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STABILIZATION METHODS OF BUBBLE TYPE FOR THE Q1/Q1–ELEMENT
APPLIED TO THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

Petr Knobloch
1

and Lutz Tobiska
2

Abstract. In this paper, a general technique is developed to enlarge the velocity space V1
h of the

unstable Q1/Q1–element by adding spaces V2
h such that for the extended pair the Babuška–Brezzi

condition is satisfied. Examples of stable elements which can be derived in such a way imply the
stability of the well–known Q2/Q1–element and the 4Q1/Q1–element. However, our new elements are
much more cheaper. In particular, we shall see that more than half of the additional degrees of freedom
when switching from the Q1 to the Q2 and 4Q1, respectively, element are not necessary to stabilize
the Q1/Q1–element. Moreover, by using the technique of reduced discretizations and eliminating
the additional degrees of freedom we show the relationship between enlarging the velocity space and
stabilized methods. This relationship has been established for triangular elements but was not known
for quadrilateral elements. As a result we derive new stabilized methods for the Stokes and Navier–
Stokes equations. Finally, we show how the Brezzi–Pitkäranta stabilization and the SUPG method for
the incompressible Navier–Stokes equations can be recovered as special cases of the general approach.
In contrast to earlier papers we do not restrict ourselves to linearized versions of the Navier–Stokes
equations but deal with the full nonlinear case.
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1. Introduction

In this paper we introduce a general class of stable finite element spaces suitable for a numerical solution of
the Stokes equations

−ν∆u+∇p = f , divu = 0 in Ω , u = 0 on ∂Ω , (1)

the Navier–Stokes equations

−ν∆u+ (∇u)u+∇p = f , divu = 0 in Ω , u = 0 on ∂Ω (2)

or other problems describing incompressible materials. In the equations (1) and (2), u is the velocity and p is
the pressure in a linear viscous fluid contained in a bounded domain Ω ⊂ R2 with a polygonal boundary ∂Ω.
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The parameter ν > 0 is the kinematic viscosity and f is an external body force, e.g. the gravity. Denoting

a(u,v) =
∫

Ω

∇u · ∇v dx , n(u,w,v) =
∫

Ω

v · (∇w)u dx ,

b(v, p) = −
∫

Ω

p divv dx ,

the usual weak formulation of (1) reads: Given ν > 0 and f ∈ H−1(Ω)2, find u ∈ H1
0 (Ω)2 and p ∈ L2

0(Ω) such
that

ν a(u,v) + b(v, p)− b(u, q) = 〈f ,v〉 ∀ v ∈ H1
0 (Ω)2, q ∈ L2

0(Ω) , (3)

where L2
0(Ω) consists of L2(Ω) functions having zero mean value on Ω. It can be shown that this problem has

a unique solution (cf. [14], p. 80, Theorem 5.1). The weak formulation of (2) is given by

ν a(u,v) + n(u,u,v) + b(v, p)− b(u, q) = 〈f ,v〉 ∀ v ∈ H1
0 (Ω)2, q ∈ L2

0(Ω) . (4)

The problem (4) has a solution which is unique if ν is sufficiently large and/or f is sufficiently small (cf. [14],
pp. 291 and 292).

A standard Galerkin finite element discretization of (3) reads: Find uh ∈ Vh and ph ∈ Qh satisfying

ν a(uh,vh) + b(vh, ph)− b(uh, qh) = 〈f ,vh〉 ∀ vh ∈ Vh, qh ∈ Qh , (5)

where Vh ⊂ H1
0 (Ω)2 and Qh ⊂ L2

0(Ω) are some finite element spaces defined using a triangulation Th of Ω. In
this paper, we shall consider only triangulations consisting of quadrilaterals T (cf. Sect. 2) and we shall use the
spaces

V1
h = {v ∈ H1

0 (Ω)2; v ◦ FT ∈ Q1(T̂ )2 ∀ T ∈ Th} ,
Qh = {q ∈ H1(Ω) ∩ L2

0(Ω); q ◦ FT ∈ Q1(T̂ ) ∀ T ∈ Th}

for approximating the velocity and the pressure, respectively. Here, Q1(T̂ ) is the space of bilinear functions
defined on the reference square T̂ and FT ∈ Q1(T̂ )2 is a one–to–one mapping which maps T̂ onto T . It is well
known that this pair of spaces does not satisfy the Babuška–Brezzi condition

∃ β > 0 : sup
vh∈V1

h\{0}

b(vh, qh)
|vh|1,Ω

≥ β ‖qh‖0,Ω ∀ qh ∈ Qh, h > 0 , (6)

which often causes that the problem (5) with Vh = V1
h is not solvable or that its solution contains spurious

oscillations. One way to suppress these oscillations and to assure the solvability is to add some extra terms
to the discretization (5) (cf. e.g. [7, 9, 15, 19]). Another way is to enlarge the space V1

h by a space V2
h so that

the Babuška–Brezzi condition is satisfied. Here we shall first consider the second possibility and construct a
general class of spaces V2

h assuring the fulfilment of the Babuška–Brezzi condition. Then we shall show that,
for suitable spaces V2

h, the V1
h–component of uh and the function ph are solutions of the stabilized methods

of [9, 15].
In case of the mini element [1], which is defined by enriching continuous piecewise linear functions by cubic

bubble functions, the close relation to the stabilized methods of [9, 15] was already discussed in [3, 18]. Similar
results for a convection–diffusion equation were obtained in [6]. In an abstract framework, the equivalence
between Galerkin methods with bubble functions and stabilized methods was investigated for linear problems
in [2]. For the linearized incompressible Navier–Stokes equations, the relation between a Galerkin method with
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the mini element and the streamline upwind Petrov–Galerkin method (SUPG) was studied in [12]. In [20], this
relation was investigated for residual–free bubbles and it was shown for the triangular P1/P1–element that also
the correct stabilization parameters in both the diffusion–dominated and the convection–dominated regimes can
be recovered. However, generally, e.g. for the Q1/Q1–element considered here, a stabilization using residual–free
bubbles is not equivalent to the SUPG method (cf. [8]). Finally, it was also shown that bubble functions can
help to design new stabilized methods (cf. e.g. [11, 13]).

There is a lot of further papers devoted to investigations of discretizations stabilized using bubble functions,
but the most of them are restricted to triangular elements and to linear problems. In this paper, we deal with
quadrilateral elements and, in addition, we consider more general functions than bubble functions. Apart from
investigating the relations to some well–known stabilized methods, we shall also derive, eliminating a suitable
space V2

h from the discretization, a new type of stabilization which can be applied to both the Stokes and
the Navier–Stokes equations. In addition, we shall establish a discretization of the Navier–Stokes equations
which is, after elimination of a suitable space V2

h, equivalent to the SUPG method studied for the linearized
Navier–Stokes equation in [12] and in the full nonlinear case in [21].

The space V2
h added to V1

h to satisfy the Babuška–Brezzi condition will be defined in a general way as

V2
h = span{ϕih tih}Nhi=1 ,

where ϕih ∈ H1
0 (Ω) and tih ∈ R2 are some suitable functions and vectors, respectively. The proof of the Babuška–

Brezzi condition for the spaces Vh ≡ V1
h ⊕ V2

h and Qh, which uses some ideas of [4] and a modification of the
Verfürth trick [22], requires that the functions ϕih have localized supports and that, for any ϕih, there exists a
point Aih ∈ Ω such that∫

Ω

∂qh

∂tih
ϕih dx =

∂qh

∂tih
(Aih)

∫
Ω

ϕih dx ∀ qh ∈ Qh , i = 1, . . . , Nh , (7)

|qh|21,T ≤ C h2
T

Nh∑
i=1,
Aih∈T

∣∣∣∣∂qh∂tih
(Aih)

∣∣∣∣2 ∀ qh ∈ Qh, T ∈ Th . (8)

We shall give explicit examples of spaces V2
h such that (7) and (8) are fulfilled.

If Aih lies on an edge E of the triangulation Th, the corresponding function ϕih can be associated with E
and we require that tih is tangent to E. In other words, vector functions associated with edges used to stabilize
the Q1/Q1–element are tangent to the edges. This is not the case for a stabilization of finite elements with
discontinuous pressure like the quadrilateral Q1/P0–element or the triangular P1/P0–element, where vector
functions orthogonal to the edges are used (see [5, 10]).

The plan of the paper is as follows. In Section 2, we introduce some notations and summarize the assumptions
on the triangulations and the functions ϕih needed for proving the Babuška–Brezzi condition in Section 3. In
Section 4, we give some examples of the functions ϕih and construct proper subspaces of the stable Q2/Q1–
element and the stable 4Q1/Q1–element which satisfy the Babuška–Brezzi condition. Further, in this section, we
also recover the stability of the Q1–bubble/Q1–element by Mons and Rogé [17]. We investigate discretizations
obtained from (5) by eliminating the V2

h–component of uh in Section 5 and discuss the general framework
between this technique and stabilized schemes. Particularly, we derive a new type of stabilization in Section 6
and show the equivalence to the stabilized methods of [9,15] in Sections 7 and 8. Finally, in Section 9, we show
that, for a modified discretization of the incompressible Navier–Stokes equations and a suitable choice of the
space V2

h, the V1
h–component of uh and the function ph are solutions of the SUPG method analyzed in [12,21].

