the “sine” density
(61) using 4 tensor-product cyclic grids defined by (59a)–(59c). The L2 and L∞ rates for OBR are
slightly better than those for M-OBR (FCR). Additionally, we observe superconvergence for both
methods in L2 and L1 norms

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

OBR

64×64 320 6.58e−04 4.91e−04 5.78e−03 — — —

128×128 640 8.88e−05 6.16e−05 1.64e−03 2.89 3.00 1.82

256×256 1280 1.21e−05 7.82e−06 4.65e−04 2.88 2.99 1.82

512×512 2560 1.70e−06 9.89e−07 1.39e−04 2.87 2.98 1.80

FCR

64×64 320 7.78e−04 4.95e−04 8.75e−03 — — —

128×128 640 1.22e−04 6.49e−05 2.81e−03 2.67 2.93 1.64

256×256 1280 2.00e−05 8.49e−06 8.89e−04 2.64 2.93 1.65

512×512 2560 3.43e−06 1.08e−06 2.84e−04 2.61 2.95 1.65

the “peak”

ρ(x, y)=
{

1, r > 0.25,

max{1.001,4(r − 0.25)+ 1}, r ≤ 0.25,
(62a)

r =
√
(x − 0.5)2 + (y − 0.5)2, (62b)

and the “shock”

ρ(x, y)=
{

2, y ≥ (x − 0.4)/0.3,

1, y ≤ (x − 0.4)/0.3.
(63)

Errors of the OBR and M-OBR (FCR) algorithms and the corresponding con-
vergence rates are presented in Tables 8–10. We observe that for the peak and
shock densities the OBR and M-OBR (FCR) convergence rates are virtually iden-
tical, whereas for the sine density the L2 and L∞ rates of OBR are better by 0.2.
Intuitively this can be explained by noting that the peak and shock examples are
comprised of piecewise linear functions for which the global optimization problem
likely decouples into local optimization problems around the discontinuities. This
diminishes the distinction between global (OBR) and local (M-OBR) optimization
formulations of remap. In contrast, for the sine density, which is a globally smooth
function, the feasible set of the global optimization problem remains fully coupled.
In addition, we note that the L2 and L1 results in Table 8 are subject to supercon-
vergence due to the choice of the grids.

Overall, these results indicate that OBR and M-OBR (FCR) have approximately
the same accuracy on classical test problems. Consequently, one may wonder if
the effects of the toy examples of Sect. 7 are never encountered in practice. In the



390 P. Bochev et al.

Table 9 OBR and M-OBR (FCR) errors and convergence rate estimates for the “peak” density
(62a) using 4 tensor-product cyclic grids defined by (59a)–(59c). For this classical example, the
convergence rates of OBR and M-OBR (FCR) are virtually identical

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

OBR

64×64 320 6.97e−03 2.55e−03 8.00e−02 — — —

128×128 640 3.09e−03 8.90e−04 5.06e−02 1.17 1.52 0.66

256×256 1280 1.40e−03 3.10e−04 3.16e−02 1.16 1.52 0.67

512×512 2560 6.40e−04 1.09e−04 1.96e−02 1.15 1.52 0.68

FCR

64×64 320 5.98e−03 2.14e−03 8.33e−02 — — —

128×128 640 2.54e−03 7.30e−04 5.29e−02 1.24 1.55 0.66

256×256 1280 1.11e−03 2.50e−04 3.33e−02 1.22 1.55 0.66

512×512 2560 4.98e−04 8.71e−05 2.07e−02 1.20 1.54 0.67

Table 10 OBR and M-OBR (FCR) errors and convergence rate estimates for the “shock” density
(63) using 4 tensor-product cyclic grids defined by (59a)–(59c). For this classical example, the
convergence rates of OBR and M-OBR (FCR) are virtually identical

#cells #remaps L2 err L1 err L∞ err L2 rate L1 rate L∞ rate

OBR

64×64 320 9.12e−02 2.88e−02 4.72e−01 — — —

128×128 640 7.12e−02 1.75e−02 4.86e−01 0.36 0.72 −0.04

256×256 1280 5.57e−02 1.06e−02 4.87e−01 0.36 0.72 −0.02

512×512 2560 4.33e−02 6.35e−03 4.98e−01 0.36 0.73 −0.02

FCR

64×64 320 8.43e−02 2.45e−02 4.67e−01 — — —

128×128 640 6.57e−02 1.47e−02 4.77e−01 0.36 0.73 −0.03

256×256 1280 5.12e−02 8.87e−03 4.77e−01 0.36 0.73 −0.02

512×512 2560 3.99e−02 5.34e−03 4.88e−01 0.36 0.73 −0.02

next section we confirm, however, that important differences exist not only on toy
problems; in particular, we demonstrate that OBR is more accurate and more robust
than M-OBR (FCR) on grids that are of significant practical merit.

8.3 Cyclic Remap on Grids with Large Displacements

Theorem 3 asserts that the feasible set of M-OBR (FCR) is always a subset of the
feasible set of the OBR formulation. This suggests that (37) may be more accurate
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Fig. 13 Grid deformation due to local compression (left pane) and the ‘repaired’ uniform grid
(right pane), see (64)–(65)

than (43). Examples in this section show that this is indeed the case and that the
smaller feasible set of (43) can impact adversely the accuracy and, more importantly,
robustness of M-OBR (FCR).

We begin with a study of accuracy. To this end, we compare convergence rates of
the OBR and M-OBR (FCR) algorithms for the sine density (61) on a sequence of
cyclic grids resulting from compressing every third cell equally in x and y direction,
followed by a relaxation into a fully uniform grid. This mesh motion is motivated
by the examples of Sect. 7 and is intended to mimic the effects of a repeated mesh
repair procedure, see Fig. 13.

The ‘repeated-repair’ cyclic grid is given by

xr
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x0
ij if r is even, for all i, j ; otherwise (when r is odd):

x0
ij if i ≡ 0 (mod 3), or if i =Nx,

x0
ij +Δx if i ≡ 1 (mod 3), for i < Nx,

x0
ij −Δx if i ≡ 2 (mod 3), for i < Nx

(64)

and

yr
ij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

y0
ij if r is even, for all i, j ; otherwise (when r is odd):

y0
ij if j ≡ 0 (mod 3), or if j =Ny,

y0
ij +Δy if j ≡ 1 (mod 3), for j < Ny,

y0
ij −Δy if j ≡ 2 (mod 3), for j < Ny.

(65)

The initial grid K0
h is a uniform grid on the unit square [0,1] × [0,1]. We set

Δx =Δy = 4

5

(
x0

10 − x0
00

)
,
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Table 11 OBR, M-OBR (FCR) and iFCR(2) errors and convergence rate estimates for the sine
density (61) using 4 cyclic repeated-repair grids defined by (64)–(65). Rates expected of a second-
order scheme are highlighted. It is evident that OBR delivers second-order accuracy, while M-
OBR (FCR) exhibits a trend toward a first-order scheme. iFCR(2) gives L1 and L2 errors and
convergence rates that are nearly identical to those given by OBR

#cells #remaps L1 err L2 err L∞ err L1 rate L2 rate L∞ rate

OBR

128×128 640 2.69e−04 3.65e−04 2.03e−03 — — —

256×256 1280 6.71e−05 9.08e−05 5.07e−04 2.00 2.01 2.00

512×512 2560 1.68e−05 2.27e−05 1.20e−04 2.00 2.00 2.04

1024×1024 5120 4.19e−06 5.66e−06 2.69e−05 2.00 2.00 2.08

FCR

128×128 640 2.81e−04 3.47e−04 1.23e−03 — — —

256×256 1280 9.23e−05 1.19e−04 5.14e−04 1.61 1.54 1.26

512×512 2560 3.65e−05 5.05e−05 2.50e−04 1.47 1.39 1.15

1024×1024 5120 1.69e−05 2.39e−05 1.24e−04 1.35 1.28 1.10

iFCR(2)

128×128 640 2.69e−04 3.64e−04 1.57e−03 — — —

256×256 1280 6.71e−05 9.07e−05 3.95e−04 2.00 2.01 1.99

512×512 2560 1.68e−05 2.27e−05 9.88e−05 2.00 2.00 2.00

1024×1024 5120 4.19e−06 5.66e−06 2.47e−05 2.00 2.00 2.00

resulting in a constant compression ratio of 4×4 : 1 for every third grid cell in x and
y direction, whenever r is odd. For even r the grid is relaxed to its original position.
See Fig. 13.

Estimates of the convergence rates of OBR and M-OBR (FCR) are presented in
Table 11. The first observation is that the accuracy of the OBR algorithm on the
repeated-repair cyclic grid is immune to the underlying mesh motion. In particular,
the convergence rates of OBR in all three norms equals the best possible theoretical
rates for a linearity-preserving scheme.

In contrast, it is clear that the convergence rates of M-OBR (FCR) suffer on
the repeated-repair cyclic grid. The estimates in all three norms show a consistent
trend toward a first-order scheme. We note that this is not due to a potential loss
of monotonicity in low-order (donor-cell) fluxes; the compression parameters have
been chosen such that the monotonicity of low-order fluxes is preserved. In other
words, the loss of accuracy is purely due to a smaller feasible set employed by M-
OBR (FCR). On the other hand, we observe that iFCR recovers the result of OBR
at the expense of only 2 flux iterations per remap.

Our second study examines the robustness of OBR and M-OBR (FCR). To this
end, we investigate the behavior of the methods on 64×64 meshes when the pseudo-
time step 1/R is decreased significantly beyond the previously used test value of
1/320. Table 12 displays the L1 error in remapping the linear density ρ(x, y) = x



Constrained-Optimization Based Data Transfer 393

Table 12 L1 errors in the OBR, M-OBR (FCR) and iFCR remap of a linear density function on
the 64× 64 tensor-product grid, for different values of the pseudo-time step 1/R. Here iFCR1 =
iFCR(2), iFCR2 = iFCR(20), iFCR3 = iFCR(200) and iFCR4 = iFCR(1000). Errors smaller than
1e−8 are highlighted. OBR fails to preserve linear densities at R = 154, while M-OBR (FCR)
fails at R = 212, resulting in a pseudo-time step advantage for OBR of 212/154 ≈ 1.4. Beyond
this point, OBR exhibits a graceful loss of accuracy; M-OBR (FCR) becomes numerically unstable.
iFCR is more robust than FCR, however it does not duplicate the robustness of OBR

R = 213 R = 212 R = 211 R = 155 R = 154 R = 153 R = 100 R = 50

OBR 1.32e−13 1.42e−13 1.60e−13 4.60e−09 4.06e−06 1.53e−05 1.97e−03 6.48e−03

FCR 1.32e−13 5.32e−08 1.10e−06 2.26e−03 2.35e−03 2.44e−03 5.73e+04 8.50e+11

iFCR1 1.32e−13 1.42e−13 1.60e−13 1.36e−03 1.64e−03 1.39e−03 1.72e+02 1.29e+09

iFCR2 1.32e−13 1.42e−13 1.60e−13 2.29e−03 1.14e−03 1.17e−03 4.61e+01 3.92e+08

iFCR3 1.32e−13 1.42e−13 1.60e−13 4.60e−09 4.01e−05 1.32e−04 2.90e+01 1.32e+10

iFCR4 1.32e−13 1.42e−13 1.60e−13 4.60e−09 4.01e−05 1.32e−04 2.64e+01 2.29e+08

on the tensor product cyclic grid (59a)–(59c) for varying pseudo-time steps. In the
test, we choose to declare loss of linearity preservation when the L1 error exceeds
1e−8. We note that it is expected that both OBR and M-OBR (FCR) will eventually
fail to preserve linear densities due to the restrictions on admissible mesh motions,
introduced earlier. OBR fails to preserve linear densities at R = 154, while M-OBR
(FCR) fails at R = 212. Therefore, for this particular grid, the admissible pseudo-
time step for OBR is approximately 1.4 times larger than that for M-OBR (FCR).
Additionally, we observe that while OBR exhibits a graceful loss of accuracy once
the OBR mesh motion conditions (25)–(26) are violated, M-OBR (FCR) becomes
numerically unstable. This is most likely due to the loss of monotonicity in M-OBR
(FCR) discussed and demonstrated in Sects. 5 and 7.3, respectively. We also note
that iFCR is more robust than FCR, however it does not duplicate the robustness of
OBR.

Similarly, Table 13 displays the L1 error in remapping the linear density
ρ(x, y)= x on the smooth nonorthogonal cyclic grid (60a)–(60b). In this case OBR
fails to preserve linear densities at R = 15, while M-OBR (FCR) fails at R = 24.
Therefore, for this particular grid, the admissible pseudo-time step for OBR is ap-
proximately 1.6 times larger than that for M-OBR (FCR). Additionally, we observe
that iFCR is more robust and more accurate than FCR, however the L1 remap error
does not converge to that of OBR as the number of iterations increases.

8.4 Computational Cost

From Theorem 4 we know that (43) decouples into a set of independent single-
variable inequality-constrained optimization problems whose solution is given
by (45). In other words, the computational cost of M-OBR (FCR) is quite low. On
the other hand, the OBR formulation is a globally coupled inequality-constrained
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Table 13 L1 errors in the OBR and M-OBR (FCR) remap of a linear density function on the
64×64 smooth nonorthogonal grid, for different values of the pseudo-time step 1/R. Here iFCR1 =
iFCR(2), iFCR2 = iFCR(20), iFCR3 = iFCR(200) and iFCR4 = iFCR(1000). Errors smaller than
1e−8 are highlighted. OBR fails to preserve linear densities at R = 15, while M-OBR (FCR) fails
at R = 24, resulting in a pseudo-time step advantage for OBR of 24/15≈ 1.6. iFCR is more robust
than FCR, however the L1 error does not converge to that of OBR as the number of iterations
increases

R = 25 R = 24 R = 23 R = 16 R = 15 R = 14 R = 10 R = 5

OBR 2.32e−14 4.49e−14 2.15e−13 4.52e−10 4.14e−05 5.13e−04 1.16e−03 2.45e−03

FCR 2.32e−14 3.63e−07 1.67e−06 8.60e−04 1.16e−03 1.69e−03 5.74e−03 1.09e−02

iFCR1 2.32e−14 4.49e−14 2.15e−13 1.52e−03 3.13e−03 4.95e−03 8.08e−03 1.38e−02

iFCR2 2.32e−14 4.49e−14 2.15e−13 4.52e−10 7.48e−05 6.89e−04 3.03e−02 7.89e−02

iFCR3 2.32e−14 4.49e−14 2.15e−13 4.52e−10 7.48e−05 6.89e−04 1.93e−02 3.44e−02

iFCR4 2.32e−14 4.49e−14 2.15e−13 4.52e−10 7.48e−05 6.89e−04 1.93e−02 3.39e−02

optimization problem. It is therefore of considerable practical interest to assess
the performance penalty incurred by the need to solve a global optimization prob-
lem.

The algorithms used to solve M-OBR (FCR) and OBR formulations are de-
scribed in Sect. 5. Table 14 presents preliminary timing results using MatlabTM im-
plementations of M-OBR (FCR), iFCR, and OBR. For accurate estimates of the
computational cost we choose the examples of Sect. 8.2. We make two observa-
tions.

First, while a direct comparison of our implementation of M-OBR (FCR) and the
closely related SFCR method implemented in Fortran, see Liska et al. [14, p. 1490],
is not possible, we note that the computational cost of our MatlabTM implementa-
tion is in the range of the computational cost of the Fortran implementation. We
achieve this by employing only vectorized MatlabTM operations, which are dele-
gated to fast computational kernels. The linear (ten-fold) scaling of the mesh-to-
mesh computational cost reported in Liska et al. [14, p. 1490] is evident in our case
when meshes are sufficiently large, i.e. when the computational overhead associated
with the MatlabTM environment becomes negligible.

