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Abstract. We consider nonconforming streamline diffusion finite element discretizations
for solving convection—diffusion problems. Using these discretizations with the noncon-
forming Py element, the properties of the discrete solutions are much worse than in the
conforming case. We show that an improvement can be attained by modifying the non-
conforming Py element using suitable general nonconforming bubble functions in such a
way that the resulting space satisfies the patch test of order 2. In this way, we obtain a
class of new nonconforming first order finite element spaces. We also derive a subclass
of these general spaces for which the patch test of order 3 holds and hence the optimal
convergence order 3/2 can be established. We give a rigorous convergence analysis and
present various numerical results which demonstrate the robustness of the new method.
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1 INTRODUCTION

We consider the convection—diffusion equation
—Au+b-Vut+cu=f inf), u=1w, ond, (1)

where 0 C R? is a bounded domain with a polygonal boundary 92, € > 0 is constant,
bcW2®(Q)2 ce L™(Q), f € L*NQ) and u, € H3?(0Q). We assume that

1
C—adiVbZCO,

where ¢g is a positive constant. This assumption guarantees that (1) admits a unique
solution for all positive values of the parameter ¢.

We are mainly interested in cases when the convective part b - Vu dominates the
diffusive part € Au, i.e., when ¢ < 1. The solutions of convection dominated convection—
diffusion equations typically contain inner and boundary layers which are difficult to
approximate numerically unless the computational mesh is sufficiently fine. Standard
Galerkin finite element methods applied on meshes which are not fine enough produce
unphysical oscillations and therefore, various stabilized methods have been developed.
In this paper we concentrate on the streamline diffusion method"? which is known to
combine good stability properties with a high accuracy outside the layers. The properties
of the streamline diffusion method were intensively studied during the past decade and
nowadays its convergence properties are well understood in the case of conforming finite
element approximations2’3’4’5’6.

However, the properties of the streamline diffusion method are much less clear if non-
conforming finite elements are applied. Nonconforming finite element methods are very
attractive for approximating incompressible materials since they usually fulfil a Babuska—
Brezzi condition and discretely divergence—free bases can often easily be constructed.
Moreover, implementations on parallel MIMD-machines are more effective for noncon-
forming finite element methods than for conforming elements’ 5. However, since the
finite element functions are discontinuous across the edges of the triangulation, theoret-
ical investigations of nonconforming finite element methods involve various additional
difficulties in comparison with the conforming case.

Particularly, in the case of the streamline diffusion method, the nonconformity causes
that the coercivity of the respective bilinear form depends on the type of discretization
used for the convective term. Moreover, error analysis requires e—uniform error estimates
of consistency errors and additional terms involving jumps of finite element functions
across element edges. Therefore, special techniques are necessary to recover the optimal
convergence order 3/2 in the streamline diffusion norm when using first order approxima-
tion finite element spaces. In'%M the mentioned difficulties have been overcome by adding
some special jump terms to the standard streamline diffusion finite element method. How-
ever, a drawback of the jump terms is that they are difficult to implement. An alternate
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way to get an e—uniform consistency error estimate was found in'? where superconvergence
properties on uniform meshes were used.

In this paper, we consider general triangular meshes and we look for nonconforming
first order finite element spaces for which e—uniform error estimates in the streamline
diffusion norm with a positive convergence order can be established without modifying
the discretization. We shall start with the P** element consisting of piecewise linear func-
tions which are continuous in the midpoints of inner edges of the triangulation. Using
this element in a streamline diffusion finite element method, the properties of the discrete
solution are much worse than in the conforming case. We shall show that an improve-
ment can be attained by modifying the P* element using suitable nonconforming bubble
functions in such a way that the resulting space satisfies the patch test of order 2. This
property makes it possible to establish better estimates of the consistency errors. We only
require that the nonconforming bubble functions possess some rather general properties
so that we obtain a class of new finite element spaces. Each of these finite element spaces
can be represented by the direct sum of a subspace of Hj({) and a space consisting of
modified P functions. Particularly, we derive the nonconforming P™¢ element of'3,
for which the patch test of order 3 holds and the optimal convergence order 3/2 can be
proved.

