HIGH DEGREE EFFICIENT SYMMETRICAL GAUSSIAN QUADRATURE RULES FOR THE TRIANGLE

D. A. DUNAVANT[†]

School of Civil Engineering, Purdue University, West Lafayette, Indiana, U.S.A.

SUMMARY

Gaussian quadrature is required for the computation of matrices based on the isoparametric formulation of the finite element method. A brief review of existing quadrature rules for the triangle is given, and the method for the determination of high degree efficient symmetrical rules for the triangle is discussed. New quadrature rules of degree 12–20 are presented, and a short FORTRAN program is included.

INTRODUCTION

Gaussian quadrature is employed when the integration of a function in terms of elementary functions cannot be performed without difficulty. Quadrature is a widely used method of numerical analysis, and is required for the computation of various matrices based on the isoparametric formulation of the finite element method.

A shape of elements frequently used is triangular, and we consider the natural triangle of area A as shown in Figure 1, where natural co-ordinates (α, β, γ) are

$$\alpha = \frac{A_1}{A}, \quad \beta = \frac{A_2}{A}, \quad \gamma = \frac{A_3}{A} \tag{1}$$

and

$$0 = \alpha + \beta + \gamma - 1 \tag{2}$$

The following integral is frequently required:

$$\int_{A} f(\alpha, \beta, \gamma) \,\mathrm{d}A \tag{3}$$

Integration is performed by a Gaussian quadrature rule such that

$$\int_{A} f(\alpha, \beta, \gamma) \, \mathrm{d}A = A \sum_{i=1}^{ng} w_{i} f(\alpha_{i}, \beta_{i}, \gamma_{i}) \tag{4}$$

where for the *i*th Gaussian point of location $(\alpha_i, \beta_i, \gamma_i)$, there corresponds a Gaussian weight w_i and functional evaluation $f(\alpha_i, \beta_i, \gamma_i)$. All but two^{1,2} of the previously developed rules are based on the assumption that f is a simple and complete polynomial of highest order p. The error in quadrature is zero if the number of points nq is of sufficient magnitude.

Received 3 April 1984 Revised 11 July 1984

[†]Assistant Professor of Structural Engineering.

^{0029-5981/85/061129-20\$02.00}

^{© 1985} by John Wiley & Sons, Ltd.

Isoparametric formulation involves a mapping transformation between a different co-ordinate system, say x-y, in which integration is required, and the natural co-ordinate system. Since the assumed displacement functions are usually expressed by polynomial representation, f will include zero or more products of zero or more derivatives of those polynomials. For example, a consistent mass matrix of order p results from assumed displacement functions of order p/2. The function f will also include J, the determinant of the Jacobian. If the sides of the x-y triangle are straight and the nodal spacing uniform, the mapping transformation will be linear, J scalar, f non-rational and non-singular polynomials, and the error in approximation by quadrature zero for sufficient ng. If the sides are curved, the map will be nonlinear, J and also f rational and non-singular polynomials, and the error will converge to zero as ng is progressively increased. However, if the sides are straight and the nodes are placed in certain locations,³ the map will be nonlinear, J and also f rational and singular polynomials, and the error will not necessarily converge as ng is progressively increased. Specialized rules suitable for the strength of singularity¹ should be used if accuracy is necessary.

GAUSSIAN PRODUCT AND SYLVESTER QUADRATURE RULES

Product and Sylvester rules are sometimes used for quadrature over a triangular area. There are advantages and disadvantages to both.

1. Gaussian product rules may be formed by successive application of one-dimensional Gaussian rules. First, since it is known that⁴

$$\mathrm{d}A = 2A\,\mathrm{d}\alpha\,\mathrm{d}\beta\tag{5}$$

Equation (3) may be written

$$2A \int_{\alpha=0}^{1} \int_{\beta=0}^{1-\alpha} f(\alpha,\beta,\gamma) \,\mathrm{d}\beta \,\mathrm{d}\alpha \tag{6}$$

The two changes of variables are

$$\alpha = \frac{1+u}{2} \tag{7a}$$

$$\alpha = \frac{(1-\alpha)(1+v)}{2}$$

$$=\frac{1}{2}$$

$$=\frac{(1-u)(1+v)}{4}$$
(7b)

Substitution yields

$$\frac{A}{4} \int_{u=-1}^{1} (1-u) \int_{v=-1}^{1} f(\alpha, \beta, \gamma) \, \mathrm{d}v \, \mathrm{d}u \tag{8}$$

By successive application of one-dimensional rules

$$\int_{A} f(\alpha, \beta, \gamma) \,\mathrm{d}A = \frac{A}{4} \sum_{i=1}^{m} w_i (1-u_i) \sum_{j=1}^{n} w_j f(\alpha_i, \beta_i, \gamma_i) \tag{9}$$

The Gaussian points and weights in the u or α direction are u_i and w_i , and in the v or β direction are v_j and w_j . The number of points m and n in each direction may be different, but the lower value will control. The type of rule in each direction may also be different and, for example, Radau and Legendre rules have been used.⁴ Usually, m and n will be identical, as will the two types of rules.

Product rules have several advantages. Their derivation and application is straightforward. They are versatile in that many one-dimensional rules are available for several different integrands.⁵ Extremely high-order polynomials may be evaluated, although precision may be limited since most references provide points and weights to 20 significant digits at most.

The primary disadvantage is inefficiency since for high p, a relatively large number of points is required, and other quadrature rules are available with many fewer points. For one-dimensional Legendre rules, quadrature will be exact with n points if the 2nth derivative of the integrand is zero.⁵ For Legendre product rules, quadrature will be exact with n^2 points if the 2nth derivative of the function f is zero. The secondary disadvantage is that the location of the points is unsymmetrical. Except for rules of low degree, a large number of points will be concentrated in a relatively small region near one vertex. Such an arrangement, although correct, may be considered aesthetically undesirable.

2. Sylvester rules⁶ are extensions to the triangle of one-dimensional Newton-Cotes rules of either closed or open type. Although locations of points are symmetrical, such rules require more points than product rules. A triangular layout of points for which there are n + 1 points along a side, and thus a total number of n(n + 1)/2 points, would integrate a polynomial of degree n.

MOMENT EQUATIONS FOR EFFICIENT SYMMETRICAL GAUSSIAN QUADRATURE RULES

The beginning of the development of such rules is apparently Reference 7, where it is stated that 'the general theory is missing, but a general type of method is proposed for which illustrations are provided'. The illustrations are rules for p = 1, 2, 3 and 5. It is also stated that 'there are known hyperefficient formulas', which is now thought to be unlikely. The general method is briefly discussed in Reference 8, and rules for p = 4, 6 and 7 are given. Additional rules are also given for p = 3, 4 and 5, but have more points than are necessary.

The method will be described as follows. An arbitrary complete polynomial of order p having np terms is assumed for the function f, where

$$np = \frac{(p+1)(p+2)}{2} \tag{10}$$

For example, if p = 2,

$$f(\alpha, \beta, \gamma) = [\alpha^2 \beta^2 \gamma^2 \alpha \beta \beta \gamma \gamma \alpha] \{a\}$$
(11)

It is more convenient, and equivalent because of (2), to alternatively assume

$$f(\alpha, \beta) = [1 \alpha \beta \alpha^2 \alpha \beta \beta^2] \{a\}$$
(12)

The arbitrary polynomial coefficients are $\{a\}$. With the following relationship⁹:

$$\int_{A} \alpha^{i} \beta^{i} \, \mathrm{d}A = 2A \frac{i!j!}{(i+j+2)!}$$
(13)

The left-hand side of (4) is then

$$\int_{A} f(\alpha, \beta) \,\mathrm{d}A = \frac{A}{12} [1244212] \{a\}$$
(14)

The right-hand side of (4) is

$$A \sum_{i=1}^{ng} w_i f(\alpha_i, \beta_i) = A w_1 [1 \alpha_1 \beta_1 \alpha_1^2 \alpha_1 \beta_1 \beta_1^2] \{a\} + \cdots + A w_i [1 \alpha_i \beta_i \alpha_i^2 \alpha_i \beta_i \beta_i^2] \{a\} + \cdots + A w_{ng} [1 \alpha_{ng} \beta_{ng} \alpha_{ng}^2 \alpha_{ng} \beta_{ng} \beta_{ng}^2] \{a\}$$
(15)

For (4) to hold true, we equate the right-hand sides of (14) and (15), and for arbitrary $\{a\}$, the resulting moment equations are

$$0 = \sum_{i=1}^{ng} w_i - 1$$

$$0 = \sum_{i=1}^{ng} w_i \alpha_i - \frac{1}{3}$$

$$0 = \sum_{i=1}^{ng} w_i \beta_i - \frac{1}{3}$$

$$0 = \sum_{i=1}^{ng} w_i \alpha_i^2 - \frac{1}{6}$$

$$0 = \sum_{i=1}^{ng} w_i \alpha_i \beta_i - \frac{1}{12}$$

$$0 = \sum_{i=1}^{ng} w_i \beta_i^2 - \frac{1}{6}$$

The system of nonlinear equations is not independent, and reduces to

$$0 = \sum_{i=1}^{ng} w_i - 1 \tag{17a}$$

$$0 = \sum_{i=1}^{ng} w_i \gamma_i^2 - \frac{1}{6}$$
(17b)