Second, noting that additional studies with more efficient implementations of
M-OBR (FCR) and, especially, OBR are needed, we can already see that the com-
putational cost of OBR is proportional, up to a very modest constant, to the cost
of M-OBR (FCR). On average, OBR is only 2.1 times slower than M-OBR (FCR).
Considering the gains in accuracy and robustness as well as the less restrictive con-
ditions on admissible mesh motions, OBR is a strong alternative to M-OBR (FCR).
Finally, for iFCR we observe that approximately 20 flux iterations per remap can be
employed at the cost of OBR.
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Table 14 Comparison of the computational costs (times are in seconds) of OBR, M-OBR (FCR),
iFCR(2) and iFCR(20) as measured by MatlabTM wall-clock times on a single Intel Xeon X5680
3.33 GHz processor, for density functions defined in (61), (62a) and (63) and the cyclic grid (59a)–
(59c). Ratios of OBR times and FCR/iFCR(2)/iFCR(20) times are also reported. The cost of OBR
is proportional, up to a modest constant, to the cost of M-OBR (FCR). The average cost ratio is
only 2.1. The OBR to iFCR(2) cost ratio is 1.9. The OBR to iFCR(20) cost ratio is 1.0

#cells #remaps OBR FCR Ratio iFCR(2) Ratio iFCR(20) Ratio

Sine

64×64 320 7.3 4.2 1.7 4.4 1.7 7.4 1.0

128×128 640 49.5 25.4 1.9 27.6 1.8 50.5 1.0

256×256 1280 390.6 176.5 2.2 198.9 2.0 387.8 1.0

512×512 2560 3662.8 1812.5 2.0 2156.6 1.7 4955.4 0.7

Peak

64×64 320 8.4 4.9 1.7 5.1 1.6 8.7 1.0

128×128 640 57.8 28.5 2.0 31.0 1.9 55.7 1.0

256×256 1280 418.6 183.8 2.3 203.2 2.1 448.7 0.9

512×512 2560 4528.6 1832.9 2.5 2264.0 2.0 5156.8 0.9

Shock

64×64 320 9.8 4.9 2.0 4.9 2.0 8.2 1.2

128×128 640 88.9 28.1 3.2 31.1 2.9 54.1 1.6

256×256 1280 438.6 184.7 2.4 220.4 2.0 409.0 1.1

512×512 2560 3214.6 1794.1 1.8 2237.4 1.4 4806.3 0.7

9 Conclusions

In this chapter we formulate and study a new class of optimization-based, conser-
vative, bound and linearity preserving remap algorithms (OBR). The use of an opti-
mization setting allows us to separate accuracy considerations from the enforcement
of physical bounds by making the former the objective of optimization, while the
latter is used to define the constraints in the optimization problem. In so doing we
obtain a scheme that is provably linearity preserving and bound-preserving on arbi-
trary unstructured grids, including grids with non-convex polygonal or polyhedral
cells.

Rigorous characterization of the relationship between the OBR and the FCR al-
gorithm of Liska et al. [14] is another key contribution of this chapter. Specifically,
we prove that the FCR is equivalent to an inequality-constrained optimization prob-
lem, termed M-OBR, which is derived from OBR by replacing its constraints by a
set of simpler sufficient conditions for the local bounds. These conditions are decou-
pled box constraints derived using a worst-case local analysis to simplify the origi-
nal coupled inequality constraints. Using the relationship between the constraints in
OBR and M-OBR (FCR) we prove that the feasible set of M-OBR (FCR) is always
contained in the feasible set of OBR. It follows that asymptotically OBR is at least
as accurate as M-OBR (FCR). Furthermore, numerical comparison between OBR
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and the iterated FCR (iFCR) strongly suggest that the latter provides an iterative
solution algorithm for the global optimization problem in the OBR formulation.

Succinctly, our theoretical and computational results establish the following hi-
erarchy among the OBR, FCR and iFCR methods:

• OBR defines a “master” optimization formulation for the remap problem, charac-
terized by a global set of linear constraints derived from physical considerations;
• FCR simplifies the master optimization problem by decoupling the linear con-

straints, which reduces the size of the feasible set;
• iFCR is an iterative procedure that under some conditions may recover the OBR

solution.

Because FCR is motivated by flux-corrected transport (FCT), this hierarchy opens
up an interesting possibility that FCT and iterative FCT, see Kuzmin et al. [12], may
also be connected to a “master” global optimization formulation for the selection of
accurate and monotone fluxes in transport algorithms.

The computational examples in this chapter provide further illustration of the
hierarchy among these methods. For smooth cyclic grids with moderate displace-
ments there are no significant differences in the accuracy and the convergence rates
of M-OBR (FCR) and OBR. However, on cyclic grids with large displacements the
smaller feasible set of M-OBR (FCR) can adversely impact its accuracy and ro-
bustness. In particular, we demonstrate that on such grids M-OBR (FCR) defaults
to a first-order accurate scheme, while OBR achieves the theoretically best possi-
ble accuracy (second order) for a linearity-preserving scheme. Furthermore, in a
series of large-displacement examples we show that the OBR formulation admits
a larger pseudo-time step (1.4 to 1.6 times) and that M-OBR (FCR) can suffer nu-
merical breakdown due to the loss of monotonicity in low-order fluxes based on
swept-region computations. In contrast, OBR does not require the computation of
low-order fluxes; at the same time, the employed computation of high-order fluxes
using swept regions is safe because monotonicity is enforced separately, through in-
equality constraints. Finally, a “torture” test reveals that under certain conditions the
smaller feasible set of M-OBR (FCR) can lead to the loss of qualitative information
about the shape of the remapped density function.

Preliminary studies show that for a set of standard remap test problems the cost
of OBR is proportional, up to a very modest constant, to the cost of M-OBR (FCR).
On average, not counting potential gains from the time-step advantage of OBR, it is
only about twice as expensive as FCR. This suggests that OBR can be competitive
in practical applications where a (i) provably linearity-preserving (and otherwise
optimally accurate) and (ii) bound-preserving method is desired.

The extension of the OBR approach to systems, and further theoretical and com-
putational studies, including formal analysis of iFCR as an iterative solution algo-
rithm for OBR will be the subject of a forthcoming paper.
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An Evaluation of a Structured Overlapping Grid
Implementation of FCT for High-Speed Flows

J.W. Banks and J.N. Shadid

Abstract This study considers the development and assessment of a Flux-
Corrected Transport (FCT) algorithm for simulating high-speed flows on structured
overlapping grids. This class of algorithm shows promise for solving some difficult
highly-nonlinear problems where robustness and control of certain features, such as
maintaining positive densities, is important. Complex, possibly moving, geometry
is treated through the use of structured overlapping grids. Adaptive mesh refinement
(AMR) is employed to ensure sharp resolution of discontinuities in an efficient man-
ner. Improvements to the FCT algorithm are proposed for the treatment of strong
rarefaction waves as well as rarefaction waves containing a sonic point. Simulation
results are obtained for a set of test problems and the convergence characteristics
are demonstrated and compared to a high-resolution Godunov method. The prob-
lems considered include smooth manufactured solutions, isolated shock and contact
discontinuities, a modified Sod shock-tube problem, a two-shock Riemann prob-
lem, the Shu-Osher test problem, shock impingement on single cylinder, irregular
Mach reflection of a strong shock striking an inclined plane, shock impingement on
multiple fixed and movable cylinders, and an idealized Z-pinch implosion problem.
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1 Introduction

Many physical systems are well described mathematically by systems of conser-
vation laws. Typical examples might include fluid flow around a body, condensed
phase explosives, astrophysical phenomenon, or high energy density physics appli-
cations. A large number of such systems have the property that discontinuous solu-
tions can arise in finite time even from smooth initial data. These discontinuities can
be of a linear (e.g. contact wave) or nonlinear form (e.g. shock wave). Numerical
methods need to balance the often competing requirements of accurately approxi-
mating these two types of discontinuities while at the same time requiring higher
order accuracy in smooth regions of the solution. This balance has been one of the
primary drivers behind the development of modern simulation tools. Methods strik-
ing such a balance are often referred to as high-resolution methods and they require
the use of limiters (switches) that choose between a number of different numerical
stencils. For some flow regimes, this type of limiting has been found to be essential
to obtain robust schemes. Many, if not most, of the high-resolution techniques have
their roots in the 1970’s with ideas originally developed by Boris and Book in con-
nection with flux-corrected transport (FCT) [11–13]. In the intervening years, FCT
has been applied to a wide range of challenging applications, for examples see [19,
38, 55]. Recently, the developments of Kuzmin et al. [38] towards algebraic flux
correction as well as implicit methods have produced a renewed interest in FCT as
a useful numerical method for many applications.

The scope of the current study is to review work performed in [4, 8] in extending
the FCT method for compressible flow simulations into the context of overlapping
grids which are used to represent geometric complexities as well as ensure mesh
regularity [5, 16, 30, 31]. The overlapping grid method is quite general and can be
used to generate computational meshes for complex geometries [3, 15, 45] without
the use of unstructured meshes, cut cells for embedded boundaries, or overly con-
torted globally mapped grids. FCT has not been used extensively for overlapping
grids and the current study brings together some of the work in that field.

This work examines implementation details for FCT applied to structured over-
lapping grids. We include a discussion about the extension of FCT to moving over-
lapping grids. A series of test problems demonstrates the properties of the method
for practical simulations and compares the results with those from a high-resolution
Godunov method. Reference to the results presented in other studies such as [23, 47]
gives a good understanding of the relative merits of these various high-resolution
shock capturing schemes. This comparison is particularly useful for cases where
Riemann solution based strategies are not viable because of the complexities of the
governing equations. Such is the case for some relativistic flows, for example, and
the FCT method may be attractive in this context provided an appropriate low order
method can be devised without resort to Riemann solutions. As in [4], FCT can also
be useful for problems with extreme jumps in density and pressure where traditional
high-resolution methods may fail due to unphysical states such as negative densi-
ties. We overview this work and present the prototype Z-pinch implosion model as
well as simulation results from the FCT method.
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The remainder of the chapter is structured as follows. In Sect. 2 the governing
equations are presented. In Sect. 3 the FCT algorithm is presented and the devel-
opment for structured overlapping grids is summarized. This section also presents
a brief discussion of two open issues with the traditional FCT algorithm; that of
performance when either strong or sonic rarefactions are present in the flow. The
poor performance of the standard method for these problems is demonstrated and
an improvement of the algorithm is proposed and evaluated. Section 4 presents nu-
merical results for the FCT method and provides a comparison to a high-resolution
Godunov method. Some concluding remarks are given in Sect. 5.

2 Governing Equations

We consider the flow of an inviscid compressible gas and assume that in two dimen-
sions the density ρ, velocities (u1, u2), pressure p, and total energy E satisfy the
system of conservation laws

∂

∂t
u+ ∂

∂x1
f1(u)+ ∂

∂x2
f2(u)= 0, (1)

where

u=

⎡

⎢⎢
⎣

ρ

ρu1
ρu2
E

⎤

⎥⎥
⎦ , f1(u)=

⎡

⎢⎢
⎣

ρu1

ρu1
2 + p

ρu1u2
u1(E + p)

⎤

⎥⎥
⎦ , f2(u)=

⎡

⎢⎢
⎣

ρu2
ρu1u2

ρu2
2 + p

u2(E + p)

⎤

⎥⎥
⎦ .

System (1) defines the conservation of mass, momenta, and total energy for the gas
and is recognized as the well known compressible Euler equations in two space
dimensions. In this formulation, the total energy is given by

E = ρe+ 1

2
ρ
(
u1

2 + u2
2),

where e = e(ρ,p) is the specific internal energy, which is specified by an equation
of state. This paper assumes an ideal equation of state, namely

e= p

ρ(γ − 1)
(2)

where γ = cp
cv

is the ratio of (constant) specific heats with cp the specific heat at con-
stant pressure and cv the specific heat at constant volume. The Euler equations (1)
are assumed to have been non-dimensionalized with suitable reference quantities
and all results are presented in dimensionless units.
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3 Flux-Corrected-Transport Algorithm

This section describes the FCT method as used in this chapter including the ex-
tensions and modifications we have made to the classic FCT algorithm. This imple-
mentation includes a DeVore type pre-limiter in lieu of Zalesak’s flux pre-constraint,
removal of artificial diffusion prior to the FCT flux limiter, a Jameson style artificial
viscosity, a sonic fix for entropy violating rarefaction waves, and the extension of
the FCT algorithm to overlapping grids. For clarity, the improvements for treating
sonic points and very strong rarefactions are left to the end of the section.

3.1 Overlapping Grids and AMR

We consider the governing equations (1) and proceed with a description of the FCT
method in a two dimensional overlapping grid framework. To this end, we assume
the flow domain is given by Ω and is discretized using an overlapping grid G .
The overlapping grid consists of a set of component grids {Gi}, i = 1, . . . ,Ng , that
cover Ω and overlap where they meet. Each component grid covers a sub-domain
Ωi . Grid points are tagged as discretization points where the governing equations
are applied, ghost points used for the application of boundary conditions, interpola-
tion points where solution values are communicated between grids, or unused points
where no computation is performed which are cut out through the mesh generation
procedure. The FCT stencil is 7-points wide requiring three layers of data at inter-
polation and physical boundaries. At interpolation boundaries, the 7-point stencil
would normally require three layers of interpolation points. Although we can gen-
erate such grids, in practice we usually construct a grid with a single layer of inter-
polation points and obtain values at the two additional layers through extrapolation.
At physical boundaries, values on the boundary and three layers of ghost points are
obtained through application of the physical boundary conditions, derived compat-
ibility conditions, and extrapolation following the approach described in [30, 31].
Note that the dependence of the solution on this final extrapolated layer is extremely
weak as it can only affect whether the chosen update at the boundary is first or sec-
ond order accurate (i.e. it is used only in the determination of the α in (8) below. For
more details concerning general overlapping grid methods, including application of
boundary conditions, see [16, 29–31]. Adaptive mesh refinement (AMR) is used
in regions of the flow where the solution changes rapidly, such as near shocks and
contact surfaces. We employ a block-structured AMR approach following that de-
scribed originally in [10] and using modifications for overlapping grids as presented
in [5, 30, 31].

3.2 FCT Discretization on a Mapped Grid

Each component grid, including base-level grids and any refined grids, is defined
by a mapping from the unit square in computational space (r1, r2) to physical space
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(x1, x2). In computational space, (1) becomes

∂

∂t
u+ 1

J

∂

∂r1
F1(u)+ 1

J

∂

∂r2
F2(u)= 0, (3)

where

F1(u)= J

(
∂r1

∂x1
f1 + ∂r1

∂x2
f2

)
, F2(u)= J

(
∂r2

∂x1
f1 + ∂r2

∂x2
f2

)
,

and

J =
∣∣∣∣
∂(x1, x2)

∂(r1, r2)

∣∣∣∣.

The metrics of the mapping, ∂x1/∂r2, ∂x2/∂r2, etc., and the Jacobian are consid-
ered to be known for each component grid at the time of computation and can be
generated analytically or approximated.