The paper is organized in the following way. First, in Section 2, we summarize the
necessary notation. Then, in Section 3, we establish a weak formulation of (1) and describe
the nonconforming streamline diffusion finite element method considered in this paper. In
Section 4, we present the error analysis. Section 5 is devoted to the construction of general
nonconforming first order finite element spaces satisfying the patch test of order 2. In
Section 6, we consider a subclass of the general finite element spaces satisfying the patch
test of order 3 which we denote as the P/"*¢ element. We also give an example of piecewise
cubic basis functions which are used in all our numerical experiments. Finally, in Section 7,
we present numerical results which demonstrate the good behaviour of discretizations
employing the P element. The numerical results support the optimal convergence order
3/2 and indicate that discretizations using the new finite element are very robust. The
results are qualitatively much better than for the P element, and inner and boundary
layers are detected very accurately. Moreover, the iterative solver used to compute the
discrete solutions converges much faster than for the P*° element.

2 NOTATION

We assume that we are given a family {7} of triangulations of the domain 2 consisting
of closed triangular elements K having the usual compatibility properties (see e.g.14) and
satisfying hx = diam(K) < h for any K € 7;,. We assume that the family of triangulations
is regular, i.e., there exists a constant C' independent of h such that

hi

— < C VKeT, h>0,
OK
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where pg is the maximum diameter of circles inscribed into K.

We denote by &, the set of the edges E of 7;,. The set of inner edges will be denoted
by &£} and the set of boundary edges by £}. Further, we denote by hy the length of the
edge E, by Cg the midpoint of E, by zg 1, g2 the end points of £ and by Ag 1, Ag2 the
barycentric coordinates on E with respect to xg 1, g2, respectively. The union of the
elements adjacent to an edge E will be denoted by Sg. For any edge E, we choose a fixed
unit normal vector np to E. It E' C 0€, then ng coincides with the outer normal vector
to 0. Consider any E € & and let K, K be the two elements possessing the edge F
denoted such that mp points into K. If v is a function belonging to the space

H*"(Q) ={ve L*(Q); v|x € H(K) V¥V K € T,)},
then we define the jump of v across E by

vllg = (Wlg)le — (U|[”<)|E (2)
If E € &, then we set
lvllg =vlg,

which is the jump defined by (2) with v extended by zero outside .
In the following sections, we shall need the spaces

Vo = {u, € C(Q); wplg € PUK) VK €T;}, v = Vel 0 HY Q)
ne — Lo € LAQ): wnlx € PUK) VK €T, [E llonllpdo =0 ¥ E € &),

and we shall denote by i, : H2(Q) — Vi the Lagrange interpolation operator. It is well
known that

[0 — in0] g < ChE™ vy Vve H(K), K€ T, m=0,1. (3)

We denote by {(g} Eegi the usual basis in V7¢, i.e., each (g is piecewise linear, equals 1

on F and vanishes in the midpoints of all edges different from E.
Throughout the paper we use standard notation LP(Q), W*P(Q), H*Q) =

Wk2(Q), C*(Q), etc. for the usual function spaces, see e.g.'*. The norm and semi-

norm in the Sobolev space W*?(Q) will be denoted by || - ||, .o and | - [, o, respectively,
and we set || - ||, = || 20 and | - [ = |- |20 Further, we define a discrete analogue
of | - ‘1,9 by
1/2
|U|1,h: ( Z |U|%K> .
KeTy,

The scalar product in the spaces L*(G) and L*(G)* will be denoted by (-, )¢ and we set

(,-) = (+,)q. Finally, we use the notation C, C' to denote generic constants independent
of h and e.
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3 WEAK FORMULATION AND DISCRETE PROBLEM

Since u, € H3?(082), there exists an extension %, € H?(Q) of u,. Applying standard
techniques, we derive the following weak formulation of the equation (1):

Find u € H'(Q) such that u — @, € H}(Q) and
aw0) = (f0)  Vve H9),

where

a(u,v) = ¢ (Vu,Vv) + (b- Vu,v) + (cu,v) .

This weak formulation has a unique solution.
We shall approximate the space HJ(2) by a nonconforming first order finite element
space Vj and at this stage we only assume that

Vi ¢ v, € H*M(Q) . (4)

The inclusion Vi € V), assures first order approximation properties of V,, with respect
to |- |, when o — 0. The inclusion V, C H>"(€2) makes it possible to introduce a
streamline diffusion stabilization.

