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Abstract. We consider the application of the nonconforming
Pmod

1 element to the approximation of the velocity in the in-
compressible Stokes and Navier–Stokes equations. We prove
the uniform validity of an inf–sup condition if the pressure
is approximated by piecewise constant functions. Under ad-
ditional assumptions, we also prove the inf–sup condition for
discontinuous piecewise linear approximations of the pres-
sure. Numerical results show that the Pmod

1 element allows to
obtain significantly better approximations of the velocity than
the Crouzeix–Raviart element.

1 Introduction

In computational fluid dynamics, nonconforming finite elem-
ents are often used for discretizing incompressible flow prob-
lems. One advantage of nonconforming elements in compar-
ison to conforming ones is that they usually satisfy inf–sup
conditions with more convenient pressure spaces and that dis-
cretely divergence–free bases can often be more easily con-
structed for this type of elements. Another reason for the
application of nonconforming elements may be that they are
more suitable for a parallel implementation since their de-
grees of freedom are associated with edges (or with interior
points of the elements of the triangulation), which leads to
a cheap local communication between processors. In add-
ition, nonconforming elements often show nice stability prop-
erties and lead to very efficient finite element solvers. We
refer to [9, 10, 13] and [15] for more details on the properties
of nonconforming finite elements applied to incompressible
flow problems.

However, it was observed that nonconforming elements
sometimes do not lead to the expected accuracy if they
are applied to the numerical solution of convection dom-
inated problems. This phenomenon was thoroughly inves-
tigated in [12] for a scalar convection–diffusion equation
discretized by means of the streamline diffusion method.
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grant No. 201/02/0684 and by the grant MSM 113200007.

Numerical experiments in [12] show that, for the simplest
nonconforming finite element, which is the linear triangular
Crouzeix–Raviart element, it is often not possible to obtain an
acceptable accuracy in the convection dominated regime. The
reason is that, for the Crouzeix–Raviart element, the interele-
ment continuity is too weak (it is reduced to the continuity
at one point on each edge). Therefore, the authors of [12]
developed a new nonconforming triangular first order finite
element named the Pmod

1 element for which the interelement
continuity is stronger so that the same optimal convergence
estimate can be proved as in the conforming case. The finite
element space corresponding to the Pmod

1 element contains
modified Crouzeix–Raviart functions, which gave rise to the
notation Pmod

1 .
Numerical results for convection–diffusion equations

in [12] showed that the discrete solutions obtained using the
Pmod

1 element behave in a very robust way with respect to the
perturbation parameter and that their accuracy is significantly
better than for the Crouzeix–Raviart element. In addition,
the iterative solver used to compute the discrete solutions
converged much faster for the Pmod

1 element than for dis-
cretizations using the Crouzeix–Raviart element. Thus, the
Pmod

1 element not only improves the stability of the discrete
solution, but also the convergence properties of the solvers.
Finally, as a further argument for using the Pmod

1 element, let
us mention that this new element satisfies the discrete Korn
inequality (cf. [11]) which does not hold for the most noncon-
forming first order elements including the Crouzeix–Raviart
element.

Since the Pmod
1 element leads to robust and accurate dis-

cretizations of convection dominated convection–diffusion
equations, one can expect that the Pmod

1 element will also
be appropriate for approximating the velocity u in an in-
compressible viscous fluid described by the Navier–Stokes
equations

−ν∆u+ (∇u)u+∇ p = f in Ω , (1)

divu= 0 in Ω , (2)

u= 0 on ∂Ω . (3)
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Here, Ω ⊂ R2 is a bounded domain with a polygonal bound-
ary ∂Ω, ν > 0 is the kinematic viscosity, f is an outer volume
force and p is a second unknown function, the pressure.

In view of the incompressibility constraint, finite elem-
ent spaces Vh and Qh for approximating the velocity u and
pressure p, respectively, cannot be chosen arbitrarily if one
wants to obtain a stable discretization with respect to h → 0
and no additional stabilization of the continuity equation (2)
is used (see e.g. [3, 8] for details). A sufficient requirement on
the spaces Vh , Qh is the validity of the inf–sup condition

sup
vh∈Vh\{0}

bh(vh, qh)

|vh |1,h

≥ β‖qh‖0,Ω ∀ qh ∈ Qh , (4)

where β > 0 is independent of the discretization parameter h,

bh(vh, qh) = −
∑

K∈Th

∫

K

qhdivvhdx ,

|vh |1,h =



∑

K∈Th

|vh |21,K




1/2

and Th is a triangulation of Ω consisting of elements K used
for constructing the spaces Vh and Qh . The notation |vh|1,K is
used for the seminorm of vh |K in the space H1(K)2. The inf–
sup condition (4) makes it possible to establish optimal error
estimates for the discrete solution of (1)–(3), see e.g. [8].

The main aim of this paper is to investigate for which
spaces Qh the inf–sup condition (4) is satisfied if the velocity
space Vh is defined using the Pmod

1 element. That means that
we consider triangulations Th made up of triangles. First, we
will show that the inf–sup condition (4) holds if the space Qh
consists of piecewise constant functions. Then, using this re-
sult and introducing some additional assumptions, we estab-
lish the inf–sup condition for Qh consisting of discontinuous
piecewise linear functions. This particularly implies the valid-
ity of the inf–sup condition for Qh consisting of continuous
piecewise linear functions and for Qh consisting of piecewise
linear functions which are continuous in the midpoints of
edges of the triangulation. Each of these four pressure spaces
Qh may be appropriate for solving the Navier–Stokes equa-
tions as we will see later.