Discretization of (3) is performed using a uniform grid (r1,i , r2,j ) with grid spac-
ing (Δr1,Δr2). The FCT method is generally considered a two-step process pro-
ceeding first with a low order update and finishing with the high-resolution FCT
correction. We begin with the formulation of the low order solution update

utd,n
i,j = un

i,j −
Δt

Ji,jΔr1
D+r1F1

low,n
i−1/2,j −

Δt

Ji,jΔr2
D+r2F2

low,n
i,j−1/2 (4)

where D+r1 and D+r2 are the undivided forward difference approximations in the
r1 and r2 directions of index space respectively. The “td” notation is consistent
with [11–13, 59] and denotes “transported and diffused”. For this work the HLL
low order flux [26, 54] is used and for curvilinear geometries is given by

F1
low,n
i+1/2,j =

⎧
⎪⎪⎨

⎪⎪⎩

F1
n
i,j if s− ≥ 0,

F1
n
i+1,j if s+ ≤ 0,
s+

s+−s−F1
n
i,j − s−

s+−s−F1
n
i+1,j + s−s+

s+−s−D+r1un
i,j else

(5)

where

s− = min
(
vn
i,j − cni,j , v

n
i+1,j − cni+1,j

)
∥∥∥∥

(
∂r1

∂x1
,
∂r1

∂x2

)∥∥∥∥,

s+ = max
(
vn
i,j + cni,j , v

n
i+1,j + cni+1,j

)
∥∥
∥∥

(
∂r1

∂x1
,
∂r1

∂x2

)∥∥
∥∥,

cni,j is the sound speed in a given cell, and vn
i,j is the component of the velocity

normal to the cell face. The fluxes across other cell boundaries take similar forms.
It should be noted that in [38, 60], Zalesak suggests the use of the Rusanov flux

for the low order method. This is a symmetrized version of the HLL flux resulting in
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further diffusion than the original HLL flux. However, the Rusanov flux as presented
in [38, 60] is slightly flawed in that the selected wave speed is not sufficient to
encompass the full Riemann solution for all cases. A more general Rusanov flux is

F1
low,n
i+1/2,j =

1

2

[(
F1

n
i+1,j + F1

n
i,j

)−max
(∣∣λn

i+1,j

∣∣,
∣∣λn

i,j

∣∣)D+r1un
i,j

]
(6)

where λn
i,j is the largest eigenvalue (in magnitude) of the Jacobian matrix ∂

∂u F1 at a
cell (i, j) and time tn. The difference between (6) and the equation presented in [38,
60] is the use of max(|λn

i+1,j |, |λn
i,j |) rather than 1/2(|λn

i+1,j |+ |λn
i,j |). In this work,

the HLL flux is used but we have found that the Rusanov flux (6) works nearly as
well and is less expensive. As presented, both of these approximate fluxes require
knowledge of the eigenvalues of the Jacobian matrix. If this information were not
known, a Lax-Friedrichs type flux could in principle be used instead.

The second step of the FCT algorithm requires an “anti-diffusive” flux which is
defined as the difference between a high-order flux and the low-order one. In the r1
direction of index space for example, this is

F1
AD,n
i±1/2,j = F1

high,n
i±1/2,j − F1

low,n
i±1/2,j . (7)

The high order flux is typically chosen to be some high-order centered flux and for
this work the centered second-order flux

F1
high,n
i+1/2,j =

1

2

(
F1

n
i,j + F1

n
i+1,j

)

is chosen. The final sub-step update is now defined as

unew
i,j = utd,n

i,j −
Δt

Ji,jΔr1
D+r1

(
αn
i−1/2,j & F1

AD,n
i−1/2,j

)

− Δt

Ji,jΔr2
D+r2

(
αn
i,j−1/2 & F2

AD,n
i,j−1/2

)
(8)

where & indicates component-wise multiplication. The vector of α’s are chosen
using the FCT algorithm as described below and represent the proportion of anti-
diffusive flux at each cell face that is used in the final update. Our choice of notation
facilitates the use of the FCT algorithm in a method of lines type approach. By
defining

∂

∂t
un
i,j =

unew
i,j − un

i,j

Δt
(9)

we obtain an updated solution un+1
i,j using any ordinary differential equation (ODE)

integrator we choose. Choices for ODE integrators might include Runge-Kutta
methods, Adams methods, or others. For this work, we use an explicit Adams
predictor-corrector method of second order to match the spatial algorithm. Detail
concerning the implementation of these time integrators can be found for example
in [2, 29].
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Consider the determination of αn
i+1/2,j . FCT seeks to enforce solution mono-

tonicity through the choice of α, but the property of monotonicity is valid only
for characteristic variables [57]. For the non-linear Euler equations, conversion to
characteristic variables requires both a linearization and an eigen-decomposition
of the linearized problem. As such, we linearize about the arithmetic average
ū = 1

2 (u
td,n
i,j + utd,n

i+1,j ). More sophisticated choices, such as the Roe average [54],
could be made but in our experience these make little difference in the eventual
computed solutions. From this state, the linearized eigen-decomposition T−1ΛT=
A= ∂

∂u F1(ū) is found where we have dropped the sub- and superscripts to simplify
the exposition. Whenever multiplication by T is performed to achieve characteristic
quantities it should be understood that this implies linearization about a particular
face, in this case (i + 1/2, j). For two dimensions, a large number of characteristic
transformations must be performed (in three dimensions the number is even larger)
and this constitutes one of the most expensive parts of the FCT method.

In [19], DeVore indicates that the scheme of Zalesak does not preserve mono-
tonicity in two dimensions and suggests limiting the fluxes using the original
Boris/Book limiter [11, 13] in each direction prior to their input to the multi-
dimensional limiter. This is straight forward to and we demonstrate it for F1

AD,n
i+1/2,j

F̂1
AD,n
i+1/2,j = s&max

[
0,min

(∣∣TF1
AD,n
i+1/2,j

∣∣, s& Ji+1/2,jΔr1

Δt
D+r1Tutd,n

i+1/2,j ,

s& Ji+1/2,jΔr1

Δt
D+r1Tutd,n

i−1/2,j

)]
,

where s = sign(TF1
AD,n
i+1/2,j ) and the “hat” notation indicates that the anti-diffusive

flux has been pre-limited. The other F̂ fluxes are obtained through similar formulas.
To complete the FCT algorithm, define the local maximum and minimum char-

acteristic values as

wmax
k = max

(
Tutd,n

i+k−1,j ,Tutd,n
i+k,j ,Tutd,n

i+k+1,j ,Tutd,n
i+k,j−1,Tutd,n

i+k,j+1

)
,

wmin
k = min

(
Tutd,n

i+k−1,j ,Tutd,n
i+k,j ,Tutd,n

i+k+1,j ,Tutd,n
i+k,j−1,Tutd,n

i+k,j+1

)
,

(10)

where k = 0,1 and the extrema are taken component-wise. The actual influx into
the cells on either side of the cell face which would result from the AD fluxes is
computed for example as

Ik = 1

Δr1

[
max

( F̂1
AD,n
i+k−1/2,j

Ji+k,j
,0

)
−min

( F̂1
AD,n
i+k+1/2,j

Ji+k,j
,0

)]

+ 1

Δr2

[
max

( F̂2
AD,n
i+k,j−1/2

Ji+k,j
,0

)
−min

( F̂2
AD,n
i+k,j+1/2

Ji+k,j
,0

)]
, (11)
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and the maximum permissible influx such that the characteristic bounds from (10)
are not violated, indicated by the tilde, is for example

Ĩk = 1

Δt

[
wmax

k −Tutd,n
i+k,j

]
. (12)

Notice in (11) that the influx into the cells from both direction of index space
are considered simultaneously. This follows from [59] and reflects the fully multi-
dimensional nature of this limiter as opposed to a limiter which is split along dimen-
sional lines. Component-wise ratios of permissible to actual fluxes are then defined
for the two cells as

R+k =min

(
Ĩk
Ik

,1

)
. (13)

The quantities R−k , which represent the ratio of actual AD flux leaving the cell to the
maximum flux permitted to leave the cell without violation of the bounds in (10),
are defined using similar reasoning. Setting

Ok = 1

Δr1

[
max

( F̂1
AD,n
i+k+1/2,j

Ji+k,j
,0

)
−min

( F̂1
AD,n
i+k−1/2,j

Ji+k,j
,0

)]

+ 1

Δr2

[
max

( F̂2
AD,n
i+k,j+1/2

Ji+k,j
,0

)
−min

( F̂2
AD,n
i+k,j−1/2

Ji+k,j
,0

)]
, (14)

and

Õk = 1

Δt

[
Tutd,n

i+k,j −wmin
k

]
, (15)

we define

R−k =min

(
Õk

Ok

,1

)
. (16)

By choosing the most restrictive of these R values, the bounds from (10) are not
violated. Thus we define

β =
⎧
⎨

⎩

min(R+0 ,R−1 ) when Ji,j F̂1
AD,n
i+1/2,j < 0,

min(R+1 ,R−0 ) when Ji,j F̂1
AD,n
i+1/2,j ≥ 0.

(17)

The final values for αn
i+1/2,j are found through component-wise inversion of the

formula

αn
i+1/2,j & F1

AD,n
i+1/2,j = T−1(β & F̂1

AD,n
i+1/2,j

)
. (18)

It is important to note that monotonicity of the linearized characteristic variables
does not imply monotonicity of the conserved variables. Thus the final updated solu-
tion could result in a negative density, imaginary sound speed, or negative pressure.
Such events do occur in the simulations we present and must be treated in a rational
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and reasonable way. Zalesak suggests in [38, 59] that a fail-safe limiter be employed
and we take a similar approach here. At each time, if the values at a given cell (i, j)
violate physically realistic bounds after advancement to unew

i,j in (8), then no portion
of the anti-diffusive flux is allowed at the boundaries of that cell. For such cells,

αn
i+1/2,j = αn

i−1/2,j = αn
i,j+1/2 = αn

i,j−1/2 = 0 (19)

is enforced and the method becomes fully first order in a local region. In our ex-
perience, this fail-safe mechanism is critical for the success of the FCT algorithm.
It should also be noted that after setting αn

i±1/2,j±1/2 = 0 in one cell, the problem

(negative density etc.) may then appear in a neighboring cell. In principle the result
could be a cascade across all cells. These cascades are rare and do not occur for any
of the simulations presented in this work.

This completes the description of the FCT algorithm itself but there is another
aspect which must be addressed. In [59] it is recognized that some amount of higher
order dissipation must be included to remove high frequency noise generated by the
FCT procedure. In that work the high-order dissipation was added to the AD flux
prior to flux correction. In our studies we found this to be unsatisfactory because
the effect of the high-order dissipation is reduced by the FCT limiters. The result is
unacceptable levels of numerical noise in the computed solutions. Therefore we add
dissipation independently after the FCT step. To this end we implement a second-
order dissipation near shocks [18, 30] to treat undamped transverse instabilities as
well as a fourth-order Jameson style dissipation away from shocks [29, 33, 34]. We
switch the fourth order dissipation on or off based on density variations to ensure
that it is not active near shocks or contacts. One final note is that the computed
solution will not violate the prescribed bounds only for CFL numbers less than 1/2
and so all FCT simulation results presented in this chapter set the CFL number to
be 0.4.

3.3 Sonic Fix

As is the case for some other methods, such as Godunov’s method with an ap-
proximate Roe Riemann solver [54], the FCT method can exhibit poor behavior in
rarefaction waves at points where the flow speed is equal to the sound speed (sonic
points). The problem is illustrated by the solution to a modified version of Sod’s
shock tube problem [51, 54] with left and right states given by (ρ,u1, u2,p)L =
(1.0,0.75,0.0,1.0) and (ρ,u1, u2,p)R = (0.125,0.75,0.0,0.1), and with γ = 1.4.
We compute approximations to the solution of this Riemann problem using the grid
L ([−1,1],100) where

L
([xa, xb],N

)= {
xi |xi = xa + iΔx,Δx = (xb − xa)/N, i = 0,1, . . . ,N

}
, (20)

with the initial discontinuity located at x = −0.4. Figure 1 shows the results pro-
duced by the FCT method with and without our sonic fix. The problematic behavior
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Fig. 1 FCT solution for a shock tube problem containing a sonic rarefaction with and without
a sonic fix at t = 0.5. The black line represents the exact solution, the red circles the numerical
approximation without the sonic fix and the blue crosses the numerical approximation with the
sonic fix. The problematic behavior at the sonic point is quite clear in both the density (left) and
pressure (right) (Color figure online)

of the method at the sonic point is clearly visible in the form of a rarefaction shock
which represents an entropy violating weak solution.

The existence of rarefaction shocks in numerical approximations is typically the
result of insufficient numerical diffusion. For FCT this is caused by the use of high-
order centered fluxes. This is in contrast to Roe’s method where the linearization
causes the problem even at first order. The FCT method considered in this chapter
uses the HLL flux (known to be devoid of rarefaction shocks [54]) for the low order
update. To eliminate rarefaction shocks for FCT approximations, we rely on this fact
and simply set the value for α in (8) to zero for cases where sonic rarefactions are
present. This choice has implications on solution accuracy, but because sonic points
exist in isolation, the impact is negligible as will be demonstrated in Sect. 4.

The anti-diffusive fluxes in (8) have associated left and right states, call these
uL and uR respectively. For instance consider F1

AD,n
i+1/2,j with uL = utd,n

i,j and

uR = utd,n
i+1,j . These states can be viewed as left and right states of a one dimen-

sional Riemann problem in the direction normal to the cell face. Define the normal
velocities as vn,L = (n1, n2) · (u1L,u2L)

T and vn,R = (n1, n2) · (u1R,u2R)
T where

(n1, n2) is the unit normal to the cell face. Following the nomenclature in [54], we
define the star state as the center solution to this Riemann problem (i.e. the solution
between the C+ and C− characteristics). As in [54], p∗ and v∗n can be approximated
by

p∗ =
[

max

(
0,

(
cL + cR − γ − 1

2
(vn,R − vn,L)

)(
cL

pz
L

+ cR

pz
R

)−1)]1/z

(21)

and

v∗n = vn,L + 2

γ − 1

(
cL − c∗L

)
(22)

where c∗L = cL(p
∗/pL)

z, c∗R = cR(p
∗/pR)z, z= (γ − 1)/(2γ ), cL is the left sound

speed, and cR is the right sound speed. These particular star states arise from the
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approximation of the Riemann solution by the so-called two rarefaction Riemann
solver and are approximations to the true star state. Note that other choices for the
star states are also acceptable. Our sonic fix defines a new value for α by

αn
i+1/2,j ←

⎧
⎪⎨

⎪⎩

0 if vn,L − cL ≤ 0 and v∗n − c∗L ≥ 0,

0 if v∗n + c∗R ≤ 0 and vn,R + cR ≥ 0,

αn
i+1/2,j else.

The effect of these choices is to return the solver to first order accuracy near sonic
points in rarefaction waves. Figure 1 shows the solution to the modified Sod’s prob-
lem employing this sonic fix where it is seen that the poor behavior has been ef-
fectively eliminated apart from a small kink at the sonic point. It should be noted
that the particular sonic fix demonstrated here relies on an approximate solution to
the Riemann problem. For cases where this solution is not known, this fix is not
applicable and sonic rarefactions must be identified in another way. For example,
one might consider applying the fix wherever the flow transitions from super- to
sub-sonic flow across a cell boundary.

3.4 Strong Rarefactions

In addition to the poor behavior for sonic rarefaction waves, the traditional FCT
algorithm runs into difficulties for strong rarefaction waves where the velocities
at which the gas is being pulled apart differ by more than the local sound speed.
This is a very difficult problem for many methods because a near vacuum state is
reached and failure can occur as a result of negative densities or pressures [55]. Con-
sider the solution to a Riemann problem with left and right states (ρ,u1, u2,p)L =
(1.0,−2.0,0.0,0.4) and (ρ,u1, u2,p)L = (1.0,2.0,0.0,0.4) respectively.