To establish a finite element discretization of (1), we first introduce the bilinear forms

af(u,v) =e > (Vu, Vo),

KeT,

a(0) = 2 3 [(b- Vi, o) — (b- Vo, u)x — (divb, uo)g] |

KeT,

which respectively correspond to the diffusive and convective terms from the equation (1).
The bilinear form a; is skew—symmetric if divb = 0. That gives rise to the notation aj*e"
below. Further, we define a streamline diffusion term by

ay(u,v) = Y (—eAu+b-Vu+cu, dgb-Vo)g,

KeTy,

where 0 > 0 is a control parameter. Now, denoting

apf(u,v) = af(u,v) + aj (u,v) + (cu,v) + a3’ (u, v)
W(v) = (f,v)+ Y (f, dxb-Vu)k,
KeT

the streamline diffusion finite element method investigated in this paper reads:

Find u, € V), ® \7207# such that uy, — 1,0 € Vj, and
skew

ay, (uh, Uh) = lh(vh) Yo, € Vy. (5)

5
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Using standard arguments (Cf.14, Chapter IIT), we deduce that there exist constants
11, po independent of h such that, for any v, € Vj, and K € 7;,, we have

HAvhHo,K < i hz_(l "Uh’l,Ka "Uh’l,K < 2 hl_(l thHO,K' (6)

We assume that the control parameter dx satisfies

0 < dx < mi { < h%(} (7)
< Jx < min , .
2[ellf o, 28 1

Since the streamline diffusion stabilization is of importance in convection dominated re-
gions only, we admit 0x = 0 in (7). A possible choice of dx is

IiKhK if hK > €,
0 =
0 if hK < g,

(8)

where kg satisfies

. Co hK
O</@0§/1K§m1n{ , } 9)
2 |ell§ oo, i hr” 2 13

The following result implies that the discrete problem (5) has a unique solution.

skew

Theorem 1 Under the assumption (7), the bilinear form a;*" is coercive, i.e.,

1
ai (vp, vp) > 5 |[|vn][]? Vv, € Vy, (10)

where the streamline diffusion norm ||| - ||| is defined by

1/2
livlll = ( S {eof? g + o [0]2 5 + O HvaHa,K}) |

KeT,

Proof. Seel?, &

Remark 1 We shall also discuss the convergence properties of the discrete problem (5)
when the convective term from (1) is discretized using the convective bilinear form

aj(u,v) = > (b-Vu,v)k.

KeTy,
Thus, the bilinear form af*** in (5) is replaced by
a;™ (u,v) = aj(u, v) + af, (u,v) + (cu,v) + @i (u, v) . (11)

Unfortunately, in general, a result similar to (10) does not hold for this bilinear form.
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4 ERROR ANALYSIS

In this section we assume that the weak solution of (1) satisfies u € H?*(Q). If we
use a conforming finite element space V;, C Hj () in the discrete problem (5), then the
weak solution u also solves the discrete problem, which leads to the well-known Galerkin
orthogonality. If, however, we use a nonconforming space Vy, then the discrete functions
have jumps across edges and (5) is not longer valid for the weak solution. We only obtain

skew

ap ' (u,vp) = lp(vp) + r,cf(u, vp) + 77 (u, vy) Vo, € Vy,

where the consistency errors r{, r;, are given by

o) = = X [ 3 funllodo.

EGS

rp(u,vp) = —= Z / (b-ng)ullvn]gd

Eeg,

The behaviour of the consistency errors is crucial for the convergence properties of the
discrete problem and it is desirable to design such spaces V;, that the consistency errors
are ‘small’.

First, let us formulate a convergence result valid for a general first order finite element
space Vj, satisfying the patch test of order 1.

Theorem 2 Let the weak solution of (1) belong to H*(Y) and let the assumptions (4)
and (7) be fulfilled. In addition, let the space Vy, satisfy

/E[|vh|]Ed0:0 Y € Vi, E €&, (12)

Then the discrete solution uy, satisfies
1/2 1/2
lho-wll<cn( 5 ) +0( T elis) 03
KeT, Ee&),

where
h2
Yk =€ + hi + 0k + (max{e, 0 }) " h3 ’yE:min{?E,l}. (14)

Proof. Seel3, &

Estimate (13) is optimal with respect to the discretization parameter h since, for any
fixed e, it assures the convergence order 1. However, an e—uniform estimate can only
be obtained if we replace yg by 1, which leads to the convergence order 0. Numerical
experiments for V;, = V7¢ really confirm this pessimistic prediction (see Section 7), which

7
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suggests that it is generally a property of the method and not a consequence of an un-
accurate estimation. There are two basic ways how the properties of the method can be
improved: either we can modify the discretization (cf. e.g.lo’n) or we can try to improve
the properties of the space V},. Here we consider the latter possibility.