Nowadays, a lot of pairs of finite element spaces are
known to satisfy or to fail the inf–sup condition (4) (see
e.g. [3] and [8] for overviews) and it is necessary to men-
tion the relation of the present paper to at least some of
the known results. The simplest pair of spaces satisfying (4)
is the nonconforming P1/P0 element of [5], where Vh con-
sists of piecewise linear Crouzeix–Raviart functions and Qh
of piecewise constant functions. Although the Pmod

1 element
was obtained by modifying the Crouzeix–Raviart functions,
the inf–sup condition for the Pmod

1 /P0 element is not a dir-
ect consequence of [5] since all piecewise linear functions
which belong to the Pmod

1 element are continuous. It is well
known that Vh consisting of continuous piecewise linear func-
tions does not satisfy (4) for piecewise constant functions qh .
A conforming space Vh which can be used together with
a piecewise constant space Qh was designed in [1]. Here,
the space Vh consists of continuous piecewise linear func-
tions enriched by vector functions assigned to edges and the

proof of (4) is essentially based on the fact that each addi-
tional vector function has a nonzero flux through the edge it
is assigned to. The Pmod

1 element contains a subspace hav-
ing the structure of Vh from [1], however, the proof of [1]
fails in this case since the additional vector functions have
zero fluxes through all edges of the triangulation. If Qh con-
sists of discontinuous piecewise linear functions, the validity
of the inf–sup condition is known for spaces Vh consist-
ing of piecewise quadratic functions enriched by conforming
or nonconforming bubble functions having their supports al-
ways in one element only, see [5] and [7]. The presence of
the bubble functions plays a significant role in proving the re-
spective inf–sup conditions. In the case of the Pmod

1 element,
there are no functions available which would have their sup-
ports in one element only and hence the present paper also
reveals a new structure of a finite element space which can be
paired with a space Qh consisting of discontinuous piecewise
linear functions.

The paper is organized in the following way. First, in
Sect. 2, we summarize the notation which will be used in
the subsequent sections. Then, in Sect. 3, we give the defin-
ition of the Pmod

1 element and mention some of its properties.
Section 4 is devoted to the proof of the inf–sup condition in
the case when the space Qh consists of piecewise constant
functions and, in Sect. 5, we prove the inf–sup condition for
Qh consisting of discontinuous piecewise linear functions. In
Sect. 6, we discuss the choices of various pressure spaces
Qh in the case when the Pmod

1 element is applied to the so-
lution of the Stokes equations and, finally, in Sect. 7, we
present numerical results comparing the Pmod

1 element with
the Crouzeix–Raviart element.

2 Notation

We assume that we are given a family {Th} of triangulations
of the domain Ω consisting of closed triangular elements K
having the usual compatibility properties (see e.g. [4]) and
satisfying hK ≡ diam(K) ≤ h for any K ∈ Th . We assume that
the family of triangulations is regular, i.e., there exists a con-
stant σ independent of h such that

hK

�K
≤ σ ∀ K ∈ Th , h > 0 , (5)

where �K is the maximum diameter of circles inscribed
into K . For any element K , we will denote by n∂K the unit
outer normal vector to the boundary of K . Further, we de-
note by K̂ the standard reference element and by FK : K̂ → K
any affine regular mapping which maps K̂ onto K . According
to [4, Sect. 15], there exist constants C1, C2 > 0 depending
only on σ such that

C1|v◦ FK |1,K̂ ≤ |v|1,K ≤ C2|v◦ FK |1,K̂

∀ v ∈ H1(K), K ∈ Th . (6)

We denote by Eh the set of edges E of Th , by E i
h the subset

of Eh consisting of inner edges and by E b
h the set Eh \E i

h , i.e.,
the set of boundary edges. Further, for any edge E, we denote
by hE the length of E and by nE a fixed unit normal vector
to E. If E ∈ E b

h , then nE coincides with the outer normal vec-
tor to ∂Ω. For any inner edge E ∈ E i

h , we respectively define
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the jump and the average of a function v across E by

[|v|]E = (
v|K

) |E − (v|K̃

) |E , (7)

〈|v|〉E = 1

2

{(
v|K

) |E + (v|K̃

) |E

}
,

where K , K̃ are the two elements adjacent to E denoted in
such a way that nE points into K̃ . If an edge E ∈ Eh lies on
the boundary of Ω, then we set

[|v|]E = v|E ,

which is the jump defined by (7) with v extended by zero out-
side Ω. We will need the nonconforming Crouzeix–Raviart
space

Vnc
h =




vh ∈ L2(Ω) ; vh |K ∈ P1(K) ∀ K ∈ Th ,

∫

E

[|vh |]Edσ = 0 ∀ E ∈ Eh






and we denote by {ζE}
E∈E i

h
the usual basis in Vnc

h , i.e., each

ζE is piecewise linear, equals 1 on E and vanishes in the mid-
points of all edges different from E.

Throughout the paper we use standard notation L2(Ω),
Hk(Ω) = Wk,2(Ω), Pk(Ω), C(Ω), etc. for the usual func-
tion spaces, see e.g. [4]. We only mention that we denote by
L2

0(Ω) the space of functions from L2(Ω) having zero mean
value on Ω. The norm and seminorm in the Sobolev space
Hk(Ω) will be denoted by ‖ · ‖k,Ω and | · |k,Ω , respectively.
Finally, we use the notation C to denote a generic constant
independent of h and ν.

3 Definition and properties of the Pmod
1 element

In this section we recall the general definition of the Pmod
1

element given in [12]. We introduce functions b̂1, b̂2 and b̂3
defined on the reference triangle K̂ and associated respec-
tively with the edges Ê1, Ê2 and Ê3 of K̂ . We assume for
i ∈ {1, 2, 3} that

b̂i ∈ H1 (K̂
)

, b̂i |∂ K̂\Êi
= 0 , (8)

b̂i|Êi
is odd with respect to the midpoint of Êi , (9)

∫

Êi

[(
1 − 2̂λ i+1

)+ b̂i
]

q̂dσ̂ = 0 ∀ q̂ ∈ P1
(
Êi
)

, (10)

where λ̂ i is the barycentric coordinate on K̂ with respect to
the vertex of K̂ opposite the edge Êi (we set λ̂4 ≡ λ̂1). Then
the shape functions of the Pmod

1 element on K̂ form the space

Pmod
1

(
K̂
)= P1

(
K̂
)⊕ span

{̂
b1, b̂2, b̂3

}
.