2. Assumptions and notations

We assume that we are given a family {Th} of triangulations of the domain Ω parametrized by a positive
parameter h→ 0 and having the following properties. Each triangulation Th consists of a finite number of closed
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convex quadrilaterals T (which will be often called elements in the following) such that hT ≡ diam(T ) ≤ h,
Ω =

⋃
T∈Th T and any two different elements T1, T2 ∈ Th are either disjoint or possess either a common vertex

or a common edge. In order to prevent the elements from degenerating when h tends to zero, we assume that
any triangle T̃ , the vertices of which are three vertices of an element T ∈ Th, satisfies

h
eT

%
eT

≤ C1 , (9)

where

h
eT = diam(T̃ ) ≡ sup

x,y∈eT
|x− y| , %

eT = sup
B⊂eT is a circle

diam(B)

and the constant C1 is independent of h.
We introduce a reference Cartesian coordinate system with axes x̂1, x̂2 and we define a reference element

T̂ = [0, 1]2. For any T ∈ Th, we denote by FT = (FT1, FT2) a fixed one–to–one mapping FT ∈ Q1(T̂ )2 which
maps T̂ onto T . Such a mapping always exists and the assumption (9) guarantees that

|FT |1,∞,bT ≤ C hT , |F−1
T |1,∞,T ≤ C h−1

T ∀ T ∈ Th , (10)

where the constant C depends only on C1. Thus, we have

C hT ‖v ◦ FT ‖0,bT ≤ ‖v‖0,T ≤ C̃ hT ‖v ◦ FT ‖0,bT ∀ v ∈ L2(T ), T ∈ Th , (11)

C |v ◦ FT |1,bT ≤ |v|1,T ≤ C̃ |v ◦ FT |1,bT ∀ v ∈ H1(T ), T ∈ Th . (12)

We shall use the notation JT (x̂) = DFT /Dx̂(x̂) for the Jacobi matrix of FT .
In the following, we formulate general assumptions which are essential for the construction of the supplemen-

tary space V2
h. Later, in Sections 4, 6, 7 and 9, we shall show how these assumptions can be satisfied in special

cases.
We suppose that we are given functions {ϕ̂α}α∈P ⊂ H1(T̂ ) (where P is some parameter set which is usually

finite) such that, for any α ∈ P , the function ϕ̂α vanishes on at least three edges of T̂ and there exists a point
Âα ∈ T̂ different from the vertices of T̂ satisfying∫

bT

q̂ ϕ̂α dx̂ = q̂(Âα)
∫
bT

ϕ̂α dx̂ ∀ q̂ ∈ Q1(T̂ ) . (13)

Further, for any α ∈ P , we introduce a unit vector t̂
α

= (t̂α1 , t̂
α
2 ) and we denote n̂α = (t̂α2 , t̂

α
1 ). If Âα ∈ ∂T̂ , we

require that t̂
α

coincides with the direction of the edge of T̂ containing Âα. We admit ϕ̂α = ϕ̂β for α 6= β in
order to be able to use the same function ϕ̂α with two different directions t̂

α
. For formal reasons, we also admit

ϕ̂α = 0. In this case, (13) is automatically satisfied for any point Âα.
Now, using the mappings FT , we transform the functions ϕ̂α onto elements T of a triangulation Th and

introduce finite element functions ϕih ∈ H1
0 (Ω) \ {0}, i = 1, . . . , Nh, having their supports always in one or two

elements. Precisely, we assume that, for any i ∈ {1, . . . , Nh}, either

∃ T ∈ Th, α ∈ P : FT (Âα) ∈ ∂Ω ∪ intT, ϕih|T = ϕ̂α ◦ F−1
T , ϕih|Ω\T = 0 (14)

or

∃ T, T ′ ∈ Th, α, α′ ∈ P : T ∩ T ′ = {edge}, FT (Âα) = FT ′(Âα
′
),

ϕih|T = ϕ̂α ◦ F−1
T , ϕih|T ′ = ϕ̂α

′ ◦ F−1
T ′ , ϕih|Ω\(T∪T ′) = 0 . (15)
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The assumption FT (Âα) = FT ′(Âα
′
) in (15) implies that Âα, Âα

′ ∈ ∂T̂ . Note that the function ϕih defined by
(15) may vanish on one of the elements T , T ′. In both cases (14) and (15), we set

Aih = FT (Âα) , tih = JT (Âα) t̂
α
/|JT (Âα) t̂

α|

and we denote

ÂiT = Âα , t̂
i

T = t̂
α
, n̂iT = n̂α

(and ÂiT ′ = Âα
′
, t̂

i

T ′ = t̂
α′

, n̂iT ′ = n̂α
′
) .

In the case of (15), we then also have Aih = FT ′(Âα
′
) and

tih = JT ′(Âα
′
) t̂
α′

/|JT ′(Âα
′
) t̂
α′ | or tih = −JT ′(Âα

′
) t̂
α′

/|JT ′(Âα
′
) t̂
α′ | .

We suppose that the functions {ϕih tih}
Nh
i=1 are linearly independent and that

card
{
i ∈ {1, . . . , Nh} ; Aih ∈ T

}
≤ C2 ∀ T ∈ Th ,

where the constant C2 is independent of h. The support of any function ϕih is contained in the union of the
elements containing the point Aih which will be denoted by P ih. Thus, P ih consists of one or two elements.
Further, we introduce the quantities

γih =

∣∣∫
Ω
ϕih dx

∣∣
|P ih| |ϕih|1,Ω

, i = 1, . . . , Nh , γh = min
i=1,...,Nh

γih

which influence the magnitude of the constant in the Babuška–Brezzi condition. Defining the functions ϕih in a
suitable way, the value of γh can be made arbitrarily small. However, arbitrarily large values of γh cannot be
obtained. It can be shown that γh ≤ 2C1 and, if Th consists of rectangles, we even have γh ≤ 1.

Finally, we introduce an assumption assuring the validity of (8). We assume that, for any T ∈ Th, there exist
points Aih, Ajh, Akh ∈ T (with i, j, k ∈ {1, . . . , Nh}) such that the number

ŜijkT = (n̂iT × n̂
j
T ) n̂kT · ÂkT + (n̂jT × n̂

k
T ) n̂iT · ÂiT + (n̂kT × n̂

i
T ) n̂jT · Â

j
T (16)

satisfies

|ŜijkT | ≥ C3 > 0 , (17)

where the constant C3 is independent of T and h, the vector product a×b is defined as a1 b2−b1 a2 and n̂iT · ÂiT
is defined as n̂iT · (ÂiT − 0).

Remark 1. Using the identity (n̂iT × n̂
j
T ) n̂kT + (n̂jT × n̂

k
T ) n̂iT + (n̂kT × n̂

i
T ) n̂jT = 0 , we have

ŜijkT = (n̂iT × n̂
j
T ) n̂kT · (ÂkT − Â

j
T ) + (n̂jT × n̂

k
T ) n̂iT · (ÂiT − Â

j
T ) .

If, particularly, n̂iT and n̂jT are equal and orthogonal to n̂kT , then

|ŜijkT | = |n̂
i
T · (ÂiT − ÂjT )| ,

which illustrates the meaning of (17).
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Remark 2. If Th consists of parallelograms, it is sufficient for proving the Babuška–Brezzi condition to assume

n̂α ·
∫
bT

(x̂− Âα) ϕ̂α(x̂) dx̂ = 0 (18)

instead of (13) (cf. Remark 6 in Sect. 3). Functions satisfying the property (18) are easier to construct than
those ones satisfying (13).

Remark 3. Let ϕ̂α be given by a formula which is invariant to which vertex of T̂ is chosen as the origin of the
coordinate system x̂1, x̂2 (with axes in the directions of edges of T̂ ). Let {q̂i}4i=1 be a basis of Q1(T̂ ) consisting
of bilinear functions equal to 0 in three vertices of T̂ and equal to 1 in the remaining vertex. Then

∫
bT
ϕ̂α q̂i dx̂ =∫

bT
ϕ̂α q̂1 dx̂ for i = 2, 3, 4 and since

∑4
i=1 q̂

i = 1, we infer that
∫
bT
ϕ̂α q̂i dx̂ = 1

4

∫
bT
ϕ̂α dx̂, i = 1, . . . , 4. Any

q̂ ∈ Q1(T̂ ) can be written as q̂ =
∑4
i=1 α

i q̂i and hence
∫
bT
ϕ̂α q̂ dx̂ = 1

4

∑4
i=1 α

i
∫
bT
ϕ̂α dx̂ = q̂(C

bT )
∫
bT
ϕ̂α dx̂,

where C
bT = (1

2 ,
1
2 ) is the barycentre of T̂ . Thus, (13) holds with Âα = C

bT . An example of such an invariant
function ϕ̂α is the biquadratic function

ϕ̂α(x̂) = x̂1 (1− x̂1) x̂2 (1− x̂2) .