Figure 2 shows the density and velocity as computed by the FCT algorithm for
this case both with and without our fix. The FCT solution without any fix demon-
strates oscillations in velocity close to the near vacuum state (near the origin). In
order to remove this behavior a simple fix is employed which sets

αn
i+1/2,j = 0 if p∗ < min(pL,pR) and |vnL

− vnR
| ≥max(cl, cr ).

This causes the first order scheme to be used when strong rarefaction waves are
present. The results shown in Fig. 2 demonstrate that the velocity from the fixed
scheme is monotonic near the origin. These results are comparable to the results of
Tóth in [55] but further improvements should be investigated.

3.5 A Note Concerning Monotonicity

The original FCT scheme of Boris and Book applied to 1-D linear advection
problems is provably monotone. However, the extension by Zalesak to higher-
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Fig. 2 Density (left) and velocity (right) for a strong rarefaction problem at t = 0.25. The black
line represents the exact solution, the red circles the FCT approximation without a fix and the blue
crosses the FCT solution with the fix. The oscillations in velocity for the original FCT scheme
are particularly troubling but also note the undershoot of the density near the origin (Color figure
online)

dimensions do not result in a monotone scheme, a fact that has apparently not been
discussed in the literature. We now present a simple example to illustrate this fact.
Consider linear advection with unit advection velocity,

∂

∂t
ρ + ∂

∂x1
ρ = 0.

We use the low-order flux given by flow,n
i+1/2 = ρn

i , and the second-order centered flux

given by fhigh,n
i+1/2 = 1

2 (ρ
n
i + ρn

i+1). At time level tn let the approximate solution be
given by

ρn
−3 = 4.5, ρn

−2 = 4, ρn
−1 = 3.5, ρn

0 = 3,

ρn
1 = 3, ρn

2 = 2, ρn
3 = 1, ρn

4 = 0.

Set the grid spacing as Δx1 = 1 and the temporal spacing as Δt = 0.25. The FCT
algorithm, as outlined by Zalesak [59, 60], produces the following values for α

αn
−1/2 = 1, αn

1/2 = 1, αn
3/2 = 1.

By using the forward Euler time integrator (i.e. ρn+1
i = ρnew

i ), the FCT solution
after a single step results in the values

ρn+1
0 = 3.0625, ρn+1

1 = 3.125.

The solution at time tn was monotonically decreasing left to right while the solution
for these two cells at time tn+1 is monotonically increasing left to right and so the
violation of monotonicity is demonstrated. Many authors suggest the use of a pre-
limiter, but for this case the pre-limiter suggested by Zalesak [59] and Kuzmin [38]
has no effect as can be easily verified. The pre-limiter of DeVore [19], which we
have adopted here, does remedy this particular problem, but a proof of monotonicity
for arbitrary high order fluxes is not known.
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4 Numerical Results

We now present simulation results using the FCT algorithm described in Sect. 3. The
discussion centers on studying the robustness and accuracy of the overall numerical
approach as well as comparing the results to those from the high-resolution Go-
dunov method in [5, 30, 31] which uses an approximate Roe Riemann solver [48]
and the MinMod limiter [54]. Of course, any comparisons presented here are only
valid for these particular implementations of the FCT and Godunov methods. There
are many variations to both algorithms which would change the specifics of the
results. However, the present study provides a reasonable baseline comparison of
the relative merits of the two schemes. Furthermore, the hope is that given the re-
sults from previous comparisons, for example in [23], one can place, in a general
sense, high-resolution Godunov methods, WENO methods, and FCT in relation to
each other. In fact the tests we present were largely driven by the choice of tests
presented in [23] exactly for the reason that comparisons could be made.

Because the purpose of any comparisons made in this section is to provide a
sense of the relative merits of the methods as they might be used in practice, the
set of parameters used by each method is set to what we consider to be reasonable
numbers. For the Godunov method we use CFL= 0.9 and for FCT we use CFL=
0.4. The small choice for FCT is required, as noted in Sect. 3, to ensure the desired
bounds are not violated. For problems where AMR is used, the refinement criterion
is the same for both schemes and is based on a weighted sum of first and second
un-divided differences of the solution (see [30] for details).

We begin the discussion by establishing the expected second-order rate of conver-
gence for the FCT method for smooth flows using the method of analytic solutions.
Similar verification tests have also performed for the Godunov method as in [5],
but direct comparisons are not made here because of the manufactured nature of the
tests. Next we consider the solution to a series of problems including 1-D isolated
contacts, isolated shocks, Sod’s shock tube problem, a two-shock Riemann problem,
and the Shu-Osher test case. The methods are then compared for the 2-D problems
of shock impingement on a cylinder and the irregular Mach reflection of a strong
shock on an inclined ramp. Finally, simulation results from the FCT method are pre-
sented for a number of more complex problems to include shock impingement on
multiple fixed and movable cylinders as well as for a prototype Z-pinch implosion
problem. These problems are more difficult to characterize and so no comparison to
the Godunov method is provided.

4.1 Method of Analytic Solutions

We now investigate convergence of the FCT method to known smooth solutions.
Smooth analytic solutions to the Euler equations are difficult to find although some
do exist. One example is that of the Prandtl-Meyer fan for flow around a smoothly
expanding channel. As a more general approach to constructing exact solutions, we
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use the method of analytic solutions, sometimes known as the method of manu-
factured solutions, whereby one picks an arbitrary smooth solution and includes a
forcing term in (1) such that the solution to the forced set of equations is the cho-
sen smooth solution. This approach is very general and we have found it to be an
invaluable tool in verifying the implementation of a given numerical approach.

To construct such a solution we take us(x1, x2, t) as a known smooth function.
Equation (1) is then modified to

∂

∂t
u+ ∂

∂x1
f1(u)+ ∂

∂x2
f2(u)= h(us), (23)

where u, f1, f2 are defined as before and

h(us)= ∂

∂t
us + ∂

∂x1
f1(us)+ ∂

∂x2
f2(us).

The boundary conditions are also modified in a similar way. Clearly one solution to
the modified problem (23) is u = us . The particular choice of us is quite arbitrary
and for the purposes of this work we use trigonometric functions in both space and
time. The choice made here is

ρs = 1

8
cos

(
π(x1 − 5)

10

)
cos

(
πx2

10

)
cos

(
πt

10

)
+ 1

u1,s = cos

(
πx1

10

)
cos

(
πx2

10

)
cos

(
πt

10

)

u2,s = 1

2
cos

(
π(x1 − 5)

10

)
cos

(
π(x2 − 5)

10

)
cos

(
πt

10

)

ps = ρs

[
1

4
cos

(
πx1

10

)
cos

(
π(x2 − 5)

10

)
cos

(
πt

10

)
+ 1

]

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(24)

where the conserved quantities are constructed from these given primitives. We con-
sider the solution to (23) on two different domains, the first being a simple square
with |xk| ≤ 2, k = 1,2. For this domain (and for later examples) Cartesian grids are
defined by

R
([x1,a, x1,b] × [x2,a, x2,b],N1,N2

)

= {
(x1,a + i1Δx1 , x2,a + i2Δx2)|Δxk = (xk,b − xk,a)/Nk,

ik = 0,1, . . . ,Nk, k = 1,2
}
.

For this example we use R([−2,2] × [−2,2],40m,40m), where m is an integer
indicating grid size. The initial condition is taken to be us(x1, x2,0) and the bound-
ary conditions on the perimeter of the square are given by the exact solution for all
time. The modified equations (23) are integrated numerically for 0≤ t ≤ 1 and the



An Evaluation of a Structured Overlapping Grid Implementation of FCT 413

Table 1 Convergence results for the square domain using the FCT method (indicated by F in table
headers. Maximum errors in density, velocity components and pressure at t = 1 for grid resolutions
determined by m, and the estimated convergence rates κ = log2(eρ(m)/eρ(2m)) as well as a least
squares fits of the convergence rates over the entire refinement process κ̃ are shown

m eρ(m) F κ eu1 (m) F κ eu2 (m) F κ ep(m) F κ

1 1.1e−3 – 4.7e−3 – 6.8e−4 – 8.6e−4 –

2 7.9e−4 .48 1.3e−3 1.9 3.9e−4 .80 2.7e−4 1.7

3 1.5e−4 2.4 3.1e−4 2.1 7.3e−5 2.4 6.4e−5 2.1

8 4.7e−5 1.7 9.4e−5 1.7 1.9e−5 1.9 1.8e−5 1.8

κ̃ 1.5 1.9 1.7 1.9

solution error is computed at the final time. Of course if the α’s in (8) are not taken
to be 1 the method will not be second order accurate everywhere in the domain.
Still it is of substantial interest to determine the actual accuracy of the method for
smooth flows such as this. Table 1 shows the maximum error in the primitive vari-
ables at t = 1 for various grid resolutions determined by m. The convergence rate is
computed from one resolution to the next as κ = log2(eρ(m)/eρ(2m)) as well as a
least squares fit of the rates over the entire refinement process which we label κ̃ . The
max-norm convergence rates are generally reasonably close to second-order. Actual
second order convergence is not expected because the method defaults to first order
near characteristic extrema as is typical of most limited schemes.

The second domain considered is a circular disk of radius 0.8 which is dis-
cretized using an overlapping grid consisting of a background Cartesian grid given
by R([−0.6,0.6] × [−0.6,0.6],30m,30m), and a boundary fitted annular grid de-
fined by A ((0.0,0.0), [0.4,0.8],10m,80m) with

A
(
(x1,c, x2,c), [ra, rb],Nr,Nθ

)

= {
(x1,c, x2,c)+ rir

(
cos(θiθ ), sin(θiθ )

)|rir = ra + ir (rb − ra)/Nr,

θiθ = 2πiθ/Nθ , ik = 0,1, . . . ,Nk, k = r, θ
}
.

Through the use of such an overlapping mesh we provide a further check of both the
implementation of the scheme on curvilinear grids as well as for the interpolation
scheme at grid overlaps. Table 2 shows the maximum error in the primitive variables
at t = 1 for various resolutions of the overlapping grid. We note the near second-
order convergence for each of the variables.

4.2 Isolated Contact and Shock Discontinuities

4.2.1 Contact Wave

The contact wave is a traveling discontinuous jump where characteristics run paral-
lel to the front. As such, error can accumulate with the result that a nominally P th



414 J.W. Banks and J.N. Shadid

Table 2 Convergence results for the circular domain. Maximum errors in density, velocity com-
ponents, and pressure at t = 1 for grid resolutions determined by m, and the estimated convergence
rates κ = log2(eρ(m)/eρ(2m)) as well as a least squares fits of the convergence rates over the entire
refinement process κ̃ are shown

m eρ(m) F κ eu1 (m) F κ eu2 (m) F κ ep(m) F κ

1 8.6e−5 – 2.3e−4 – 7.5e−5 – 1.1e−4 –

2 2.8e−5 1.6 6.8e−5 1.8 2.3e−5 1.7 3.1e−5 1.8

3 7.2e−6 2.0 2.0e−5 1.8 6.2e−6 1.9 7.7e−6 2.0

8 2.0e−6 1.8 6.1e−6 1.7 1.7e−6 1.9 2.0e−6 1.9

κ̃ 1.8 1.7 1.8 1.9

Table 3 Convergence results for the contact wave problem using second order Godunov and
FCT approximations, indicated by “F” and “G” in the headings respectively. L1 errors in den-
sity at tf = 0.5 are computed for grid resolutions determined by m. Estimated convergence rates
κ = log2(eρ(m)/eρ(2m)) as well as a least squares fit of the convergence rates over the entire
refinement process κ̃ are shown. Note that errors for velocity and pressure are identically zero

m eρ(m) F κ eρ(m) G κ

1 1.06e−2 – 1.39e−2 –

2 6.64e−3 .67 8.78e−3 .66

4 4.18e−3 .67 5.55e−3 .66

8 2.63e−3 .67 3.51e−3 .66

κ̃ .67 .66

order shock capturing scheme will generally converge at the rate of κ = P/(P + 1)
in the L1 sense [6, 25, 27]. There are some so-called compressively limited schemes
which can achieve κ = 1 convergence although such schemes often have other un-
desirable characteristics such as the artificial steepening of smooth solutions [40,
54]. The construction of the FCT method does not immediately indicate what the
convergence rate should be.

The initial conditions for the contact wave consists of the left state (ρ,u1, u2,p)L
= (0.1,1.0,0.0,1.0) and the right state (ρ,u1, u2,p)R = (1.0,1.0,0.0,1.0) with
the jump at x0 = 0.25. We can construct a weak solution corresponding to a van-
ishing viscosity solution, and we will call such solutions “exact” with the under-
standing that there may be many weak solutions. The exact solution to this problem
consists of a propagating discontinuity moving to the right with speed 1.0. The den-
sity jumps through this discontinuity but the pressure and velocity remain constant.
Simulations are performed on the grid defined by L ([0.0,1.0],200m) where m

is a measure of grid resolution (see (20)). A value of γ = 1.4, corresponding to a
diatomic ideal gas, is chosen.

A convergence study is performed at various numerical resolutions indicated by
m with the comparisons taking place at tf = 0.5 using the discrete L1 norm. Results
from this study are given in Table 3. Here it is seen that both the FCT and Godunov
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Table 4 Convergence results for the shock wave problem using second order Godunov (G) and
FCT (F) approximations. L1 errors in density, velocity and pressure are shown at tf = 0.25 for
grid resolutions determined by m. Estimated convergence rates κ = log2(eρ(m)/eρ(2m)) as well
as a least squares fits of the convergence rates over the entire refinement process κ̃ are also shown

m eρ(m) F κ eρ(m) G κ eu1 (m) F κ eu1 (m) G κ ep(m) F κ ep(m) G κ

1 8.38e−3 – 7.08e−3 – 5.59e−3 – 4.83e−3 – 1.44e−2 – 1.26e−2 –

2 3.94e−3 1.0 3.65e−3 .96 2.91e−3 .94 2.76e−3 .81 6.57e−3 1.1 6.35e−3 .99

4 2.08e−3 .92 1.82e−3 1.0 1.39e−3 1.1 1.22e−3 1.2 3.63e−3 .86 3.27e−3 .96

8 9.63e−4 1.1 9.15e−4 .99 7.13e−4 .96 6.72e−4 .86 1.66e−3 1.1 1.60e−3 1.0

κ̃ 1.03 .99 1.00 .97 1.02 .99

methods attain the expected convergence rate of≈ 2/3 as measured by both κ and κ̃ .
We can also see that the FCT method captures the contact with slightly less error
than the Godunov method although the results for the Godunov method are sensitive
to the choice of Riemann solver and limiter [6].

4.2.2 Shock Wave

Consider a Mach 2 shock with γ = 1.4. The pre- and post-shock states are given
by (ρ,u1, u2,p)L = (2.67,1.48,0.0,4.5) and (ρ,u1, u2,p)R = (1.0,0.0,0.0,1.0).
For this nonlinear phenomenon, the characteristic curves enter into the discontinuity
which acts as a natural steepening mechanism. Computations are carried out on the
unit interval x ∈ [0,1] using mesh L ([0.0,1.0],200m) with m being a measure of
grid resolution. The initial jump is placed at x0 = 0.25 and integration is carried out
to tf = 0.25 where L1 errors are computed. The results are presented in Table 4.