For higher values of p, a similar reduction in the number of equations becomes difficult by algebraic manipulation. However, the reduction can be accomplished directly if, instead of the natural triangle, the triangle shown in Figure 2 is considered, and the polynomials are expressed with deMoivre's theorem in polar co-ordinates.¹¹ Two different equations have been developed^{10,11} which provide identical results for m, the number of independent equations, the

Figure 2. Alternative triangle and polar co-ordinates

simpler being¹¹

$$m = \frac{(p+3)^2 + \alpha_p}{12} \tag{18}$$

where

 $\alpha_p = +3, -4, -1, 0, -1, -4 \tag{19}$

for

$$p = 0, 1, 2, 3, 4, 5 \tag{20}$$

and

$$\alpha_{p+6} = \alpha_p \tag{21}$$

The moment equations are,¹¹ with a minor correction

$$w_0 + \sum_{i=1}^{n_1} w_i + \sum_{i=n_1+1}^{n_1+n_2} w_i = v_{0,0} = 1$$
(22a)

$$\sum_{i=1}^{n_1} w_i r_i^j + \sum_{i=n_1+1}^{n_1+n_2} w_i r_i^j \cos(3k\alpha_i) = v_{j,3k}$$
(22b)

for

and

$$2 \leqslant j \leqslant p \tag{23}$$

subject to

$$j + 3k = \text{even} \tag{25}$$

The polar moments $v_{j,3k}$ are¹¹

$$v_{j,3k} = \frac{1}{A} \int_{A} r^{j} e^{i3k\alpha} r \, \mathrm{d}r \, \mathrm{d}\alpha \tag{26}$$

$$=\frac{1}{A}\int_{A}r^{j+1}\mathrm{e}^{i3k\alpha}\,\mathrm{d}r\,\mathrm{d}\alpha\tag{27}$$

By symmetry, we need only consider the region of the triangle $-\pi/3 \le \alpha \le +\pi/3^{12}$, and with the relationship which applies only the edge

 $0 \leq 3k \leq j$

$$r = \frac{1}{2\cos\alpha} \tag{28}$$

(24)

It follows that

$$v_{j,3k} = \frac{3}{A} \int_{-\pi/3}^{\pi/3} \int_{0}^{1/2 \cos \alpha} r^{j+1} \, \mathrm{d}r e^{i3k\alpha} \, \mathrm{d}\alpha \tag{29}$$

With the substitutions of

$$A = \frac{3\backslash|\overline{3}|}{4} \tag{30}$$

and

$$e^{i3k\alpha} = \cos 3k\alpha + i\sin 3k\alpha \tag{31}$$

For real $v_{j,3k}$, we obtain

$$v_{j,3k} = \frac{1}{\sqrt{|3(j+2)2^j}} \int_{-\pi/3}^{\pi/3} \frac{\cos 3k\alpha}{(\cos \alpha)^{j+2}} d\alpha$$
(32)

Calculation of $v_{j,3k}$ for relatively small values of j and 3k is straightforward, but becomes increasingly difficult for larger values. It becomes necessary to perform the integration with a symbolic algebraic manipulation program.¹³ However, it is noted that in doing so, it is necessary to use program options which expand a multiple angle function to functions of a single angle. Values of m, (j, 3k) and $v_{j,3k}$ for up to m = 44 corresponding to p = 20 are given in Table I. Gaussian points and weights can be classified into one of three groups, as given in Table II.

The sum of the weights per groups is w_i . The radial distance from the centre to a point in the group is r_i . For the n_1 groups, all three points lie on the trisecting medians of the triangle. For the median $\alpha = 0$, if $r_i > 0$ then the triangle formed by the three points as vertices is termed 'inverted'

p	m	j, 3k	v _{j, 3k}	p	m	j, 3k	V _j , 3k
1	1	0, 0	+ 1		23	14, 6	+ 85/8008
2	2	2, 0	+ 1/4	14	24	14, 12	+ 1/112
3	3	3, 3	- 1/10		25	15, 3	- 6733/680680
4	4	4, 0	+ 1/10		26	15, 9	- 109/12376
5	5	5, 3	- 2/35	15	27	15, 15	- 1/136
	6	6, 0	+ 29/560		28	16, 0	+ 217/24310
6	7	6, 6	+ 1/28		29	16, 6	+ 209/24752
7	8	7, 3	- 1/28	16	30	16, 12	+ 1/136
	9	8, 0	+ 11/350		31	17, 3	- 2909/369512
8	10	8, 6	+ 1/40		32	17, 9	- 65/9044
	11	9, 3	- 37/1540	17	33	17,15	- 2/323
9	12	9, 9	- 1/55		34	18, 0	+ 66197/9237800
	13	10, 0	+ 13/616		35	18, 6	+ 8069/1175720
10	14	10, 6	+ 1/55		36	18, 12	+ 317/51680
	15	11, 3	- 49/2860	18	37	18, 18	+ 1/190
11	16	11, 9	- 2/143		38	19, 3	- 3769/587860
	17	12, 0	+ 425/28028		39	19, 9	- 77/12920
	18	12, 6	+ 137/10010	19	40	19, 15	- 1/190
12	19	12, 12	+ 1/91		41	20, 0	+ 83651/14226212
	20	13, 3	- 64/5005		42	20, 6	+ 11303/1989680
13	21	13, 9	- 1/91		43	20, 12	+ 92/17765
_	22	14, 0	+ 523/45760	20	44	20, 18	+ 1/220

Table I. Polar	moments	$v_{j, 3k}$
----------------	---------	-------------

No. of groups	No. of points per group	Unknowns per group	No. of unknowns per group	Remarks
no	1	wo	1	$n_0 = 0, 1$
n_1	3	w_i, r_i	2	
<i>n</i> ₂	6	w_i, r_i, α_i	3	$0 < \alpha_i < \pi/3$

Table II. Groups of Gaussian points and weights

relative to the triangle of Figure 2. If $r_i < 0$, the triangle is 'upright'. For the n_2 groups, $r_i > 0$, and $0 < \alpha_i < \pi/3$. The total number of unknowns is n^{11} :

$$n = n_0 + 2n_1 + 3n_2 \tag{33}$$

and the number of Gaussian points is ng^{11} :

$$ng = n_0 + 3n_1 + 6n_2 \tag{34}$$

SOLUTION OF MOMENT EQUATIONS FOR HIGH-DEGREE GAUSSIAN QUADRATURE RULES

Solution of (22) requires that at least as many unknowns be provided as there are equations:

$$m \leq n$$
 (35)

Appropriate values must first be selected for n_0 , n_1 and n_2 . For m = n, Reference 10 gives those values and corresponding quadrature rules for $p \le 10$, and prediction of values of n_0 , n_1 and n_2 for $p \ge 11$. Also for m = n, Reference 11 gives values and rules for $p \le 9$ and 11, and equations for

Table III. Predicted values of (n_0, n_1, n_2) and confirmed values of n_2 min

	Product		Refere	nce 10)		Refere	nce 11		Confirmed
р	ng	n_0	n_1	n_2	ng	n_0	n_1	n_2	ng	$n_2 \min$
1	1	1	0	0	1	1	0	0	1	0
2	4	0	1	0	3	0	1	0	3	0
3	4	1	1	0	4	1	1	0	4	0
4	9	0	2	0	6	0	2	0	6	0
5	9	1	2	0	7	1	2	0	7	0
6	16	0	2	1	12	0	2	1	12	1
7	16	1	2	1	13	1	2	1	13	1
8	25	1	3	1	16	1	3	1	16	1
9	25	1	4	1	19	1	4	1	19	1
10	36	0	4	2	24	0	4	2	24	2
11	36	0	5	2	27	0	5	2	27	2
12	49	0	5	3	33	0	5	3	33	3
13	49	0	6	3	36	0	6	3	36	3
14	64	1	7	3	40	0	6	4	42	4
15	64	0	9	3	45	1	7	4	46	5
16	81	0	9	4	51	1	7	5	52	5
17	81	1	10	4	55	1	7	6	58	6
18	100	0	11	5	63	0	8	7	66	7
19	100	1	12	5	67	1	9	7	70	8
20	121	1	14	5	73	0	10	8	78	8

prediction of values for $p \ge 12$. Table III gives both sets of values for $p \le 20$, and for each the corresponding number of points ng. We also give the number of points required for a Legendre product rule.