For any element K ∈ Th , we choose a regular affine map-
ping FK : K̂ → K such that FK (K̂ ) = K and we set

bK,E =
{̂

bi ◦ F−1
K in K ,

0 in Ω \ K ,

for E = FK (Êi), i = 1, 2, 3. Thus, the shape functions on K
form the space

Pmod
1 (K) = P1(K)⊕ span{bK,E|K }E∈Eh ,E⊂∂K .

For each element K , we introduce six local nodal functionals

IK,E(v) = 1

hE

∫

E

vdσ ,

JK,E(v) = 3

hE

∫

E

v(2λE −1)dσ ,

E ∈ Eh, E ⊂ ∂K , (11)

where λE ∈ P1(E) equals 1 at one end point of E and 0 at the
other end point of E. Then the finite element space Vmod

h ap-
proximating the space H1

0 (Ω) consists of all functions which
belong to the space Pmod

1 (K) on any element K ∈ Th , which
are continuous on all inner edges in the sense of the equal-
ity of nodal functionals and for which all nodal functionals
associated with boundary edges vanish. This means that

Vmod
h =




vh ∈ L2(Ω) ; vh |K ∈ Pmod
1 (K) ∀ K ∈ Th ,

∫

E

[|vh |]E qdσ = 0 ∀ q ∈ P1(E), E ∈ Eh




 .

For any edge E ∈ Eh , we define global nodal functionals

IE(v) = IK,E(v) , JE(v) = JK,E(v) , (12)

where K is any element adjacent to E (for v ∈ Vmod
h , the

values of these functionals are independent of the choice
of K ). We denote by {ψE, χE}

E∈E i
h

a basis of Vmod
h which is

dual to the functionals IE , JE , i.e., for any E, E ′ ∈ E i
h , we

have

IE(ψE′ ) = δE,E′ , IE(χE′) = 0 ,

JE(ψE′) = 0 , JE(χE′) = δE,E′ , (13)

where δE,E′ = 1 for E = E ′ and δE,E′ = 0 for E �= E ′. To es-
tablish formulas for ψE and χE , we denote by K , K̃ the two
elements adjacent to E, by E, E1, E2 the edges of K , by E,
E3, E4 the edges of K̃ , and by ζE the standard basis function
of Vnc

h associated with the edge E (cf. Sect. 2). Then

ψE = ζE +βE,1bK,E1 +βE,2bK,E2

+βE,3bK̃,E3
+βE,4bK̃,E4

, (14)

χE =βE,5bK,E +βE,6bK̃,E , (15)

where the coefficients βE,1, . . . , βE,6 are uniquely determined
and equal 1 or −1. If the functions b̂1, b̂2, b̂3 are chosen in
a suitable way (e.g. b̂i = b̂1 ◦ F̂i where F̂i is an affine trans-
formation of K̂ onto K̂ ) then χE ∈ H1

0 (Ω) and hence, in
this case, the functions χE generate a conforming subspace
of Vmod

h . The functions ψE are always purely nonconforming
functions since they have jumps across the edges E1, . . . , E4
and they can be viewed as modified basis functions of Vnc

h .
Note that, in view of (6), we have
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Fig. 1. Function λ̂2
2 λ̂3 − λ̂2 λ̂ 2

2

|χE |1,K ≤ C3 , |ψE |1,K ≤ C3 ∀ E ∈ E i
h, K ∈ Th , (16)

where C3 = 2 C2[1 +max{|̂b1|1,K̂ , |̂b2|1,K̂ , |̂b3|1,K̂ }].
An important property of the space Vmod

h is that it satisfies
the patch test of order 3, i.e.,
∫

E

[|vh |]E qdσ = 0 ∀ vh ∈ Vmod
h , q ∈ P2(E), E ∈ Eh .

This immediately follows from the fact that the space Vmod
h

satisfies the patch of order 2 and that the basis functions ψE
and χE are odd along all edges of the triangulation. Moreover,
if (10) holds for any q̂ ∈ Pk(Êi) with some k > 1, then it is
easy to show that the basis functions ψE , χE satisfy the patch
test of order k +1. Consequently, in this case, the whole space
Vmod

h satisfies the patch test of order k +1.
We can conclude that the space Vmod

h is an edge–oriented
nonconforming finite element space possessing first order ap-
proximation properties with respect to | · |1,h . The supports
of the basis functions ψE , χE are contained in the supports
of the basis functions ζE of Vnc

h and hence the space Vmod
h

can be implemented using the same data structures as the
space Vnc

h . However, the higher order of the patch test satis-
fied by the space Vmod

h enables to obtain much more accurate
results than for the Crouzeix–Raviart space Vnc

h . This was
shown for a scalar convection–diffusion equation in [12] and
it will also be seen for the Stokes equations in this paper.