Remark 4. It is not necessary to construct invariant functions ϕ̂α to satisfy (13). An example of a non–
invariant function satisfying the relation (13) is the biquadratic function

ϕ̂α(x̂) = x̂1 (1− x̂1) (1− x̂2) (1/2− x̂2) ,

for which Âα = (1/2, 0).

Remark 5. If Aih lies on an edge of some element of the triangulation Th, then tih is a unit vector in the direction

of this edge. Therefore, the derivative
∂qh

∂tih
(Aih) is well defined for any qh ∈ Qh and any i ∈ {1, . . . , Nh}. That

is essential for our proceeding in the following section.

3. Proof of the Babuška–Brezzi condition

In this section, we prove that, under the assumptions made in Section 2, the spaces Vh ≡ V1
h ⊕ V2

h and Qh

satisfy the Babuška–Brezzi condition with a constant proportional to γh. First, in Lemmas 1 and 2, we prove
the validity of (7) and (8). Then, in Lemma 3, we establish a Babuška–Brezzi condition with a ‘wrong’ norm of
qh and, finally, in Theorem 1, we prove the desired Babuška–Brezzi condition applying the modified Verfürth
trick.

Lemma 1. We have∫
Ω

∂qh

∂tih
ϕih dx =

∂qh

∂tih
(Aih)

∫
Ω

ϕih dx ∀ qh ∈ Qh , i ∈ {1, . . . , Nh} . (19)

Proof. Consider any T ⊂ P ih and qh ∈ Qh and set q̂T = qh ◦ FT . Since

(∇qh)(FT (x̂)) = JT (x̂)−T ∇̂q̂T (x̂) ∀ x̂ ∈ T̂ , (20)

where ∇̂ = (∂/∂x̂1, ∂/∂x̂2)T, we have∫
T

ϕih t
i
h · ∇qh dx =

∫
bT

ϕ̂α tih · J−T
T ∇̂q̂T |detJT |dx̂ . (21)
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It is easy to verify that

J−1
T =

1
detJT


∂FT2

∂x̂2
−∂FT1

∂x̂2

−∂FT2

∂x̂1

∂FT1

∂x̂1

 .

Since the x̂1–derivative of a function from Q1(T̂ ) is a linear function of x̂2 which does not depend on x̂1 (and
similarly for the x̂2–derivative), we infer that (det JT )J−T

T ∇̂q̂T ∈ Q1(T̂ ). Using the fact that det JT 6= 0 on T̂ ,
it follows from (21) and (13) that∫

T

ϕih t
i
h · ∇qh dx = tih · (J−T

T ∇̂q̂T |detJT |)(Âα)
∫
bT

ϕ̂α dx̂ .

Applying (13) with q̂ = |detJT | and using (20), we get∫
T

∂qh

∂tih
ϕih dx = tih · (∇qh)(Aih)

∫
bT

ϕ̂α |detJT |dx̂ =
∂qh

∂tih
(Aih)

∫
T

ϕih dx .

Remark 6. If Th consists of parallelograms, then JT = const. and it follows from (21) that∫
T

ϕih t
i
h · ∇qh dx =

∫
bT

ϕ̂α t̂
α · ∇̂q̂T dx̂ |detJT |/|JT t̂

α| ,

where we assume that tih = JT t̂
α
/|JT t̂

α| (if tih = −JT t̂
α
/|JT t̂

α|, we can proceed analogously). Denoting
q̂T (x̂) = ξ0 + ξ1 x̂1 + ξ2 x̂2 + ξ3 x̂1 x̂2 and Âα = (â1, â2), we have for x̂ ∈ T̂

∂q̂T
∂x̂1

(x̂) =
∂q̂T
∂x̂1

(Âα) + ξ3 (x̂2 − â2) ,
∂q̂T
∂x̂2

(x̂) =
∂q̂T
∂x̂2

(Âα) + ξ3 (x̂1 − â1) .

Hence

t̂
α · ∇̂q̂T (x̂) = t̂

α · ∇̂q̂T (Âα) + ξ3 n̂
α · (x̂− Âα)

and we see that, for proving (19), it suffices to assume (18) instead of (13).

Lemma 2. There exists a constant C4 independent of h such that, for any T ∈ Th, we have

|qh|21,T ≤ C4 h
2
T

Nh∑
i=1,
Aih∈T

∣∣∣∣∂qh∂tih
(Aih)

∣∣∣∣2 ∀ qh ∈ Qh . (22)

Proof. Let Âi ∈ T̂ , n̂i ∈ R2, |n̂i| = 1, i = 1, 2, 3, be points and vectors satisfying (17) and let again t̂
i

= (n̂i2, n̂
i
1),

i = 1, 2, 3. Let us set for x̂ ∈ T̂ and i = 1, 2, 3

q̂i(x̂) = {n̂i+1 (n̂i−1 · Âi−1)− n̂i−1 (n̂i+1 · Âi+1)} · (−x̂1, x̂2) + (n̂i+1 × n̂i−1) x̂1 x̂2 ,
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with the convention that i − 1 ≡ 3 for i = 1 and i + 1 ≡ 1 for i = 3. For any t̂ = (t̂1, t̂2) and n̂ = (t̂2, t̂1), we
have

∂q̂i

∂t̂
(x̂) = {(n̂× n̂i+1)(n̂i−1 · Âi−1)− (n̂× n̂i−1)(n̂i+1 · Âi+1)}+ (n̂i+1 × n̂i−1) n̂ · x̂

so that

∂q̂i

∂t̂
j (Âj) = Ŝ1 2 3 δij , i, j = 1, 2, 3 ,

where Ŝ1 2 3 is defined by (16), δij = 1 for i = j and δij = 0 for i 6= j. Thus, for any q̂ ∈ Q1(T̂ ), the function

p̂(x̂) = q̂(0) +
1

Ŝ1 2 3

3∑
i=1

∂q̂

∂t̂
i (Â

i) q̂i(x̂) , x̂ ∈ T̂ ,

satisfies

∂p̂

∂t̂
i (Â

i) =
∂q̂

∂t̂
i (Â

i) , i = 1, 2, 3 . (23)

Let us show that p̂ = q̂. We denote p̂(x̂)− q̂(x̂) = ξ1 x̂1 + ξ2 x̂2 + ξ3 x̂1 x̂2. Then it follows from (23) that

ξ1 n̂
i
2 + ξ2 n̂

i
1 + ξ3 Â

i · n̂i = 0 , i = 1, 2, 3 , (24)

which implies that

ξ2 (n̂i × n̂3) + ξ3 {(Âi · n̂i) n̂3
2 − (Â3 · n̂3) n̂i2} = 0 , i = 1, 2 .

Subtracting the second equation multiplied by n̂1 × n̂3 from the first equation multiplied by n̂2 × n̂3, we infer
that ξ3 n̂3

2 Ŝ
1 2 3 = 0. Analogously we obtain from (24)

ξ1 (n̂3 × n̂i) + ξ3 {(Âi · n̂i) n̂3
1 − (Â3 · n̂3) n̂i1} = 0 , i = 1, 2 ,

and ξ3 n̂3
1 Ŝ

1 2 3 = 0. Thus, ξ3 = 0 and it follows from (24) that

ξ1 (n̂i × n̂j) = 0 , ξ2 (n̂i × n̂j) = 0 , i, j = 1, 2, 3 ,

which gives ξ1 = ξ2 = 0 in view of (17). Therefore, p̂ = q̂. Since |x̂| ≤
√

2 for any x̂ ∈ T̂ , we have
∣∣∣∂bqi
∂bt

(x̂)
∣∣∣ ≤ 3

√
2

for any t̂ ∈ R2 with |̂t| = 1. Hence, applying (17), we get

|q̂|2
1,bT

= |p̂|2
1,bT
≤ 108
C2

3

3∑
i=1

∣∣∣∣ ∂q̂
∂t̂
i
(Âi)

∣∣∣∣2 ,
which implies (22) in view of (12), (20) and (10).

Lemma 3. We have

sup
vh∈V2

h\{0}

b(vh, qh)
|vh|1,Ω

≥ γh

2C1

√
C2C4

√∑
T∈Th

h2
T |qh|21,T ∀ qh ∈ Qh . (25)
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Proof. Consider any vh ∈ V2
h. Then vh =

∑Nh
i=1 α

i ϕih t
i
h for some real numbers αi. We can assume that∫

Ω ϕih dx 6= 0 for i = 1, . . . , Nh since otherwise γh = 0 and (25) holds. Thus, we have because of the definitions
of C2 and γh

|vh|21,Ω =
∑
T∈Th

|vh|21,T ≤ C2

∑
T∈Th

Nh∑
i=1,
Aih∈T

|αi|2 |ϕih|21,T ≤
C2

γ2
h

Nh∑
i=1

|αi|2
∣∣∫

Ω
ϕih dx

∣∣2
|P ih|2

· (26)

Applying Lemma 1, we obtain for any qh ∈ Qh

b(vh, qh) =
∫

Ω

vh · ∇qh dx =
Nh∑
i=1

αi
∫

Ω

∂qh

∂tih
ϕih dx =

Nh∑
i=1

αi
∂qh

∂tih
(Aih)

∫
Ω

ϕih dx .