Both references give identical values of n_0 , n_1 and n_2 for $p \le 10$, and the quadrature rules for $p \le 9$ given in each are identical. For p = 10, Reference 10 was unable to obtain a rule for 24 points, but a 25-point rule was given. Reference 11 did not provide a rule for p = 10, but a rule for p = 11 was given.

The correctness of rules for $p \le 11$ was confirmed by writing moment equations based on (12) for which the derivation is much simpler than (22). Various library packages are available for the solution of systems of nonlinear equations, which is one of the most difficult of all areas of numerical analysis, and a comparative study has been made.¹⁴ The IMSL library,¹⁵ containing subroutines ZSCNT, ZSPOW and ZXSSQ, was used and all three require an initial estimate of the solution.

Knowing for each value of p the values of n_0 , n_1 and n_2 , it was assumed that all weights were zero. For the n_1 groups, the number of triangles assumed inverted is inv:

$$0 \leq \operatorname{inv} \leq n_1 \tag{36}$$

For the inv inverted triangles, one point was assumed at r = 1/2, with equal spaces between the remaining points. Similarly, for the remaining upright triangles, one point was assumed at r = -1, with equal spaces between the remaining points. For the n_2 triangles, it was assumed that the angular spacing was equal between radial lines, and the points were located closely to the outer edge.

Computations were performed in double precision on a DEC VAX 11/780, and the results are given in Table IV, where X indicates that a rule was not obtained, and a number indicates that a rule was obtained, for that order. With the exception of p = 2, a rule was never obtained, when the number of inverted triangles exceeded the number of upright triangles:

$$\operatorname{inv} \leq \operatorname{int}\left(\frac{n_1}{2}\right) \tag{37}$$

where int denotes the integer part.

ZXSSQ proved to be the superior subroutine. It converged much faster than ZSCNT. It appeared to converge when the other two at times failed, a conclusion reached elsewhere¹⁴ for similar subroutines based on a Levenberg–Marquardt algorithm. Further, ZXSSQ did not require that the number of equations and unknowns be equal, and relaxed the restriction of m = n imposed by ZSCNT and ZSPOW.

All three subroutines employ iterative techniques, and the computational time for solution increased dramatically as p approached 11. It was evident that if rules for higher p were to be found, a substantial reduction of time was required. Execution was performed on the much faster CDC 6500 and 6600 machines, but the time was unacceptable. Automatic vectorization of ZXSSQ and execution on a Cyber 205 supercomputer still required excessive computational time. At this point, the moment equations (22) were used, which reduced the number of np equations to a minimum by a factor of about six.

We now discuss how new rules for $p \ge 12$ were achieved. Table III shows that the two predictions of n_0 , n_1 and n_2 are different for $p \ge 14$. The allowance of $m \le n$ of ZXSSQ made it possible to experimentally confirm that Reference 11 was correct. For example, it is not possible to obtain a rule for p = 6 regardless of the value of n_1 if $n_2 = 0$. An identical procedure was used for $p \le 20$, and the only unconfirmed values were p = 15 and 19, although Reference 11 is probably correct. In addition to (35), the following requirement must be met:

$$n_2 \ge n_2 \min$$
 (38)

						iı	nv		
р	n_0	n_1	n_2	ng 0	1	2	3	4	5
1	1	0	0	1 1					
2	0	1	0	3 2	2				
3	1	1	0	4 3	X				
4	0	2	0	6 X	4	X			
5	1	2	0	7 X	5	X			
6	0	2	1	12 6	X	X			
7	1	2	1	13 7	X	X			
8	1	3	1	16 X	8	X	X		
9	1	4	1	19 X	X	9	X	X	
10	0	4	2	24 X	X	X	X	X	
10	1	4	2	25 X	X	X	Х	Х	
10	1	2	3	25 10	10	X 11			
11	0	2	2	27		11			
12	0	5	3	33 26 V	v	12 V	v	v	
13	0	0	3	30 X	X	X	X 12	х	
13	1	0	3	3/ X	X	A 14	13 V		
14	1	07	4	42 X	A V	14 V	A V	v	v
15	1	0	4	40 A 40 V	A V	A V	A V	N V	Λ
15	0	6	4	40 A 10 V	N V	15	л	Λ	
15	1	7	5	40 A 52 V	× ×	v	16		
10	1	<i>'</i>	5	52 A	v	x X	v	v	
17	<u> </u>	8	6	50 A	Λ	Λ	л	÷.	
17	ň	6	7	60		x		1	
17	1	8	6	61		Λ		17	
18	ò	Ř	7	66			х	1,	
18	1	8	7	67		x	x	x	
18	1	ě	8	67		x	x	••	
18	Ō	7	8	69		x	x		
18	1	9	7	70				18	
19	1	9	7	70			x	X	
19	1	10	7	73				-	Х
19	1	8	8	73			19	Х	
20	0	10	8	78 X	х			X.	Х
20	1	10	8	79				20	Х
	I	10	0	19				20	Λ

Table IV. Values of (n_0, n_1, n_2) and inv for quadrature rules

The closeness of the initial estimate to the rule became more important than for $p \le 11$. For Legendre rules, the weights are dependent on the location of the points, and a graphical relationship has to be established.¹⁶ However, the only relationship found here was that w_i decreased with increasing r_i . As p approached 20, the weights were adjusted accordingly, otherwise it was sufficient to assume equal weights for all ng points:

$$w_{0} = \frac{1}{ng} \qquad n_{0} = 1$$

$$w_{i} = \frac{3}{ng} \qquad 1 \le i \le n_{1} \qquad (39a-c)$$

$$w_{i} = \frac{6}{ng} \qquad n_{1} + 1 \le i \le n_{1} + n_{2}$$

The initial estimate of the point locations appeared to be more critical than the weights, which suggests a similarity to Legendre rules, for which the weights depend on the point locations. Orthogonal polynomials for the triangle have been developed,^{17,18} and a correlation has been established between the zeros of the polynomials and quadrature rules.¹⁸ It has also been stated that initial estimates may be obtained by a graphical means.¹⁸ However, attempts to extend either of these two techniques to rules for higher values of p did not prove successful.

The point locations of Legendre rules are more closely spaced away from the centroid. Similarly, as p approached 20, the initial estimate of the n_1 points were adjusted accordingly, otherwise it was sufficient to assume equal spacing as discussed previously. Similarly, the estimate of the n_2 points followed two guidelines developed from observation of previously existing rules. First, points preferred locations closer to the edge of the triangle than the centroid. Second, locations were preferred closer to the median $\alpha = \pi/3$ than $\alpha = 0$. The result was that points were spaced along the edge, and the spacing was closer near the vertex.

Quadrature rules are optimal when the number of Gaussian points ng equals that predicted by Reference 11. Attempts to locate such rules first assumed inv to be maximum from (37). If a rule was not found, inv was decreased until it was felt that an optimal rule would not be found. The next larger number of Gaussian points was assumed, for which combinations of values of n_0 , n_1 and n_2 satisfied (35) and (38). The procedure was repeated until a rule was found. The results are given in Table IV, and show that optimal rules are increasingly difficult to locate as p is increased. However, in all instances rules were located which are quasi-optimal, since ng was only slightly increased.

Quadrature rules for $1 \le p \le 20$ are given in Appendix II. The FORTRAN program source listing is given in Appendix III, and may be used either to calculate the rules to greater precision if necessary, or to extend the rules to higher degree. All computations were performed on CDC 6500 and 6600 machines. The CDC Extended Fortran Version 4 compiler was used, since other compilers sometimes aborted execution with a negative square root argument. Execution in single precision eventually resulted in roundoff problems, and so double precision with approximately 28 digits of precision was used. However, this considerably increased the execution time, which was nearly 3 hours for p = 20.

CONCLUSIONS

The Gaussian quadrature rules discussed in this paper are symmetrical and are at present the most economically available. The number of moment equations for which the solution is the Gaussian points and weights have been reduced to a minimum by Lyness and Jespersen.¹¹ However, the solution of such a system of nonlinear equations requires an initial estimate and employs iterative techniques which are computationally intensive. Guidelines are presented for the estimation of the solution, and available quadrature rules for the triangle have been increased from degree 11 to degree 20.

ACKNOWLEDGEMENTS

The author wishes to thank Professor R. H. Lee of Purdue University for generously given advice and assistance during the course of this investigation. He also is grateful to Professor D. R. Brown for the provision of resources of the Purdue University Computing Center.

APPENDIX I: NOTATION FOR APPENDIX II

- p = Order of complete polynomial.
- ng = Number of Gaussian points and weights.
- nsig = Number of significant digits.
- ssq = Sum of the squares of the residuals of the moment equations.
- error = Relative difference between exact integration and numerical quadrature.
- ifn = Number of calls to subroutine func.
- infer = 1 indicates that nsig criterion of 15 was achieved.
- time = CPU time, in seconds, required for solution of the moment equations.