The second term on the right—hand side of (13), which causes the bad behaviour of this
estimate, comes from the estimation of the consistency error r}(u, v;,) and of the term

> / (b-ng)wl|lv|]zd w=iu—1u, (15)

Eeg,

which arises in consequence of an integration by parts applied to the bilinear form aj.
Let us explain how the consistency error rj(u,v,) and the term (15) are estimated. We
shall need projection operators M~ : L*(E) — Py(E), k > 0, defined by

/ q/\/ll;;vda:/ qudoe Vg€ Py(E),vel*E),Ecé&,.

E E

According t015, Lemma 3, there exists a constant C' independent of E' and h such that
[ 0= My o)do| < CHE ol ol (16)

forall K €7, EC K, o€ HY(K) and v € H*"(K).

First, let us estimate the term (15). The property (12) allows us to subtract any
constant function from (b - ng)w. Particularly, we can subtract M%((b - ng)w), which
in view of (16) and (3) gives

[ @ npuwlllzde = [ [(b-ng)w— My(b-ng) w)] ol do
< Cha s, lonh s, < Chblulsg, lonls, - (17)

Using (6), we derive

[ ®-np)wllonlledo < Chplulys, 1 (= ol s, + o ol s,)'?
E

which implies that

1/2
> [ nowlullzio<on( 3 arlifs) ol
Ee&, Ee&y
The consistency error rj(u,v,) can be estimated in a similar way. We have

[ ®-np)ulullpde = [ [(b-ng)u— My((b-ng)w)] o) do

< Chg HquSE |Uh|1,SE (18)

8
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and hence we only get

1/2
i (1, 0n) so( 5 vEnunisE) llenll]

Ecéy

As we see, it is the consistency error r; which deteriorates the convergence order,
uniform in £, in the estimate (13). To obtain the same estimate of rj(u,v,) as for the
term (15), it would be sufficient if we could replace MY by M1 in (18). Thus, it suffices
to require that V), satisfies the patch test of order 2, i.e.,

/ lonllpgdo =0 Y, € Vi, g€ P(E), E€&,. (19)
B
Then, instead of (18), we get

[ ®np)ulullzde = [ [(b-ns)u— My((®-ns)w)] [ollsdo
< Chiplulls, lonlys, (20)

and hence

1/2
iy vn) sch( 5 vEnuH;SE) llenll]

Ee&y,
Thus, we obtain the following result.

Theorem 3 Let the weak solution of (1) belong to H*(QY) and let the assumptions (4)
and (7) be fulfilled. In addition, let the space V), satisfy (19). Then the discrete solution
up, satisfies

1/2 1/2

llu-wll<cn( 5 o) +on( T awlils,) . )
KeTy, Ee&),

where yx and vg are given by (14).

conv

Remark 2 If we consider the discrete problem (5) with a;* replaced by af°™ defined in
(11), there is no consistency error induced by the convective term. Therefore, assuming
coercivity of a;°", the estimate (21) also holds if only the assumptions of Theorem 2 are

satisfied.

Theorem 3 shows that, for a first order finite element space V}, satisfying (19) and for
dx defined by (8) with bounded ki satisfying (9), we have the estimate

[llw = unl[l < Chlullsq,

where the constant C' is independent of ¢ (for ¢ bounded by some gy > 0). This is
a substantial improvement in comparison with Theorem 2. However, the question is
whether a nonconforming space Vj, satisfying (19) and having a structure convenient
for practical computations can be constructed. This question will be discussed in the
following section.
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5 CONSTRUCTION OF A SPACE V, SATISFYING THE PATCH TEST
OF ORDER 2

Our aim is to construct a nonconforming first order finite element space V, satisfying
the patch test of order 2 expressed by (19). The simplest nonconforming finite element
space, the space V¢, does not possess this property and our idea is to construct the
desired space Vj, by modifying functions from V. Precisely, for any function v, € V3¢,
we want to find some ‘simple’ function b, such that v, + b, satisfies the patch test of
order 2. Since the patch test of order 1 holds for the space V¢, it also has to be valid for
the function b,. Thus, given any v, € V7¢, we look for a function b, satisfying