Both schemes have similar L1 errors and demonstrate the expected first order
convergence with κ ≈ 1 and κ̃ ≈ 1 for density, velocity and pressure. This implies
that the number of cells for which there is O(1) point-wise error is fixed which
implies that the shock does not continually smear as a function of time. Contrast this
to the case of the contact in Sect. 4.2.1 where the captured discontinuity contains an
increasing number of grid cells even as its overall width decreased.

4.3 Sod’s Shock Tube Problem (Modified)

For this example problem we investigate the behavior of the FCT and Godunov
methods for a modified version of Sod’s shock tube problem. This problem is de-
signed to highlight the poor behavior of some numerical methods near sonic points
in rarefaction waves and was previously discussed in Sect. 3.3 where the sonic fix for
the FCT method was described. A description of sonic fixes for Godunov schemes
can be found, for example, in [54]. The computational domain is again chosen to
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Fig. 3 Exact solution (black line) and numerical approximations with m = 1 for Godunov’s
method using Roe’s approximate Riemann solver (red marks) and the FCT method (blue marks)
for the modified Sod shock tube problem at tf = 0.5. Shown here are the density (left) and the
pressure (right) (Color figure online)

Table 5 Convergence results for the modified Sod shock tube problem. Discrete L1 error and
associated convergence rates for the Godunov (G) and FCT (F) schemes at selected resolutions
associated with the choice of m. Apparently the mesh is of insufficient resolution for the methods
to exhibit global convergence rates of 2/3 for the L1 norm of density which is dictated by the
captured contact

m eρ(m) F κ eρ(m) G κ eu1 (m) F κ eu1 (m) G κ ep(m) F κ ep(m) G κ

2 8.86e−3 – 9.44e−3 – 1.44e−2 – 1.44e−2 – 6.54e−3 – 6.32e−3 –

4 5.00e−3 .83 5.31e−3 .83 6.99e−3 1.0 7.51e−3 .94 3.21e−3 1.0 3.22e−3 .97

8 3.05e−3 .71 3.03e−3 .81 3.32e−3 1.1 4.08e−3 .88 1.54e−3 1.1 1.67e−3 .94

16 1.83e−3 .74 1.80e−3 .75 1.59e−3 1.1 2.42e−3 .75 7.24e−4 1.1 9.08e−4 .88

κ̃ .76 .80 1.06 .86 1.06 .93

be x ∈ [−1,1], the initial jump is placed at x0 =−0.4, and the governing equations
(1) are integrated to tf = 0.5. The computational grid for this study is given by
L ([−1.0,1.0],100m).

The exact density and pressure, as well as approximate results for m= 1 for both
the Godunov and FCT methods, are shown in Fig. 3 which demonstrates the simi-
larity of the two approximate solutions. This trend continues for all resolutions but
is more easily seen for this coarse simulation where m= 1. Figure 3 also shows that
both methods seem to be handling the sonic rarefaction. Quantitative convergence
results are shown in Table 5 using the discrete L1 norm. These results indicate that
although both schemes are clearly converging to the exact solution, neither scheme
is yet in the asymptotic range of convergence where the L1 error of density will
be dominated by the 2/3 convergence rate near the contact. Even so, both schemes
provide similar convergence behavior with the FCT yielding slightly higher conver-
gence rates for the pressure and velocity.
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Fig. 4 Exact solution (black line) and approximations with m = 1 for Godunov’s method using
Roe approximate Riemann solver (red marks) and the FCT method (blue marks) for the two-shock
Riemann problem at tf = 0.035. Shown here are the density (left) and the pressure (right) (Color
figure online)

4.4 A Two-Shock Riemann Problem

The last Riemann problem investigated in this work is commonly known as the
two-shock problem. The exact solution to this problem for γ = 1.4 has a M ≈ 5.62
shock in the rightmost characteristic field, a M ≈ 1.81 shock in the leftmost char-
acteristic field, and a contact wave separating the two. Left and right states are
taken from [54] and given as (ρ,u1, u2,p)L = (5.99242,19.5975,0.0,460.894)
and (ρ,u1, u2,p)R = (5.99242,−6.19633,0.0,46.0950) The exact solution is de-
termined as in [57], and results in a nearly stationary shock for the leftmost charac-
teristic field. The actual speed of the left shock is S ≈ 0.78, the velocity through the
contact wave is u1 ≈ 8.69, and the rightmost shock moves with speed S ≈ 12.25.
The capturing of the nearly stationary shock proves to be one of the primary dif-
ficulties for this problem (see [1, 37] for details on slowly moving shocks). Shock
capturing schemes also have difficulty representing the contact in this problem and
there is a need to accurately resolve that jump before a reasonable global approxi-
mation is achieved.

The solution for this problem is approximated for x ∈ [−1,1] using the mesh
L ([−1.0,1.0],100m) and integration is carried out to a final time of tf = 0.035.
Figure 4 shows profiles of density and pressure for the exact solution at that time
as well as the numerical approximations for m= 1. Qualitatively it is seen that the
two schemes produce similar results, however, close inspection revels the Godunov
approximation to be slightly less oscillatory particularly in the pressure while the
FCT approximation shows a sharper capture of the contact wave. Table 6 shows
quantitative convergence results for the two schemes using the discrete L1 norm for
the computation of the errors. This table shows that the Godunov approximations
demonstrate somewhat higher convergence rates for all quantities, but that for the
resolutions discussed here the FCT approximations always give smaller actual er-
rors. In fact for the pressure and velocity, the errors in the FCT approximations are
more than three times smaller than the Godunov approximations at coarse resolu-
tions and still more than twice as small for the finest mesh considered.
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Table 6 Discrete L1 error and associated convergence rates for the two shock problem using
the Godunov (G) and FCT (F) schemes at selected resolutions associated with the choice of m.
Neither scheme is yet in the asymptotic range of convergence where the L1 errors in density will
be dominated by the 2/3 convergence rate at the contact

m eρ(m) F κ eρ(m) G κ eu1 (m) F κ eu1 (m) G κ ep(m) F κ ep(m) G κ

2 4.48e−1 – 7.53e−1 – 1.10e−1 – 3.40e−1 – 8.74e0 – 3.29e1 –

4 2.58e−1 .80 4.08e−1 .88 7.15e−2 .62 1.41e−1 1.3 6.49e0 .43 1.40e1 1.23

8 1.51e−1 .77 2.26e−1 .85 2.48e−2 1.5 7.78e−2 .86 3.34e0 .96 7.89e0 .83

16 9.00e−2 .75 1.43e−1 .66 1.66e−2 .58 4.76e−2 .71 1.82e0 .88 4.94e0 .66

κ̃ .77 .80 .91 .94 .75 .90

4.5 Shu-Osher Problem

The final one-dimensional test case considered in this chapter is a problem origi-
nally considered by Shu and Osher [35] and subsequently by others [23, 47]. This
problem consists of a M = 3 shock in air, γ = 1.4, traveling into unshocked air with
sinusoidally perturbed density. As originally presented, the problem has a number
of parameters and the specific values used here are taken from [23]. The initial setup
is

ρ = 3.857143, u1 = 2.629369, u2 = 0, p = 10.33333 for x1 <−4,

ρ = 1− ε sin (λπx), u1 = 0, u2 = 0, p = 1 for x1 ≥−4
(25)

where the parameter values are ε = 0.2 and λ = 5. The approximate solution is
computed for x ∈ [−5,5] using L ([−5.0,5.0],200m) and integrated to a final time
tf = 1.8.

When interpreting results, it is useful to understand the Riemann structure of the
solution when ε = 0. For this case we can determine an exact solution and the waves
present there give a good indication where structures in the more complicated so-
lution will arise. When ε = 0, the solution consists of a M = 3 shock traveling
with speed S ≈ 3.55. The perturbed problem, ε �= 0 and small, will have distur-
bances traveling along the other two characteristic fields with speeds S ≈ 2.63 and
S ≈ 0.69. At t = 1.8, the lead shock will have traveled to x1 ≈ 2.39, the contact
wave to x1 ≈ 0.73 and the left acoustic wave to x1 ≈ −2.76. For small ε it is ex-
pected that the exact solution will change character near these locations.

A reference solution, computed with m= 128 up to t = 1.8, can be seen, for ex-
ample, in Fig. 5. For x <−2.76 the solution is the unperturbed post-shock state. For
x ∈ (−2.76,0.73) the solution exhibits mild oscillations in all quantities. These os-
cillations are the result of the passage of the left acoustic wave. For x ∈ (0.73,2.39)
the solution exhibits high frequency oscillations. Notice that for the computational
resolution m, the high frequency oscillations in the density for x ∈ (0.73,2.39) con-
tain approximately 2m grid points per wavelength. The solution with m= 128 uses
a sufficiently fine grid to resolve these oscillations as evidenced by the fact that fur-
ther refinement does not change the character of the solution, and because it results
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Table 7 Convergence results for the Shu-Osher test problem using both the Godunov (G) and FCT
(F) methods. Convergence rates and errors are computed with (26) and (27) using finely resolved
simulations at m= 64 and m= 128

m eρ(m) F κ eρ(m) G κ eu1 (m) F κ eu1 (m) G κ ep(m) F κ ep(m) G κ

1 1.16e0 .75 1.20e0 .44 3.44e−1 1.1 3.02e−1 .94 2.34e0 1.1 1.98e0 .92

2 9.18e−1 .86 1.01e0 .52 1.57e−1 1.1 1.55e−1 .94 1.08e0 1.1 1.08e0 .93

4 7.86e−1 1.1 8.64e−1 .67 6.35e−2 1.1 7.85e−2 .92 4.75e−1 1.1 5.67e−1 .94

8 5.98e−1 1.4 7.28e−1 .93 3.10e−2 1.1 4.22e−2 .94 2.23e−1 1.1 2.94e−1 .93

16 2.39e−1 1.4 5.00e−1 1.3 1.52e−2 1.2 2.35e−2 1.0 1.06e−1 1.2 1.70e−1 1.1

32 8.90e−2 1.4 2.19e−1 1.5 6.87e−3 1.4 1.20e−2 1.3 4.57e−2 1.3 8.38e−2 1.3

in approximately 256 cells per wavelength for x ∈ (0.73,2.39). For x > 2.39 the so-
lution returns to the initial upstream state. The locations where the solution changes
behavior are, as expected, those mentioned above in the discussion of the Riemann
structure for ε = 0.

There is no known closed form solution to this problem and convergence results
must be estimated through comparison to more finely resolved solutions. Here we
use a method similar to that presented in [32]. At a given point, xi , we assume the
solution at a given resolution differs from the exact solution by

ue(xi)− um(xi)≈ c(xi)hκ
m (26)

where ue is the exact solution, um the numerical approximation, c(xi) depends only
on xi , κ is the convergence rate and hm is the grid spacing. Note that we have
uniform grid spacing. From (26) one can compute

∥∥um1(x)− um2(x)
∥∥
h
≈ ∥∥c(x)

∥∥
h

∣∣hκ
m1
− hκ

m2

∣∣ (27)

using a discrete norm. Numerical approximations at three resolutions and (27) can
be combined to produce two equations which define the convergence rate κ and
the constant ‖c(x)‖h. The solution error can then be approximated as eu(m) =
‖ue − um‖h ≈ ‖c(x)‖hhκ . When estimating the error and convergence rate for a
given approximation with resolution given by m, we use the three approximations
um, u64 and u128. Table 7 shows the convergence results using the discrete L1 norm
for both the FCT and Godunov schemes. From this table it is clear that the coarser
resolutions do not approximate the solution well at all, particularly for the density,
and low rates of convergence are attained. Figures 5 and 6 demonstrate this graphi-
cally where the numerical approximations for m= 1 are plotted on top of the refer-
ence solution. Figure 5 shows the global character of the solution and Fig. 6 shows
a zoom of the density in the most oscillatory region. For low resolutions, the high
frequency oscillations are not well represented and both methods exhibit poor con-
vergence properties, particularly for the density as seen in Fig. 6. This is reflected
by the convergence rates which are less than 1. At some critical resolution however,
both methods see a rise in convergence rates, tending to some value larger than 1.
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Fig. 5 Comparison of the numerical approximations with m = 1 at t = 1.8 for the Shu-Osher
test problem. For all images the black line represents the reference solution with m = 128 while
the red line (left) shows the Godunov approximation and the blue line (right) shows the FCT
approximation. From top to bottom are density and pressure (Color figure online)

Once this transition occurs, the high frequency oscillations begin to be well repre-
sented as shown in Figs. 7 and 8. This transition to higher convergence rates happens
at lower resolution for FCT, indicating that it has more resolving power than the Go-
dunov method. For the highest resolutions demonstrated here, both approximations
are reasonably representing all structures in the flow and their convergence rates be-
come roughly equal. However, because the FCT method experienced the transition
to higher convergence rates earlier in the refinement process, the errors at the high-
est resolutions are smaller than for the Godunov approximations by nearly a factor
of 2.

4.6 Shock Impingement on Stationary Cylinder

The first two-dimensional test problem which we consider is the impingement
of a M = 2 shock on a rigid immovable cylinder. The basic problem consists
of a rigid cylinder of radius 0.5 placed in the larger domain [−2,2] × [−2,2].
A Mach 2 shock initially located at x1 = −1.5 runs from left to right. The com-
putational mesh is defined as the overlapping grid constructed from an annulus
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Fig. 6 Zoom of density near
the high frequency
oscillations. Shown are the
FCT and Godunov
approximations with m= 1,
and the reference solution
computed by the Godunov
method with m= 128

Fig. 7 Comparison of the numerical approximations at t = 1.8 for the Shu-Osher test problem
and m = 16. For all images the black line represents the reference solution with m = 128 while
the red line (left) shows the Godunov approximation and the blue line (right) shows the FCT
approximation. From top to bottom are density and pressure (Color figure online)

A ((0,0), [0.5,1.0],10m,80m) and a rectangle R([−2,2] × [−2,2],80m,80m),
where A and R are defined as before in Sect. 4.1. The boundary around the cylin-
der is defined as a slip wall (see [31]), the left boundary as an inflow, and the re-
maining boundaries are given outflow conditions. Phenomena of interest are limited
to those associated with the shock/cylinder interaction. Provided that the simulation
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Fig. 8 Zoom of density near
the high frequency
oscillations. Shown are the
FCT and Godunov
approximations with m= 16,
and the reference solution
computed by the Godunov
method with m= 128

Fig. 9 Overlapping grid structure (left) and color contour of the initial density (right). The over-
lapping grid structure is used to capture geometry and additional adaptive grids will be dynamically
added to locally increase resolution. Note that we only require one layer of interpolation points at
grid overlap as discussed in Sect. 3.1. The initial density shows a M = 2.0 shock in air (ideal gas
with γ = 1.4) moving from left to right

is not run too far in time, waves generated at the cylinder do not reach the exte-
rior boundaries and so the exterior boundary condition choice has little influence.
Figure 9 shows the computational mesh as well as color contours of density for the
initial conditions. Numerical values for the initial conditions in primitive quanti-
ties, corresponding to a Mach 2 shock in air (γ = 1.4), were shown previously in
Sect. 4.2.2.

The comparisons carried out in this chapter use the resolution m= 1 displayed in
Fig. 9 for the coarse grid simulation. Adaptive mesh refinement (AMR) is then used
for successive resolutions. For this test of shock interaction with a single cylinder,
additional levels of AMR use a factor four refinement in each coordinate direction
and so the four resolutions investigated have approximate grid spacings h ≈ 0.05,
0.0125, 0.003125, and 0.00078125. Notice that because the initial condition uses a
perfect jump, there exists numerical artifacts along the c− characteristic and con-
tact path. No effort is made to remove these and their contribution may be seen
throughout the simulations.

