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On the choice of the SUPG parameter

at outflow boundary layers

Petr Knobloch

Charles University, Faculty of Mathematics and Physics, Department of

Numerical Mathematics, Sokolovská 83, 186 75 Praha 8, Czech Republic

Abstract

We consider the SUPG finite element method for two–dimensional steady scalar
convection–diffusion equations and propose a new definition of the SUPG stabiliza-
tion parameter along outflow Dirichlet boundaries. Numerical results demonstrate a
significant improvement of the accuracy and show that, in some cases, even nodally
exact solutions are obtained.

Key words: Convection–diffusion equations, Streamline upwind/Petrov–Galerkin
(SUPG) method, Spurious oscillations, Outflow boundary layers

1 Introduction

In many applications, transport processes are the main mechanism deter-
mining distributions of the observed physical quantities. Often, the distri-
butions of some of the quantities are not smooth and contain narrow re-
gions where the quantities change abruptly. Depending on the application,
one speaks about layers, shocks or discontinuities. When approximating such
quantities numerically, the width of the regions where shocks or layers occur
is often much smaller than the resolution of the used mesh. Consequently, the
shocks or layers cannot be resolved properly, which usually leads to unwanted
spurious (nonphysical) oscillations in the numerical solution. The attenua-
tion of these oscillations has been the subject of extensive research for several
decades during which a huge number of so–called stabilized methods have
been developed. The stabilizing effect can be often interpreted as the addition
of some artificial diffusion to a standard (unstable) numerical scheme. On the
one hand, this artificial diffusion should damp down the oscillations but, on
the other hand, it should not smear the numerical solution so that the design
of a proper stabilization is a very difficult task.
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In the context of finite element methods, a very popular stabilization tech-
nique is the streamline upwind/Petrov–Galerkin (SUPG) method. This method
was introduced by Brooks and Hughes [1] for advection–diffusion equations
and incompressible Navier–Stokes equations. Later this technique has been
applied to various other problems, e.g., coupled multidimensional advective–
diffusive systems [6], first–order linear hyperbolic systems [9] or first–order
hyperbolic systems of conservation laws [7]. Because of its structural sim-
plicity, generality and the quality of numerical solutions, the SUPG method
has attracted a considerable attention over the last two decades and many
theoretical and computational results have been published. It is not the aim
of this paper to provide a review of these results and we only refer to the
monograph [13].

Like many other stabilized methods, the SUPG method contains a stabiliza-
tion parameter for which a general ‘optimal’ choice is not known. Theoretical
investigations of model problems only provide asymptotic behaviour of this
parameter (with respect to the mesh width) and certain bounds for which
the SUPG method is stable and leads to (quasi–)optimal convergence of the
discrete solution. However, it has been reported many times that the choice
of the stabilization parameter inside these bounds may dramatically influence
the accuracy of the discrete solution. The aim of this paper is to describe a
new way how the SUPG stabilization parameter can be defined.

For simplicity, we shall confine ourselves to a steady scalar convection–
diffusion equation

−ε ∆u + b · ∇u = f in Ω . (1)

We assume that Ω is a bounded domain in R
2 with a polygonal boundary ∂Ω,

ε > 0 is the constant diffusivity, b is a given convective field, and f is an outer
source of u. The equation (1) has to be equipped with suitable boundary con-
ditions on ∂Ω which will be specified later. In the convection–dominated case
ε ≪ |b|, the solution u typically contains interior and boundary layers (which
depend on the choice of the boundary conditions). These layers can be divided
into characteristic (interior and boundary) layers and outflow boundary layers,
see [13].

The SUPG method produces accurate and oscillation–free solutions in re-
gions where no abrupt changes in the solution of (1) occur but it does not
preclude spurious oscillations (overshooting and undershooting) localized in
narrow regions along sharp layers. Therefore, various, often nonlinear, terms
introducing additional artificial diffusion in the neighborhood of layers have
been proposed to be added to the SUPG formulation, see the recent re-
view paper [8]. Such techniques are often called discontinuity–capturing meth-
ods, shock–capturing methods or spurious oscillations at layers diminishing
(SOLD) methods.
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Numerical tests in [8] revealed that the SOLD methods significantly im-
prove the quality of a SUPG solution only if the SUPG method adds enough
artificial diffusion in the streamline direction. This shows the necessity to re-
consider the definition of the SUPG stabilization parameter. We shall confine
ourselves to outflow boundary layers where a careful choice of the SUPG pa-
rameter can provide a fairly satisfactory approximation of the solution u. On
the other hand, the choice of the stabilization parameter at characteristic lay-
ers has only a limited influence on the spurious oscillations appearing in these
regions (cf., e.g., [11]). Indeed, characteristic layers follow the streamlines and
the SUPG method contains no mechanism for stabilization in the direction
perpendicular to streamlines where spurious oscillations occur. Therefore, an
oscillation–free SUPG approximation of a characteristic layer can be obtained
only by introducing an additional crosswind diffusion [8] or by using a layer–
adapted mesh, see, e.g., [12].

The paper is organized in the following way. Sections 2 and 3 are devoted to
the formulation of the SUPG method in one and two dimensions, respectively,
and to a brief discussion of the optimal choice of the stabilization parame-
ter. Then, in Section 4, the SUPG method is applied to a two–dimensional
model problem and the insufficiency of the present approaches to the choice of
the stabilization parameter is demonstrated. Based on the observations from
Section 4, a new definition of the SUPG stabilization parameter at outflow
boundary layers is derived in Section 5. Numerical results in Section 6 show
the advantages of the new approach and the paper is closed by conclusions
in Section 7. Throughout the paper, we use the standard notations P1(Ω),
Q1(Ω), L2(Ω), H1(Ω) = W 1,2(Ω), etc. for the usual function spaces, see, e.g.,
Ciarlet [4]. For a vector a ∈ R

2, we denote by |a| its Euclidean norm.

2 The SUPG method in one dimension

Let us consider the equation (1) in the one–dimensional case with homoge-
neous Dirichlet boundary conditions and Ω = (0, 1):

−ε u′′ + b u′ = f in (0, 1) , u(0) = u(1) = 0 . (2)

For simplicity, let b and f be constants, b 6= 0. Then, denoting

α =
f

b
, β =

b

ε
,

we have

u(x) = α x − α
e−β(1−x) − e−β

1 − e−β
, x ∈ [0, 1] .