APPENDIX II

p=	z	1	T	ng	-	1	r	IS :	i g	; = :	29	.0)	88	q =	•0	•			(er	rc) <i>t</i> =	E	0	•				if	n	-		2	1	nf	e	r =	4	t	11	ne	=			0
			V	ve.	i	3µ.	t .			÷.	_					a	1 p	ha	1					_			_	t	e	ta	_					_			_ {	зa	m	na				_
1.	, 0	00	00	00	00	0	00	00	00	00	0	C).	33	33	33	33	33	33	3:	33	33	3	0	•	33	3	33	3	33	3	33	33	33		0.	3:	33	33	33	3:	33	33	33	33	3
p≖	2	2	T	1 g	-	3	r	s	ig	ς≖	29	• • 0)	s s	q ª	•0	•	1.			e r	ro)r=	•	8	. d	-	29)	if	'n	=		3) 1	nf	e	r =	4	t	1	me	-			0
0.	. 3	3	33	ve 33.	1 § 3 3	gn 33	с 33	3	33	3	3	C).	66	66	а 56	1p 66	na 6(а 66	60	66	67	,	0	•.	16	6	ء 66	5e	са 66	1 66	66	66	67	,	ο.	1	66	66	3a 56	m) 6(та 66	66	66	56	7
p =	Ŧ	3	r	ng	=	4 	r.	is :	ig	; =)	22	• 5	5	88	q =	-2	• d	-! b	58	•	er	ra	or=	-	2	. d	-	28 ۲	}	if	n	-		95	i 1	nf	e	r =	1	t	1	ne	=			0
-0	5	6	25	10	ስሰ	5	n n	0	იი	0	n	c	3	22	3:	เจิ	1 Y 1 1	21	້າ	2 '	2 2	2 3	2	n		२ २	3	33	12	23	3	२ २	3 3	33		٥	2	2 2	22	ja i a	3	22	33	133	12	3
Ő.	5	2	08	33	3	33	3 7	3	33	13	ž	č).	60	00	0	00	00	20	0	00	00	Ś	ň		20	0	00	0	00	0	00	00	000	,)	ŏ.	21	00	00	ìõ	0	00	00	00	0	ົ
•••		-	• •								•	``	•									•••		Č	•		Ŭ					••	•••	•••		•	-	••			•	•••				Ŭ
p -	-	4	I	ng	=	6 ~h	ſ	ទេ	ię	; =	23	•)	SS	٩	=2	. d	- ! Ъ	58		e r	r	or=	=	2	• d	l –	28	3	if	n	#		86	5 i	nf	e	r≃	1	t	1	me	-			0
Δ	2	, ,	ູ້	ve va	+ 1	511 5 R	ι 0 4	.7	R L	11	1	6	`	10	Q .	a I∩	<u>з</u> 0 тЪ	112	α Ω 1	6	8 N	7 (h	n			5	۱ م ۱	se Se	70	L ≩∩	a 1	5 0	161		n	6	. 5	0	za 1. g	. ш Аз	യ ക മ റ	0 1	150	26	5
n n	1	0	a (35	1	76	26	5	53	12	2	ć	Ś.	01	69	27	75	7	2 a	21	00	50	, ג	0	•	44 00	1	57	10 16	21	12	50	07	70.	,	Δ.	<u>_</u>	4 J 0 1	5	+0 76	2	30 13	51	10:	, 0 , 7	1
0		. 0	٠.	,,		4	50				2	Ľ	•	01	0.		/)		.,	01	4	53	,	0	•	0 9		, ,	0	21		50		<i>'</i> '	-	••	0	71		0	2	1.7	50		.,	T
p	=	5	1	ng	=	7	r	ıs	ię	3=	24	• • 1	L	ss	٩·	=4	• d	-	58		e r	r	or=	=	2	• ċ	i –	28	3	if	n		1	. 1 1	i	nf	e	r =	• 1	t	1	me	=			0
~	,	• •	- V - /	ve >>	1	gn	t		~ ~		~		、	<u>.</u>	~ ·	a	1 p	ha	a n n	2	<u>-</u>	~		~		~ ~		2	e o	ta	1	<u>-</u>	2.2			~	~	<u> </u>		3a	m	ma				2
0	• 4	22	20	10	0 0	00	00	10		10	0 C		٠,	33	3	53	33	3.	33	<u>ა</u> .	33	3:	5	0	•	33	53	32	53	33	53	33	33	333	5	υ.	3.	33	3.	33	3.	55	3:	33.	33	5
0	• J	10	2.	39	4.	1.2	21	0	03	20	0 7		· •	70	9	11	20		1/	ð r	91 20		,	0	•	41	0	14	+ Z	00	>4	10	21	. 13)	0.	. 4	70	11	+ 2	.U	04	10	15		ç
0	• 1	ĽZ	5:	93	У.	10	03	94	4 C	52	′	·	•	19	/ '	ŧΖ	69	ο.	23	5.	20	0	/	U	•	10	1	20	00	50	, ,	32	4 د .	500)	υ.	1	U I	24	30	5	07	34	234	+ 2	o
p≖	=	6	1	ng	=	12	T	ıs	íę	3=	22	27	7	s s	q :	= 2	. d	- :	58		e r	r	or=	-	2	• ċ	i -	28	3	11	Ĩn	=	2	233	3 i	n f	e	r =	1	t	1	me	-			2
0	,			ve	1	gh	t r		, ,		~		、			a	1 p	n a	a	- -	<u> </u>			~		~ /	~	1	be	te	1 	• •	~			~	•			ga o ⁄	m	ma				~
0	• •		0.	/ ð	ю. //	21	21 7 1	2	03	57	9		י ר י	20	14	+ Z	55	0	90	5	81	19	,	0	•	24	19	28	50	10	+ 2	1/	05	10)	0.	. Z	49		30	1	4 0	11	0	11	0
0	• •	10	20	54	4	90	0.3	57	04	20	1		J.	8/	31	5 Z	19		10		69 / 0	91	2		•	00	03	30	59	01	4	49	12		2	0.	0	0 J 2 C		39	0	14	4	91 :	20	2
U	• •	0	24	0 2	1	57	30) t	0.	57	4	,	•	05	S	14	50	4	90	4	40	1.	/	U	•	21	U	5	2	4:	10	03	121	84	+	υ,	0	30	יכו) Z	4	99	14	21	39	9
D	=	7	1	ng	=	13	1	ns	is	2 =	26	5.	1	ss	a	=2	. ċ	1-	57	,	er	r	or:	=	3	• (1-	28	3	if	Ēn	=		45:	2 i	nf	e	r=	= 1	t	: i	me	=			2
r			1	we	i	gh	t		- 6			-			1	а	1 t	hi	a						-		-	1	he	ta	1							-		<u>ิ</u> ดล	m	ma				
-0	. 3	14	9	57	0	04	41	46	76	58	2	(э.	33	3	33	33	3	<u>3</u> 3	3	33	3	3	C).	33	33	33	33	33	33	33	33	33:	3	0.	. 3	33	33	33	3	33	33	333	33	3
0	. 1	L 7	5	61	5	25	74	43	32	20	8	(ς.	47	9	30	80)6	78	4	19	20)	C).	26	50	34	45	96	56	07	90)4()	0.	. 2	60	3	45	9	66	0	79) 4	0
0	.()5	3	34	7	23	5 €	50	88	33	8	(ο.	86	9	73	97	9	41	9	55	61	B	C).	0€	55	13	30	10) 2	90	22	210	5	0.	0	65	51	30	1	02	9(02	21	6
0	. ()7	7	11	3	76	08	39	0:	25	7	(ς.	04	8	69	03	1	54	2	53	1	6	Ċ)	31	12	86	55	49	96	00	48	374	4	ō.	6	38	34	44	1	88	5	69	81	Ō
		0									۰. ۲		'n			-			- 0						,	-		~ ~		•	_															,
P		0		ng	-	10	. 1	ns	18	g =	10	•••	2	SS	q	= /	• 0	1-	23		er	r	or	=	4	• (1-	20	5	11	: n	=		+1(1	nı	e	r =	* 1	C	:1	me	-			b
~	,	1.4		we	1	gn	ד די	. 7		70	7		^		2	a วว	7 p	0 n -	a 2 2	2	<u>,</u> ,	2	2	~		<u>م</u>		2	be	20	1	2 2			,	^	2	<u>.</u>		ga	. m	ma วว	. .			2
0	• ;	14	4.	21	יכ ו	6 U ()	10	57 57	7 1	/ Ö 	1		U.	33	3.	53 (1	33) <u>)</u>))	33	1	33	5. E	3 1		· •	32	53	3.	33 77	33	33	33	133	53.	5	0,	د ,	33	53. 53.)) 01	10	ູງງ	33	33. 00	33	3
0	• !	19	2	09	7	03 77	4.	20		20 71	0		J.	00	0	4 I 0 C	40		54	1	43	0	4		· •	4:) 7 7 A	2	2 0	. D (. D (00 7	25	2	2.	3	0,	, 4	25	12	9 Z 6 O	2	00	2:	92	1 L 7 C	2
0	• ?	10	ວ. າ	2 I 1. e	0)/ / ()	7	23	4 /	10	0		0. h	00	0	00	13	0 : /.	44	2	54	2	0			11	: 0	50) 7 / 7	20)/ 10	12	11 70	201	,	0.	, 1	-	יכו	0 7 1 7	2	201	2) 1 1 7 /	/ 0 \ 2	1
0	• `))))	7	4 J 2 2	0	47 21	1	17		17	0 5		0. 0	07	0	20	23	17) 71	0	., .,	100	0	2	' •	0. 24	: 0 : 2	1	+ / つ	2.	20	21	. / C	; ; ; ;	L 3	0.	7	いい))))//	47 07	2	20	0.	55	1 J J	7
0	• '	2	1	23	0	, 1	4.	.,	4.	+ 3		1	•	00	0		47	1	/ ~	0	"		0		•	20		Ι.	. 2	0.	2.3	0.	141	1.24	3	0.	. /	20	,4	72		72			+0	*
p	-	9		ng	=	19	1	ns	i	g =	16	5.3	3	s s	p	= 1	• ¢	1-	57	,	e r	r	or		6	• •	1-	2	B	i	f n	=		71	3 i	nź	Ēe	r=	=1	t	1	me	-			7
~		• •	_'	we	1	gh	t	• •	<u>.</u>	.	~		~	• •	. ~	a	ŢĬ	h	a	. ~	~ ~		~	_			• ~		be	t	e A	~ ~			•	~	~		. ~	ga	i m	ma		- -	~ ~	~
0	• !	09	!	13	5	19	6	28	2	19	9		υ.	33	13	33	33	53	33	53	33	53	5	(· •	33	53	3	53	33	33	33	530	53	5 2	0.	, 3	33	53	33	5	33	3	55	33	3
U	• !	03	1	33	4	10	0	22	1	13	9		U.	.02	0	03	45	16	16	U.	25	2	2	(• ر	48	59	b	52	:) .	19	15	78. 	13	5	0.	• 4	89	10	82 00	: >	13	11	98	13	ŏ
0	• !	07	1	82 2	./	ン4 マ ^	10	00	4.	//	4	1	0.	12	: >	02 E ^	00	51	10	11	41	Z	/ E	(<u>،</u>	4	/ د	0	89	2	31	45	2	33	/ >	0	.4	31	0	89	25	21	4	92	ソゴ	2
0	• !	07	9	04 57	1	13	8	92	12	۲ ۱ ۲	U		U.	02	: 3	59 c /	25	2	8 / 2 1	0	19	ני. היי	5	(<u>،</u>	10	58 , ,	20))))	5). E	32	21	. 9(13. Ve	נ י	U.		80	5 Z 1	03)) F	33	0.	0 / 1 9 !	05 72	3
0	• !	J 2	с. С)/ 20	1	0/ 5^	50	0) 	0	09	ŏ	1	••	91	. 0	54 0 ^	05		32		10	19.	2	(04	+4	1	29	. C י	13	35	4	+).	2	0.	. 9	44	+/	29	7) 1 r	11	2	94	43 // n	5
U	٠,	04	3	28	3	ר כ	9.	5/	1	Ζð	9		υ.	03	0	د ہ	84	¥ T.	20	J D	4/	3	o	- (۶.	22	41	9	0 2	.91	57	16	0	0	D	υ,	, /	4]	ιL	20	0	7 Q	11	D 4	49	ö