Figure 10 shows the computed density using both methods for t = 0.6, t = 1.0,
and t = 1.4 as the incident shock reflects from the cylinder boundary. Overall the
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Fig. 10 Color contours of density for the finest resolution using FCT (top) and Godunov’s method
(bottom) at t = 0.6 (left), t = 1.0 (middle), and t = 1.4 (right)

Fig. 11 AMR grid structure (left), numerical Schlieren images (center) and estimated L1-error in
density (right) for the FCT method (top) and Godunov’s method (bottom) for the finest resolution
simulation at t = 1.4

results show remarkably good agreement although slight differences can be seen at
t = 1.4 in the low density wake region of the cylinder. To give a better indication of
what is happening, Fig. 11 shows the AMR grid structure, numerical Schlieren im-
ages [7], and the estimated error in density at t = 1.4. The computation of the error
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Fig. 12 Solution convergence along the lines x2 = 0 (top) and x1 = 1 (bottom) for the FCT method
(left) and the Godunov method (right) on the shock-cylinder problem. Shown here is the density
with the colors indicating numerical resolution. Maroon represents the solution with no AMR while
cyan, red, and finally blue represent 1, 2, and 3 levels of additional factor four adaptive meshes
respectively (Color figure online)

estimate will be discussed below. The image of the AMR grids is perhaps the most
informative because it demonstrates the increased noise created by the FCT method.
Numerical noise tends to flag cells for refinement by the AMR algorithm and so a
larger portion of the domain is covered by fine meshes for the FCT simulation. This
type of noise, also interpretable as staircases [38], is a common phenomenon in FCT
simulations. There are ways to reduce the noise, such as adding higher levels of ar-
tificial diffusion, using different high order fluxes, and others, but in our experience,
there is no single method which completely eliminates it. On the other hand the re-
sults from the Godunov method show little sign of this phenomenon and the AMR
meshes conform closely to the locations of rapid change, such as shocks and con-
tacts. The plots of estimated error also show increased noise in the FCT solution. It
is worth noting that the remnant of the initial condition on the c− characteristic has
flagged refinement for the FCT solution whereas this feature has been smoothed by
the Godunov method.

Figure 12 shows line plots of the approximations along the lines x2 = 0 with
x1 ∈ [0.5,2.0] and x1 = 1 with x2 ∈ [0,2] which gives an indication of conver-
gence as the mesh is refined. From these plots one can again see the trend that FCT
approximations contain more noise as compared to the Godunov approximations
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Table 8 Computed errors and convergence rates for the FCT (F) and Godunov (G) schemes on
the problem of shock-cylinder interaction. Here we use a weighted L1-norm

m eρ(m) F eρ(m) G eu1 (m) F eu1 (m) G eu2 (m) F eu2 (m) G ep(m) F ep(m) G

4 1.54e−2 1.91e−2 1.02e−2 1.32e−2 7.55e−3 8.77e−3 3.00e−2 3.75e−2

16 5.60e−3 7.49e−3 3.70e−3 5.76e−3 3.13e−3 3.00e−3 1.06e−2 1.45e−2

64 2.03e−3 2.94e−3 1.35e−3 2.52e−3 1.29e−3 1.03e−3 3.73e−3 5.60e−3

κ 0.73 0.67 0.73 0.60 0.64 0.77 0.75 0.69

which generally vary more smoothly. Table 8 shows estimated L1-norm self con-
vergence errors and convergence rates. These errors and rates were computed using
the finest three resolutions following the approach presented in [32] and as outlined
in Sect. 4.5. An advantage to this method is that it naturally provides an estimate for
the exact solution ue in (26). This result can be used to estimate solution errors as
was done to obtain the error estimates shown in Fig. 11. The results in Table 8 show
that the errors and convergence rates are similar for the FCT and Godunov meth-
ods. It is interesting to see that convergence results for all quantities, including the
velocities and pressure which do not jump through contact waves, show sub-linear
convergence. The probable cause for this behavior is the complex interactions of
shocks, contacts and rarefactions as well as the instabilities in the wake region of
the flow. Indications of this are given by the error estimates of Fig. 11 where the
wake region is shown to have large errors over a substantial area.

4.7 Irregular Mach Reflection of a Strong Shock

The next test considered in this chapter is that of irregular Mach reflection of a strong
shock at an inclined ramp. This classic example has been investigated by many
authors [47, 58, 60] as well as demonstrated experimentally [56]. In this problem,
a Mach 10 shock impacts a ramp which is inclined 30◦ from the normal shock
propagation direction. The result is a complex interaction and results in an irregular
Mach reflection. Numerically, this flow can cause a carbuncle like instability [20,
46] for some numerical methods if proper care is not taken.

Traditionally this test problem has been solved by inclining the incident shock
to a Cartesian grid and using special boundary conditions to simulate the transition
region at the start of the ramp. For the simulations presented in this chapter, the ge-
ometry of a 30◦ ramp is realized using overlapping grids and then a Mach 10 shock
is impacted onto this ramp. The overlapping grid we use consists of a thin boundary
fitted mesh to model the ramp in union with a background Cartesian mesh for the
remaining bulk of the computational domain. The background Cartesian mesh is de-
fined by the rectangle R([−0.5,3.0] × [0,1.7],420,340). Although the boundary
fitted mesh is not described by a simple mathematical expression, a verbal descrip-
tion will suffice for our purposes. The physical boundary of this ramp grid is defined
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Fig. 13 Basic overlapping grid used for the simulation of irregular Mach reflection on an inclined
ramp. The boundary fitted ramp grid is seen in green and the background Cartesian mesh in blue.
The full geometry (left) shows what looks like sharp transitions to represent the ramp corners, but
the zoom near the origin (right) shows that these corners are very slightly rounded (Color figure
online)

as a curve that smoothly transitions from the line x2 = 0, to the line x2 = x1/
√

3,
and finally to the line x2 = 1.4438. These transitions are defined in terms of inte-
grals of hyperbolic tangent functions and are therefore smooth [28]. The ramp grid
is extruded along normals into the domain and the mesh spacing is chosen to ap-
proximately match that of the background Cartesian grid. The resulting overlapping
grid is shown in Fig. 13 where both the full geometry and a zoom near the ramp
initiation at the origin are shown. At the scale of the full geometry it is difficult to
see the rounding of the corners, but the close up image makes this rounding clear.
A rounded corner will have some effect on the solution as it compares to a solution
obtained using a perfectly sharp corner. Such effects have been studied for example
in [30, 36] and found to be of little consequence when the radius of curvature is
small as compared to the flow features of interest (as is the case here).

Initial conditions for a Mach-10 planar shock in air (γ = 1.4) are (ρ,u1, u2,p)L
= (8.0,8.25,0.0,116.5) and (ρ,u1, u2,p)R = (1.4,0.0,0.0,1.0). The initial shock
is located at x1 = −0.25 (for reference the left-most boundary is x1 = −0.5 and
the ramp incline begins at x1 = 0) and time integration is performed to t = 0.2.
Boundary conditions are set using a slip wall condition along the ramp boundary,
inflow conditions along the left boundary and outflow conditions elsewhere. For
these simulations, the base mesh has roughly equal mesh spacing throughout the
domain with h ≈ 1

120 . Simulations are performed at four resolutions starting with
only the base mesh and then progressing through to use one additional level of
factor four refinement, two additional levels of factor three refinement, and finally
two additional levels of factor four refinement.

Figure 14 shows the approximations obtained using the FCT and Godunov meth-
ods at the finest resolution with approximate mesh spacing h≈ 5.21× 10−4. At this
scale there are some apparent differences that merit mention. First notice the in-
creased noise production by the FCT method as shown by the increased proportion
of the domain flagged for AMR refinement. Also both simulations retain remnants
of the initial condition along the c− characteristic and contact path. These remnants
are covered with fine AMR meshes, although the refinement for the FCT algorithm
covers a larger region. Finally it is seen that the minimum pressure inside the main
vortex is lower for the FCT simulation than for Godunov.
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Fig. 14 Simulation results at t = 0.2 for the Godunov method (left) and FCT (right) with 3 levels
of factor 4 refinement. Shown are the AMR mesh (top), a numerical Schlieren image (middle), and
pressure (bottom). Notice the increase in noise produced by the FCT method as evidenced by the
larger region flagged for AMR refinement. Also notice the lower pressure achieved by the FCT
method within the main vortex

Figure 15 shows close-up numerical Schlieren images near the main vortex struc-
ture at the four different mesh resolutions. For both simulation techniques, the main
vortex is poorly represented at low resolutions but with increasing mesh resolu-
tion the main features begin to develop. The roll-ups along the slip lines become
pronounced for both methods with the Godunov solution showing slightly more
detailed structure. The final two solutions show interesting differences in the devel-
opment of the main vortex. For the Godunov method it remains as a coherent single
vortical structure, while for the FCT method it begins to break down and show more
complex behavior. Comparing this behavior with what is seen in [47] shows that
the Godunov methods (for [47] the PPM method) tend to maintain a coherent sin-
gle structure, while the other methods (the hybrid WENO method in [47] and FCT
here) produce a vortex which begins to loose coherence at very high resolution. This
type of behavior calls into question the limit processes of the various schemes and
whether the various methods are in fact approaching the same vanishing viscosity
solution. This is an interesting question and will be the subject of future work. As
a further comparison of the methods, Fig. 16 compares the peak vorticity and mini-
mum scaled temperature, defined as p/ρ, for the two methods as a function of grid
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Fig. 15 Zoom of the numerical Schlieren images near the triple point and main vortex for Go-
dunov (left) and FCT (right). Resolution increases from top to bottom with approximate grid spac-
ings h≈ 1/120, 1/480, 1/1080, and 1/1920 respectively
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Fig. 16 Maximum vorticity within the main vortex as a function of mesh spacing (left) and min-
imum scaled temperature (right), defined as p/ρ, as a function of mesh spacing. Godunov results
are given in red and FCT results in blue (Color figure online)

Table 9 Computed errors and convergence rates for the FCT (F) and Godunov (G) schemes on
the problem of irregular Mach reflection. Here we use a weighted L1 norm

m eρ(m) F eρ(m) G eu1 (m) F eu1 (m) G eu2 (m) F eu2 (m) G ep(m) F ep(m) G

4 5.67e−2 6.29e−2 3.15e−2 3.45e−2 3.32e−2 3.89e−2 1.06e0 1.09e0

9 3.71e−2 4.25e−2 1.74e−2 2.32e−2 2.05e−2 2.84e−2 6.85e−1 6.81e−1

16 2.75e−2 3.22e−2 1.14e−2 1.76e−1 1.46e−2 2.28e−2 5.04e−1 4.87e−1

κ 0.52 0.48 0.73 0.49 0.59 .39 0.54 0.58

resolution. For both schemes the minimum temperature decreases and the maximum
vorticity increases as the mesh is refined. The FCT results show a lower temperature
and smaller vorticity as compared to the Godunov results. A self convergence study
is performed as was done in Sect. 4.6 using a weighted L1-norm. The finest three
resolutions are used for this comparison and results presented in Table 9. Here it is
seen that the performance of the two methods is similar. The L1-norm convergence
rates are somewhat low but this is attributed to the large variations in the solution
and unstable vortical flows which arise at the slip line which is evident in Fig. 15.

4.8 Shock Impingement on a Collection of Cylinders

Section 4.6 presented a problem where a single cylinder was impacted by a Mach
2 shock. Although this problem is by no means trivial it is not unduly complicated
either and so we extend this problem to a Mach 2 shock impacting many cylinders.
In principal any number of cylinders could be used, but for this case we choose the
somewhat arbitrary number of seven. The geometry is meshed using the overlapping
grid generated as the union of the seven annuli

A
(
(−1,−1), [0.4,0.55],119m,6m

)
, A

(
(−1.2,0), [0.23,0.37],68m,6m

)
,
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Fig. 17 Computational mesh with resolution corresponding to m = 1 (left) and initial condition
as a numerical Schlieren image (right). The exact shock jump conditions for a Mach 2 shock in air
found in Sect. 4.2.2

A
(
(−0.75,0.75), [0.3,0.45],89m,6m

)
, A

(
(0.2,−1.0), [0.3,0.45],89m,6m

)
,

A
(
(0.3,0.6), [0.15,0.3],44m,6m

)
, A

(
(0.7,−0.2), [0.2,0.35],59m,6m

)
,

A
(
(−0.05,−0.15), [0.1,0.25],29m,6m

)
,

and a background grid R([−2,4] × [−2,2],200m,132m) where m is an indicator
of grid size. Figure 17 shows the initial mesh corresponding to m = 1 along with
the initial condition as a numerical Schlieren image. As in Sect. 4.6, the exact shock
jump conditions for a Mach 2 shock in air, as given in Sect. 4.2.2, are applied as
initial conditions at x1 = −1.75. The boundary conditions are set using an inflow
condition at the left, outflow at the top, bottom, and right, and solid slip-wall along
all cylinder boundaries. The basic idea is to make the boundaries of the square trans-
parent so that the simulation can be viewed as a group of cylinders in a region of
very large extent. Section 4.6 provided a good baseline for the interaction of a shock
with one cylinder but for this case this basic interaction will be carried out many
times and the subsequent interactions will become quite complex.

Figure 18 shows numerical Schlieren images and pressure contours on the grid
corresponding to m = 4 at t = 0.5, 1.0, 1.5, and 2.0. Here it is seen that the early
time behavior near t = 0.5 is rather simple and one can easily draw the comparison
to the simulations of Sect. 4.6. As time progresses however, the structure becomes
markedly more complex and by t = 2.0 the simulation contains extremely compli-
cated structures. Still the FCT method is capable of capturing these complexities
quite nicely and without undue numerical artifacts. We would also like to note that
the collective action of the cylinders is to generally retard the progress of the shock
much as the single cylinder did in Sect. 4.6. This is witnessed by the fact that the
lead shock becomes concave forward for both cases at late times indicating that the
cylinders were an impedance.

We would also like to give some indication of grid convergence for the solution
and so Fig. 19 shows simulation results at t = 2.0 for grid resolutions corresponding
to m= 1, 2, and 4. It is easily seen that even for the lowest resolution the numerical
method nicely captures most bulk flow features. Increasing grid resolution serves
to sharpen these bulk features as well as to bring out the more detailed fine scale
structures.
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Fig. 18 Numerical Schlieren images (left) and the pressure images (right) of simulations carried
out on the grid whose resolution corresponds to m = 4. The times for these images (from top to
bottom) are t = 0.5, 1.0, 1.5, and 2.0

A final level of complexity is added to this simulation in that the cylinders are
now allowed to move. The extension of the FCT algorithm for moving grids is
very straightforward and follows closely the ideas enumerated in [31]. The critical
extension from what is presented in Sect. 3 is simply that the apparent flow velocity
on a given component grid is the difference between the grid velocity and the flow
velocity. Simulations are then carried out just as before and coupled to the motion
of each cylinder through Newton’s laws of motion. For this case we assume that
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Fig. 19 Numerical Schlieren images at t = 2.0 for grid resolutions corresponding to m= 1 (top
left), m= 2 (top right), and m= 4 (bottom)

all cylinders are made of a material with density 1.5 in dimensionless units and
the mass is then computed using this assumption. Figure 20 shows results for the
computation on a mesh corresponding to m = 4 and compares these results to the
fixed cylinder case. The FCT algorithm again performs well and maintains sharp
interfaces and shocks throughout the simulation without undue numerical artifacts.
It is of physical interest to note that while the fixed cylinders retarded the shock
wave, the movable cylinders actually aid its progress. This is shown by the generally
concave forward shock for the fixed cylinders and the generally convex forward
shock for the movable cylinders at late time.