A simple example of the Pmod
1 element can be constructed

by setting (cf. Fig. 1)

b̂i = 10
(̂
λ2

i+1λ̂ i+2 − λ̂ i+1λ̂
2
i+2

)
, i = 1, 2, 3, (17)

where the indices are to be considered modulo 3. To express
the formulas (14), (15) for the basis functions χE and ψE in
terms of the barycentric coordinates, we denote by K and K̃
the two elements adjacent to an edge E ∈ E i

h and by λ1, λ2 and
λ̃1, λ̃2 the barycentric coordinates on K and K̃ with respect to
the end points of E. Further, we respectively denote by λ3 and
λ̃3 the remaining barycentric coordinates on K and K̃ . Then

ψE =






1 −2λ3 −10
(
λ2

1λ3 −λ1λ
2
3

)

−10
(
λ2

2λ3 −λ2λ
2
3

)
in K ,

1 − 2̃λ3 −10
(̃
λ2

1λ̃3 − λ̃1λ̃
2
3

)

−10
(̃
λ2

2λ̃3 − λ̃2λ̃
2
3

)
in K̃ \ E,

0 in Ω \ {K ∪ K̃},

and, after dividing by 10,

χE =






λ2
1λ2 −λ1λ

2
2 in K ,

λ̃2
1λ̃2 − λ̃1̃λ

2
2 in K̃ \ E,

0 in Ω \ {K ∪ K̃ }.
These basis functions were used in the numerical calculations
presented both in [12] and in this paper.

4 Inf–sup condition with a piecewise constant pressure
space

This section is devoted to the proof of the inf–sup condition

sup
vh∈Vmod

h \{0}

bh(vh, qh)

|vh |1,h

≥ β‖qh‖0,Ω ∀ qh ∈ Qh , (18)

where Vmod
h = [Vmod

h ]2 and

Qh = {qh ∈ L2
0(Ω) ; qh|K ∈ P0(K) ∀ K ∈ Th} .

The proof is based on the validity of an inf–sup condition
for the spaces H1

0 (Ω)2 and L2
0(Ω) and on the construction of

a suitable operator rh : H1
0 (Ω)2 → Vmod

h , which is a classical
technique originating from [6]. The operator rh is constructed
analogously as in the proof of the inf–sup condition for the
nonconforming P1/P0 element in [5]. We will see that the
inf–sup condition is assured only by the functions {ψE}E∈E i

h
.

To simplify the proof, we extend the definition of the func-
tions ψE to boundary edges E ∈ E b

h . We again require that
ψE |K ∈ Pmod

1 (K) for any K ∈ Th , that it is continuous on inner
edges in the sense of the equality of local nodal functionals
and that

IE(ψE′) = δE,E′ , JE(ψE′ ) = 0

∀ E ∈ Eh , E ′ ∈ E b
h . (19)

Then, for any E ∈ E b
h , the function ψE is given by

ψE = ζE +βE,1bK,E1 +βE,2bK,E2 , (20)

where K is the element adjacent to E and E1, E2 are the
remaining edges of K . The functions ζE are defined analo-
gously as for inner edges and the coefficients βE,1 and βE,2
are again uniquely determined and equal 1 or −1.

Now we can prove the following auxiliary result.

Lemma 1. Consider any element K ∈ Th and let E1, E2, E3
be its edges. Then

3∑

i=1

ψEi |K = 1 .

Proof. According to (14) and (20), we have

ψE1 |K = ζE1 +βE1,E2bK,E2 +βE1,E3bK,E3 ,

ψE2 |K = ζE2 +βE2,E1bK,E1 +βE2,E3bK,E3 ,

ψE3 |K = ζE3 +βE3,E1bK,E1 +βE3,E2bK,E2 .
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Owing to (13) and (19), the numbers βEi ,Ej are uniquely de-
termined by

βEi ,Ej = − JK,Ej (ζEi )

JK,Ej (bK,Ej )
, i, j = 1, 2, 3, i �= j .

Since ζE1 + ζE2 = 0 on E3, we obtain

βE1,E3 +βE2,E3 = − JK,E3(ζE1 + ζE2)

JK,E3(bK,E3)
= 0 .

Analogously,

βE1,E2 +βE3,E2 = 0 , βE2,E1 +βE3,E1 = 0 .

Therefore,

3∑

i=1

ψEi |K =
3∑

i=1

ζEi |K = 1 .

�

The following theorem implies the inf–sup condition (18).

Theorem 1. Let Zh = [span{ψE}
E∈E i

h
]2. Then there exists

a constant β̄ > 0 depending only on σ , b̂1, b̂2, b̂3 and Ω such
that

sup
vh∈Zh\{0}

bh(vh, qh)

|vh |1,h

≥ β̄‖qh‖0,Ω ∀ qh ∈ Qh . (21)

Proof. For v ∈ H1(Ω)2, let us set

rhv =
∑

E∈Eh

αEψE with αE = 1

hE

∫

E

vdσ .

Then, for any element K ∈ Th and any edge E ⊂ ∂K , we have
∫

E

(rhv)|K dσ =
∫

E

αEψEdσ =αEhE =
∫

E

vdσ

and hence we derive by the Gauss integral theorem that
∫

K

div(rhv)dx =
∫

∂K

n∂K · (rhv)|K dσ

=
∫

∂K

n∂K ·vdσ =
∫

K

divvdx .

Therefore,

bh(rhv, qh) = bh(v, qh) ∀ v ∈ H1(Ω)2, qh ∈ Qh . (22)

We will prove that there exists a constant κ, depending only
on σ and the functions b̂1, b̂2 and b̂3, such that

|rhv|1,h ≤ κ|v|1,Ω ∀ v ∈ H1(Ω)2 . (23)

Consider any K ∈ Th , any regular affine mapping FK : K̂ →K
with FK (K̂) = K and any v ∈ H1(Ω)2. We denote v̂ = v ◦ FK .

Then, in view of the trace theorems, we deduce that, for any
E ∈ Eh with E ⊂ ∂K ,

|αE | = |F−1
K (E)|−1

∣∣∣∣∣∣∣∣

∫

F−1
K (E)

v̂ dσ̂

∣∣∣∣∣∣∣∣
≤ C‖̂v‖1,K̂

and hence, by (16),

|rhv|1,K ≤ C3

∑

E∈Eh ,E⊂∂K

|αE| ≤ C‖̂v‖1,K̂
.