p=10	ng•	-25	n	s i	8 =	19	.0	8	sq	= 5	5.	d	58	e	r	ro	r =	6	••	1-	28	1	if	n =	1	059	in	fe	er	=1	t	:10	ne =		39
	wei	l gh 1	5							ε	11	ph	а								b	et	tα								ga	mr	na		
0.090	0817	799()38	32	75	4	0	• 3	33	33	33	33	33	33	3:	33	0).	33	33	33	33	33	33	33	333	0	• 2	33	33	33	33	333	33	333
0.036	5725	5952	77	56	46	7	0	.0	28	84	4	73	32	32	6	85	0),	48	35	57	76	53	33	83	657	0	.1	48	55	77	63	333	83	657
0.045	321	059	4:	35	52	8	0	.7	81	03	6	84	90	29	9	26	C).	10)9	48	15	57	54	85	037	0	. J	10	94	81	57	54	85	037
0.072	2757	7910	684	45	42	0	0	.1	41	70)7	21	94	14	8	80	0).	30)7	93	98	33	87	64	121	Ō	ļ	55	03	52	91	18	20	999
0 028	1327	124	25	21	05	7	ň	'n	25	00	12	5 2	۰. ۸٦	62	6	86	č	`	21	6	67	20	56	06	20	0 1 3	ň	•	72	83	22	ár	1 4 5	07	411
0.020	1421	661	601	6.2	72	2	õ	• •	20	5/		, , 0 1	5 / 5 /	02	2	0.0	2	` •	64	2	07	2.2	20	10	12	202	Š	• ;	12	25	2 3	:01	220	21	500
0.005	42		0.21	55	15	J	v	• 0	09	5	FU:	01	54	00	2	27	U	•	00	00	00	54	25	10	12	200	U	• 3	, 7	30	55	193		101	200
		• •				~ ~	-					_								_								_							~ (
p=11	ng:	=27	n	5 1	8=	23	• 5	S	sq	== 4	F	d –	58	e	r:	ro	r =	6	• 0	1-	28	j	if	n =	1	668	in	fe	e r	≃ 1	t	10	ne =		34
	wei	ight	2							ε	11	ph	a								b	et	tα								ga	mn	na		
0.000	927	7000	53:	28	96	1	-0	• 0	69	22	22	0 9	65	41	5	17	C).	53	34	61	10)4	82	70	758	0	• 5	53	46	11	04	82	70	758
0.077	149	9534	49	14	81	3	0	• 2	02	06	51	39	40	68	12	90	0).	39	8 (96	93	30	29	65	855	0	. 3	39	89	69)3() 2 9	65	855
0.059	322	2973	738	B 0	77	4	0	• 5	93	38	30	19	91	37	4	35	C).	20) 3	30	99	9 0	04	31	282	0		20	33	09	90	04	31	282
0.036	5184	4540	050	03	41	8	0	.7	61	29	8 (17	54	34	8	37	C).	11	L 9	35	09	91	22	82	581	0		11	93	5.0	91	122	.82	581
0.013	8659	973	10	02	67	8	0	. 9	35	27	0	10	37	77	4	48	Ċ).	03	32	36	40	94	81	11	276	0	Ì	03	23	64	9/	181	11	276
0.052	233	711	19	62	20	Ă	ň	. 0	50	17	7 8	13	83	10	i	95	Č	Ϋ́,	34	56	62	0.	5 A	82	61	293	ň	1	59	32	01	2	34	28	213
0.020	2001	7650	ΩŹ.	20	14	1	ŏ	• ~	20	2		<u>n</u> r	25	20	Ξ.	22		(•	1 7	7 1	1.0	00	 	02	01	233	ő	• -	٠ <u>،</u>	71	0 1	2	121	50	702
0.020	1101	05	.0		14	T	0	• 0	21	0 2	2	01	0.0	20	1	00	ι.	••	17	1	40	03	00	03	04	042	U	• (50	/4	07	00	121		192
		~ ~		_																					~			_							
p = 12	ng	= 3 3	n	s i	g≖	17	• 8	S	sq	= 5	••	d	28	e	r	ro	r=	T	• (1-	27		iİ	n=	2	439	ín	f e	e r	≠l	t	:11	ne=	•	74
	wei	Lgh	t.			_	_			Ę	11	ph	a								b	et	tα								ga	ımr	na		
0.02	573	106	54	40	45	5	0	• 0	23	56	55	22	04	52	23	90	0).	48	38	21	7:	38	97	73	805	0	• 4	48	82	17	38	397	73	805
0.043	3692	254	45	38	03	8	0	.1	20	55	51	21	54	11	0	79	0).	43	39	72	43	39	22	94	460	0	• '	43	97	24	39	22	94	460
0.062	2858	3224	42	17	88	5	0	• 4	57	57	79	22	99	7 5	57	68	C).	27	71	21	0	38	50	12	116	0	.:	27	12	10)38	35() 1 2	116
0.034	79	5113	29	30	70	9	0	.7	44	84	47	70	89	16	8	28	0).	12	27	57	61	14	55	41	586	0		12	75	76	514	\$55	41	586
0.006	6166	526	10	51	55	9	0	. 9	57	36	55	29	90	9:	35	79	Ċ).	02	21	31	7	35	04	53	210	Ő	. (02	13	17	3	504	53	210
0.040	37	155	77	66	38	1	0	1	15	3/	3	49	45	34	6	98	Ċ	λ.	2	75	71	3	26	96	8 5	514	Ő	. 1	60	89	4 7	12:	357	79	788
0 02	2351	677	22	0 0 0 2	30	â	ň	ំកំ	22	10-	28	7 7 7 7	22	2	52	57	č	Ś.	29	, J R 1	22	5	5 Q	00	80	974	ň	•	κq	5.8	26	in:	267	187	1803
0.017	7214	()). ())	11	02	2 5	0	ň	• •	22	7	50	05	22			20		(•	11	16	24	1	50 n 1	505	07	507			0 5	00	16		201	:	003
0.017	510	525		00	0,1	7	0	• •	23		24	05	0,0	40	5.5	30	Ľ	•	1.1	. 0	2)	1:	71	22	07	731	U	• (55	00	14	0.	555	944	073
p = 13	ng	= 37	n	s i	g≠	16	.9	s	sa	=2	2.	d-	57	•	r	ro	r=	8		d –	28		if	n≃	3	804	in	f	er	=1	t	: i 1	ne=		188
•	we.	loh	t		0		-	-	- 7		a 1	_ n h	а				-	-		-	7	e	r a								05	a mar	na		
0.053	252	192	34	იი	80	2	0	. 3	33	13	33	33	33	31	13	33	0	١.	31	33	3 3	13	33	33	33	333	0	•	33	33	ຊິງ	13'	3 3 3	133	1333
0 01	1281	014	5 2	ña	22	ົ	ດ	ີ ດ	00	0	13	63	01	20	15	01	Ì	, •	40	55	04	. a .	18	10	30	705	ň		20	50	1.65	211	2 / 0	130	1705
0.01	1 4 2	351	22	6 9 6 9	- 45	7	ñ	•	603	50	2.2	73	07	20	10	53		ς.	7.	7 J 6 G	71	. ت ا ک	2 J	51	00	571	ň	• •	42	90	140		351	100	1576
0.03	192.	331	202	02	10	7	0	• •	702		- 7	12	21	01	10	12		· •	40	1/	11	. 0 .	20	10	03	274	0	•	40	01	10	10.	222		074
0.04/	107	250	23	04	19	4	0	• 1	/0		27	32	03		4	47		• ۱	4.	14	22		55	00	01	2//	0	• *	41	4 2	21	. 3 :	300	501	. 2 / /
0.04	130	328	65	36	35	2	0	• 2	41	20	50	85	59	14	13	37	C	۱.	21	29	39	9	57	20	42	831	0	•	22	93	.99	15,	/20)42	1831
0.03	116	752	90	45	79	4	0	• 7	71	. 1 !	51	00	96	07	3	40	().	1	14	42	244	49	51	96	330	0	•	11	44	24	+49	9 51	96	,330
0.00	797.	577	14	65	07	4	0	• 9	50) 37	77	21	72	27:	30	82	().	0:	24	81	1	39	13	63	459	0	· • •	02	48	11	13	91:	363	3459
0.030	684	840	27	28	73	2	0	.0	94	8	53	82	83	179	95	79	(Э.	20	68	79) 4 !	99	70	58	761	0	•	63	63	51	117	74	561	660
0.01	740	146	33	03	82	2	0	.0	18	310	0 0	77	32	:78	38	07	(Э.	.29	91	73	10	06	67	34	288	0	•	69	01	69)1!	599	986	905
0.01	552	178	68	39	04	5	0	.0	22	22:	33	07	66	74	40	90	(р.	1:	26	35	57:	38	54	91	669	0		85	14	09) 5 (378	334	241
p = 14	ng	= 4 2	n	s i	2 ≈	-18	3.7	s	so	ı = 1	8.	d	58		۰r	ro	r≠	7		d	28	3	í f	n=	5	612	in	f.	er	=1	t	: 11	me≈		278
F	we	i eh	t.		0			-	- 7		a 1	- nh	a				-			-	1	าย	t a								92	a m 1	ma		
0.02	188	358	13	69	42	9	0	. 0	22	20	72	17	92	27	56	43	(b .	4	8.8	96	53	91	03	62	179	0		48	89	6	39	10	362	2179
0.03	278	825	35	Ĩ.	12	5	ň	_ 1	61	7	10	56	13	1	an.	92	Ì	- 1	4	17	61	4	71	91	40	451	ň		41	76	161	7	1 9 1	140	1454
0.05	177	610	77		20	12	~	• 1	5 2	20		970	33	10	20	24 22		Ś.	·	4 / 7 ว	1.4		ເມ ເງ	9.2	109	9 20	0	•	27	31	7	,,,,	- 2 - 7 9 '	200	1830
0.03	1// 12	750	4 J 0 7	21	23	2	0	• 4	100	101	+ 4	24	51	70,	53	23			1 2	, 3 77	941 97	· / . \ = '	52 52	103	100	517	0	•	41	79	0.1	، ر. . ء :	60. 211	100	1039
0.04	610	270	0/	20	77		0	• 0	43	,) (; , ,	00	23	21	. / 4	+ 7 3 ^	13		J.		/ / c •	20	, J : 	ر ر ه ه	24	14	. J 4 J . o 7 o	0	•	1/	12	.03	, , , , , ,) 24 0 7 4	* 1 4	. J 4 3 10 7 1
0.01	445	207	70	09			0	• 8	10	241	00	23	30	11	52	22	(υ.	.01	01	19	79	٥ŏ	30	90	0/3	0	•	00	1/	99	101	030	79(10/3
0.00	492	340	36	02	40	0	U	• 9	0	LZ	īβ	0/	1	002	25	48		υ.	, U	19	35	10	90	12	48	701	0	•	<u>01</u>	93	90	191	012	4	
0.02	466	575	32	12	256	4	0	• 0	57	1.	24	75	74	0	36	48	(υ.	1	12	26	66	68	178	321	356	0	•	17	06	08	35!	547	171	+996
0.03	857	151	07	87	06	1	0	• 0	92	29	16	24	93	35(59	72	(Ο.	, 3:	36	86	51	45	97	96	345	0	•	57	02	22	229	908	346	683
0.01	443	630	81	13	353	34	0	.0	14	46	46	95	00)5	56	54	(Ο.	, 2 !	98	37	2	88	321	. 36	258	0	•	68	69	8()1(678	308	3088
0.00	501	022	88	38	350)1	0	.0	01	12	68	33	09	32	28	72	(Ο.	, 1	18	97	74	49	76	96	957	0	•	87	97	57	/17	713	370)171