Thus, if ε ≪ |b|, the solution u contains a boundary layer. Precisely, if b > 0,
we see that u(x) ≈ α x on most of [0, 1) and a boundary layer occurs at x = 1.
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Similarly, if b < 0, we have u(x) ≈ α (x− 1) on most of (0, 1] and a boundary
layer occurs at x = 0.

Let N be a positive integer and let us set h = 1/N and define the nodes
xi = i h, i = 0, 1, . . . , N . We introduce the finite element space

Vh = {v ∈ C([0, 1]) ; v|[xi−1,xi] ∈ P1([xi−1, xi]), i = 1, . . . , N,

v(0) = v(1) = 0}

consisting of continuous piecewise linear functions. Then the SUPG method
for approximating the solution of (2) reads: Find uh ∈ Vh such that

ε (u′
h, v

′
h) + (b u′

h, vh + τ b v′
h) = (f, vh + τ b v′

h) ∀ vh ∈ Vh , (3)

where (·, ·) denotes the inner product in L2(0, 1) and τ is a nonnegative sta-
bilization parameter. This problem has a unique solution which is determined
by the values ui ≡ uh(xi), i = 0, . . . , N . If τ is constant in (0, 1), then (3) can
be equivalently written in the form

−(ε + τ b2 + 1
2
b h) ui−1 + 2 (ε + τ b2) ui − (ε + τ b2 − 1

2
b h) ui+1 = f h2, (4)

where i = 1, . . . , N − 1.

It is well known that the parameter τ can be chosen in such a way that the
solution of (3) is nodally exact [3]. Indeed, setting

τ =
h

2 |b|
(

coth Pe − 1

Pe

)

with Pe =
|b| h
2 ε

, (5)

it is easy to verify that ui = u(xi), i = 0, . . . , N . The quantity Pe is the local
Péclet number which determines whether the problem is locally (i.e., within
a particular subinterval) convection dominated or diffusion dominated.

If b or f in (2) are not constant, then τ defined by (5) generally does
not lead to a nodally exact discrete solution. Nevertheless, the discrete solu-
tion is significantly better than the wildly oscillating solution of the standard
Galerkin discretization (defined by (3) with τ = 0).

If the space Vh is constructed using higher–order polynomials, it is much
more difficult to choose the parameter τ in an appropriate way. For example,
defining Vh using continuous piecewise quadratic functions, it was showed in
[5] that a nodally exact discrete solution can be obtained only if a different
formula is used for each of the two types of shape functions. This is, of course,
not very convenient, particularly because an extension to the multidimensional
case is rather complicated. Nevertheless, according to the considerations in [5]
and various numerical experiments, a good choice seems to be to simply take
half the value of τ from (5).
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3 The SUPG method in two dimensions

Let Th be a triangulation of the domain Ω consisting of a finite number of
open elements K. For simplicity, we shall assume that all elements of Th are
either triangles or rectangles. Further, we assume that Ω =

⋃

K∈Th
K and that

the closures of any two different elements of Th are either disjoint or possess
either a common vertex or a common edge.

We define the finite element space

Wh = {v ∈ H1(Ω) ; v|K ∈ R(K) ∀ K ∈ Th} ,

where R(K) = P1(K) if K is a triangle and R(K) = Q1(K) if K is a rectangle.
Further, we introduce a test function space Vh ⊂ Wh taking into account the
boundary conditions prescribed for the solution of (1). For example, denoting
by ∂ΩD and ∂ΩN disjoint subsets of ∂Ω satisfying ∂ΩD ∪ ∂ΩN = ∂Ω, by n

the outward unit normal vector to ∂Ω and by ub a scalar function on ∂ΩD,
the boundary conditions

u = ub on ∂ΩD ,
∂u

∂n
= 0 on ∂ΩN (6)

lead to the space

Vh = {v ∈ Wh ; v = 0 on ∂ΩD} .

Of course, the triangulation Th should be defined in such a way that any
boundary edge is a subset of ∂ΩD or ∂ΩN .

Denoting by ubh ∈ Wh a function whose trace approximates the bound-
ary condition ub, the SUPG method for the convection–diffusion equation (1)
equipped with the boundary conditions (6) reads:

Find uh ∈ Wh such that uh − ubh ∈ Vh and

ε (∇uh,∇vh) + (b · ∇uh, vh + τ b · ∇vh) = (f, vh + τ b · ∇vh)

∀ vh ∈ Vh , (7)

where (·, ·) denotes the inner product in L2(Ω) or L2(Ω)2 and τ is a nonnegative
stabilization parameter.

The choice of τ significantly influences the quality of the discrete solution
and therefore it has been a subject of an extensive research over the last
three decades, see, e.g., the review in the recent paper [8]. Nevertheless, the
definitions of τ mostly rely on heuristic arguments and a general ‘optimal’ way
of choosing τ is still not known. Often, by analogy with the one–dimensional
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Fig. 1. Types of triangulations considered in Section 4.

formula (5), the parameter τ is defined, on any element K ∈ Th, by

τ |K =
hK

2 |b|
(

coth PeK − 1

PeK

)

with PeK =
|b| hK

2 ε
, (8)

where hK is the element diameter in the direction of the convection vector
b. Various justifications of this formula can be found in [8] (see also the next
section). Note that, generally, the parameters hK , PeK and τ |K are functions
of the points x ∈ K.

4 Application of the SUPG method to a model problem

Let Ω = (0, 1)2 and let us consider the equation (1) with constant data f
and b ≡ (b1, b2) satisfying b1 6= 0 and with the following boundary conditions:

u(0, y) = u(1, y) = 0 ∀ y ∈ (0, 1) , (9)

u(x, 0) = u(x, 1) ,
∂u

∂y
(x, 0) =

∂u

∂y
(x, 1) ∀ x ∈ (0, 1) . (10)

This problem has a unique solution. Moreover, the solution is independent of
y and satisfies (2) with b = b1.