Using Lemma 1 and this inequality, we derive

|rhv|1,K = inf
p∈R2

|rh(v+p)|1,K ≤ C inf
p∈R2

‖̂v+p‖1,K̂
.

Applying [4, p. 120, Theorem 14.1], we obtain

|rhv|1,K ≤ C|̂v|1,K̂

and (23) follows using (6).
Now consider any qh ∈ Qh . Applying (22) and (23) and

using the fact that rhv ∈ Zh for v ∈ H1
0 (Ω)2, we deduce that

sup
vh∈Zh\{0}

bh(vh, qh)

|vh |1,h

≥ sup
v∈H1

0 (Ω)2, rhv�=0

bh(rhv, qh)

|rhv|1,h

≥ 1

κ
sup

v∈H1
0 (Ω)2\{0}

bh(v, qh)

|v|1,Ω

.

According to [8, p. 81], there exists a constant β > 0 such that

sup
v∈H1

0 (Ω)2\{0}

bh(v, q)

|v|1,Ω

≥ β‖q‖0,Ω ∀ q ∈ L2
0(Ω)

and hence (21) holds with β̄ = β/κ. �

5 Inf–sup condition with a piecewise linear pressure
space

In this section we will investigate the validity of the inf–sup
condition in the case when the pressure is approximated by
piecewise linear functions from the space

Q̂h = {
qh ∈ L2

0(Ω) ; qh|K ∈ P1(K) ∀ K ∈ Th
}

.

For simplicity, we will assume that
∫

K̂

b̂i dx̂ = 0 , i = 1, 2, 3 , (24)

which is satisfied, e.g., for b̂i defined by (17). The property
(24) implies that
∫

K

χEdx = 0 ∀ E ∈ E i
h, K ∈ Th , (25)

∫

K

ψEdx = 1

3
|K | ∀ E ∈ E i

h, K ∈ Th, E ⊂ ∂K . (26)
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The below proof of the inf–sup condition is related to the
macroelement technique of [2] and [14].

We denote by {xi}Nh
i=1 the inner vertices of the triangulation

Th and, for any vertex xi , we introduce a macroelement

∆i =
⋃

K∈Th ,xi ∈K

K

consisting of elements grouped around xi . Further, we denote

V i
h = {vh ∈ Vmod

h ; vh = 0 in Ω \∆i} , i = 1, . . . , Nh ,

Q̃h = {qh ∈ L2
0(Ω) ; qh|K ∈ P1(K)∩ L2

0(K) ∀ K ∈ Th} .

The following lemma shows that a local inf–sup condition
holds on each macroelement.

Lemma 2. Consider any i ∈ {1, . . . , Nh }. For any q̃h ∈ Q̃h,
there exists vi

h ∈ V i
h such that

bh(v
i
h, q̄h) = 0 ∀ q̄h ∈ Qh , (27)

bh(v
i
h, q̃h) = ‖q̃h‖2

0,∆i
, (28)

|vi
h |1,h ≤ C4‖q̃h‖0,∆i

, (29)

where C4 = 6 C3 σ1/2.

Proof. Let ∆i consist of elements K1, . . . , Kn , i.e.,

∆i =
n⋃

j=1

Kj ,

and let Kj−1 and Kj have a common edge Ej , j = 1, . . . , n,
see Fig. 2. Here and in the following, the index 0 is consid-
ered as the index n and the index n +1 is considered as the
index 1. We assume that the normal vectors nEj are pointed
into Kj and we introduce tangent vectors tEj to Ej pointing
from xi to the other vertex of Ej . According to (11), (12) and
(13), we have
∫

Ej

〈|χEj |〉Ej
(2λEj −1)dσ = 1

3
hEj JEj (χEj ) = 1

3
hEj

Fig. 2. Notation inside a macroelement ∆i

and hence
∫

Ej

〈|χEj |〉Ej
qdσ = γjhEj for q ∈ P1(Ej) ,

q(xi) = 1 , q(CEj ) = 0 , j = 1, . . . , n , (30)

where γj = ±1/3 and CEj is the midpoint of Ej . In addition,
we will need the relations
∫

Ej

〈|χEj |〉Ej
dσ = 0 , j = 1, . . . , n , (31)

∫

Kj

div(qψEktEk )dx = 0 ∀ q ∈ P1(Kj)

j, k = 1, . . . , n , (32)

which easily follow from the definition of the functions ψE
and χE .

Now, let us consider any q̃h ∈ Q̃h . We will look for num-
bers αk , βk, k = 1, . . . , n, such that

vi
h =

n∑

k=1

(αknEk χEk +βktEkψEk ) (33)

satisfies

−
∫

Kj

qdivvi
hdx =

∫

Kj

q̃hqdx (34)

for any q ∈ P1(Kj), j = 1, . . . , n. Note that vi
h ∈ V i

h . Integrat-
ing by parts, applying (25) and (32), and using the fact that
any function χE vanishes on all edges except E, we derive

−
∫

Kj

qdivvi
hdx

= ∇q ·
∫

Kj

βjtEj ψEj +βj+1tEj+1ψEj+1 dx

+
∫

Ej

qαj〈|χEj |〉Ej
dσ

−
∫

Ej+1

qαj+1〈|χEj+1 |〉Ej+1
dσ . (35)

Owing to (31), this relation implies that
∫

Kj

qdivvi
hdx = 0 ∀ q ∈ P0(Kj) , j = 1, . . . , n , (36)

and hence (34) holds for any q ∈ P0(Kj), j = 1, . . . , n.
Therefore, it suffices to look for αk, βk, k = 1, . . . , n, satisfy-
ing (34) for q = ζEj |Kj

and q = ζEj+1 |Kj
, j = 1, . . . , n. It is

easy to see that

∇ζEj |Kj
= − 2

sj
nEj , ∇ζEj+1 |Kj

= 2

zj
nEj+1 ,
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where sj is the distance between Ej and the vertex of Kj op-
posite to Ej , and zj is the distance between Ej+1 and the
vertex of Kj opposite to Ej+1. Since

sj = nEj · tEj+1hEj+1 , zj = −nEj+1 · tEj hEj ,

we have

tEj+1 ·∇ζEj |Kj
= − 2

hEj+1

, tEj ·∇ζEj+1|Kj
= − 2

hEj

.