JMbgde =0, [ Wullprsido == [ (ulpiside  VEE€E.  (22)
E E E

To fulfil (22), it seems to be natural to seek the function b, in the form

b= Y am e, 23
E'céy
where the functions pp satisfy
[ lesllzde=0 ¥ E€&, (24)
/E lepl|lg A do=0 VEe&\{F}, (25)
[ lewllsApado #0. (26)

Then (22) holds for by, defined by (23) with

_ Jg llvnllg Apa do
Je leellp Apado’

Ecé&,. (27)

Replacing any function v, € Vi by a function vy, + b, with b, defined by (23) and (27),
we obtain a space

Vet = {v, € Vi ® By; /E lonllpgdo =0 V¥ ge P(E), E €&}, (28)

where
By = span{gr) pee, - (29)

We use the notation V™ since this space consists of modified functions from V3¢, The
space V¢ has several properties common with V7€ it is a nonconforming first order
finite element space which has the same dimension as V;¢ and whose degrees of freedom
are associated with edges. However, as we know from the preceding section, the space
Viod allows us to derive a better error estimate than the space V}°.

10
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The functions ¢ can be constructed in various ways. Here, we shall consider functions
g having supports contained in the elements (or element) adjacent to the respective
edge E and we shall show how to construct such functions using a fixed bubble function
beH 1(_?(\ ) defined on the standard reference element K. We denote by E one of the
edges of K and by Zy, ¥ the end points of E, and we shall assume that the function b
has the following properties:

Moz =0 ol # 0, /EBda: 0, (30)
1 ~a < . ~ -
1=y /A bAide >0 for A € Py(E) with A (#1) = 1, Ay(32) =0.  (31)
E

Now, for any K € 7;, and any edge E of K, we introduce a nonconforming bubble function

boFg!  inK,
br,p = .
0 in Q\ K,

where F : K — K is a unique regular affine mapping satisfying F(K) = K, Fx(z;) =
xpy and Fg(Z2) = zpa (cf. e.g.14). Then, the functions ¢z can be constructed in the
following way. If E € £? and K is the element adjacent to E, we set

Y =2bkE.

If £ €& and K, K are the two elements adjacent to F and chosen in such a way that
ng points into K, we define
Y = bK,E — bf(,E .

Clearly, the functions ¢g have their supports in the elements (or element) adjacent to F
and it is easy to check that

/E lepllpAe1do =27 hg VE€e€&,.

In addition, each function g vanishes on all edges different from E. Thus, we see that
the functions g satisfy (24)—(26).

Unfortunately, there is a severe drawback of the above-defined space V™ compared
to the space Vj¢. A stiffness matrix built up using the basis {(g} Begj of V¢ typically
contains 5 nonzero entries in each row. However, constructing the stiffness matrix using
the basis functions of Vi™? defined as modified functions (g, we generally obtain 27
nonzero entries in each row. The reason is that the supports of the basis functions from
Viod Jie in six elements whereas supports of basis functions of V' consist of two elements
only.

An easy remedy for the mentioned drawback of the space V"¢ is to enlarge the space
By, used in the definition (28) of V¢, Since now we consider functions g constructed

11
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using the functions by g, the enlargement is very easy. Instead of defining By, by (29), we
simply set
By = Span{bK,E}KeTh,Eegh,EcaK : (32)

Then one can show in the same way as in'® that the space Vied defined by (28) and (32)
contains a basis consisting of functions {xr} pcei, {¥r} peei Whose supports are contained
h h

always in the two elements K, K adjacent to the respective edge E. Denoting by E, Ej,
FE5 the edges of K and by F, E3, E4 the edges of K, the functions xg, ¥g are defined by

X = brxp+bgy, (33)
Ye = Cg+ PBeE bke + BeE bk.E, + BE B, bg7E3 + BE,E, b§7E4 ) (34)
where (g are the basis functions of V3¢ defined in Section 2 and Bgg,,...,0BeE, are

uniquely determined coefficients. Note that yz € H}(Q2) whereas 1r has jumps across
the edges E, ..., Fy.

Again, the space Vi defined by (28) and (32) is an edge-oriented nonconforming
first order finite element space satisfying the patch test of order 2. The stiffness matrix
corresponding to the basis functions xg, ¥g is now easy to implement since it consists
of four matrices having the same structure as the stiffness matrix corresponding to the
space V. The enlargement of the stiffness matrix and of the number of unknowns
(dim Vjd = 2 dim V}¢) is worthwhile since the space V"¢ often leads to a substantial
improvement of the quality of the discrete solution as we shall see in Section 7.