Choosing

αi =
|P ih|2∫

Ω ϕih dx
∂qh

∂tih
(Aih) ,

it follows that

b(vh, qh) =
Nh∑
i=1

|αi|2
∣∣∫

Ω ϕih dx
∣∣2

|P ih|2
=

[
Nh∑
i=1

|αi|2
∣∣∫

Ω ϕih dx
∣∣2

|P ih|2

] 1
2
[
Nh∑
i=1

|P ih|2
∣∣∣∣∂qh∂tih

(Aih)
∣∣∣∣2
] 1

2

,

which implies (25) owing to (26), (9) and (22).

Theorem 1. There exists a constant C5 > 0 independent of h such that the spaces Vh = V1
h ⊕ V2

h and Qh

satisfy the Babuška–Brezzi condition

sup
vh∈Vh\{0}

b(vh, qh)
|vh|1,Ω

≥ C5 γh ‖qh‖0,Ω ∀ qh ∈ Qh . (27)

Proof. Applying the modified Verfürth trick presented in [7], pp. 255–256, we obtain

sup
vh∈Vh\{0}

b(vh, qh)
|vh|1,Ω

≥ C ‖qh‖0,Ω −
√∑
T∈Th

h2
T |qh|21,T ∀ qh ∈ Qh (28)

with a constant C > 0 independent of h and the theorem follows from Lemma 3 and the bound γh ≤ 2C1. For
completeness, we recall the main arguments leading to (28). Since the spaces H1

0 (Ω)2 and L2
0(Ω) satisfy the

inf–sup condition (6), we have

β ‖qh‖0,Ω ≤ sup
v∈H1

0 (Ω)2\{0}

b(v, qh)
|v|1,Ω

∀ qh ∈ Qh . (29)

Using an operator πh : H1
0 (Ω)2 → Vh satisfying

|πhv|1,Ω ≤ C̃ |v|1,Ω ,
√∑
T∈Th

h−2
T ‖v − πhv‖20,T ≤ C̃ |v|1,Ω ∀ v ∈ H1

0 (Ω)2 ,
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where C̃ is independent of h, we get for any v ∈ H1
0 (Ω)2 and qh ∈ Qh

b(v − πhv, qh) =
∫

Ω

(v − πhv) · ∇qh dx ≤ C̃ |v|1,Ω
√∑
T∈Th

h2
T |qh|21,T ,

b(πhv, qh) ≤ C̃ |v|1,Ω
|b(πhv, qh)|
|πhv|1,Ω

≤ C̃ |v|1,Ω sup
vh∈Vh\{0}

b(vh, qh)
|vh|1,Ω

·

Substituting the sum of these two relations into (29), we derive (28).

Remark 7. Let
∫
bT
ϕ̂α dx̂ ≥ 0 for any α ∈ P . Consider any T ∈ Th and i ∈ {1, . . . , Nh} and let ϕih|T = ϕ̂α◦F−1

T

for some α ∈ P . Then, according to (13),∫
T

ϕih dx =
∫
bT

ϕ̂α |detJT |dx̂ = |detJT (Âα)|
∫
bT

ϕ̂α dx̂

and hence, in view of (10) and (9),∫
Ω

ϕih dx ≥ C |P ih| inf
α∈P, bϕα 6=0

∫
bT

ϕ̂α dx̂ , i = 1, . . . , Nh ,

where C > 0 is a constant independent of h. Finally, applying (12), we get

γh ≥ C
inf

α∈P, bϕα 6=0

∫
bT

ϕ̂α dx̂

sup
α∈P

|ϕ̂α|
1,bT

,

where C > 0 is again independent of h. Thus, if P is finite and
∫
bT
ϕ̂α dx̂ > 0 for any ϕ̂α 6= 0, then γh ≥ C > 0

with C independent of h.

4. Examples of stable elements implying the stability of known elements

In this section, we derive several explicit examples of supplementary spaces V2
h such that the pair Vh =

V1
h ⊕ V2

h, Qh satisfies the Babuška–Brezzi condition. All examples which will be discussed in this section can
be divided into three classes. The first class is characterized by the fact that V1

h ⊕ V2
h is a proper subspace of

the space

VQ2
h = {v ∈ H1

0 (Ω)2; v ◦ FT ∈ Q2(T̂ )2 ∀ T ∈ Th} ,

where Q2(T̂ ) is the space of biquadratic functions defined on T̂ . In this way, we get an alternative proof for the
stability of the Q2/Q1–element. The second class will be constructed such that V1

h ⊕ V2
h is a proper subspace

of the space

V4Q1
h = {v ∈ H1

0 (Ω)2; v ◦ FT ∈ Q1(T̂ )2 ∀ T ∈ Th/2} ,

where Th/2 is a triangulation obtained from Th by dividing each quadrilateral T ∈ Th into four quadrilaterals
connecting the midpoints of opposite edges of T . This also represents a new proof for the stability of the
4Q1/Q1–element. The basic feature of the last class is that the space V2

h consists of bubble functions, i.e.,
any function from V2

h vanishes on all edges of the triangulation Th. Here we recover the stability of the Q1–
bubble/Q1–element [17] by our general approach.
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We start with the first class and introduce functions ϕ̂α and points Âα satisfying the relation (13). As we
have already seen in Remark 4, the biquadratic function

ϕ̂1(x̂) = x̂1 (1− x̂1) (1− x̂2) (1/2− x̂2)

satisfies (13) with Â1 = (1/2, 0). Analogously we define the biquadratic functions ϕ̂2, ϕ̂3 and ϕ̂4 satisfying (13)
with Âα equal to (1, 1/2), (1/2, 1) and (0, 1/2), respectively. Further, we define the functions

ϕ̂5(x̂) = ϕ̂6(x̂) = x̂1 (1− x̂1) x̂2 (1− x̂2)

which satisfy (13) with Â5 = Â6 = (1/2, 1/2) (cf. Remark 3). Finally, we introduce the vectors t̂
1

= t̂
3

=
t̂
5

= (1, 0) and t̂
2

= t̂
4

= t̂
6

= (0, 1). Now, we follow the lines of Section 2 and construct the functions ϕih
and vectors tih generating the space V2

h. Each ϕih is constructed using either the functions ϕ̂1, . . . , ϕ̂4 or the
functions ϕ̂5, ϕ̂6. In the former case, the point Aih is the midpoint of an inner edge of Th, tih is a unit vector in
the direction of this edge and suppϕih consists of the two elements containing Aih. In the latter case, the point
Aih ≡ FT (1/2, 1/2) lies in the interior of an element T , tih is a unit vector in the direction determined by the
midpoints of two opposite edges of T and suppϕih = T .

The last assumption for satisfying the Babuška–Brezzi condition is the relation (17). According to Remark 1,
this relation is satisfied if, for any element T , there exist three points Aih, Ajh, Akh ∈ T such that the corresponding

vectors t̂
i

T , t̂
j

T and t̂
k

T are not all equal. For example, it is sufficient if, for a given element T , there exist three
functions ϕih with Aih ∈ ∂T or if there exist one function ϕih with Aih ∈ ∂T and two functions ϕih with Aih ∈ intT .
Thus, using the above defined functions ϕih and vectors tih, we are able to define various spaces V2

h such that
the spaces Vh = V1

h ⊕ V2
h and Qh satisfy the Babuška–Brezzi condition (27). Moreover, in all these cases, the

Babuška–Brezzi condition holds uniformly with respect to h (cf. Remark 7). As a simple consequence, we also
see that, owing to

Vh = V1
h ⊕V2

h ⊂ VQ2
h ,

the Babuška–Brezzi condition is also satisfied for the spaces VQ2
h , Qh. The remarkable aspect of the new class of

elements described above is that the Q2/Q1–element remains stable if more than one half of the basis functions
from the velocity space are dropped. Particularly, the functions ϕih defined using ϕ̂5 and ϕ̂6 are needed for the
validity of the Babuška–Brezzi condition only on those elements which have two or three edges on ∂Ω.

We now derive the second class of elements implying the stability of the 4Q1/Q1–element. The construction
of V2

h is similar to the class above, however, we have to use piecewise bilinear functions instead of biquadratic
functions ϕ̂α. First, we introduce the functions

ϕ̂(x̂1) =


x̂1 for x̂1 ∈ [0,

1
2

] ,

1− x̂1 for x̂1 ∈ [
1
2
, 1] ,

ψ̂(x̂2) =


3− 7 x̂2 for x̂2 ∈ [0,

1
2

] ,

x̂2 − 1 for x̂2 ∈ [
1
2
, 1] .