p=15 ng=48 nsig=23	3.8 ssq=3.d-57	error=	8.d-28 ifn= 9874	infer=1 time= 634
weight	alpha		beta	gamma
0.001916875642849	-0.0139458337	16486 (0.506972916858243	0.506972916858243
0.044249027271145	0.1371872914	33955 (0.431406354283023	0.431406354283023
0.051186548718852	0.4446127103	05711 (0.277693644847144	0.277693644847144
0.023687735870688	0.7470702179	17492 (0.126464891041254	0.126464891041254
0.013289775690021	0.8583832280	50628 (0.070808385974686	0.070808385974686
0.004748916608192	0.9620696595	17853 (0.018965170241073	0.018965170241073
0.038550072599593	0.1337341619	66621 (0.261311371140087	0.604954466893291
0.027215814320624	0.0363666773	96917 (0.388046767090269	0.575586555512814
0.002182077366797	-0.0101748831	26571 (0.285712220049916	0.724462663076655
0.021505319847731	0.0368438698	75878 (0.215599664072284	0.747556466051838
0.007673942631049	0.0124598093	31199 (0.103575616576386	0.883964574092416
			· · · · · · · · · · · · · · · · · · ·	
p=16 ng=52 nsig=1	5.1 ssq=4.d-57	error≖	1.d-27 ifn=21626	infer=1 time= 1669
weight	alpha		beta	gamma
0.0468/569/42/642	0.33333333333	33333	0.3333333333333333333	0.333333333333333333
0.006405878578585	0.0052389161	03123	0.49/380541948438	0.49/380541948438
0.041/10296/3938/	0.1/30611229	01295	0.413469438549352	0.413469438549352
0.026891484250064	0.0590828018	66017	0.470458599066991	0.470458599066991
0.042132522761650	0.5188925000	60958	0.240553749969521	0.240553749969521
0.030000266842773	0.7040684115	54854	0.14/965/942225/3	0.147965794222573
0.014200098925024	0.8490696246	85052	0.075465187657474	0.0754651876574/4
0.0035824623512/3	0.9668071947	53950	0.016596402623025	0.016596402623025
0.032//314/46062/	0.1035/56922	45252	0.296555596579887	0.599868/111/4861
0.015298306248441	0.0200834116	55416	0.337723063403079	0.642193524941505
0.002386244192839	-0.0043410026	14139	0.204748281642812	0.799592720971327
0.019084/92/55899	0.0419417864	68010	0.189358492130623	0.768699721401368
0.006850054546542	0.0143173202	30681	0.085283615682657	0.900399064086661
n=17 $ne=61$ $nsie=2$	7.8 ssg=8.d-54	error#	3.d-27 if $n=33194$	infer=1 time= 4693
weight	alpha		beta	eamma
0.033437199290803	0.333333333333	33333	0.33333333333333333333	0.33333333333333333333
0.005093415440507	0.0056589188	86452	0.497170540556774	0.497170540556774
0.014670864527638	0.0356473547	50751	0.482176322624625	0.482176322624625
0.024350878353672	0.0995200619	58437	0.450239969020782	0.450239969020782
0.031107550868969	0.1994675212	45206	0.400266239377397	0.400266239377397
0.031257111218620	0.4957174640	58095	0.252141267970953	0.252141267970953
0.024815654339665	0.6759059906	83077	0.162047004658461	0.162047004658461
0.014056073070557	0.8482482354	78508	0.075875882260746	0.075875882260746
0.003194676173779	0.9686905460	64356	0.015654726967822	0.015654726967822
0.008119655318993	0.0101869288	26919	0.334319867363658	0.655493203809423
0.026805742283163	0.1354408716	71036	0.292221537796944	0.572337590532020
0.018459993210822	0.0544239242	90583	0.319574885423190	0.626001190286228
0.008476868534328	0.0128685608	33637	0.190704224192292	0.796427214974071
0.018292796770025	0.0671657824	13524	0.180483211648746	0.752351005937729
0.006665632004165	0.0146631822	24828	0.080711313679564	0.904625504095608