Thus, substituting the functions ζEj |Kj
and ζEj+1 |Kj

into
(34) and applying (35), (26), (31) and (30), we derive for
j = 1, . . . , n

−2

3

|Kj |
hEj+1

βj+1 − γj+1hEj+1αj+1 =
∫

Kj

q̃hζEj dx ,

−2

3

|Kj |
hEj

βj + γjhEj αj =
∫

Kj

q̃hζEj+1dx .

This shows that the coefficients αk , βk in (33), for which (34)
holds with any q ∈ P1(Kj), j = 1, . . . , n, are uniquely deter-
mined by

γjhEj (|Kj−1|+ |Kj|)αj = |Kj−1|
∫

Kj

q̃hζEj+1dx

−|Kj |
∫

Kj−1

q̃hζEj−1dx ,

2(|Kj−1|+ |Kj|)βj =−3hEj

∫

Kj

q̃hζEj+1dx

−3hEj

∫

Kj−1

q̃hζEj−1dx ,

where j = 1, . . . , n.
Summing up the relations (34) for j = 1, . . . , n, we get

bh(v
i
h, qh) =

∫

∆i

q̃hqhdx ∀ qh ∈ Q̃h ,

and setting qh = q̃h , we obtain (28). The validity of (27) fol-
lows from (36) and hence it remains to prove (29). Using (5),
we derive that, for j = 1, . . . , n,

|αj | ≤ σ1/2‖q̃h‖0,Kj−1∪Kj
, |βj | ≤ σ1/2‖q̃h‖0,Kj−1∪Kj

.

Applying (16), we get for j = 1, . . . , n

|vi
h |1,Kj

≤ 2C3 σ1/2(‖q̃h‖0,Kj−1∪Kj
+‖q̃h‖0,Kj ∪Kj+1

)

and the inequality (29) follows. �

Now we can prove the main result of this section. We will
assume that the triangulations Th possess the following prop-
erty:

any element K ∈ Th has at least one vertex in Ω. (37)

This additional assumption guarantees that any element of
a triangulation Th is contained in at least one macroelement.

Theorem 2. Let the assumptions (24) and (37) hold. Then

sup
vh∈Vmod

h \{0}

bh(vh, qh)

|vh |1,h

≥ β‖qh‖0,Ω ∀ qh ∈ Q̂h , (38)

where β = min{2, β̄2}/(12 C4 +2 β̄).

Proof. For completeness we give all details of the proof al-
though the arguments are very similar to those ones used
in the conforming case (cf. [2], [14] or [8]). Consider any
qh ∈ Q̂h . Then there exist functions q̃h ∈ Q̃h and q̄h ∈ Qh such
that

qh = q̃h + q̄h .

Since the spaces Q̃h and Qh are orthogonal subspaces of
L2(Ω), we have

‖qh‖2
0,Ω = ‖q̃h‖2

0,Ω +‖q̄h‖2
0,Ω .

According to [8, p. 58, Lemma 4.1], the inf–sup condition
(21) implies that there exists a function v̄h ∈ Vmod

h satisfying

bh(v̄h, q̄h) = ‖q̄h‖2
0,Ω ,

|v̄h |1,h ≤ 1

β̄
‖q̄h‖0,Ω .

Further, according to Lemma 2, there exist functions vi
h ∈

V i
h , i = 1, . . . , Nh , satisfying (27)–(29) with the above func-

tion q̃h . Setting

ṽh =
Nh∑

i=1

vi
h ,

we have

bh
(
ṽh, q̄h

)= 0 ,

bh (̃vh, q̃h) ≥ ‖q̃h‖2
0,Ω ,

|̃vh |1,h ≤
√√√√3

Nh∑

i=1

|vi
h |21,h ≤ 3C4‖q̃h‖0,Ω .

Denoting

vh = ṽh +αv̄h , α = β̄2

2
,

we get

bh(vh, qh) = bh (̃vh, q̃h)+αbh
(
v̄h, q̃h

)+αbh
(
v̄h, q̄h

)

≥ ‖q̃h‖2
0,Ω +α‖q̄h‖2

0,Ω −α
√

2|v̄h |1,h‖q̃h‖0,Ω

≥ 1

2
‖q̃h‖2

0,Ω +α

(
1 − α

β̄2

)
‖q̄h‖2

0,Ω

≥ min

{
1

2
,
α

2

}
‖qh‖2

0,Ω .
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Since

|vh |1,h ≤ |̃vh |1,h +α|v̄h |1,h ≤ 3C4‖q̃h‖0,Ω + β̄

2
‖q̄h‖0,Ω

≤
(

3C4 + β̄

2

)
‖qh‖0,Ω ,

we obtain the theorem. �

Remark 1. We performed various numerical tests for the dis-
cretization (42) of the Stokes equations described below. If
the pressure was approximated using the space Q̂h and the as-
sumption (37) was not satisfied, we often observed that the
discrete pressure contained spurious oscillations. This indi-
cates that the assumption (37) is necessary for the validity
of (38).