Remark 3 Let us consider the discrete problem (5) with V;, = V4. Then the discrete

solution uy, can be uniquely decomposed into its piecewise linear part u}™ and its bubble

part ul® € By, i.e., up = ul™ + ul". It can be shown in the same way as in'3 that, for
u € H*(Q), we have

e
|
£

=
=~
AN

lu — uplyp + 2 |u—dpuly g,
lu —upllon < Cllu—unllog + Cllu—inullgg,

in 1/2 .
llu —wup"]] < C@ﬂpgg ) (Nl = wnlll + 111w = dnul]]) -

Thus, u}™ converges to the weak solution with the same convergence orders as u;, and

the estimates of Theorems 2 and 3 remain valid for u/™. Therefore, it is possible and for
practical reasons sensible to consider the linear part of u, as a discrete solution of (1).

Remark 4 The definitions of the functions (g and g can be extended to boundary
edges in an obvious way. Setting

o 1 o
ag = (inty)(Cr) , B = —— / (thty — apCp) Apado, Eec&),
vyhg JE

12
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the function

Upn = Y, (ap¥p+ e xE)

Eegb

satisfies wyy, —inup € V,T‘Jd. Thus, we can use uy, as the boundary condition in the discrete
problem (5), which is more convenient for implementational reason than the use of i,.

Details can be found in'?.

6 PATCH TEST OF ORDER 3

In the preceding section, we have constructed a general nonconforming first order finite
element space VI™¢ satisfying the patch test of order 2. Further properties of this space
depend on the definition of the function b. Particularly, one can ask whether a suitable

choice of b can assure the patch test of order 3, i.e., the validity of
[ lonllpqdo =0 Ve Vi g€ P(E), E€&. (35)
Since V"¢ satisfies the patch test of order 2, the property (35) is equivalent to
/E lonllg Apa Apado =0 Y, e VIl B e &,.

The function Ag; Ag 2 is even with respect to Cg and therefore, it suffices to assure that
[|un|] 5 is odd with respect to Cg for any v, € Vi and any E € &,. This is satisfied for
functions from V}¢ and hence (35) holds under the additional assumption that

E|E is odd with respect to the midpoint of E. (36)

If the function b is continuous, then the assumption (36) guarantees that functions from
B;, vanish in the midpoints of all edges of the triangulation. In this case, the space V"¢
consists of piecewise continuous functions which are continuous in the midpoints of inner
edges and vanish in the midpoints of boundary edges. This is a further feature common
with Vpe.

However, there is a much more important consequence of the property (36). In view
of (35), we can replace MY and M}, in (17) and (20), respectively, by M3%. Assuming
that u € H3(Q) and b € W?>(Q2)?, we then derive

LA

1/2
gCh2< 5 vEuuu;SE) llenll

Ee&y,

> [ b-np)wll)pdo

Ee&y

so that

1/2 1/2
|||u—uhms0h( 5 w@,]{) +0h2( 3 vEHunisE) .

KeT, Ee&),

13
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Let us consider the convection dominated case in which € < h. Then, defining dx by
(8) with bounded kg satisfying (9), we have v, < C'h and hence it follows from the above
estimate that

[l = unll] < C B2 Jlullsq

where the constant C' is independent of €. It is known from the conforming finite element
method that on general meshes the convergence order 3/2 is optima116.

As we see, the assumption (36) guarantees that the convective consistency error is of
order O(h?) (e—uniformly) and that, for a fixed ¢, it is of order O(h?). Let us remark that
for the space Vi, we only have O(1) and O(h), respectively. The diffusive consistency
error 7 can be even estimated by

ri(u,on) < OB Julyg lllvalll,

provided that u € H*(). This estimate is again better by the factor h> compared with
V7e. The improvement of the estimate of 7{ does not influence the asymptotic behaviour
of the discrete solution but it certainly improves the accuracy.