p=18 ng=70 nsig=26	.3 ssg=7.d-46 error=	-2.d-23 ifn=25597	infer=1 time= 3460
weight	alpha	beta	gamma
0.030809939937647	0.3333333333333333333	0.3333333333333333333	0.3333333333333333333
0.009072436679404	0.013310382738157	0.493344808630921	0.493344808630921
0.018761316939594	0.061578811516086	0.469210594241957	0.469210594241957
0.019441097985477	0.127437208225989	0.436281395887006	0.436281395887006
0 027753948610810	0 210307658653168	0 39/8/6170673/16	0 394846170673416
0 032256225351657	0.500/10063303696	0 2/070/569003157	0.040704569903157
0.0250760225551457	0.500410802393080	0.1(1(2)1027(20)2	0.16163210376386
0.025074032616922	0.077133012312313	0.101432193743843	0.101432193743043
0.0152/192/9/1832	0.846803545029257	0.076598227485371	0.076598227485371
0.006/93922022963	0.951495121293100	0.024252439353450	0.024252439353450
-0.002223098729920	0.913/0/2655660/1	0.04314636/216965	0.04314636/216965
0.006331914076406	0.008430536202420	0.358911494940944	0.632657968856636
0.027257538049138	0.131186551737188	0.294402476751957	0.574410971510855
0.017676785649465	0.050203151565675	0.325017801641814	0.624779046792512
0.018379484638070	0.066329263810916	0.184737559666046	0.748933176523037
0.008104732808192	0.011996194566236	0.218796800013321	0.769207005420443
0.007634129070725	0.014858100590125	0.101179597136408	0.883962302273467
0.000046187660794	-0.035222015287949	0.020874755282586	1.014347260005363
•	-	-	
p=19 ng=73 nsig=21	.l ssg=5.d-58 error=	= 1.d-27 ifn=31956	infer=1 time=10502
weight	alpha	beta	gamma
0.032906331388919	0.33333333333333333333	0.33333333333333333333	0.3333333333333333333
0.010330731891272	0.020780025853987	0.489609987073006	0.489609987073006
0 022387247263016	0 090926214604215	0 454536892697893	0.454536892697893
0 030266125869468	0 107166638701138	0 401416680649431	0 401416680649431
0.030/00067802108	0 / 9 9 9 6 6 9 1 1 9 3 9 0 5	0 25555165660309	0 255551654403098
0.02/1502127/16/1	0.645044115605741	0.1770770/01501098	0 1770770/2152120
0.024139212741641	0.043844113693741	0.177077942132130	0.177077942152150
0.016050803586801	0.//98//893544096	0.110061053227952	0.110061033227932
0.008084580261784	0.888942/51496321	0.055528624251840	0.055528624251840
0.0020/936202/485	0.9/4/562/2445543	0.012621863777229	0.012621863777229
0.003884876904981	0.003611417848412	0.395754787356943	0.600633/94/94645
0.025574160612022	0.134466754530780	0.307929983880436	0.557603261588784
0.008880903573338	0.014446025776115	0.264566948406520	0.720987025817365
0.016124546761731	0.046933578838178	0.358539352205951	0.594527068955871
0.002491941817491	0.002861120350567	0.157807405968595	0.839331473680839
0.018242840118951	0.223861424097916	0.075050596975911	0.701087978926173
0.010258563736199	0.034647074816760	0.142421601113383	0.822931324069857
0.003799928855302	0.010161119296278	0.065494628082938	0.924344252620784
p=20 ng=79 nsig=2	5.6 ssg=4.d-47 error	=-5.d-24 ifn=49869	infer=1 time=10258
weight	alpha	beta	gamma
0.033057055541624	0.333333333333333333	0.3333333333333333333	0.333333333333333333
0.000867019185663	-0.001900928704400	0.500950464352200	0.500950464352200
0.011660052716448	0.023574084130543	0.488212957934729	0.488212957934729
0.022876936356421	0.089726636099435	0.455136681950283	0.455136681950283
0.030448982673938	0.196007481363421	0.401996259318289	0.401996259318289
0 030624891725355	0.488214180481157	0.255892909759421	0.255892909759421
0.024368057676800	0 647023488009788	0.176488255995106	0.176488255995106
0 015997/32032026	0 791658289326483	0 104170855336758	0.104170855336758
0.007600301015603	0 8038620722101/0	0 053068963840930	0 053068963840930
0.007030301013002	0.016762560607040	0 0/1618715106020	0.041618715106020
		0.01120100140400029	0 011591001/06000
0.001/51134301193	0.9/08/010/180350	0.011301921400822	
0.016465839189576	0.048/41583664839	0.3448337/0229001	
0.004839033540485	0.006314115948605	0.3//843269594854	
0.025804906534650	0.134316520547348	0.3066354/906235/	0.559048000390295
0.008471091054441	0.013973893962392	0.249419362774742	U./36606/43262866
0.018354914106280	0.075549132909764	0.212775724802802	0./116/514228/434
0.000704404677908	-0.008368153208227	0.146965436053239	0.861402717154987
0.010112684927462	0.026686063258714	0.137726978828923	0.835586957912363
0.003573909385950	0.010547719294141	0.059696109149007	0.929756171556853

APPENDIX III

	program main
	implicit double precision (a-h,o-z)
	real tl,t2
	external func
	dimension parm(4),x(45),f(44),xjac(44,45),xjtj(1035),
-	work(1348),w(19),a1pha(19),beta(19),gamma(19)
	common n0,nl,n2,ilb,ile,i2b,i2e,inu(44,2),dnu(44)
	data parm/4*0.d0/,x/45*0.d0/,f/44*0.d0/,xjac/1980*0.d0/,
+	+ xjtj/1035*0.d0/,work/1348*0.d0/,
-	w/19*0.d0/,alpha/19*0.d0/,beta/19*0.d0/,gamma/19*0.d0/
c	calculate the order of the polynomial
	read (5,10) ip
10	format(15)
с	calculate the number of groups of multiplicity 1,3 and 6
	read (5,20) n0,n1,n2
20	format(315)
с	calculate the sum of the number of groups
	nsum=n0+n1+n2
с	calculate the pointers for n1 and n2
	11b = n0 + 1
	$110 = 110 + 2 \times n1 - 1$
	12D=110+1
	12e=12p+Jon2-1
С	$calculate the number of gaussian points and weights nc=n(1+3+n)+6+n^2$
<u> </u>	calculate the number of unknowns
C	n=n(1+2*n+3)
с	calculate the number of equations
-	ipcopy=ip
	do 30° i=1,10
30	if((ipcopy-6).ge.0) ipcopy=ipcopy-6
	if(ipcopy.eq.0) ialpha=3
	if((ipcopy.eq.l).or.(ipcopy.eq.5)) ialpha=-4
	if((ipcopy.eq.2).or.(ipcopy.eq.4)) ialpha=-1
	if(ipcopy.eq.3) ialpha=0
	m=((ip+3)**2+ialpha)/12
с	calculate the initial approximation
10	if(n0.eq.1) read (5,40) x(1)
40	format(d10.0)
50	11(n1.ne.0) read (J,J0) (X(1),1-11D,11e) format(2410,0)
10	$f(n^2, n^2, 0)$ read (5.60) ($r(i)$ $i=i^{2}h(i^2a)$
60	format(3410, 0)
00	$if(n^2, n, 0)$ so to 80
C	calculate the n2 angle in radians
C	$p_1=4.d0*datan(1.d0)$
	do 70 $i=i2b,i2e,3$
70	x(i+2)=x(i+2)*pi/180.d0
с	calculate inu and dnu
80	call nu(ip,inu,dnu)
с	calculate the polar system weights and points
	call second(t1)
	call zxssq(func,m,n,15,0.d0,0.d0,100000,0,