Setting ϕ̂1(x̂) = ϕ̂(x̂1) ψ̂(x̂2), we obtain a function which is piecewise bilinear with respect to a subdivision
of T̂ into four equal squares and which satisfies (13) with Â1 = (1

2 , 0). Analogously we define the functions
ϕ̂2, ϕ̂3 and ϕ̂4 satisfying (13) with the same points as in the biquadratic case. The functions ϕ̂5 = ϕ̂6 are
now piecewise bilinear functions which vanish on the boundary of T̂ and are equal 1 in the point (1/2, 1/2).
According to Remark 3, the functions ϕ̂5, ϕ̂6 satisfy (13) with Â5 = Â6 = (1/2, 1/2). Now we can proceed
in the same way as in the biquadratic case and construct various spaces V2

h which guarantee the fulfilment of
the Babuška–Brezzi condition. The assumption (17) can be satisfied as in the case of the first class. In all
possible cases, we have V1

h ⊕ V2
h ⊂ V4Q1

h and hence we particularly infer that the 4Q1/Q1–element satisfies
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the Babuška–Brezzi condition with a constant independent of h. Again, the 4Q1/Q1–element remains stable if
more than one half of the basis functions from the velocity space are dropped.

As an example of the third class mentioned at the beginning of this section, we shall investigate the Q1–
bubble/Q1–element by Mons and Rogé [17]. To describe the space V2

h, we divide the reference element T̂ into
the triangles T̂1, T̂2 having the vertices (0, 0), (1, 0), (0, 1) and (1, 0), (1, 1), (0, 1), respectively. Denoting

ψ̂1(x̂) =

{
x̂1 x̂2 (1− x̂1 − x̂2) for x̂ ∈ T̂1 ,

0 for x̂ ∈ T̂2 ,

ψ̂2(x̂) =

{
0 for x̂ ∈ T̂1 ,

(1− x̂1) (1− x̂2) (x̂1 + x̂2 − 1) for x̂ ∈ T̂2 ,

we have

V2
h = {v ∈ H1

0 (Ω)2; v ◦ FT ∈ [span{ψ̂1, ψ̂2}]2 ∀ T ∈ Th} .

We want to show that the stability of the Q1–bubble/Q1–element follows from our general theory. For this, we
cannot use the functions ψ̂1, ψ̂2 since they do not satisfy (13) for any points Â1, Â2. Therefore, we introduce
new basis functions

ϕ̂1 = µ ψ̂1 + ψ̂2 , ϕ̂2 = ψ̂1 + µ ψ̂2 , µ =
5 +
√

21
2

,

for which (13) holds with

Â1 =

(
21−

√
21

42
,

21−
√

21
42

)
, Â2 =

(
21 +

√
21

42
,

21 +
√

21
42

)
,

respectively. Further, we set ϕ̂3 = ϕ̂1, ϕ̂4 = ϕ̂2, Â3 = Â1, Â4 = Â2, t̂
1

= t̂
2

= (1, 0), t̂
3

= t̂
4

= (0, 1). Defining
functions ϕih and vectors tih, i = 1, . . . , Nh (Nh = 4 cardTh), as in Section 2, we deduce that

V2
h = span{ϕih tih}Nhi=1 .

It is easy to check that all the assumptions made in Section 2 are fulfilled and hence it follows from Theorem 1 and
Remark 7 that the Q1–bubble/Q1–element satisfies the Babuška–Brezzi condition with a constant independent
of h.

5. General relationship between enlarging the velocity space and stabilizing

the continuity equation

It is well known that a standard Galerkin finite element discretization of the Stokes or Navier–Stokes equations
with the spaces V1

h and Qh cannot be used because of failing the Babuška–Brezzi condition (6). We have already
seen in Section 4 that, enlarging the velocity space by V2

h, the stability for the spaces Vh = V1
h ⊕ V2

h, Qh can
be achieved. An alternative way for stabilizing a Galerkin finite element discretization using V1

h, Qh consists in
adding some terms to the continuity equation

b(uh, qh) = 0 ∀ qh ∈ Qh .
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Here, we shall show that this technique is in some sense equivalent to eliminating the degrees of freedom of the
corresponding supplementary space V2

h from the discrete problem formulated for the spaces Vh = V1
h⊕V2

h, Qh.
In the following, we shall confine ourselves to functions ϕih and vectors tih satisfying

a(ϕih t
i
h, ϕ

j
h t

j
h) = 0 ∀ i 6= j , i, j ∈ {1, . . . , Nh} . (30)

Examples of such functions and vectors will be given in the following sections.
We start with a reduced discretization of the Stokes equations given by:

Find u1
h ∈ V1

h, u2
h ∈ V2

h and ph ∈ Qh satisfying

ν a(u1
h,v

1
h) + b(v1

h, ph) = 〈f ,v1
h〉 ∀ v1

h ∈ V1
h , (31)

ν a(u2
h,v

2
h) + b(v2

h, ph) = 0 ∀ v2
h ∈ V2

h , (32)
b(u1

h, qh) + b(u2
h, qh) = 0 ∀ qh ∈ Qh . (33)

This problem was obtained from the discretization (5) with Vh = V1
h ⊕V2

h by dropping the terms ν a(u2
h,v

1
h),

ν a(u1
h,v

2
h) and 〈f ,v2

h〉. In [16] it has been shown that, for f ∈ L2(Ω)2, the solution uh = u1
h + u2

h, ph of
(31)–(33) has asymptotically the same rate of convergence as the solution of the original problem (5). Note
that, in the special case when the triangulation Th consists of rectangles only and the functions from V2

h vanish
on all edges of Th, the terms a(u2

h,v
1
h) and a(u1

h,v
2
h) vanish identically. Owing to (30), the elimination of

u2
h by means of (32) becomes simple. Indeed, using the basis representation u2

h =
∑Nh
j=1 α

j ϕjh t
j
h and setting

v2
h = ϕih t

i
h in (32), we get

αi ν a(ϕih t
i
h, ϕ

i
h t

i
h) + b(ϕih t

i
h, ph) = 0 .

Since a(ϕih t
i
h, ϕ

i
h t

i
h) = |ϕih|21,Ω 6= 0, we can eliminate u2

h from (31)–(33). Lemma 1 implies that

b(ϕih t
i
h, qh) =

∂qh

∂tih
(Aih)

∫
Ω

ϕih dx ∀ qh ∈ Qh, i ∈ {1, . . . , Nh}

and hence we obtain a stabilized Q1/Q1–discretization of the Stokes equations in the form:

Find u1
h ∈ V1

h and ph ∈ Qh satisfying

ν a(u1
h,v

1
h) + b(v1

h, ph) = 〈f ,v1
h〉 ∀ v1

h ∈ V1
h , (34)

b(u1
h, qh)− ch(ph, qh) = 0 ∀ qh ∈ Qh , (35)

where the stabilizing term is given by

ch(ph, qh) =
Nh∑
i=1

∂ph

∂tih
(Aih)

∂qh

∂tih
(Aih)

∣∣∫
Ω
ϕih dx

∣∣2
ν |ϕih|21,Ω

· (36)

It is easy to show (cf. [16]) that u1
h converges to the solution u of (3) with the same rate as uh = u1

h + u2
h.

That means that any stabilized discretization of the Stokes equations having the form (34),(35) with ch(ph, qh)
given by (36) possesses optimal approximation properties.
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Σ̂1

Σ̂2

Σ̂3

Σ̂4 Σ̂5

T̂

Figure 1. Supports of the functions {ϕ̂i}5i=1.

Similarly as for the Stokes equations we can also proceed for the Navier–Stokes equations. We start with the
reduced discretization:

Find u1
h ∈ V1

h, u2
h ∈ V2

h and ph ∈ Qh satisfying

ν a(u1
h,v

1
h) + n(u1

h,u
1
h,v

1
h) + b(v1

h, ph) = 〈f ,v1
h〉 ∀ v1

h ∈ V1
h , (37)

ν a(u2
h,v

2
h) + b(v2

h, ph) = 0 ∀ v2
h ∈ V2

h , (38)
b(u1

h, qh) + b(u2
h, qh) = 0 ∀ qh ∈ Qh , (39)

the solution of which has asymptotically, for f ∈ L2(Ω)2, the same convergence rate as the solution of the
standard Galerkin finite element discretization of the Navier–Stokes equations (cf. [16]). Assuming (30) and
eliminating u2

h from (37)–(39), we arrive at the stabilized discretization:

Find u1
h ∈ V1

h and ph ∈ Qh satisfying

ν a(u1
h,v

1
h) + n(u1

h,u
1
h,v

1
h) + b(v1

h, ph) = 〈f ,v1
h〉 ∀ v1

h ∈ V1
h , (40)

b(u1
h, qh)− ch(ph, qh) = 0 ∀ qh ∈ Qh , (41)

where the stabilizing term ch(ph, qh) is given by (36). Again, it follows that this stabilized discretization has
optimal approximation properties.

Remark 8. Since the matrix {a(ϕih t
i
h, ϕ

j
h t

j
h)}Nhi,j=1 is regular, the assumption (30) is not necessary for trans-

forming the problem (31)–(33) (resp. (37), (39)) into the form (34)–(35) (resp. (40), (41)) with some stabilizing
term ch(ph, qh). However, the stabilizing term then generally cannot be written in a compact form like (36).