First, we shall confine ourselves to the three types of triangulations depicted
in Fig. 1. The nodes are equidistant in both the x– and y–directions and the
corresponding mesh widths are denoted by h1 and h2, respectively. The test
function finite element space is

Vh = {v ∈ Wh ; v(0, y) = v(1, y) = 0 ∀ y ∈ (0, 1),

v(x, 0) = v(x, 1) ∀ x ∈ (0, 1)}

and the SUPG solution of the considered problem is a function uh ∈ Vh sat-
isfying (7). Again, this discrete solution is uniquely determined and, if τ is
constant, it does not depend on the y–coordinate. For both the triangular and
the rectangular triangulations, the discrete solution then satisfies the one–
dimensional scheme (4) with b = b1 and h = h1. Thus, in view of (5), an
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optimal choice of the stabilization parameter τ in (7) is

τ =
h1

2 |b1|
(

coth Pe − 1

Pe

)

with Pe =
|b1| h1

2 ε
. (11)

In this case the SUPG solution is nodally exact.

In the triangular case, the optimal one–dimensional scheme can be recov-
ered also for piecewise constant τ . It suffices when τ has the same value on
elements whose barycentres have the same x–coordinate and when, for any
two elements K, K ′ sharing a ‘diagonal’ edge, we have

1

2
(τ |K + τ |K ′) =

h1

2 |b1|
(

coth Pe − 1

Pe

)

with Pe =
|b1| h1

2 ε
. (12)

Then the SUPG solution again is nodally exact.

If the convection vector b points in the x–direction (i.e., b2 = 0), then
hK = h1 and |b| = |b1| so that the formula (8) provides the optimal value of τ
determined by (11). This may be viewed as a justification of using (8) and, in
particular, of defining hK as the diameter of K in the direction of b and not
as the real diameter of K.

On the other hand, if b2 6= 0, the value provided by (8) is often smaller
than the value of τ given in (11), which leads to oscillations of uh. Unfortu-
nately, the above results also show that it is not possible to simply extend the
one–dimensional considerations to the two–dimensional case by applying a for-
mula for τ of the type (8). Indeed, if we prescribe the homogeneous Dirichlet
boundary conditions on the sides of Ω parallel to the x–axis and the periodic
boundary conditions on the sides of Ω parallel to the y–axis, the optimal value
of τ will be given by

τ =
h2

2 |b2|
(

coth Pe − 1

Pe

)

with Pe =
|b2| h2

2 ε
.

However, an element K of the triangulation lying away from the boundary of
Ω does not have any information about its position in Ω and the boundary
conditions prescribed on ∂Ω and hence, using only the information available
on K, it is not possible to decide whether τ on K should be defined by the
value given in (11) or in (12).

Now, we shall investigate the following setting of the problem discussed in
this section:

Example 1 We consider the equation (1) in Ω = (0, 1)2 with the boundary
conditions (9) and (10) and with ε = 10−4, b = (1, 0), and f = 1.
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2h

h1

Fig. 2. Triangulation obtained by refining the triangulations from Fig. 1(a) and 1(b).

Let us solve Example 1 on a triangulation of the type depicted in Fig. 1(a)
or 1(b). Then, as we know, the solution of the SUPG method with τ defined
by (8) is nodally exact. Often, a triangulation of a domain with a simple
geometry is constructed by refining a coarse triangulation. If all triangles of
the triangulations from Fig. 1(a) or 1(b) are divided into four equal triangles
by connecting midpoints of edges, we obtain triangulations of the same type as
in Fig. 1(a) or 1(b), respectively, and hence the corresponding SUPG solutions
are again nodally exact. However, if we divide all triangles of the triangulations
from Fig. 1(a) or 1(b) into four equal triangles by applying twice bisection,
we obtain the triangulation depicted in Fig. 2 and the corresponding SUPG
solution significantly differs from the nodally exact solution, see Fig. 3. Note
that the triangulation in Fig. 2 contains the same type of triangles as the
two triangulations in Figs. 1(a) and 1(b) and that also the orientation of the
triangles with respect to the convection vector b is the same as in Figs. 1(a) and
1(b). This again shows that the information available on a particular element
of the triangulation is not sufficient for defining the stabilization parameter τ
in an optimal way and that the orientation of the neighbouring elements has
to be taken into account.

The above examples of the behaviour of the SUPG method indicate the
necessity to develop new strategies for defining the stabilization parameter
τ . A definition of τ appropriate for elements lying at an outflow Dirichlet
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 1.2

Fig. 3. Example 1, SUPG solution for τ defined by (8) computed on the triangulation
from Fig. 2 with h1 = h2 = 1/20.
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boundary will be proposed in the next section.

Remark 1 The periodic boundary conditions (10) considered in this sec-
tion may seem artificial. However, the above discussion remains valid also
for other types of boundary conditions. For example, if we prescribe homo-
geneous Dirichlet boundary conditions on the whole boundary of Ω, choose
ε ≪ |b| ≈ f and use a rectangular domain Ω with an appropriate ratio of the
sides with respect to the direction of b, then there will be a region in Ω where
both the exact and the discrete solution will behave very similarly as for the
problem considered in this section.

Remark 2 Let us consider the equation (1) in Ω = (0, 1)2 with homogeneous
Dirichlet boundary conditions, ε ≪ 1, b = (1, 0), and f = 1. Then the so-
lution u possesses characteristic boundary layers at y = 0 and y = 1. Using
triangulations of the type considered in this section (being not extremely fine)
and τ defined by (8), the SUPG solution contains oscillations along y = 0
and y = 1 whereas the nodally exact solution satisfies uh(x, y) ≈ x at interior
nodes. However, substituting the nodally exact solution into (7), we realize
that, outside the outflow boundary layer, the SUPG terms cancel no matter
how τ is defined (in the rectangular case, this is true if τ does not depend
on x). Thus, as we mentioned in the introduction, the SUPG method alone is
not able to provide oscillation–free approximations to characteristic boundary
layers unless layer–adapted meshes are used.

5 A new definition of the SUPG stabilization parameter

The favourable properties of the one–dimensional SUPG method (4) with
τ defined by (5) are due to the fact that the upwind character of the method
increases with increasing Péclet number. Particularly, for Pe ≫ 1, we have
τ ≈ h/(2|b|) and the coefficient at the downwind node in (4) is

−(ε + τ b2 − 1
2
|b| h) ≈ −ε .

Then the SUPG stabilization is basically equivalent to approximating the con-
vective term by classical upwind differencing and the influence of the Dirichlet
boundary condition at the outflow boundary node on the values of uh at inte-
rior nodes is significantly suppressed.