6 Application of the Pmod
1 element to the solution of the

Stokes equations

An important role in both theoretical investigations and the
numerical solution of the Navier–Stokes equations (1)–(3) is
played by the linear Stokes equations

−ν∆u+∇ p = f in Ω , (39)
divu= 0 in Ω , (40)
u= 0 on ∂Ω . (41)

Here we consider the Stokes equations because they simplify
the discussion of various choices of finite element spaces for
approximating the velocity and the pressure. It is obvious that
pairs of spaces which are detected as not suitable for dis-
cretizations of the Stokes equations cannot be expected to
give satisfactory results in case of the Navier–Stokes equa-
tions.

Assuming that f ∈ L2(Ω)2 and denoting

a(u,v) =
∫

Ω

∇u ·∇vdx , b(v, p) = −
∫

Ω

pdivvdx ,

(f ,v) =
∫

Ω

f ·vdx ,

the usual weak formulation of (39)–(41) reads: Find u ∈
H1

0 (Ω)2 and p ∈ L2
0(Ω) such that

νa(u,v)+b(v, p)−b(u, q) = (f ,v)

∀ v ∈ H1
0 (Ω)2, q ∈ L2

0(Ω) .

It can be shown that this problem has a unique solution (cf. [8,
p. 80, Theorem 5.1]).

We will approximate the space H1
0 (Ω)2 in the weak for-

mulation by the space Vmod
h and the space L2

0(Ω) by a general
finite element space Qh ⊂ L2

0(Ω) possessing the approxima-
tion property

lim
h→0

inf
qh∈Qh

‖q −qh‖0,Ω = 0 ∀ q ∈ L2
0(Ω) .

Since the functions from Vmod
h are only piecewise in H1(Ω)2,

we have to replace the bilinear form a by its ‘piecewise’ coun-
terpart

ah(u,v) =
∑

K∈Th

∫

K

∇u ·∇vdx

and the bilinear form b by the bilinear form bh defined in
Sect. 1. Then a finite element discretization of the Stokes
equations (39)–(41) reads: Find uh ∈ Vmod

h and ph ∈ Qh such
that

νah(uh,vh)+bh(vh, ph)−bh(uh, qh) = (f ,vh)

∀ vh ∈ Vmod
h , qh ∈ Qh . (42)

Using the techniques of [5] and [8], we obtain the following
result:

Theorem 3. Let the spaces Vmod
h and Qh satisfy the inf–sup

condition (4) with β > 0 independent of h. Then the problem
(42) has a unique solution uh, ph and we have

lim
h→0

{|u−uh |1,h +‖p − ph‖0,Ω} = 0 ,

where u, p is the weak solution of (39)–(41). Moreover, if u ∈
H2(Ω)2 and p ∈ Hk(Ω), k ∈ {1, 2, 3}, then

|u−uh |1,h ≤ Ch|u|2,Ω + C

ν
hk|p|k,Ω

+
√

2

ν
inf

qh∈Qh
‖p −qh‖0,Ω ,

‖p − ph‖0,Ω ≤ νCh|u|2,Ω +Chk|p|k,Ω
+C inf

qh∈Qh
‖p −qh‖0,Ω .

According to Theorem 1, the inf–sup condition mentioned
in Theorem 3 holds if Qh = Qh . It is well known (cf. e.g. [8,
pp. 102 and 126]) that

inf
qh∈Qh

‖p −qh‖0,Ω ≤ Ch|p|1,Ω ∀ p ∈ H1(Ω)∩ L2
0(Ω)

and hence the choice Qh = Qh is optimal with respect to the
convergence order of the discrete solution. However, since the
parameter ν is small in typical applications, the pressure parts
of the estimates of Theorem 3 will often dominate the vel-
ocity parts and the choice Qh = Qh will cause that the relation
of these parts will not change significantly for h → 0. There-
fore, it may also be reasonable to require that

inf
qh∈Qh

‖p −qh‖0,Ω ≤ Chk|p|k,Ω
∀ p ∈ Hk(Ω)∩ L2

0(Ω), k = 1, 2 .

This is satisfied, for instance, if

Qh = Qc
h ≡ {qh ∈ C(Ω)∩ L2

0(Ω) ;
qh |K ∈ P1(K) ∀ K ∈ Th} ,

or if Qh = Qnc
h ≡ Vnc

h ∩ L2
0(Ω), or if Qh = Q̂h . In all these

cases, Theorem 2 assures the validity of the inf–sup condition
required in Theorem 3, provided the assumptions of Theo-
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rem 2 are satisfied. Hence, if u ∈ H2(Ω)2 and p ∈ H2(Ω), we
have

|u−uh |1,h ≤ Ch|u|2,Ω + C

ν
h2|p|2,Ω ,

‖p − ph‖0,Ω ≤ νCh|u|2,Ω +Ch2|p|2,Ω .

Numerical experiments show that, in this way, we can often
significantly improve the accuracy of the discrete solution in
comparison to the choice Qh = Qh .

Since dim Q̂h ≈ 2 dim Qnc
h ≈ 6 dim Qc

h , it may seem at the
first sight that the choice Qh = Qc

h is the best one. However,
for implementational reasons, the most attractive choice is
the space Qnc

h since this space can be implemented using the
same data structures as we use for the space Vmod

h . Finally,
if we want to implement the discrete problem on a parallel
computer, we realize that, from the point of view of local
communication cost, the best choice is the space Q̂h and the
worst choice the space Qc

h . Thus, each of the above pressure
spaces Qh , Qc

h , Qnc
h and Q̂h may be appropriate in particular

situations and the decision to use one of them can be influ-
enced by various factors.

Remark 2. If we use the Crouzeix–Raviart space [Vnc
h ]2 in-

stead of the space Vmod
h , then Theorem 3 holds with k = 1

only. The reason is that the consistency error related to the
pressure is of order O(h) since the space Vnc

h satisfies the
patch test of order 1 only. The inf–sup condition is satisfied
for Qh = Qh and hence, if u ∈ H2(Ω)2 and p ∈ H1(Ω), we
have the estimates

|u−uh |1,h ≤ Ch|u|2,Ω + C

ν
h|p|1,Ω ,

‖p − ph‖0,Ω ≤ νCh|u|2,Ω +Ch|p|1,Ω .