6. New stabilization terms

In this section, we discuss some choices of ϕih and tih satisfying (30) and leading to new stabilization terms.
A sufficient condition for (30) is

(int suppϕih) ∩ (int suppϕjh) = ∅ or tih · t
j
h = 0 ∀ i 6= j , i, j ∈ {1, . . . , Nh} . (42)

The functions ϕih introduced in Section 4 do not satisfy this condition but we can easily modify them so that
(42) holds. We define the sets Σ̂1, . . . , Σ̂5 ⊂ T̂ as depicted in Figure 1 (the set Σ̂5 is a square with the vertices
(1/4, 1/4), (3/4, 1/4), (3/4, 3/4), (1/4, 3/4)) and we transform the biquadratic functions ϕ̂1, . . . , ϕ̂5 from Sec-
tion 4 onto Σ̂1, . . . , Σ̂5, respectively. For simplicity, we denote the transformed functions again ϕ̂1, . . . , ϕ̂5 and
we set ϕ̂6 = ϕ̂5. We remark that the sets Σ̂i could be defined in many other ways (it is only important that
their interiors are disjoint) and we could also use various other functions ϕ̂i (e.g., we could transform the
piecewise bilinear functions from Section 4 onto the sets Σ̂i). However, to fix ideas, we shall now consider only
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the biquadratic functions defined on the sets from Figure 1. Thus, for example, the function ϕ̂1 satisfies

ϕ̂1(x̂) = (x̂1 −
1
4

) (
3
4
− x̂1) (

1
4
− x̂2) (

1
8
− x̂2) for x̂ ∈ Σ̂1

and vanishes in T̂ \ Σ̂1. The points Â1, . . . , Â6 and the vectors t̂
1
, . . . , t̂

6
remain the same as in Section 4, i.e.,

Â1 = (
1
2
, 0) , Â2 = (1,

1
2

) , Â3 = (
1
2
, 1) , Â4 = (0,

1
2

) , Â5 = Â6 = (
1
2
,

1
2

)

and

t̂
1

= t̂
3

= t̂
5

= (1, 0) , t̂
2

= t̂
4

= t̂
6

= (0, 1) .

The construction of a space V2
h is analogous as in Section 4. Thus, using the functions ϕ̂1, . . . , ϕ̂4, we construct

functions ϕih with points Aih lying on inner edges and, using the functions ϕ̂5 and ϕ̂6, we construct functions ϕih
with Aih lying in the interiors of elements. However, using the functions ϕ̂1, . . . , ϕ̂6, we are not able to construct
ϕih with Aih lying on a boundary edge. Therefore, for i = 1, . . . , 4, we further introduce functions ϕ̂i∗ ∈ H1

0 (T̂ )
with supp ϕ̂i∗ ⊂ Σ̂i satisfying (13) with Âi. The function ϕ̂1∗ is given in Σ̂1 by

ϕ̂1∗(x̂) = (x̂1 −
1
4

) (
3
4
− x̂1) x̂2 (

1
4
− x̂2) (

3
20
− x̂2)

and the functions ϕ̂2∗, ϕ̂3∗, ϕ̂4∗ are defined analogously. Now, for any edge lying on ∂Ω, we introduce a function
ϕih with Aih belonging to this edge. For clarity, we shall not use the functions ϕ̂1∗, . . . , ϕ̂4∗ for constructing
functions ϕih with Aih ∈ Ω. Now, if we choose a subset of the functions {ϕih} so that the assumption (17) is
satisfied and define the space V2

h as the linear hull of this subset, then the Babuška–Brezzi condition (27) will
hold. The question which functions ϕih should be chosen in order to have (17) was already discussed in Section 4.
We recall that, for example, the assumption (17) is satisfied if, for any element T , we have three functions ϕih
with Aih on edges of T . As we know, it is also sufficient if, for a given element, we have two functions ϕih with
Aih ∈ intT and one function ϕih with Aih on an edge of T . However, there is an important difference between
these two possibilities: A set of functions ϕih with Aih on edges of the triangulation satisfies the condition
(42) (the supports of these ϕih are disjoint) whereas if the points Aih also lie in the interiors of elements, (42)
generally does not hold. The reason is that functions ϕih, ϕjh defined by ϕih|T = ϕ̂5 ◦ F−1

T , ϕjh|T = ϕ̂6 ◦ F−1
T for

some element T have the same supports and the corresponding vectors tih, tjh are not orthogonal unless T is a
rectangle.

We denote by Eh the set of all edges E of the triangulation Th, by CE the midpoint of each edge E and by
tE a unit vector in the direction of E. Further, for each edge E, we have a function ϕih with Aih = CE and we
denote ϕE = ϕih. Finally, for any T ∈ Th, we set ϕT = ϕ̂5 ◦ F−1

T and we denote by CT the barycentre of T . As
we know from the previous paragraph, the space V2

h = span{ϕE tE}E∈Eh guarantees the validity of (27) with
γh ≥ C > 0. For this choice of V2

h, the stabilizing term (36) can be rewritten into

ch(ph, qh) =
∑
E∈Eh

δE h
4
E

ν

∂ph
∂tE

(CE)
∂qh
∂tE

(CE) , (43)

where hE denotes the length of the edge E and the parameter

δE =

∣∣∫
Ω
ϕE dx

∣∣2
h4
E |ϕE |21,Ω

is bounded from below and from above by positive constants independent of h (cf. Remark 7).
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Figure 2. Supports of the functions {ϕ̂i}4i=1 and directions of the vectors {t̂i}4i=1.

If we also use the functions ϕT and the triangulation Th consists of rectangles, then (36) can be rewritten
into

ch(ph, qh) =
∑
E∈Eh

δE h
4
E

ν

∂ph
∂tE

(CE)
∂qh
∂tE

(CE) +
∑
T∈Th

δT h
4
T

ν
∇ph(CT ) · ∇qh(CT ) , (44)

where δE is the same as above and

δT =

∣∣∫
Ω
ϕT dx

∣∣2
h4
T |ϕT |21,Ω

·

Again, δT is bounded from below and from above by positive constants independent of h. We recall that, in
the sums of (43) and (44), it is sufficient to consider only those terms which assure that the assumption (17) is
satisfied. For instance, if some T ∈ Th is present in the second sum of (44), we need only one edge E ⊂ T in
the first sum of (44). Note also that the number of entries in each row of the matrix corresponding to (43) is
equal to one plus the number of edges containing the vertex associated with the given row. Thus, for a uniform
triangulation, the matrix corresponding to (43) has only five entries in each row like the usual five point star
for the discretization of the Laplacian. The matrix corresponding to (44) has typically nine entries per row.

We have seen in Section 5 that the stabilized finite element discretizations (34), (35) and (40), (41) of the
Stokes and Navier–Stokes equations, respectively, possess optimal approximation properties provided that the
stabilizing term ch(ph, qh) can be written in the form (36). The results of this section show that, particularly,
the mentioned discretizations have optimal approximation properties if ch(ph, qh) is defined by (43) or (44) with
some suitable parameters δE and δT , which is a new result.

7. Recovering of the Brezzi–Pitkäranta stabilization

Eliminating the space V2
h from a discretization, we can not only derive new stabilized discretizations as in

the previous section, but we can also obtain some existing ones. That often provides a deeper insight into their
behaviour. Here, we show that, choosing the functions ϕih and vectors tih in (36) in a suitable way, we can
recover a stabilization introduced and studied by Brezzi and Pitkäranta [9]. For this, we introduce functions
ϕ̂1, . . . , ϕ̂4 ∈ H1

0 (T̂ ) having their supports in the sets Σ̂1, . . . , Σ̂4 depicted in Figure 2. The sets Σ̂i are squares
with side length 3−

√
3

6 and barycentres in the points Â1 = (1
2 ,

3−
√

3
6 ), Â2 = (3+

√
3

6 , 1
2 ), Â3 = (1

2 ,
3+
√

3
6 ) and
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Â4 = (3−
√

3
6 , 1

2 ), respectively. The choice of the points Âi assures that∫
bT

ĝ dx̂ =
1
2

[ĝ(Â2) + ĝ(Â4)] for ĝ(x̂) = (ξ0 + ξ1 x̂1) q̂(x̂) , (45)∫
bT

ĥdx̂ =
1
2

[ĥ(Â1) + ĥ(Â3)] for ĥ(x̂) = (ξ0 + ξ1 x̂2) q̂(x̂) , (46)

where q̂ ∈ Q1(T̂ ) and ξ0, ξ1 are arbitrary real numbers. Each function ϕ̂i is biquadratic in Σ̂i, vanishes on the
boundary of Σ̂i and is equal to 1 in Âi. The corresponding vectors t̂

i
are depicted in Figure 2 and are defined

by t̂
1

= t̂
3

= (1, 0) and t̂
2

= t̂
4

= (0, 1). Now, for any T ∈ Th and i ∈ {1, . . . , 4}, we set

ϕiT |T = ϕ̂i ◦ F−1
T , ϕiT |Ω\T = 0 , AiT = FT (Âi) , tiT = JT (Âi) t̂

i
/|JT (Âi) t̂

i| .