In two dimensions, this property is generally lost, which leads to spurious
oscillations like in Fig. 3. By analogy with the one–dimensional case, it is
natural to ask whether τ can be defined in such a way that, for ε → 0, the
difference scheme corresponding to (7) does not employ the outflow boundary
values of uh. Unfortunately, this is generally not possible. As an example, let
us consider a triangulation of Ω = (0, 1)2 of the type from Fig. 1(a) with
h1 = h2 = h and let ϕj ∈ Vh be the standard basis function corresponding
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to a boundary node xj lying on the right–hand side of Ω. Let ϕi ∈ Vh be the
standard basis function corresponding to the interior node xi connected with
xj by a horizontal edge. Then, for b = (2, 3),

(b · ∇ϕj, ϕi + τ b · ∇ϕi) =
h

6
+

2

h2

∫

supp ϕi ∩ supp ϕj

τ dx (13)

and hence, for any choice of τ , the value of uh at xj contributes to the ap-
proximation of the convective term at xi.

Thus, let us at least investigate whether a suitable choice of τ can remove
the oscillations shown in Fig. 3. We denote the outflow Dirichlet boundary by
Γ, i.e., Γ = {1} × [0, 1], and we set

Gh =
⋃

K∈Th, K∩Γ6=∅

K .

Further, we denote by ϕ1, . . . , ϕMh
all standard basis functions of Vh which

satisfy

supp ϕi ∩ Gh 6= ∅, i = 1, . . . , Mh . (14)

The nodally exact solution of Example 1 on the triangulation from Fig. 2 with
h1 = h2 = 1/20 satisfies uh(x, y) ≈ x in [0, 1−h1]× [0, 1] and hence, neglecting
the diffusion term, it satisfies (7) if and only if

∫

Gh

vh + τ b · ∇vh dx = 0 ∀ vh ∈ Vh .

This can be equivalently written in the form

∫

Gh

ϕi + τ b · ∇ϕi dx = 0, i = 1, . . . , Mh . (15)

There are many possibilities how to fulfil these relations and the simplest one
probably is to set

τ |K =



















2 h1

3
if K has an edge on Γ,

h1

3
otherwise

∀ K ∈ Th, K ⊂ Gh . (16)

On the remaining elements K ∈ Th we define τ by (8). Then the SUPG
solution is a very good approximation of the solution to Example 1 as Fig. 4
shows.
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Fig. 4. Example 1, SUPG solution for τ defined by (8) and (16) computed on the
triangulation from Fig. 2 with h1 = h2 = 1/20.

The relations (15) used to define τ were obtained thanks to the fact that
the nodally exact solution of Example 1 satisfies

b · ∇uh − f ≈ 0 in Ω \ Gh , b · ∇uh − f = const. in Gh . (17)

For other data or boundary conditions, this will be usually not satisfied but it
can be expected that the validity of (15) will diminish the spurious oscillations
along an outflow boundary layer.

Let us now investigate whether (15) can be satisfied for a general polygonal
domain Ω and a triangulation Th consisting of triangles. Using the notation
∂ΩD for the part of ∂Ω where Dirichlet boundary conditions are prescribed,
we again introduce the outflow Dirichlet boundary

Γ = {x ∈ ∂ΩD ; (b · n)(x) > 0} .

For simplicity, we assume that Γ is connected and consists of whole boundary
edges of Th. Like above, we set

Gh =
⋃

K∈Gh

K where Gh = {K ∈ Th ; K ∩ Γ 6= ∅} .

Further, we denote

G1
h = {K ∈ Gh ; K has only one vertex on Γ} , G2

h = Gh \ G1
h .

For any vertex z ∈ Γ, we denote by

G1
h(z) = {K ∈ G1

h ; z ∈ K}

the set of all elements possessing the vertex z and no other vertex lying on Γ.
For any K ∈ Th, we set

bK =
1

|K|
∫

K

b dx .
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If K ∈ G1
h, we assume that bK points from the vertex K ∩ Γ outwards K. If

K ∈ G2
h has exactly two vertices on Γ, we denote by nE the outward normal

vector to the edge E connecting these two vertices and assume that bK ·nE > 0.

We again denote by ϕ1, . . . , ϕMh
all standard basis functions of Vh satisfying

(14). For i = 1, . . . , Mh, let xi be the vertex associated with the basis function
ϕi, i.e., ϕi(xi) = 1 and ϕi(x) = 0 for any vertex x 6= xi. We set

Nh = {x1, . . . ,xMh
} ,

N 2
h = {x ∈ Nh ; ∃K ∈ G2

h : x ∈ K} , N 1
h = Nh \ N 2

h .

The example leading to (13) shows that it is generally not possible to fulfil
(15) elementwise. Nevertheless, we can use the fact that each vertex xi, i =
1, . . . , Mh, can be easily assigned to an element K ∈ Gh (in an one–to–one
way) such that bK · ∇ϕi|K < 0. This follows from the following results.

Lemma 1 For any K ∈ G1
h satisfying card(K ∩ Nh) = 2, there exists i ∈

{1, . . . , Mh} such that xi is a vertex of K and bK · ∇ϕi|K < 0.

Proof. Let us assume that the lemma is not true. Then there exist K ∈ G1
h

and j, k ∈ {1, . . . , Mh} such that j 6= k and

xj ,xk ∈ K , bK · ∇ϕj|K ≥ 0 , bK · ∇ϕk|K ≥ 0 .

We denote by z the remaining vertex of K. The vectors ∇ϕj|K and ∇ϕk|K
are orthogonal to the edges z, xk and z, xj , respectively, and point into K.
Consequently, bK points from the vertex z into K. This is not possible since
z ∈ Γ. 2

Lemma 2 Let K ∈ G2
h satisfy K ∩ Nh 6= ∅ and let i ∈ {1, . . . , Mh} be such

that K ∩Nh = {xi}. Then bK · ∇ϕi|K < 0.