	+	parm.x.ssg.f.xjac.44.xjtj.work.infer.jer)
		call second(t2)
		itime=int(t2-t1)
		ifn=idint(work(2))
с		calculate the area system weights and points
		call area (x.w.alpha, beta, gamma)
с		calculate the relative error of the integral
		call poly (ip.n0.n1.n2.nsum.w.alpha.beta.gamma.error)
		write(6,90) ip. ng. work(3), sq. error, ifn, infer, itime
90		format(i) = 12 i 2 i $neige f 4$ 1 $seq = 1 nd7$.
	+	error = (1 n d 7, 0) if $n = (15)$ inform (1) (1 i m = (15))
	•	write(6 100)
100		format(//v 'waight' 14v 'alpha' 14v 'bota' 15v 'gamma')
100		101 mac(7/3), weight 3173 , 31913 , 3173 , 9173 ,
110		format (Aflo 15)
110		
		and
		ena
		aubrouting nu(in inu dnu)
		implicit double precision (amb emg)
		dimension inu $(44, 2)$ dnu (44)
c		calculate the ith pair $(i 3k)$
C		fount=1
		issister i
		$d_0 = 10$ is 1 in 1
		JF = J = 1
		$f(m a f (1 + k^2 - 1 + 2) = a + 1)$ as to 10
		inu(icount 1) = i - 1
		$inu(1 \circ ount 2) = k3 - 1$
		icount = icount + 1
10		continue
c		calculate $dnu(i), i=1.44$
U U		$dnu(1) = + 1 \cdot d0$
		dnu(44) = + 1 d0 / 220 d0
		refurn
		end
		subroutine func(x.m.n.f)
		implicit double precision (a-h.o-z)
		dimension $x(n)$ f(m)
		common n0.n1.n2.ilb.ile.i2b.i2e.inu(44.2).dnu(44)
		do 40 im=1.m
		f(im) = -dnu(im)
		if((im.eq.l).and.(n0.eq.l)) f(1)=f(1)+x(1)
		if(nl.eq.0) go to 20
		do 10 i=ilb,ile,2
10		f(im)=f(im)+x(i)*x(i+1)**inu(im,1)
20		if(n2.eq.0) go to 40
		do 30 i=i2b,i2e,3
		dk3=dble(float(inu(im,2)))
30		f(im)=f(im)+x(i)*x(i+1)**inu(im,1)*dcos(dk3*x(i+2))

```
D. A. DUNAVANT
```

40	continue return end
	subroutine area (x,w,alpha,beta,gamma) implicit double precision (a-h,o-z) dimension x(45),w(19),alpha(19),beta(19),gamma(19) common n0,n1,n2,ilb,ile,i2b,i2e,inu(44,2),dnu(44) icount=l
	if (n0.eq.0) go to 10 w(icount)=x(1) alpha(icount)=1.d0/3.d0
	<pre>beta(icount)=alpha(icount) gamma(icount)=alpha(icount) icount=icount+1</pre>
10	<pre>if(nl.eq.0) go to 30 do 20 i=ilb,ile,2 w(icount)=x(i)/3.d0</pre>
	alpha(icount)=(1.d0-2.d0*x(i+1))/3.d0 beta(icount)=(1.d0-alpha(icount))/2.d0 gamma(icount)=beta(icount)
20 30	<pre>icount=icount+1 if(n2.eq.0) go to 50 do 40 i=i2b,i2e,3 w(icount)=x(i)/6.d0 r=x(i+1) a=x(i+2)</pre>
	alpha(icount)=(1.d0-2.d0*r*dcos(a))/3.d0 beta(icount)=(1.d0+r*dcos(a)-dsqrt(3.d0)*r*dsin(a))/3.d0 gamma(icount)=1.d0-alpha(icount)-beta(icount)
40 50	icount=icount+i return end
	subroutine poly (ip,n0,n1,n2,nsum,w,alpha,beta,gamma,error) implicit double precision (a-h,o-z) dimension w(19),alpha(19),beta(19),gamma(19)
с	calculate the exact integral exact=2.d0*fac(ip)/fac(ip+2)
с	calculate the approximate integral sum=0.d0 if(n0.ne.0) sum=sum+w(1)*alpha(1)**ip if(n1.eq.0) so to 20
	n01=n0+1 n0n1=n0+n1 $d_0 = 10$ $i=n01, n0n1$
10 20	<pre>sum=sum+w(i)*(alpha(i)**ip+2.d0*beta(i)**ip) if(n2.eq.0) go to 40 n0nll=n0+nl+1 n0nln2=n0+nl+n2</pre>
30 40	ao su i=nunii,nunin2 sum=sum+w(i)*2.d0*(alpha(i)**ip+beta(i)**ip+gamma(i)**ip) approx=sum
· -	

```
error=(exact-approx)/exact
         return
        end
         double precision function fac(n)
         implicit double precision (a-h,o-z)
         fac=1.d0
         if(n.eq.0) return
         do 10 i=1,n
10
         fac=fac*dble(float(i))
         return
        end
Sample input for p=20
   20
         10
               8
    1
0.019
0.021
           +0.5
0.048
           +0.425
0.051
           +0.325
0.072
           +0.2
0.080
           -0.275
           -0.45
0.067
           -0.625
0.061
0.036
           -0.8
           -0.925
0.019
           -1.
0.005
0.110
            0.45
                      30.
0.068
            0.55
                      30.
0.134
            0.375
                      40.
0.041
            0.7
                      45.
0.098
                      50.
            0.6
0.005
            0.8
                      52.5
0.050
            0.725
                      55.
0.015
            0.925
                      57.5
```

REFERENCES

- 1. P. Hillion, 'Numerical integration on a triangle', Int. j. numer. methods eng., 11, 797-815 (1977).
- 2. C. T. Reddy and D. J. Shippy, 'Alternative integration formulae for triangular finite elements', Int. j. numer. methods eng., 17, 133-139 (1981).
- 3. Y. Yamada, Y. Ezawa, I. Nishiguchi and M. Okabe, 'Reconsiderations on singularity or crack tip elements', Int. j. numer. methods eng., 14, 1525-1544 (1979).
- 4. R. G. Anderson, B. M. Irons and O. C. Zienkiewicz, 'Vibration and stability of plates using finite elements', Int. J. Solids Struct., 1031-1055 (1968).
- 5. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th printing, Dover Publications, New York.
- 6. P. Sylvester, 'Symmetric quadrature formulae for simplexes', Math. Comput., 24, 95-100 (1970).
- 7. P. C. Hammer, O. J. Marlowe and A. H. Stroud, 'Numerical integration over simplexes and cones', Math. Tabl. Natn. Res. Coun. Wash., 10, 130-137 (1956).
- 8. G. R. Cowper, 'Gaussian quadrature formulas for triangles', Int. j. numer. methods eng., 7, 405-408 (1973).
- 9. M. A. Eisenberg and L. E. Malvern, 'On finite element integration in natural coordinates', Int. j. numer. methods eng., 7, 574-575 (1973).
- 10. M. E. Laursen and M. Gellert, 'Some criteria for numerically integrated matrices and quadrature formulas for triangles', Int. j. numer. methods eng., 12, 67-76 (1978).
- J. N. Lyness and D. Jespersen, 'Moderate degree symmetric quadrature rules for the triangle', J. Inst. Maths, Applics., 15, 19–32 (1975).

- 12. J. N. Lyness, Private communication.
- 13. MACSYMA Primer, Laboratory For Computer Science, Massachusetts Institute of Technology, 1978.
- 14. K. L. Hiebert, 'An evaluation of mathematical software that solves systems of nonlinear equations', ACM Trans. Math. Software, 8, 5-20 (1982).
- 15. IMSL Library Reference Manual, 9th edn, International Mathematical and Statistical Libraries, Houston, Texas, 1981. 16. B. Irons and S. Ahmad, Techniques of Finite Elements, Ellis Horwood, Chichester, U.K., 1980.
- 17. G. M. L. Gladwell, 'Orthogonal polynomials related to triangles', Proc. Symp. on Computer Aided Engineering, Univ. of Waterloo, 207-214 (1971).
- 18. T. Moan, 'Experiences with orthogonal polynomials and best numerical integration formulas on a triangle, with particular reference to finite element approximations', ZAMM, 54, 501-508 (1974).