4.9 An Idealized Z-pinch Implosion

The last example presented in the FCT evaluation is a complex and challenging
prototype of an idealized Z-pinch like magnetic implosion modeled by an extended
Euler system with source terms [4]. A schematic diagram of the geometry for an
idealized liner implosion is presented in Fig. 21. Briefly, in a typical Z-pinch mag-
netic implosion, a very large total current I (e.g. 20 MA) with a characteristic rise
time of about 100 ns is carried initially by either a thin cylindrical metallic liner or a
cylindrical array of metallic wires that ablate and produce a plasma [41]. The current
flowing through the conductor/plasma produces a corresponding strong azimuthal
magnetic flux, Bθ . The induced local plasma current, J and magnetic flux density, B,
produces a strong J×B Lorentz force which accelerates a highly energetic plasma
to stagnate on axis in about 100 ns. This stagnation and subsequent magnetic energy
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Fig. 20 Numerical Schlieren images of shock interaction with fixed (left) and movable (right)
rigid cylinders at t = 0.5 (top), 1.0 (second row), 1.5 (third row), and 2.0 (bottom). Both simula-
tions were carried out on the mesh corresponding to m= 4. For the rigid case the cylinders serve to
retard the shock resulting in a concave forward shock front while for the movable case the cylinders
enhance the shock resulting in a convex forward shock front

conversion produces an intense 10 ns X-ray radiation pulse [42, 52]. The intense X-
ray pulse can then be used for radiation-material interaction studies [41, 43, 44],
environments for indirect drive inertial confinement fusion (ICF) applications [41,
42, 44], or for pursuing laboratory-based astrophysics environments [9, 14, 21, 44,
50, 53]. An important limiting mechanism for the amount of radiation energy pro-
duced by a Z-pinch is the Magnetic Raleigh-Taylor (MRT) instability which distorts
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Fig. 21 Schematic of
prototype thin-shell
implosion model

the outer and inner interfaces of the collapsing plasma shell and broadens the pulse
width [22, 41, 44].

The prototype implosions considered in [4], and briefly described in the next
subsections, are developed by a simple source term model that can be used in a
basic Euler solver for inviscid compressible gases to generate implosions that have
the essential character of actual Z-pinch implosions. These problems include simple
idealized implosions that can be used as verification type problems, for code de-
velopment purposes, and also for complex implosions with high material velocities,
strong-shocks and compressive heating that may generate a radiation power pulse.

4.9.1 An Extended Euler System Model

A generalization of the Euler conservation law system to a balance equation with
general source term is

∂u
∂t
+∇ • f+ s= 0. (28)

In this equation we have included a general source term s that will be defined for
each individual system of interest. As described in [4] Z-pinch like implosions can
be developed by including parameterized source terms for the momentum and en-
ergy balance equations that in effect model a Lorentz force and magnetic energy
work term along with the definition of an advected scalar that defines the current
flow through the liner material. For this model the Euler single temperature system
with the advected scalar, λ, is then defined by

u=

⎡

⎢⎢
⎣

ρ

ρv
E

ρλ

⎤

⎥⎥
⎦ , f=

⎡

⎢⎢
⎣

ρv
ρv⊗ v−T

Ev−T · v+ q
vρλ

⎤

⎥⎥
⎦ , s=

⎡

⎢⎢
⎣

0
−Υ

−Υ · v+Qrad

0

⎤

⎥⎥
⎦ . (29)
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Here the effective Lorentz force source term, Υ = J×B, can be evaluated from

Υ = λρ
(
I (t)

)2 1

reff
êr . (30)

In this term, the effective r-coordinate, reff, is used to define the strength of the
source term locally. As in [4] the thin-shell Lorentz force term is modified to produce
an effective limiting compression ratio by using an effective radial distance, reff,
intended to remove the singularity at r = 0 with the definition

reff/R0 =max
(
r/R0,10−4). (31)

The non-dimensional scalar 0 ≤ λ(r, t) ≤ 1 is used to control the magnitude and
localize the application of the non-dimensional Lorentz force term. Notionally the
scalar λ(r,0) is considered to define the initial “current sheet” and to localize the
application of the source term during the evolution of the implosion. Thus by speci-
fying I (t) the forcing term magnetically drives the Z-pinch like implosion with the
required 1/r behavior in the active region where the Lorentz force term is non-zero.
Therefore by including this force term, in a suitably non-dimensionalized form of
the Euler equations, a parameterized set of prototype magnetically driven shock-
hydro problems can be developed. In the examples that follow an analytic limiting
case of a thin-shell implosion in the (x, y) plane, Rayleigh-Taylor instability effects
in a (r, z) implosion and a simple radiating implosion is carried out to evaluate the
FCT algorithm.

4.9.2 Thin-Shell Implosion in the x-y Plane and a Comparison with
an Asymptotic Analytic Solution

In this model, the conducting plasma is considered to be concentrated (or lumped)
into a asymptotically thin shell with the geometry of Fig. 21 and limited to the
(x, y) plane. The non-dimensional initial conditions are chosen with an interior
density of ρpre-fill = 1.0 × 10−6, a liner density of ρL = 1.0, and an exterior den-
sity of ρexterior = 5.0× 10−7 as in [4]. The initial pressure throughout the domain is
p0 = 1.0× 10−6 and the flow is initially stagnant. In the context of the asymptotic
thin-shell implosion analysis presented in [4] this problem uses a current drive of
I (t)=√

12(1− t4)t2. This current drive results in a power law relation for the ra-
dial position r(t)/R0 = 1− t4 for the location of the thin shell as a function of time.
In order to give a reasonable intuitive sense for these initial conditions as well as
the computational domain where the simulation is carried out refer to Fig. 22. The
base computational grid which is used for these simulations is shown in Fig. 22.
Here an annular grid (blue in the figure) is used over much of the domain with the
singularity at the origin covered by a square grid (green in the figure). The grid
spacing in the radial direction as well as for the center square patch is chosen to be
h = 0.025, and the average grid spacing in the azimuthal direction for the annular
grid is h ≈ 0.059. Solid slip-wall boundary conditions are applied at the left and
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Fig. 22 Left: Computational grid used for the magnetic implosion simulations. Here an annular
grid (blue) is used for much of the domain with the singularity covered by a square patch (green)
in the center. Right: Initial condition of density for the highest resolution simulation of the simple
implosion. Notice the thin shell of high density surrounded by nearly rarefied regions interior and
exterior. The non-dimensional values for these densities are ρL = 1.0, ρpre-fill = 1.0× 10−6 and
ρexterior = 5.0× 10−7 (Color figure online)

bottom, and an inflow condition is applied at the outer curved boundary. A series of
results for a shell of fixed thickness Δ= 0.05 is presented using increasing amounts
of AMR. For the initial resolution no AMR is used. The second resolution uses one
additional level of AMR with a refinement factor of 4 in each direction giving the
effective resolution of h= 0.00625. The final resolution takes 2 additional levels of
AMR each with a refinement factor of 4 (h= 1/640). The initial condition for den-
sity for the finest resolution simulation is presented in Fig. 22. Here the thin ring of
conducting material is seen as pink which represents ρ = 1.0 and λ= 1.0. Interior
and exterior to this ring the density is so low (≈ 10−6) that one cannot distinguish
it from a pure vacuum using the included colorbar. Figure 23 shows two snapshots
of the density at t = 0.5, and t = 0.9. These two images show the imploding con-
ducting shell which appears to remain quite cylindrically symmetric even after its
transit from the annular grid to the center square patch. It can be seen, particularly
at the later time t = 0.9, that the thin shell model is clearly approximate. The most
obvious indication of this is the fact that the peak density now has a much higher
value ρmax ≈ 1.75, which results from non-uniformities in the simulation as well as
because the shell here is not infinitely thin and compressional effects are induced
that are not accounted for in the thin-shell model [4].

For this problem Fig. 24 presents the shell radius, R(t), and the shell velocity
V (t). The values for these plots are obtained from the simulation results but be-
cause we are dealing with simulation results obtained using a capturing code, the
selection of the location, and hence velocity, for the imploding shell is open to inter-
pretation. In these results the shell location at a given time is defined by the location
of the computational cell nearest to the origin whose density is 1/2 of the maxi-
mum density at that time. From this cell the radius and velocity are selected and
used in the plots. In these plots the clustering of the data about the analytic solution
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Fig. 23 Density for the highest resolution simulation at t = 0.5 (right), and t = 0.9 (left). The
thin shell is seen to implode in a remarkably symmetric fashion even after the transition from the
annular grid to the square center patch

Fig. 24 Shell radius against time (left) and shell velocity against time (right). In these plots the
black curve represents the exact solution R(t)= 1− t4 and V (t)= 4t3, the blue x’s represent the
solution with no AMR, the red x’s represent the solution with one level of AMR, and the green
x’s represent the solution with two AMR levels. We can see the convergence of the solution to the
exact thin shell prediction upon increasing resolution (Color figure online)

demonstrates good agreement of the simulation with the predicted behavior for the
thin shell model. One can also see the solution for finer mesh resolutions converging
to the analytic solution at all times. This plots show the excellent agreement of the
FCT simulation with the analytical asymptotic solution.

4.9.3 A More Realistic Implosion in the r-z Plane with Rayleigh-Taylor
Instability Effects

In this more challenging prototype problem perturbations are introduced into the
initial geometric configuration of a finite thickness representation of a shell liner [4].
These perturbations are intended to generate vorticity due to Rayleigh-Taylor and/or
Richtmyer-Meshkov type instabilities. Here the initial density profiles are given by
a liner density of ρL = 1.0, an exterior density of ρexterior = 0.025, and a pre-fill
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Fig. 25 A prototype Rayleigh-Taylor instability for a perturbed liner geometry for the magnetic
implosion in (r, z). An initial pressure distribution to promote growth of R-T spikes ahead of the
liner implosion has been selected. The instability evolves from the initial conditions on the right
to the stagnation on the axis on the left. The upper images are a numerical Schlieren and the lower
images show the density at times (from left to right) t = 1.2, t = 1.0, t = 0.8, and t = 0.0

density inside the linear of ρpre-fill = 0.05. The initial pressure is constant with a
value of p0 = 0.01. The base computational grid has a mesh spacing of h≈ 0.0025
and uses two additional levels of factor 4 AMR to give an effective grid resolution
of h≈ 0.0015625. In this case a linear current drive I =√12t is employed.

Figure 25 shows a numerical Schlieren of the time evolution of the initial con-
ditions where a sinusoidal perturbation to the initial interface has been introduced.
This perturbation is intended to promote the growth of a particular unstable Raleigh-
Taylor mode and thus create significant structure as the liner nears stagnation. Here
the perturbation has amplitude 0.005 and period 0.125 and has been introduced
along the inner boundary of the conducting shell. The initial pressure distribution,
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p0 = 0.01, is selected to promote growth of R-T spikes ahead of the liner implo-
sion at a sufficient rate so as to view their effect before stagnation. The instability
evolves from the initial conditions on the right to the stagnation on axis on the left.
The FCT AMR solution provides a very well resolved simulation of multiple unsta-
ble modes resulting in a complex pattern of R-T growth with complex interaction
of shock waves at stagnation. It should be noted that the evolution of the R-T in-
stability is qualitatively different from an actual Z-pinch system in which spikes
lag behind the remaining liner material due the larger current flow in this contigu-
ous material sheet (for example see [17, 22]). This is due to our simplified model
assumption that defines the “current sheet” by the scalar λ that cannot adequately
model the preferential physical current flow through the contiguous liner material
over the penetrating spikes. However the magnetic force term does produce spikes
and sheets of material developed by the R-T effects and R-M instabilities as the
strong-shock interacts with the trailing liner material sheet. These later stages have
some qualitative similarities to actual Z-pinch implosions which gives indication to
why such a simple testing procedure can be very beneficial in benchmarking the
flow portion of simulation tools intended for shock-hydrodynamics applications.

4.9.4 An Idealized Z-pinch Implosion with Simplified Radiation Emission and
a Self Convergence Study

This final test prototype problem is intended to increase the complexity of the
Z-pinch prototype problem to include a phenomenological radiation emission model
and to allow the evaluation of the FCT method by considering the estimated order-
of-accuracy of the method in modeling the integrated radiation output from the im-
plosion. In actual Z-pinch modeling efforts the simulation of the temporal charac-
teristics of the radiation output is an important and challenging goal for these types
of simulations. Even with the use of such a simplified model as described below,
the results produced by the Euler system solver with the J× B source term model
produce power pulses with qualitative similarities to experimental and full compu-
tational MHD results found in the literature (see e.g. Fig. 9 in [24]).

One of the simplest radiation emission models one might consider is

Qrad = σT 4

where T is the temperature obtained from the equation of state (2) and the caloric
equation of state for an ideal gas as given by ρe = ρCvT , where Cv is the specific
heat of the gas at constant volume. From [4]

σ = σ̄ ρ
1

T 2

where σ̄ is a constant chosen here to be σ̄ = 100.0. The radiation emission is set
to be active only in the liner material by multiplication with λ so the final radiation
source term becomes

Qrad = σ̄ λρT 2.
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Fig. 26 Shown here are the radiation pulses (left) and total radiated power (right) obtained using
the linear current model I =√12t on a pinch with ρpre-fill = 1× 10−3 and a stagnation point at
r = 0.1. The simulation is carried out in the r-z plane and the resolutions, from coarse to fine, are
represented by green, cyan, blue, black, red and maroon (Color figure online)

Obtaining resolved radiation profiles in an actual Z-pinch simulation is a tremen-
dously challenging task due both to the complexity of the physically realistic ra-
diation models as well as the mesh resolution requirements. With this difficulty in
mind, this section presents two convergence studies where different aspects of this
difficult regime are highlighted.

The first problem is a pinch in the r-z plane with some small amount of pre-fill
material and a stagnation point off axis at r = 0.1 as for example on a rod. Here
the pre-fill and exterior densities are ρpre-fill = 1 × 10−3, ρexterior = 5 × 10−4 and
the initial pressure is p = 1× 10−5. A linear current drive I =√12t is used so the
current is rising as the material stagnates and radiates. The study is performed at
a variety of uniform mesh resolutions corresponding to h = 1/160, 1/320, 1/640,
1/1280, 1/2560 and 1/5120 where h is the grid spacing in the r and z directions.
Figure 26 presents the radiation output and the total radiated power as a function of
time for these resolutions and it is clear that the pulse is well behaved and largely
converged at the finest resolution h= 1/5120.