Proof. Since the vector ∇ϕi|K is orthogonal to the edge E of K opposite
the vertex xi and points into K, the lemma immediately follows from the
assumptions on bK . 2

Lemma 3 Let z ∈ Γ be any vertex different from the end points of Γ and
let cardG1

h(z) ≥ 2. Let the edges of elements of G1
h(z) opposite z form a

connected curve, see Fig. 5. For simplicity, let us assume that there exist
k, l ∈ {1, . . . , Mh} such that k ≤ l,

{xk, . . . ,xl} = {x ∈ Nh ; ∃K, K ′ ∈ G1
h(z) : x ∈ K ∩ K ′}

and cardG1
h(z) = l − k + 2, see Fig. 5. Moreover, if k < l, we assume that,

for i = k, . . . , l − 1, the vertices xi and xi+1 are connected by an edge of
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Fig. 5. Notation to Lemma 3.

the triangulation Th. Finally, we assume that b is constant on the union of
elements of G1

h(z). We denote the elements of G1
h(z) by Kk, . . . , Kl+1 in such

a way that, for i = k, . . . , l, the elements Ki and Ki+1 share the vertex xi.
Further, we denote by xk−1 and xl+1 the remaining vertices of the elements
Kk and Kl+1, respectively. Since these vertices may lie on ∂ΩD \Γ, we denote
the piecewise linear basis functions associated with these vertices by ϕk−1 and
ϕl+1, respectively. Then there exists j ∈ {k, . . . , l + 1} such that

b · ∇ϕi|Ki
< 0 , b · ∇ϕi|Ki+1

≥ 0 , i = k, . . . , j − 2 ,

b · ∇ϕi|Ki
≥ 0 , b · ∇ϕi|Ki+1

< 0 , i = j + 1, . . . , l ,

b · ∇ϕk−1|Kk
≥ 0 , b · ∇ϕj−1|Kj−1

< 0 if j > k ,

b · ∇ϕj |Kj+1
< 0 , b · ∇ϕl+1|Kl+1

≥ 0 if j ≤ l .

Proof. For simplicity, we shall write ϕk−1 and ϕl+1 instead of ϕk−1 and ϕl+1,
respectively. The vector ∇ϕk|Kk

is orthogonal to the edge z, xk−1 and points
into Kk. Similarly, ∇ϕl|Kl+1

is a vector orthogonal to the edge z, xl+1 which

points into Kl+1. Since b does not point from z into ∪l+1
i=kKi, we deduce that

b·∇ϕk|Kk
or b·∇ϕl|Kl+1

is negative. Without loss of generality we may assume
that b · ∇ϕk|Kk

< 0. Then there exists j ∈ {k, . . . , l + 1} such that

b · ∇ϕi|Ki
< 0 , i = k, . . . , j ,

and, if j ≤ l,

b · ∇ϕj+1|Kj+1
≥ 0 .

From the latter inequality, we derive analogously as at the beginning of the
proof that

b · ∇ϕi|Ki+1
< 0 , i = j, . . . , l .

Finally, since the vectors ∇ϕi−1|Ki
and ∇ϕi+1|Ki+1

have opposite directions
for any i ∈ {k, . . . , l}, it follows from the above inequalities that

b · ∇ϕi|Ki+1
> 0 , i = k − 1, . . . , j − 2 ,

b · ∇ϕi|Ki
> 0 , i = j + 2, . . . , l + 1 . 2
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Lemmas 1–3 enable to introduce an algorithm for defining the SUPG pa-
rameter τ at outflow Dirichlet boundaries. Since the relations (15) correspond
to ε → 0, we denote τ satisfying (15) by τ0. Thus, we shall construct a piece-
wise constant function τ0 on Gh satisfying

∫

Gh

ϕi + τ0 b · ∇ϕi dx = 0, i = 1, . . . , Mh . (18)

Then, by analogy to (8), we define the parameter τ , on any element K ∈ Gh,
by

τ |K = τ0|K
(

coth PeK − 1

PeK

)

with PeK =
|bK | hK

2 ε
. (19)

On elements K ∈ Th \ Gh, we define τ by (8) with b replaced by bK .

Let us note that the definition of τ0 is not important on elements which
have all three vertices on the Dirichlet boundary since all functions from Vh

vanish on these elements. Therefore, we shall not mention such elements in
the following.

It is advantageous to start defining τ0 on elements of G1
h. First, for any

vertex z ∈ Γ we construct the set G1
h(z). If this set consists of one element K,

the value of τ0 on K can be defined arbitrarily. If K ∩ Nh = {xi} for some
i ∈ {1, . . . , Mh} and bK · ∇ϕi|K ≥ 0, we set τ0|K = hK/(2|bK |) like in (8). If
bK · ∇ϕi|K < 0, we can define τ0 on K in such a way that

∫

K

ϕi + τ0 b · ∇ϕi dx = 0 .

However, the value of τ0 determined from this relation tends to infinity if the
vector bK approaches the direction of the edge of K opposite xi. Therefore,
we introduce a positive parameter αmin (e.g., αmin = 0.1) and set

τ0|K =
1

max{−3 bK · ∇ϕi|K , αmin |bK |/hK} . (20)

If K ∩Nh = {xi,xj} for some i, j ∈ {1, . . . , Mh}, i 6= j, we set

τ0|K = − 1

3 min{bK · ∇ϕi|K , bK · ∇ϕj |K} . (21)

This value of τ0 is positive by Lemma 1 and, if z is different from the end points
of Γ, it is bounded by a constant depending on the minimal angle θ in the ele-
ments of Th. Precisely, it can be shown that τ0|K ≤ hK/(3 min{1

2
, sin2 θ}|bK |).

The bound hK/(3 sin2 θ|bK |) corresponds to bK aligned with Γ so that the
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values of τ0 are smaller in practice. It is easy to see that in all three cases
discussed above we have

∫

K

ϕi + τ0 b · ∇ϕi dx ≥ 0 ∀ xi ∈ K ∩Nh . (22)

Now let cardG1
h(z) ≥ 2 and let z be different from the end points of Γ.

If necessary, we decompose G1
h(z) into several sets satisfying the assumptions

of Lemma 3 or consisting of one element and we treat these sets separately.
The treatment of single elements was discussed in the preceding paragraph
and hence it suffices to consider the case when G1

h(z) satisfies the assumptions
of Lemma 3. This lemma was formulated for a constant vector b but if b is
non–constant, the assertion remains true provided that the triangulation Th

is fine enough with respect to variations of b. An alternative is to modify the
discrete problem (7) in such a way that b is replaced on the elements of G1

h(z)
by its mean value. Thus, let us consider the notation of Lemma 3 and let j be
the integer introduced in the assertion of this lemma. We define τ0 on Kj in
the same way as in the case cardG1

h(z) = 1 discussed above. To fix ideas, let
us assume that j ∈ {k + 1, . . . , l}. Then we compute τ0 on Kj−1 and on Kj+1

from the relations
∫

Kj−1∪Kj

ϕj−1 + τ0 b · ∇ϕj−1 dx = 0 ,
∫

Kj∪Kj+1

ϕj + τ0 b · ∇ϕj dx = 0 . (23)

Since τ0|Kj
is given by (21) with K = Kj and i = j − 1, the inequality in

(22) holds with K = Kj and i = j − 1, j. Thus, it follows from Lemma 3 that
the relations (23) determine both τ0|Kj−1

and τ0|Kj+1
uniquely and that both

these values are positive. To determine τ0 on the remaining elements of G1
h(z),

we require

∫

Ki∪Ki+1

ϕi + τ0 b · ∇ϕi dx = 0 for i = k, . . . , j − 2 and i = j + 1, . . . , l .