The space V™ defined using a function b satisfying (30), (31) and (36) was already

introduced in'® and the corresponding finite element was named the P4 element. A

particular example of the P/"? element can be constructed by setting

~ o~

B:X%S‘Q_)‘l/\ga

where 3\1, X are the barycentric coordinates on the reference element K with respect to
71, Ta, respectively. To express the formulas (33), (34) for the basis functions yg and g
in terms of the barycentric coordinates, we denote by K and K the two elements adjacent
to an edge E € & and by \;, Ay and \;, Ay the barycentric coordinates on K and K
with respect to zp 1, T2, respectively. Further, we respectively denote by A3 and s the
remaining barycentric coordinates on K and K. Then

AN, —MA in K,
xe=1{ MA—-MX  inK\E,
0 in Q\ {KUK}
and
1—2X3—10 (A2 A — A A2) —10 (A2 Xy — Ay A2)  in K,
Yp=4 1—=2X 3 —10(A2 X — A\ AD) =10 (A2 Xy — A\, \2)  in K\ E,
0 in Q\ {KUK}.
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Figure 1: Exact solution of Example 1 Figure 2: Exact solution of Example 2

7 NUMERICAL RESULTS

The aim of this section is to compare streamline diffusion finite element discretizations
of the equation (1) employing the P element (i.e., the space V}¢) with discretizations
in which the modified space V"? is used and to demonstrate the robustness of the latter
discretizations. We only consider the piecewise cubic example of the space Vi**¢ described
at the end of the preceding section which we denote as the P/**¢ element in the following.
We shall investigate both the discretization (5) and the discretization obtained from (5)
by replacing ai** by af°™ defined in (11). Thus, we have two types of discretizations
and two types of spaces, which gives four combinations. However, since the combination
ag®™ /| P mostly gave very similar results as a;**/ P/**¢, we mainly consider the following
three methods: afo™/Pr, agk? /P and a;**/ P/, We recall that no theoretical results

are available for the problems with a;°™ because of the missing coercivity proof for a;*™".

The bilinear forms a;** and a{™ were computed exactly whereas the right—hand side [,
was evaluated using a quadrature formula which is exact for piecewise cubic f. The arising
linear systems were solved applying the GMRES method with ILU preconditioning. The
computations were terminated if the ratio of the norms of the residuum and the right—
hand side was smaller than 108, The errors of the discrete solutions were measured in
the norms ||| - ||| and ||, ,. The evaluation of ||| - ||| (resp. |-, ) was exact for piecewise
quadratic (resp. cubic) functions. For the P4 element, we give the errors of the piecewise
linear part ul™ of u; (see Remark 3).

Example 1 Smooth polynomial solution.
Let Q = (0,1)%, b= (3,2), c =2 and u, = 0. For a given € > 0, the right-hand side f is
chosen such that

u(z,y) =1002% (1 —2)’y (1 —y) (1 - 2y)

is the exact solution of (1), see Fig. 1.

It is not surprising that, for all three methods and for any fixed e, numerical experiments
confirm the linear convergence of the discrete solution to the above solution u in both

15
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Figure 3: Type of the triangulations used for Examples 1-3

the norms ||| - ||| and | - |, ,. However, the convergence behaviour with respect to ¢ is
more interesting. Therefore, in Tables 1 and 2, we present errors of the discrete solutions
for various values of h and for ¢ = h*. The results were obtained for Friedrichs—
Keller triangulations of €2 of the type depicted in Fig. 3 and for i defined by (8) with
rkx = 1. The convergence orders were always computed using values from triangulations
with h = 1.77 - 1072 and h = 8.84 - 1073, Table 1 shows that the solutions of the
discretization ai*e¥/P/m? converge with the optimal order 3/2 in the streamline diffusion
norm ||| - |||, as predicted by our theory. The same convergence order is also observed
for the discretization af°™/Pj**. Further, we observe that the solutions of (5) with the

h e a}clom)/Plnc a}slkew/Plnc a}slkew/leod
7.07-2 ] 2.50-5 1.43—-1 7.79—1 1.48—-1
3.54—-2 | 1.56—6 5.10—-2 7.43—1 5.24-2
1.77=2 | 9.77-8 1.80—-2 7.09—1 1.85-2
8.84—3 1 6.10-9 || 6.36—3 6.86—1 6.56—3
conv. order 1.50 0.05 1.50

Table 1: Example 1, errors |||u — up|||

h e a}clom)/Plnc a}slkew/Plnc a}slkew/leod
7.07-2 | 2.50-5 1.404-0 4.29+1 2.14-1
3.54—2 1 1.56—6 1.094-0 8.66+1 1.07-1
1.77=2 | 9.77-8 || 7.57—1 1.784-2 5.37—2
8.84—-3 | 6.10-9 || 4.98—-1 3.72+2 2.69-2
conv. order 0.60 —1.06 1.00