In order to gauge convergence, consider the convergence rate in two separate
norms. The first and perhaps simplest is to look at is the extrapolated convergence
rate as considered by Roy in [49]. In this analysis the final three data points for
total radiated power from Table 10 are considered and an order of convergence is
obtained, as in [49], from this data. For this data the convergence rate is judged to
be κ ≈ 1.26 for the total radiated power at t = 1.0. For the second measure consider
the self convergence in L1 of individual radiation pulses to the finest computation
h = 1/5120 from Fig. 26. Table 11 shows these results with a least squares fit to
the convergence rate κ ≈ 1.08. To put this result in context, for flows with solu-
tions dominated by shocks a rate of κ =O(Δx) is expected and for contact surface
dominated flows a rate of κ =O(Δx2/3), for a second order method, is expected as
described above. Finally it should be noted that because simulations are run at fixed
CFL, spatial refinement and temporal refinement are carried out in a coordinated
manner.
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Table 10 Total radiated power, peak power, and time to peak power for the radiation results pre-
sented in Fig. 26. Here N is a measure of grid resolution with h= 1/N

N Total radiated power Peak power Time to peak power

160 2.261 118.7 .9299

320 1.833 172.0 .9267

640 1.528 215.3 .9264

1280 1.311 174.0 .9260

2560 1.203 196.8 .9261

5120 1.158 227.8 .9257

Table 11 Self convergence
results for the L1 norm of the
radiation pulses from Fig. 26
as compared to the finest
resolution h= 1/5120. Here
κ ≈ 1.08 is a least squares fit
for the convergence rate and
N is a measure of grid
resolution with h= 1/N

N Self convergence error

160 2.614

320 1.149

640 0.5340

1280 0.2672

2560 0.1275

κ 1.08

The second radiation result demonstrates stagnation with the very difficult pre-
fill density set at ρpre-fill = 1× 10−6, the exterior density ρexterior = 5× 10−7 and

stagnation on the center line. Here the power law current drive I (t)=√
12(1− t6)t4

and I = 0 for t ≥ 1 is used rather than the linear drive. The softening of the problem
as a result of the more gentle current drive is more than made up for in the increased
difficulty of resolving the stagnation on axis which makes numerical convergence
extremely difficult. Simulations have been carried out for h = 1/160, h = 1/320,
1/640, 1/1280, 1/2560 and 1/5120. Figure 27 presents the radiation output and
total radiated power as a function of time for these results and indicates strongly
that convergence is near at hand for the finest resolution h= 1/5120, but shows how
difficult this problem is in terms of sufficient resolution for convergence. Indeed
some aspects of the simulation seem to be well resolved such as the peak output
location as a function of time, but even at this fine resolution the peak power is
clearly not well resolved.

As before convergence is measured in two ways. The first takes the extrapolated
convergence rate for the total radiated power at t = 1.0 in Table 12 as in [49]. The
result here is κ ≈ 0.37 which is obviously not excellent, but still convergent and for
such a difficult problem still considered reasonable. The second measure judges self
convergence of individual radiation profiles in Fig. 27 using the L1 norm. Table 13
shows these results and demonstrates that even here the convergence rate is κ ≈ 0.75
which is quite good.
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Fig. 27 Shown here are the radiation pulses obtained using the current model I (t) =√
12(1− t6)t4. The simulation is carried out in (r, z) space with r ∈ [0,1.25]. The radiation output

and total radiated power is plotted as a function of time with the simulations from coarse to fine
represented by green, cyan, blue, black, red and maroon (Color figure online)

Table 12 Total radiated
power, peak power, and time
to peak power for the
radiation results presented in
Fig. 27. Here N is a measure
of grid resolution with
h= 1/N

N Total radiated power Peak power Time to peak power

160 8.500 186.9 1.015

320 8.790 195.9 1.011

640 9.365 258.5 1.011

1280 9.808 330.4 1.012

2560 10.18 389.7 1.006

5120 10.46 478.5 1.003

Table 13 Self convergence
results for the L1 norm of the
radiation pulses from Fig. 27
as compared to the finest
resolution h= 1/5120. Here
κ ≈ 0.75 is a least squares fit
for the convergence rate and
N is a measure of grid
resolution with h= 1/N

N Self convergence error

160 10.74

320 6.920

640 4.450

1280 2.654

2560 1.290

κ 0.75

5 Conclusions

This chapter has outlined the development and assessment of a high-resolution FCT
algorithm for the Euler equations on structured overlapping grids as in [8]. The im-
plementation of the FCT method for overlapping grids was based on the Overture
framework and included modifications and extensions to the classical FCT algo-
rithm. These extensions included the modifications required for the discretization
on curvilinear grids as well as the inclusion of a Jameson-style fourth-order artifi-
cial viscosity to remove the high frequency noise produced by FCT. Improvements
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were made to the FCT algorithm to eliminate entropy violating shocks that can oc-
cur at sonic points in rarefaction waves. Difficulties occurring in strong rarefaction
waves, where a near vacuum state is produced when the gas separates at velocities
greater than the sound speed, were also addressed. In addition we discussed FCT
for moving overlapping grids.

We have evaluated this new FCT method on a series of benchmark high-speed
flow problems and compared the results to those obtained using a high-resolution
Godunov method. This investigation confirmed the expected convergence character
for manufactured solutions as well as isolated contact and shock waves. The over-
lapping grid capabilities were used to study the interaction of a planar shock by fixed
and movable rigid cylinders as well as irregular Mach reflection of a strong shock
on an inclined ramp. Where possible the FCT method was compared to a well char-
acterized Godunov method. Overall the results obtained by the FCT and Godunov
methods were found to be very similar. The FCT solutions tended to have a some-
what higher resolving capability but also to contain more numerical noise. It should
be noted that our implementation of the FCT method was quite costly in comparison
to the Godunov method. This is due to the large number of characteristic transfor-
mations, the smaller time step required, and the apparent difficulty in removing high
frequency noise which tends to flag cells for refinement by the AMR algorithm [8].
Recent developments in alternate limiting procedures for conserved and primitive
variables, as well as linearized FCT algorithms for implicit calculations might help
to reduce the overhead of the FCT algorithm [39]. Finally, the extensive compar-
isons and order-of-accuracy results presented in this study suggest that the FCT
method may be a viable option for cases where Riemann solvers are expensive or
not readily known, or for cases with extremely large jumps where more traditional
methods may have difficulty. This type of challenging problem was illustrated with
the inclusion of the prototype Z-pinch implosion as discussed in [4].
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Adaptive mesh refinement, 131, 402
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Algorithm, see scheme
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Anisotropic diffusion, 155, 185
Anisotropic meshes, 155, 252
Antidiffusion, 10, 154

explicit, 20, 160
implicit, 20, 161
linearized, 160, 202
phoenical, 20

Approximation
Boussinesq, 254
Galerkin, 121, 152
group finite element, 152, 196, 307
pseudospectral, 42
swept regions, 368

Arbitrary Lagrangian-Eulerian
mesh motion, 307, 357
remap, 301–321, 350–360

B
Basic iteration, see smoother
Boundary conditions

conservative remap, 305
Euler equations, 210–214

free slip, 213
inlet/outlet, 212
numerical, 211
physical, 210

k–ε model, 260
low-Re version, 264
wall functions, 261

C
CFL condition, see timestep limit
Characteristics, 2, 408
Clipping, 19, 33, 38, 164
Coefficient

antidiffusion, 14
diffusion, 10, 15, 99, 155

Compressible flow problems
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double Mach reflection, 61, 221, 425
double shock tube, 48, 417
GAMM channel, 224
landmark runs, 128–133
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shock impingement, 420, 429
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Z-pinch implosion, 432–441

Conservation law, 23
geometric, 304
integral form, 24
systems of, 43, 137
weak form, 24

Constraint
box, 362
incompressibility, 69, 242
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D
Damping

functions, 263
operator, 123

Deconvolution, 71
Diffusion

artificial, 154
flux-limited, 20
numerical, 98
physical, 155
residual, 15, 18

Discontinuity, 3, 4, 24, 413
Discrete operator

convection, 153, 244
diffusion, 154, 311
divergence, 244, 310
gradient, 169, 197, 244

Discrete upwinding, 156
for systems, 199

Discretization
finite difference, 4
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group, 152, 196, 307
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nonconforming, 243

finite volume, 28
non-oscillatory, 69, 72
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adaptive, 30, 51
artificial, 24, 69, 154
background, 138
fourth-order, 123, 407
numerical, 33, 125
Roe-type, 199
Rusanov-type, 200
scalar, 123, 200
second-order, 123, 407
tensorial, 199
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Edge-based
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FEM-FCT solver, 128
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slope limiter, 167

Energy transfer, 70
Entropy fix, 234, 407
Equation
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continuity, 1, 178
convection-diffusion, 147
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modified, 69, 73
momentum, 1, 69
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pressure, 5
pressure correction, 245
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FCT bounds, 28, 55

for systems, 43, 206, 405
physical, 33, 347

Flux, 8
antidiffusive, 11, 27, 157

raw, 14, 157, 160, 161
diffusive, 9
high-order, 29–33

dissipative, 36, 47, 55
pseudospectral, 42
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Godunov, 50
HLL, 403
Lax-Friedrichs, 33, 404
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target, 354
transportative, 9, 28

Flux correction, xi, see flux limiting
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optimization-based, 354

Flux decomposition, 121, 156, 368
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Boris-Book, 13, 36, 45, 405
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Flux limiter (cont.)
failsafe, 34, 47, 207, 320, 407
GAMMA, 74, 98
minmod, 171, 411
non-clipping, 40
synchronized, 138, 205, 310
TVD, 74, 98, 120
Zalesak, 39, 53, 162, 205, 316

Flux limiting, 11, 45
after evaluation, 125–127
before evaluation, 121–125
for systems, 43, 60, 137, 204
linearity preserving, 171
multidimensional, 28, 52, 171
strong, 11, 20
symmetric, 171
upwind, 172

Fourier
mode, 29, 37
transform, 18

Frame invariance, 320
Front, see discontinuity

G
Geometric conservation law
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discrete, 309, 312

Gibbs effect, 4, 18
Godunov

flux, 50
method, 411
theorem, ix, 122, 149

GPU computing, 292
Gradient recovery, 122, 169
Grid transfer

prolongation, 252
remap, 301, 354
restriction, 252

I
Incompressible flow problems

backward facing step, 266
benchmarking, 287, 292
disperse two-phase flows, 274–280
interfacial two-phase flows, 285–290
natural convection, 255
turbulent channel flow, 264

Initial conditions
Euler equations, 209
k–ε model, 259

Interpolation
conservative, 304, 353
constrained, 209, 310–321, 354–368

Iterative method

block-Gauß-Seidel, 203, 250
block-Jacobi, 203, 250
defect correction, 173, 202
multigrid, 252, 292
Newton, 202, 257, 375
nonlinear SSOR, 174

L
L2 projection, 169, 209, 249
Large Eddy Simulation, 68, 93

conventional, 69, 70
implicit, 71
MILES, 72–76, 94, 98

Level set algorithm
interface description, 281
mass conservation, 283
reinitialization, 282
surface tension, 284

Linearity preservation, 167, 170, 353, 380
Linearization

antidiffusive fluxes, 159, 202
Jacobian matrix, 198, 405
sink terms, 259

Local extremum diminishing
antidiffusive term, 158, 168
interpolation (remap), 313
low-order scheme, 154, 199
space discretization, 149

Lorentz force, 432

M
M-matrix, 151, 311
Mass, 352

conservation, 9, 273, 283, 306, 353
lumping, 125, 154, 209, 309

Matrix
Jacobian, 44, 195, 202, 257

eigenvalues, 195, 234
eigenvectors, 46, 61, 234

mass, 121, 148, 197, 244
monotone, 151
Roe, 123, 198

Maximum principle
continuous, 147
discrete, 149–151
semi-discrete, 149

Method, see scheme
discrete projection, 249, 256
fractional-step, 245
front-capturing, 24
high-order, 125
level set, 281
low-order, 99
of analytic solutions, 411
of classes, 272
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Method (cont.)
of lines, 35, 404
predictor-corrector, 160, 202, 315
Schur complement, 244–257

global, 248
local, 250
multilevel, 252

MILES applications
contaminant transport, 100
global instabilities, 80–83
homogeneous turbulence, 77
prolate spheroid, 83
rectangular jet, 81
submarine hydrodynamics, 85
turbulent channel flow, 78
urban flow simulations, 101–114
vorticity dynamics, 80–83

Monotonicity, 4, 50, 58, 73, 409
Monotonicity preservation, 75, 383

N
Navier-Stokes equations, 2

coupling with scalar equations, 254
incompressible, 69, 239
Reynolds-averaged, 68, 93, 258

O
Optimization problem

bound-constrained, 370
box constraints, 362
formulation, 354–362
relation to FCR, 366
solution techniques, 369–375

Order of accuracy, 177, 214, 419
Overlapping grids, 402, 413, 435

P
Phase accuracy, 15
Population balances

coupling with CFD, 274
discretization, 272
modeling, 269

Positivity, 4, 15, 73
Positivity preservation

continuous, 147
discrete, 149–151, 258, 311
semi-discrete, 149

Pre-constraining, 41, 54
Pre-limiting, 32, 58, 162, 317, 405
Preconditioner

defect correction, 173
Richardson iteration, 160
Schur complement, 246

additive, 248

partial, 248
Pressure sensor, 123

R
Relaxation

adaptive, 253
explicit, 173
implicit, 175

Remap, 301, 350
conservative, x, 304
cyclic, 321, 386
design criteria, 347
flux corrected, 366

for scalar fields, 310–318
for systems, 318–321
iterative, 367

locality condition, 350
optimization-based, 354–365

Resolving power, 30, 420
Rezoning strategy

1D tests, 321
3D tests, 326

Riemann invariants, 210
Riemann problem, 50, 122

radially symmetric, 219
Riemann solver

approximate, 50, 123, 211, 411
exact, 76, 122, 211

Ripples, 4, 7, 20, 137
Roe

dissipation, 199
matrix, 123, 198
mean values, 198, 405
solver, 211, 234, 411

Rusanov
dissipation, 200
flux, 47, 404

S
Scheme

centered, 75, 156, 404
conservative, 8, 26
donor-cell, 7, 15, 54
FCT, ix, 8–21, 25

design criteria, 28
finite element, 125, 159
for systems, 43, 60, 204
Fourier-transform, 17
iterative, 127, 162
linearized implicit, 159
nonlinear implicit, 161
phoenical, 14, 20
reversible, 16

high-resolution, 24, 73, 149
Lax-Wendroff, 15, 124
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Scheme (cont.)
LED, 149, 313

for systems, 199
MPDATA, 76
MUSCL, 32
PPM, 32, 76
SHASTA, x, 8–10, 12
Taylor-Galerkin, 124
TVD, 121, 149, 167

for systems, 208
upwind, 7, 75, 99, 156

Simulation software
CLAWPACK, 221
FAST3D, xi, 94
FEATFLOW, 254
LCPFCT, xi

Slope limiter, xi, 168
Slope ratio, 74
Smoother, 252

global PSC, 253
local PSC, 254
Vanka, 247

Sonic fix, see entropy fix
Splitting, 21, 61, 208
Steepener, 13, 14, 134

T
Terracing, 20, 33, 37, 138, 164
Test problem

anisotropic diffusion, 185
circular convection, 183
cyclic remap, 321, 386
semi-ellipse, 36
solid body rotation, 55, 178
square wave, 7, 36
torture, 376

Time step limit, 6, 15, 156, 160
Time stepping

θ -scheme, 153, 201, 242
Adams, 404
backward Euler, 153, 242
Crank-Nicolson, 16, 153
forward Euler, 153, 410
leapfrog, 4, 35

Runge-Kutta, 36, 153
Turbulence model

eddy viscosity, 68
k–ε, 93, 258
low-Re, 263
one-equation, 70
Smagorinsky, 70

scale similarity, 68, 74
subgrid scale, 68, 94

explicit, 69, 70
implicit, 71, 98

wall functions, 261
Turbulent

dispersion, 92
eddy viscosity, 68

tensor-valued, 72, 74
incompressible flows

DNS, 68, 93
LES, 68, 93
RANS, 68, 93, 258

U
Urban flow modeling

atmospheric boundary layer, 95
boundary conditions

inflow, 95
wall, 97

geometry specification, 97
grid masking, 97
solar heating, 96
tree effects, 97

V
Variables

characteristic, 44, 208, 405
conservative, 34, 195
non-conservative, 138, 206
transformation, 46, 138, 204, 405

Viscosity
artificial, 6, 199
Lapidus, 120

W
Wiggles, see ripples
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