According to Lemma 3, the respective values of τ0 can be easily computed and
are positive. The cases j = k and j = l+1 can be viewed as particular cases of
the above procedure. Note also that, if xk−1 = xk−1 ∈ Nh or xl+1 = xl+1 ∈ Nh,
we respectively have

∫

Kk

ϕk−1 + τ0 b · ∇ϕk−1 dx ≥ 0 or
∫

Kl+1

ϕl+1 + τ0 b · ∇ϕl+1 dx ≥ 0 . (24)

Indeed, if bK · ∇ϕk−1|Kk
< 0, we have j = k in view of Lemma 3. As we

explained above, the inequality in (22) is satisfied for K = Kj and i = j−1 and
hence the former inequality in (24) holds. The validity of the latter inequality
in (24) follows analogously.
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If cardG1
h(z) ≥ 2 and z is an end point of Γ, we can often proceed in the

same way as above. However, generally, it is not possible to guarantee the
existence of τ0 satisfying (18) for xi connected by an edge with this z. On
elements K ∈ G1

h(z) such that bK · ∇ϕi|K ≥ 0 for any xi ∈ K ∩ Nh, we set
τ0|K = hK/(2|bK |) like in (8). If the above procedure leads to a negative value
of τ0 on some K ∈ G1

h(z), we set τ0|K = 0.

The above definition of τ0 on elements of G1
h assures that (18) holds for any

i ∈ {1, . . . , Mh} such that xi ∈ N 1
h , possibly except some xi connected by an

edge with an end point of Γ. Moreover, denoting for xi ∈ N 2
h

G1,i
h = {K ∈ G1

h ; xi ∈ K and ∀K ′ ∈ G2
h : xi ∈ K ′ ⇒ K ∩ K ′ = xi} ,

we have (again possibly except some xi connected with an end point of Γ)

∑

K∈G1,i

h

∫

K

ϕi + τ0 b · ∇ϕi dx = 0 ∀ xi ∈ N 2
h .

Therefore, to satisfy (18), we may define τ0 on any K ∈ G2
h with K∩Nh = {xi}

by

∑

K ′ ∈ G1
h
∪ {K},

meas1(K ∩ K ′) 6= 0

∫

K ′

ϕi + τ0 b · ∇ϕi dx = 0 . (25)

Note that, in (25), we integrate over a set consisting of K and elements of
G1

h sharing an edge with K. According to Lemma 2 and the inequalities (22)
and (24), the value of τ0|K is determined by (25) uniquely and is positive.
This completes the definition of τ0 on Gh. For clarity, we summarize the whole
algorithm in Fig. 6.

Remark 3 If we apply the above definition of τ0 to Example 1 on the meshes
from Figs. 1(a), 1(b) and 2, we obtain for τ0 the values given in (16). Thus, in
view of (12), the definition of τ given in (19) leads to a nodally exact SUPG
solution of Example 1 on meshes of the type depicted in Figs. 1(a) and 1(b).

Remark 4 In view of Remark 2 it cannot be expected that the proposed
approach will lead to satisfactory results if (b · n)/|b| → 0 on Γ. This can be
also deduced from the fact that, in this case, the value of τ0 determined from
(25) tends to infinity. The algorithm may also fail if the triangulation contains
an element K ∈ G2

h of the type depicted in Fig. 7. Then the assumption
bK · nE > 0 is typically not satisfied. The simplest remedy is to bisect the
elements K, K ′ sharing the edge E. Note also that the triangulation should
be constructed in such a way that the part of the boundary of the strip Gh

lying in Ω copies the outflow boundary Γ. This helps to approximately satisfy
the second relation in (17).
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for K ∈ Th \ Gh do

τ0|K := hK/(2|bK |)
enddo

for vertices z ∈ Γ do

if G1
h(z) = {K} then

if K ∩ Nh = {xi} then

if bK · ∇ϕi|K ≥ 0 then

τ0|K := hK/(2|bK |)
else

use (20)
endif

else

use (21)
endif

else
decompose G1

h(z) into subsets satisfying the assumptions

of Lemma 3 or consisting of one element
if subset = {K} then

define τ0|K as for G1
h(z) = {K}

else

find j from Lemma 3 and define τ0|Kj
as for G1

h(z) = {K}
for i ∈ {k, . . . , l} successively determine τ0 to satisfy

∫

Ki∪Ki+1

ϕi + τ0 b · ∇ϕi dx = 0

endif

endif

enddo

for K ∈ G2
h do

determine τ0|K from (25)
enddo

for K ∈ Th do

compute τ |K from (19)
enddo

REMARKS:

if K ∈ Gh and bK · ∇ϕi|K ≥ 0 ∀ xi ∈ K ∩Nh then

do not use the above procedure and set τ0|K := hK/(2|bK |)
after computing any new τ0|K set

τ0|K := min{max{τ0|K , 0}, hK/(αmin|bK |)}

Fig. 6. New definition of the SUPG parameter.

Remark 5 For simple model problems, a piecewise constant function τ0 such
that (18) holds can be defined also in the quadrilateral case. However, in
general, the existence of a nonnegative piecewise constant τ0 satisfying (18)
cannot be guaranteed. A remedy could be to use non–constant τ0 on some
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K

K ′

E

Γ

Γ

Fig. 7. Element K not satisfying the assumption bK · nE > 0.

elements but this is not very convenient from the practical point of view.
A further drawback of the quadrilateral case is that the definition of τ0 is
nonlocal. Therefore, it is advantageous to divide the quadrilaterals intersecting
Γ into triangles and to use continuous piecewise linear functions in Gh together
with τ0 defined by the algorithm in Fig. 6.

6 Numerical results

In this section we present some of our numerical results illustrating the
properties of the approach proposed in the preceding section. We start with
the following very simple model problem.