Table 2: Example 1, errors [u — upl; 5,
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Figure 4: Example 2, errors of solution of Figure 5: Example 2, errors of solution of
azkew /Ped for h = 0.0354 ago™ /PP for h = 0.0354
Pl element do not converge in ||| - ||| which is in agreement with Theorem 2. Thus,

the discretization a;**/P® cannot compete with the other two methods. According to

Table 1, the discretizations a;**/P/¢ and af°™/P seem to be comparable, however,

Table 2 indicates that the discretization a;**/P/m°¢ is much more accurate than both

ago™ /P and ai*v/Pre. In addition, we observe an optimal e—uniform convergence of
skew

solutions of ag™" /P with respect to | - |, ,. The superiority of aj*"/P/"* can also be
seen from the following example.

Example 2 Layers at the outflow part of the boundary.
Let 2 = (0,1)%, e =107% b= (2,3) and ¢ = 1. The right-hand side f and the boundary
condition u; are chosen such that

u(z,y) = zy® —y* exp (@) — T exp <@> +exp <2(1’— D+3@— 1))

£

is the exact solution of (1). This function has boundary layers at z = 1 and y = 1, see
Fig. 2.

The domain €2 was again discretized using a triangulation of the type depicted in Fig. 3
and 0x was defined by (8) with kx = 0.25. Fig. 4-6 show errors u; — u for all three dis-
cretizations obtained for h = 0.0354. We observe that, for a;***/P™°? the errors are
located in a region near the boundary layers. For a;”™/P/*, the errors are located in
nearly the same region but they oscillate and are more than ten times larger. Finally, for
ag¥v/Pre. the errors are smaller than for af™ /P but they are distributed over a large
part of Q and they again oscillate. Again, we can conclude, that the discretization em-
ploying the P/"°? element is much more better than discretizations using the P element.

To demonstrate the robustness of discretizations employing the P/ element, we also
consider the following two examples which do not fit into the theory presented in this

paper.
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Figure 6: Example 2, errors of solution of Figure 7: Example 3, solution of askew / pmod ¢
agkew/ pre for b = 0.0354 ) ’ Pt
h 1 =\ h =0.0354

Example 3 Inner and boundary layers.
We consider Q = (0,1)%, e =107% b= (1/2,v/3/2),c=0, f =0 and

0 forz>1/20ry=1,

up(x,y) =
@) { 1 else.

The solution u has an inner layer along the line y = v/3 (z — 1/2) and boundary layers
along y =1and z =1, y > v/3/2.

Example 4 Inner and boundary layers.
Let Q = (—3,9) x (=3,3)\{(z,y) e R*; 22 +¢?><1},e =107% b= (1,0),c=0, f =0
and

0 for x = =3 or y = 3,

ub(xv y) = {

1 else.
In addition, instead of the Dirichlet boundary condition along the line x = 9, we prescribe
Ou/0x = 0. The solution u has two inner layers along (0,9) x {£1} and a boundary layer
along the curve z < 0, 22 + 9% = 1.

For solving Example 3, we used the same triangulation as for Example 2. The triangu-
lation used for Example 4 is depicted in Fig. 8. In both cases we used dx defined by (8)
with kg = 0.2. The computed solutions are shown in Fig. 7 and 9. Instead of showing
the discontinuous solutions wuy, directly, we present corresponding conforming functions
up € V,ionf such that the value of @, at any inner vertex is equal to the arithmetic mean
value of the values of u; at the midpoints of edges connected with this vertex. We see
that inner and boundary layers are detected very well and that the methods behave in a

robust way although the assumptions made in Section 1 are not satisfied.
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Figure 8: Triangulation for Example 4 (13488 el- Figure 9: Example 4, solution of af°"™’/ Pmod for
ements) the triangulation from Fig. 8

The above numerical results show that the discretizations employing the P/™°? element
are substantially better than discretizations using the P/ element. The P/ element
always gave optimal convergence orders and behaved very robust with respect to €. In
addition, the iterative solver used to compute the discrete solutions converged much faster
for the P/™°? element than for discretizations using the P/ element. Thus, the Pmo?
element not only improves the stability of the discrete solution, but also the convergence
properties of the solver.
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