The functions ϕiT and vectors tiT satisfy all the assumptions made in Section 2 and the space V2
h =

span{ϕiT tiT }T∈Th,i=1,...,4 guarantees the validity of the Babuška–Brezzi condition for the spaces V1
h ⊕ V2

h and
Qh. The condition (42) is clearly satisfied and therefore, the discretizations (34), (35) and (40), (41) are stable
for the stabilizing term

ch(ph, qh) =
∑
T∈Th

4∑
i=1

∂ph

∂tiT
(AiT )

∂qh

∂tiT
(AiT )

∣∣∫
Ω ϕiT dx

∣∣2
ν |ϕiT |21,Ω

·

Denoting p̂T = ph ◦ FT , q̂T = qh ◦ FT for any T ∈ Th, it follows using (13) and (20) that

ch(ph, qh) =
∑
T∈Th

4∑
i=1

∂p̂T

∂t̂
i (Âi)

∂q̂T

∂t̂
i (Âi)

|det JT (Âi)|2

|JT (Âi) t̂
i|2

|
∫
bT
ϕ̂i dx̂|2

ν
∫
bT
|J−T
T ∇̂ϕ̂i|2 |detJT |dx̂

·

If the triangulation Th consists of parallelograms, then JT is constant for any T ∈ Th and we obtain

ch(ph, qh) =
∑
T∈Th

[(
∂p̂T
∂x̂1

(Â1)
∂q̂T
∂x̂1

(Â1) +
∂p̂T
∂x̂1

(Â3)
∂q̂T
∂x̂1

(Â3)
)

1

|JT t̂
1|2

+
(
∂p̂T
∂x̂2

(Â2)
∂q̂T
∂x̂2

(Â2) +
∂p̂T
∂x̂2

(Â4)
∂q̂T
∂x̂2

(Â4)
)

1

|JT t̂
2|2

]
|det JT | |

∫
bT
ϕ̂1 dx̂|2

ν
∫
bT
|J−T
T ∇̂ϕ̂1|2 dx̂

·

Since ∂p̂T/∂x̂k is a linear function independent of x̂k, k = 1, 2, we infer applying (45) and (46) that the terms
in the square brackets are equal to

2
∫
bT

∂p̂T
∂x̂1

∂q̂T
∂x̂1

1

|JT t̂
1|2

+
∂p̂T
∂x̂2

∂q̂T
∂x̂2

1

|JT t̂
2|2

dx̂ .

Applying (20), we obtain

ch(ph, qh) =
∑
T∈Th

γT h
2
T

ν

∫
T

∂ph

∂t1T

∂qh

∂t1T
+
∂ph

∂t2T

∂qh

∂t2T
dx ,

where the parameter

γT =
2 |
∫

Ω
ϕ1
T dx|2

h2
T |T | |ϕ1

T |21,Ω
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is bounded from below and from above by positive constants independent of h. The vectors t1T , t2T are unit
vectors in the directions of the edges of the parallelogram T . Thus, if the triangulation Th consists of rectangles,
we obtain

ch(ph, qh) =
∑
T∈Th

γT h
2
T

ν

∫
T

∇ph · ∇qh dx ,

which is the stabilization introduced by Brezzi and Pitkäranta [9] for stabilizing a discretization of the Stokes
equations.

8. Consistent stabilized discretizations of the Stokes equations

A drawback of the stabilizations discussed up to now is that they are not consistent. First of all, the
consistency error comes from the dropped right–hand side in (32), resp. in (38). Let us consider the Stokes
equations (the Navier–Stokes equations will be treated in the next section) and let us replace the equation (32)
in the reduced discretization (31)–(33) by

ν a(u2
h,v

2
h) + b(v2

h, ph) = 〈f ,v2
h〉 ∀ v2

h ∈ V2
h . (47)

The resulting discrete problem (31), (47), (33) has a solution which converges to the solution of (3) with the
same rate as the solution of (31)–(33) (cf. [16]). If the triangulation Th consists of rectangles, the equation (47)
can be written as ν a(u2

h,v
2
h) = rh(u1

h, ph,v
2
h) with

rh(w, q,v) = 〈f ,v〉 − b(v, q) + ν
∑
T∈Th

∫
T

v ·∆w dx .

A solution of (3) with u ∈ H2(Ω)2 satisfies rh(u, p,v) = 0 for any v ∈ H1
0 (Ω)2 and hence u1

h = u, ph = p solves
the new discrete problem (31), (47), (33). In this sense, the new discrete problem is consistent. If the elements
of Th are not rectangular, the discretization is not consistent any more, but if they are nearly rectangular, we
can hope that the consistency error is small.

Similarly as at the beginning of this section, we can eliminate u2
h from the discretization (31), (47), (33) and

obtain a stabilized Q1/Q1–discretization of the Stokes equations. This discretization now reads:

Find u1
h ∈ V1

h and ph ∈ Qh satisfying

ν a(u1
h,v

1
h) + b(v1

h, ph) = 〈f ,v1
h〉 ∀ v1

h ∈ V1
h ,

b(u1
h, qh)− ch(ph, qh) = lh(qh) ∀ qh ∈ Qh ,

where ch(ph, qh) is defined by (36) and

lh(qh) = −
Nh∑
i=1

∂qh

∂tih
(Aih) 〈f , ϕih tih〉

∫
Ω ϕih dx
ν |ϕih|21,Ω

·

The particular formulas for lh(qh) corresponding to (43) or (44) can be introduced in a straightforward way.
We only derive a formula for lh(qh) in case of the functions ϕiT .

Let Th consists of parallelograms and let

f ∈ {v ∈ L2(Ω)2; v ◦ FT ∈ Q1(T̂ )2 ∀ T ∈ Th} .
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Denoting f̂T = f ◦ FT , q̂T = qh ◦ FT for any T ∈ Th, we infer using (13) and (20) that

lh(qh) = −
∑
T∈Th

4∑
i=1

γT h
2
T

2 ν
∂q̂T

∂t̂
i (Âi) f̂T (Âi) · JT t̂

i |detJT |
|JT t̂

i|2
·

Applying (45), (46) and (20), we obtain

lh(qh) = −
∑
T∈Th

γT h
2
T

ν

∫
T

∂qh
∂t1T

f · t1T +
∂qh
∂t2T

f · t2T dx

and hence, if the triangulation Th consists of rectangles, the stabilized continuity equation reads

b(u1
h, qh) +

∑
T∈Th

γT h
2
T

ν

∫
T

(f −∇ph) · ∇qh dx = 0 . (48)

This stabilization is identical with the Petrov–Galerkin formulation of the Stokes equations introduced in [15].
Increasing the number of the bubble functions, we can derive this equation also for f being generated by higher
degree polynomials defined on the reference element. That will be also seen in the next section.

9. Recovering of the SUPG method

The aim of this section is to show that, eliminating a sufficiently rich space V2
h from a modified reduced

discretization of the Navier–Stokes equations, we can obtain the streamline upwind/Petrov–Galerkin (SUPG)
method of [12] analyzed for arbitrary combinations of approximation spaces for the velocity and pressure in [21].
This equivalence will be established without linearizing the convective term, unlike other papers investigating
the relationship between Galerkin methods with bubble functions and the SUPG method.

We confine ourselves to triangulations consisting of rectangles and, similarly as in Section 5, we again start
with a reduced discretization of the Navier–Stokes equations. In contrast with (37)–(39), we now drop only the
terms ν a(u2

h,v
1
h), ν a(u1

h,v
2
h), n(u1

h,u
2
h,v

2
h) and n(u2

h,uh,vh). Then we replace the term n(u1
h,u

2
h,v

1
h) by the

term −n(u1
h,v

1
h,u

2
h). The last modification is motivated by the fact that

n(u,w,v) = −n(u,v,w)−
∫

Ω

(v ·w) divudx ∀ u,v,w ∈ H1
0 (Ω)2 .

Thus, we consider the following modified discretization of the Navier–Stokes equations:

Find u1
h ∈ V1

h, u2
h ∈ V2

h and ph ∈ Qh satisfying

ν a(u1
h,v

1
h) + n(u1

h,u
1
h,v

1
h)− n(u1

h,v
1
h,u

2
h) + b(v1

h, ph) = 〈f ,v1
h〉 , (49)

ν a(u2
h,v

2
h) + n(u1

h,u
1
h,v

2
h) + b(v2

h, ph) = 〈f ,v2
h〉 , (50)

b(u1
h, qh) + b(u2

h, qh) = 0 (51)

for any v1
h ∈ V1

h, v2
h ∈ V2

h and qh ∈ Qh. Using the techniques of [16], it is possible to prove the same convergence
results for (49)–(51) as we have for the standard Galerkin finite element discretization of the Navier–Stokes
equations. Since ∆(u1

h|T ) = 0 for any T ∈ Th and u2
h can be considered as a stabilization device only, the

above discrete problem for u1
h, ph is consistent (cf. the previous section). The term −n(u1

h,v
1
h,u

2
h) introduces

an influence of the space V2
h into the momentum balance (49). We shall see that this influence corresponds to

a stabilization of the convective term n(u1
h,u

1
h,v

1
h) analogous to the SUPG effect.