Example 2 We consider the equation (1) and the boundary conditions (6)
with Ω = (0, 1)2, ∂ΩD = ∂Ω, ∂ΩN = ∅, ε = 10−7, b = (cos(π/3),− sin(π/3)),
f = 0, and

ub(x, y) =











0 for x = 1 or y = 0,

1 else.

We use a triangulation of the type from Fig. 1(a) with h1 = h2 = 1/20 ≡ h.
The SUPG solution with τ defined by (8), see Fig. 8(a), contains large spurious
oscillations along both outflow boundary layers. On the other hand, if we define
τ by the algorithm in Fig. 6, we obtain a nodally exact solution, see Fig. 8(b).

We have already seen that there are usually many possibilities how to define
a piecewise constant function τ0 satisfying (18). Particularly, in the present
example, we can use τ0 which is constant for x < 1−2 h and for y > 2 h. Then
τ0 = 1

2
h/|b2| = h/

√
3 in the former case and τ0 = 1

2
h/b1 = h in the latter case.

These values can also be obtained by the approach of Madden and Stynes [11]
who adjusted the SUPG parameter in boundary layer regions in such a way
that the artificial diffusion added by the SUPG method in the normal direction
to an outflow boundary equals to the optimal value known from the one–
dimensional case. Consequently, the approach of Madden and Stynes leads to
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Fig. 8. Example 2, SUPG solutions computed on the triangulation from Fig. 1(a)
with h1 = h2 = 1/20: (a) τ defined by (8) (b) τ defined by Fig. 6.

a discrete solution which is nodally exact except a small neighbourhood of the
corner (1, 0).

If we use a triangulation which is irregular along the outflow boundary,
simple approaches like the one of Madden and Stynes typically do not work
properly, which can also be deduced from the discussion in Section 4. As an
example, let us consider the triangulation from Fig. 9(a) so that now h = 1/10
in the normal direction to the boundary. Fig. 10(a) shows that the approach
of Madden and Stynes does not give a satisfactory solution, which is due to
the fact that the irregular triangulation does not allow to locally reduce the
problem to the one–dimensional case. Nevertheless, the solution in Fig. 10(a)
is much better than for τ defined by (8). The discrete solution corresponding
to τ defined by the algorithm in Fig. 6 is still nodally exact, see Fig. 10(b).
Let us mention that, in contrast to triangulations from Figs. 1 and 2, there
is no rectangular grid associated with the triangulation from Fig. 9(a) which
could be used for visualizing the computed solution. Therefore, in Fig. 10, we
draw the graphs over all edges of the triangulation.

(a) (b)

Fig. 9. Triangulations used in Section 6.
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Fig. 10. Example 2, SUPG solutions computed on the triangulation from Fig. 9(a):
(a) τ defined according to Madden and Stynes [11] (b) τ defined by Fig. 6.

A tuning of the SUPG parameter on elements intersecting an outflow
boundary was also proposed by do Carmo and Alvarez [2]. However, on uni-
form triangulations like in Fig. 1, the parameter τ would have the same value
on all elements intersecting the outflow boundary, which does not enable to
compute both boundary layers of Example 2 sharply.

On the triangulations considered above, the nodally exact solution uh of
Example 2 is constant in Ω \ Gh if ε → 0. Moreover, b and f are constant
and the set Gh can be decomposed into subsets on which uh is linear and (18)
holds. Thus, repeating the considerations from the beginning of Section 5, we
can easily deduce that the nodally exact solution really solves (7) for ε → 0.
In the subsequent examples, such simple considerations will not be possible.

Example 3 We consider the equation (1) and the boundary conditions (6)
with Ω = (0, 1)2, ∂ΩD = ∂Ω, ∂ΩN = ∅, ε = 10−7, b = (cos(π/3),− sin(π/3)),
f = 0, and

ub(x, y) =















0 for x = 1 or y = 0,

sin
(b2 x − b1 y) π

b2 − b1

else.

Note that now ub is continuous. We shall consider the triangulation from
Fig. 2 with h1 = h2 = 1/20 on which the above–mentioned approach of
Madden and Stynes does not lead to an oscillation–free solution. Fig. 11 shows
that the SUPG solution obtained for τ defined by (8) contains large spurious
oscillations whereas a good approximation of the exact solution is obtained
for τ defined by the algorithm in Fig. 6.
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Fig. 11. Example 3, SUPG solutions computed on the triangulation from Fig. 2 with
h1 = h2 = 1/20: (a) τ defined by (8) (b) τ defined by Fig. 6.
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Fig. 12. Example 4, SUPG solutions computed on the triangulation from Fig. 1(b)
with h1 = h2 = 1/20: (a) τ defined by (8) (b) τ defined by Fig. 6.

Example 4 We consider the equation (1) and the boundary conditions (6)
with Ω = (0, 1)2, ∂ΩD = ∂Ω, ∂ΩN = ∅, ε = 10−7, ub = 0, and

b(x, y) = (−y3 + 2 y + 1, 2 x2 − 3 x + 2) , f(x, y) =
cos(x − y)

1 + x + y
.

Using a triangulation of the type from Fig. 1(b) with h1 = h2 = 1/20, we
obtain discrete solutions depicted in Fig. 12. The solution corresponding to
τ defined by (8) again contains large spurious oscillations. These oscillations
disappear if τ is defined by the algorithm in Fig. 6 although u, b and f are
nonlinear. Note that we look from opposite sides at the graphs of the SUPG
solutions in Fig. 12. To compute τ from (8), we replaced b|K by its value at
the barycentre of K. The terms from the discrete problem (7) were evaluated
by means of quadrature formulas which were exact for piecewise linear b and
piecewise cubic f . A more precise integration does not lead to any visible
difference in the computed solution.
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Fig. 13. Example 5, SUPG solutions computed on the triangulation from Fig. 9(b):
(a) τ defined by (8) (b) τ defined by Fig. 6.
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Fig. 14. Example 5, another view at the solutions from Fig. 13.

Example 5 We consider the equation (1) and the boundary conditions (6)
with

Ω = {(x, y) ∈ (−1, 1) × (0, 1) ; x2 + (y − 1)2 > 1
4
} ,

∂ΩN = {(−1,−1
2
) ∪ (1

2
, 1)} × {1} , ∂ΩD = ∂Ω \ ∂ΩN ,

ε = 10−7, b = (0, 1), f = 0, and

ub(x, y) =











1 for x2 + (y − 1)2 = 1
4
,

0 else.