7 Numerical results

In this section we present numerical results obtained for the
Stokes equations (39)–(41) in Ω = (0, 1)2 with ν = 10−4 and
the exact solution u= (u1, u2) and p given by

u1(x, y)= 100x2(1 − x)2y(1 − y)(1 −2y) ,

u2(x, y)= −100y2(1 − y)2x(1 − x)(1 −2x) ,

p(x, y) = x3 + y3 − 1

2
.

The function u1 (cf. Fig. 3) was used as the exact solution
of a convection–diffusion equation in some of the numeri-
cal experiments in [12] to compare the properties of the Pmod

1
element and the Crouzeix–Raviart element. The velocity u
represents a vortex, see Fig. 5.

We discretized the Stokes equations as described in the
preceding section and for approximating the velocity and
the pressure we used the following pairs of spaces: Pnc

1 /P0,
Pmod

1 /P0, Pmod
1 /Pdisc

1 . Here, Pnc
1 denotes the Crouzeix–

Raviart element, P0 denotes piecewise constant functions and
Pdisc

1 denotes discontinuous piecewise linear functions. The
triangulations were obtained by uniform refinements of the
coarse triangulation depicted in Fig. 4. Thus, after k refine-
ments, we obtain a triangulation Th with h = √

2/2k+1.

Fig. 3. Component u1 of the velocity u

Fig. 4. Coarse triangulation

In Table 1 we present the errors of the discrete solutions
computed for a triangulation with h = √

2/64 (i.e., with 8192
elements). For the Pmod

1 element, we give the errors of the
piecewise linear part of the discrete velocity which is known
to converge to u with the same convergence orders as the dis-
crete velocity itself (cf. [12]). In agreement with the results of
the preceding section, the discretization with the Crouzeix–
Raviart element leads to largest errors and the discretization
using the piecewise linear pressure is the most accurate one,
in particular, the pressure is approximated very accurately.

In Figs. 6–8, we see the discrete velocity fields corres-
ponding to the three discretizations. The Pnc

1 /P0 velocity is
far away from the exact solution, the Pmod

1 /P0 velocity is
significantly better but still with some discrepancies and the
Pmod

1 /Pdisc
1 solution perfectly agrees with the exact solution.

In fact, the Pmod
1 /Pdisc

1 discretization allows to obtain good
solutions also on much coarser triangulations. In Fig. 9 we see
the discrete velocity field computed for h = √

2/8. Although
the discrete velocity differs a little bit from the exact one,
it is still very good from the qualitative point of view. Note
that the number of elements corresponding to the used trian-

Table 1. Errors of the discrete solutions for h = √
2/64

Pnc
1 /P0 Pmod

1 /P0 Pmod
1 /Pdisc

1

‖u−uh‖0,Ω 7.19×10−1 1.27×10−1 8.88×10−4

|u−uh |1,h 9.36×101 1.72×101 1.03×10−1

‖p− ph‖0,Ω 7.67×10−3 7.53×10−3 4.32×10−5
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Fig. 5. Exact velocity u

Fig. 6. Discrete velocity uh for Pnc
1 /P0 and h = √

2/64

gulation is 128, which is 64 times less than in the preceding
computations! The errors of the discrete solution were still
smaller than the errors given in Table 1 for the two other dis-
cretizations. For these discretizations, the solutions obtained
on such a coarse mesh are completly wrong.

At first sight, it is surprising that the discrete velocity from
Fig. 6 has a so different character from the exact velocity.
However, the explanation is very easy. Let Vh be either the
space Vmod

h or the space [Vnc
h ]2 and let Qh be one of the above

pressure spaces such that the inf–sup condition (4) holds. Let
the weak solution of the Stokes equations (39)–(41) satisfy

Fig. 7. Discrete velocity uh for Pmod
1 /P0 and h = √

2/64

Fig. 8. Discrete velocity uh for Pmod
1 /Pdisc

1 and h = √
2/64

Fig. 9. Discrete velocity uh for Pmod
1 /Pdisc

1 and h = √
2/8

u ∈ H2(Ω)2 and p ∈ H1(Ω). We denote by uu
h ∈ Vh , pu

h ∈ Qh
the solution of

ah
(
uu

h,vh
)+bh

(
vh, pu

h

)−bh
(
uu

h, qh
)= − (∆u,vh)

∀ vh ∈ Vh, qh ∈ Qh ,

where (·, ·) again denotes the L2(Ω)2 inner product. Further,
we denote by up

h ∈ Vh , pp
h ∈ Qh the solution of

ah
(
u

p
h ,vh

)+bh
(
vh, pp

h

)−bh
(
u

p
h , qh

)= (∇ p,vh)

∀ vh ∈ Vh, qh ∈ Qh .

Then the discrete solution uh ∈ Vh , ph ∈ Qh of the Stokes
equations (39)–(41) satisfies

uh = uu
h + 1

ν
u

p
h , ph = pp

h + νpu
h .

The functions uu
h , pp

h tend to the exact soltuion u, p and are
independent of ν whereas the ν-dependent terms with up

h and
pu

h represent pure error terms which tend to zero for h → 0.
Note that up

h is independent of u but if ν is small, it may
happen that the term with up

h will dominate the function uu
h

and the discrete velocity will be influenced stronger by p than
by u. This case can be observed in Fig. 6. On the other hand,
in the case of the discretization Pmod

1 /Pdisc
1 , the above theoret-

ical results guarantee that |up
h |1,h ≤ C h2 |p|2,Ω and hence the

influence of small ν is supressed.
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