In view of the presence of the convective terms in (49) and (50), we shall need a more accurate integration
formula than (45) and (46). Therefore, we have to increase the number of the points Âi and hence of the bubble
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Figure 3. Supports of the functions {ϕ̂i}16
i=1.

functions ϕ̂i. We introduce 16 points Âi ∈ T̂ , i = 1, . . . , 16, depicted in Figure 3 whose coordinates are all
possible combinations of the values 1

2 (1 + ξ), 1
2 (1− ξ), 1

2 (1 + η), 1
2 (1− η), where

ξ =

√
1
3

(
1 +

2√
5

)
, η =

√
1
3

(
1− 2√

5

)
.

Then

∫
bT

q̂ dx̂ =
1
16

16∑
i=1

q̂(Âi) ∀ q̂ ∈ Q5(T̂ ) , (52)

where Q5(T̂ ) is the space of polynomials of degrees less than or equal to 5 in each variable. To define the
functions ϕ̂i corresponding to the points Âi, we first prove the following lemma.

Lemma 4. Let Â ∈ T̂ and ψ̂ ∈ H1
0 (T̂ ) \ {0} with ψ̂ ≥ 0 on T̂ be given. Then there exists p̂ ∈ Q2(T̂ ) such that

the function ϕ̂ = p̂ ψ̂ satisfies ϕ̂ ∈ H1
0 (T̂ ) \ L2

0(T̂ ) and∫
bT

q̂ ϕ̂dx̂ = q̂(Â)
∫
bT

ϕ̂dx̂ ∀ q̂ ∈ Q2(T̂ ) . (53)

Proof. Let us denote ((û, v̂)) =
∫
bT
ψ̂ û v̂ dx̂ and M̂ = {q̂ ∈ Q2(T̂ ) ; q̂(Â) = 0}. Then ((·, ·)) is an inner product

on Q2(T̂ ) and M̂ is a linear subspace of Q2(T̂ ) with dim M̂ = dimQ2(T̂ )− 1. Thus, the orthogonal complement
M̂⊥ of M̂ in Q2(T̂ ) with respect to ((·, ·)) is a one–dimensional space and hence there exists p̂ ∈ M̂⊥ \ {0} such
that ((p̂, q̂)) = 0 ∀ q̂ ∈ M̂. That means that the function ϕ̂ = p̂ ψ̂ satisfies

∫
bT
q̂ ϕ̂dx̂ = 0 ∀ q̂ ∈ M̂. Since

q̂− q̂(Â) ∈ M̂ for any q̂ ∈ Q2(T̂ ), (53) holds. Let us assume that ϕ̂ ∈ L2
0(T̂ ). Then

∫
bT
q̂ ϕ̂dx̂ = 0 ∀ q̂ ∈ Q2(T̂ ),

i.e., ((p̂, q̂)) = 0 ∀ q̂ ∈ Q2(T̂ ), which is in contradiction with p̂ 6= 0.
For each point Âi, i = 1, . . . , 16, we define a square with a side length 0.1 and a barycentre in Âi (cf. Fig. 3).

Transforming the function ϕ̂ from Lemma 4 (for Â = (1/2, 1/2) and some fixed function ψ̂) onto the squares
around the points Âi, we obtain functions ϕ̂i ∈ H1

0 (T̂ ), i = 1, . . . , 16, satisfying∫
bT

q̂ ϕ̂i dx̂ = q̂(Âi)
∫
bT

ϕ̂i dx̂ ∀ q̂ ∈ Q2(T̂ ), i ∈ {1, . . . , 16} .
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Further, we denote ϕ̂i+16 = ϕ̂i, Âi+16 = Âi, t̂
i

= (1, 0) and t̂
i+16

= (0, 1), i = 1, . . . , 16. Finally, we again set
for any T ∈ Th and i ∈ {1, . . . , 32}

ϕiT |T = ϕ̂i ◦ F−1
T , ϕiT |Ω\T = 0 , AiT = FT (Âi) , tiT = JT t̂

i
/|JT t̂

i| .

(Note that JT = const. for each T ∈ Th.) Since Th consists of rectangles, we have∫
T

q ϕiT dx = q(AiT )
∫
T

ϕiT dx ∀ q ∈ Q2(T ), T ∈ Th, i ∈ {1, . . . , 32} . (54)

The space V2
h = span{ϕiT tiT }T∈Th,i=1,...,32 guarantees the validity of the Babuška–Brezzi condition (27) for the

spaces V1
h ⊕ V2

h and Qh with γh ≥ C > 0. Of course, much less bubble functions would be enough to get a
stable element (it would be sufficient to have three functions ϕiT in each element T ) but the supplementary
space V2

h = span{ϕiT tiT }T∈Th,i=1,...,32 enables us to show a relationship to the SUPG method.
Now, let us eliminate the function

u2
h =

∑
T∈Th

32∑
i=1

αiT ϕ
i
T t

i
T

from the discrete problem (49)–(51). Since the basis functions of V2
h are orthogonal with respect to the bilinear

form a(·, ·), the elimination of u2
h is again easy. We shall assume that

f ∈ {v ∈ L2(Ω)2; v|T ∈ Q2(T )2 ∀ T ∈ Th}

and we shall employ that the spaces V1
h and Qh now consist of piecewise bilinear functions and that tiT ·ti+16

T = 0
for any T ∈ Th and i ∈ {1, . . . , 16}. Applying (54) and the fact that

(f − (∇u1
h)u1

h −∇ph)|T ∈ Q2(T )2 ∀ T ∈ Th ,

we obtain from (50)

αiT ν |ϕiT |21,Ω = tiT ·
(
f − (∇u1

h)u1
h −∇ph

)
(AiT )

∫
Ω

ϕiT dx .

Using (54) and the fact that each function ϕiT is only a shifted function ϕ1
T , we further infer that

n(u1
h,v

1
h,u

2
h) =

∑
T∈Th

16∑
i=1

(
(f − (∇u1

h)u1
h −∇ph) · (∇v1

h)u1
h

)
(AiT )

|
∫

Ω
ϕ1
T dx|2

ν |ϕ1
T |21,Ω

·

Since the quadrature rule (52) is exact for polynomials from Q5(T̂ ), we finally get

n(u1
h,v

1
h,u

2
h) =

∑
T∈Th

γT h
2
T

ν

∫
T

(f − (∇u1
h)u1

h −∇ph) · (∇v1
h)u1

h dx ,

where

γT =
16 |

∫
Ω
ϕ1
T dx|2

h2
T |T | |ϕ1

T |21,Ω
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is again bounded from below and from above by positive constants independent of h. Analogously we obtain

b(u2
h, qh) =

∑
T∈Th

γT h
2
T

ν

∫
T

(f − (∇u1
h)u1

h −∇ph) · ∇qh dx .

Thus, the discrete problem (49)–(51) can be equivalently written in the form:

Find u1
h ∈ V1

h and ph ∈ Qh satisfying

ν a(u1
h,v

1
h) + n(u1

h,u
1
h,v

1
h) + b(v1

h, ph)− b(u1
h, qh)

= 〈f ,v1
h〉+

∑
T∈Th

γT h
2
T

ν

∫
T

(f − (∇u1
h)u1

h −∇ph) · ((∇v1
h)u1

h +∇qh) dx (55)

for any v1
h ∈ V1

h and qh ∈ Qh. This form of the discrete problem (49), (51) is identical with the SUPG
method of [12, 21] in the diffusion–dominated case, i.e., for small values of the element Reynolds number
ReT = |u1

h|1,∞,T hT /ν. The stabilized continuity equation now reads

b(u1
h, qh) +

∑
T∈Th

γT h
2
T

ν

∫
T

(f − (∇u1
h)u1

h −∇ph) · ∇qh dx = 0 ,

which is a generalization of (48) to the nonlinear case.
In the convection–dominated case, i.e., for large values of ReT , the factor in front of the integral in (55) is

usually chosen proportional to hT /|u1
h|1,∞,T . Thus, for large values of ReT , we should have γT ∼ 1/ReT . That

can be always fulfilled since

γT ≤
1

625C2
[diam(supp ψ̂)]4 ,

where ψ̂ is the function from Lemma 4 and C is the same constant as in (12). For each element T , we can
use another function ψ̂ and obtain the correct value of γT (the parameter set P introduced in Section 2 is then
generally infinite). However, if γT ∼ 1/ReT , then the parameter γh from the Babuška–Brezzi condition (27)
behaves like

γh ∼
1

max
T∈Th

√
ReT

,

which means that, for large values of ReT , the SUPG method is equivalent to the problem (49)–(51) with spaces
Vh = V1

h ⊕V2
h and Qh satisfying the Babuška–Brezzi condition (27) with a small parameter γh. Although this

dependency has been not focussed in [20], a careful inspection shows that also for the P1/P1–element enlarged by
residual–free bubbles the constant in the Babuška–Brezzi condition behaves in the convection–dominated case
like O(1/

√
Re). Therefore, it seems to be more convenient to stabilize the continuity equation and the convective

term separately with different parameters γT . This discretization corresponds to a modified discretization of the
Navier–Stokes equations with a velocity space Vh = V1

h⊕V2
h⊕V3

h, where the supplementary space V2
h guarantees

the fulfilment of the Babuška–Brezzi condition and V3
h gives additional stability in the convection–dominated

case (like in the SUPG approach).
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