We use the triangulation depicted in Fig. 9(b). This example demonstrates
that the algorithm in Fig. 6 can be successfully applied also if the outflow
boundary is curved. The respective SUPG solution shown in Figs. 13(b) and
14(b) is not completely oscillation–free but the spurious oscillations are sig-
nificantly smaller than for τ defined by (8), see Figs. 13(a) and 14(a).
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Fig. 15. Example 6, SUPG solutions computed on the triangulation from Fig. 1(b)
with h1 = h2 = 1/20: (a) τ defined by (8) (b) τ defined by Fig. 6.

Example 6 We consider the equation (1) and the boundary conditions (6)
with Ω = (0, 1)2, ∂ΩD = ∂Ω, ∂ΩN = ∅, ε = 10−7, b = (2, 3), function f chosen
in such a way that

u(x, y) = x y2 − y2 exp

(

2 (x − 1)

ε

)

− x exp

(

3 (y − 1)

ε

)

+ exp

(

2 (x − 1) + 3 (y − 1)

ε

)

is the exact solution of (1), and with ub = u|∂Ω.

The function u contains two typical outflow boundary layers and hence
this example represents a suitable tool for gauging the accuracy of numerical
methods for the solution of convection–diffusion problems. In [10], we used
this example for investigating the SUPG method with τ defined by (8) on a
sequence of triangulations of the type depicted in Fig. 1(b) with h1 = h2 ≡ h.
The accuracy of the discrete solutions uh was measured in various norms
and it turned out that away the boundary layers the discrete solutions are
rather accurate and converge to u with the usual optimal convergence rates.
However, along the outflow boundary layers, the discrete solutions contain
large spurious oscillations (see Fig. 15(a) for h = 1/20) and the magnitude
of these oscillations does not decrease for decreasing h as long as h ≫ ε.
This can be deduced from Table 1 where the second column contains values
of the discrete maximum norm ‖u − uh‖0,∞,h defined as the maximum of the
absolute values of the error u−uh at vertices of the triangulation. We observe
that ‖u − uh‖0,∞,h even slightly increases if the triangulations are refined.

Defining τ by the algorithm in Fig. 6, the discrete solutions have the same
accuracy away from layers as for τ defined by (8), provided that the triangu-
lations are sufficiently fine so that no spurious oscillations occur in the region
on which norms of the errors of the discrete solutions are computed. However,
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Table 1
Example 6, errors of SUPG solutions uh computed for τ defined by (8) or by Fig. 6
on triangulations from Fig. 1(b) with h1 = h2 ≡ h

‖u − uh‖0,∞,h ‖u − uh‖∗0,∞,h

τ (8) Fig. 6 (8) Fig. 6

h=5.000−2 5.08−1 5.48−2 9.37−3 2.45−3

h=2.500−2 5.70−1 2.90−2 2.32−4 6.28−5

h=1.250−2 6.02−1 1.49−2 7.06−6 6.97−6

h=6.250−3 6.18−1 7.54−3 1.74−6 1.74−6

h=3.125−3 6.27−1 3.80−3 4.35−7 4.35−7

conv. order −0.02 0.99 2.00 2.00

in contrast to discrete solutions obtained for τ defined by (8), the discrete
maximum norm ‖u− uh‖0,∞,h now linearly converges to zero for decreasing h
also if h ≫ ε, see the third column of Table 1. The values of ‖u − uh‖0,∞,h

indicate that the large oscillations visible in Fig. 15(a) are not present in the
SUPG solution obtained for τ defined by Fig. 6, see also Fig. 15(b).

In Table 1 we also show values of the discrete maximum norm ‖u−uh‖∗0,∞,h

defined as the maximum of |u− uh| at vertices of the triangulation contained
in the set [0, 0.8]2. This set does not include a neighbourhood of the layers.
As mentioned above, for both choices of τ , the values of ‖u− uh‖∗0,∞,h are the
same if h is sufficiently small and the convergence is of the optimal second
order. The convergence orders in Table 1 are computed from the values for
h = 6.25 · 10−3 and h = 3.125 · 10−3.

7 Conclusions

In this paper we discussed the properties of the SUPG finite element method
applied to the numerical solution of two–dimensional steady scalar convection–
diffusion equations. We concentrated on the choice of the SUPG stabilization
parameter τ along outflow Dirichlet boundaries where the exact solution typ-
ically contains boundary layers. Most of the considerations were performed
for conforming piecewise linear triangular finite elements. We demonstrated
that an oscillation–free SUPG solution cannot be generally obtained if, on
each triangle of the triangulation, the definition of τ uses only the information
available on the respective triangle. Therefore, we proposed a new approach
for defining τ on triangles intersecting an outflow Dirichlet boundary. On any
such triangle K, the value τ |K generally depends not only on K and the con-
vection vector b|K but also on the shape and orientation of triangles K ′ and
convection vectors b|K ′ in a neighbourhood of K. Numerical results show a
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significant reduction of spurious oscillations in discrete solutions in compar-
ison to usual choices of τ while accuracy away from layers is preserved. For
simple model problems, even nodally exact solutions are obtained.
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[MATH-alg-2007/4] V. Flaška, J. Ježek, T. Kepka and J. Kortelainen: Tran-
sitive closures of binary relations I (17.01.2007)
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jecture for module categories (15.05.2007)

[MATH-alg-2007/16] V.Kala, T.Kepka: Notes on finitely generated ideal-simple
commutative semirings (15.05.2007)

[MATH-alg-2007/17] S.Bazzoni and J. Šťov́ıček: Sigma-cotorsion modules
over valuation domains (17.05.2007)

31



[MATH-kma-2007/238] Jiri Spurny: The Dirichlet problem for Baire-two func-
tions on simplices (22.06.2007)

[MATH-kma-2007/239] Jiri Spurny: Automatic boundedness of affine functions
(22.06.2007)

[MATH-kma-2007/240] Jiri Spurny, Miroslav Zeleny: Additive families of low
Borel classes and Borel measurable selectors (22.06.2007)

[MATH-kma-2007/241] Petr Holicky, Ondrej Kalenda, Libor Vesely, Ludek Za-
jicek: Quotients of continuous convex functions on non-
reflexive Banach spaces (22.06.2007)

[MATH-kma-2007/242] Libor Vesely, Ludek Zajicek: On compositions of d.c.
functions and mappings (22.06.2007)

32


