Let T be a triangle with the vertices a_1 , a_2 , a_3 . Let λ_1 , λ_2 , λ_3 be the barycentric coordinates with respect to the vertices of T. Denote

$$P_T = \operatorname{span}\{\lambda_1, \lambda_2, \lambda_3, \lambda_1 \lambda_2 \lambda_3\}, \qquad \Sigma_T = \{\Phi_i\}_{i=1}^4,$$

where Φ_i are linear forms defined by

$$\Phi_i(v) = v(a_i), \quad i = 1, 2, 3, \qquad \Phi_4(v) = \frac{1}{|T|} \int_T v \, \mathrm{d}x$$

For any $v \in C(T)$. Prove that the triple (T, P_T, Σ_T) is a finite element.

Let \mathscr{T}_h be a triangulation of $\Omega := (0, 1)^2$ consisting of triangles satisfying the assumptions $(\mathscr{T}_h 1) - (\mathscr{T}_h 5)$ introduced during the FEM1 course. Let the finite element (T, P_T, Σ_T) introduced above be assigned to each element of the triangulation \mathscr{T}_h and formulate the corresponding finite element space X_h and the set Σ_h of the degrees of freedom of X_h . Characterize the dimension of X_h and describe the basis functions of X_h . Find out whether $X_h \subset C(\overline{\Omega})$.

Let $\Pi_h : C(\overline{\Omega}) \to X_h$ be the interpolation oparator. Assuming that the triangulations are regular, derive estimates of the interpolation error with respect to the L^2 norm and H^1 norm.

Consider the Poisson equation in Ω with homogenous Dirichlet boundary conditions:

(1)
$$-\Delta u = f \text{ in } \Omega, \quad u = 0 \text{ on } \partial \Omega,$$

where $f \in L^2(\Omega)$ is a given function. Formulate a discretization of (1) based on the space X_h and prove estimates of the error of the discrete solution with respect to the L^2 norm and H^1 norm.