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Abstract

We consider a recently introduced triangular nonconforming finite element of third-order accuracy in the
energy norm called Pmod3 element. We show that this finite element is appropriate for approximating the
velocity in incompressible flow problems since it satisfies an inf-sup condition for discontinuous piecewise
quadratic pressures.
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1. Introduction

The Pmod3 element considered in this paper is a triangular nonconforming finite
element of third-order accuracy in the energy norm which belongs to the family of
Pmodn elements introduced by Knobloch and Tobiska [11], and by Knobloch [10]. The
distinguished feature of these finite elements is that they satisfy a patch test of a higher
order than standard nonconforming finite elements. Therefore, if they are applied
to the numerical solution of a scalar convection-diffusion equation-discretized by
means of the streamline diffusion method, the same optimal convergence results can
be proved as in the conforming case (see [10], [11]) whereas standard nonconforming
finite elements lead to a loss of accuracy in the convection-dominated regime.

Nonconforming finite elements are often used for approximating the velocity in
incompressible flow problems (see, e.g., [7], [8], [13], [16]) and a natural question
is whether the Pmodn elements are also appropriate for such applications. Thus, for

any n ≥ 1, let Vmod,n
h be the velocity space defined using the Pmodn element and

approximating the space H 1
0 (�)

2, where � ⊂ R
2 is the computational domain

under consideration. The pressure is often approximated by discontinuous piecewise
polynomial functions since they lead to local mass conservation. As the space Vmod,n

h

is of approximation order n in the energy norm, a suitable pressure space is the space

Qn−1
h = {qh ∈ L2

0(�) ; qh|K ∈ Pn−1(K) ∀ K ∈ Th} (1)
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consisting of discontinuous piecewise polynomial functions of degree n−1 having
zero mean value on �. The notation Th denotes a triangulation of � consisting of

triangular elements K used for constructing the space Vmod,n
h . It is well known that

finite element spaces for approximating the velocity and pressure in incompressible
flow problems cannot be chosen arbitrarily if one wants to obtain a stable discretiza-
tion with respect to h → 0 and no stabilization of the continuity equation is used
(see, e.g., Brezzi and Fortin [2], or Girault and Raviart [6] for details). A sufficient

requirement on the spaces Vmod,n
h and Qn−1

h is the validity of the inf-sup condition

sup
vh∈Vmod,nh \{0}

bh(vh, qh)

|vh|1,h
≥ β ‖qh‖0,� ∀ qh ∈ Qn−1

h , (2)

where β > 0 is independent of the discretization parameter h and

bh(vh, qh) = −
∑

K∈Th

∫

K

qhdivvh dx, |vh|1,h =
( ∑

K∈Th
|vh|21,K

)1/2

.

If the spaces Vmod,n
h and Qn−1

h satisfy (2), then optimal error estimates for the discrete

solution of the Stokes or Navier–Stokes equations can be proved.

It is the aim of this paper to fill in the last gap in the stability theory of the pairs of

spaces Vmod,n
h and Qn−1

h by proving the inf-sup condition (2) for n = 3. The inf-sup

condition for n ≤ 2 follows from the results of Knobloch [9] and, for n ≥ 4, it
follows from the results of Scott and Vogelius [14] provided that some special mesh
constructions are avoided.

Let us mention the relation of the Pmod3 element to other triangular nonconforming
finite elements of third-order accuracy satisfying the inf-sup condition for the space
Q2
h. The first of these finite elements was introduced by Crouzeix and Raviart [4]

who elementwise enriched the space of cubic polynomials by two quartic bubbles.
Later it was shown by Crouzeix and Falk [5] that these additional bubbles are not
necessary to insure stability provided that the triangulation satisfies some geometri-
cal assumptions. Another nonconforming finite element was recently introduced by
Matthies and Tobiska [12], again by elementwise enriching the space of cubic poly-
nomials by two quartic polynomials. Unfortunately, all these finite elements lead to
the above mentioned loss of accuracy if applied to solving convection dominated
convection-diffusion problems. Moreover, also if we do not consider the convection
dominated case, the Pmod3 element is more advantageous since the space Vmod,3

h has
less degrees of freedom than the spaces corresponding to the finite elements from [4]
and [12] and no restrictive assumptions on the triangulation are made (in contrast
with [5]).

The paper is organized in the following way. First, in Sect. 2, we introduce some
assumptions and summarize the notation which will be used in the subsequent
sections. Then, in Sect. 3, we recall the definition of the Pmod3 element. Finally, in

Sect. 4, we prove the validity of the inf-sup condition (2) for the spaces Vmod,3
h and

Q2
h.
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2. Assumptions and Notation

We assume that we are given a bounded domain� ⊂ R
2 with a polygonal boundary

∂� and a family {Th} of triangulations of �. The triangulations are assumed to
consist of closed triangular elementsK, to possess the usual compatibility properties
(see, e.g., Ciarlet [3]) and to satisfy hK ≡ diam(K) ≤ h for any K ∈ Th. We assume
that the family of triangulations is regular, i.e., there exists a constant σ independent
of h such that

hK

�K
≤ σ ∀ K ∈ Th, h > 0 , (3)

where �K is the maximum diameter of circles inscribed into K. Finally, we assume
that any element K ∈ Th has at least one vertex in �.

We denote by Eh the set of edgesE of Th and by E ih the subset of Eh consisting of inner
edges. Further, for any edgeE, we denote by hE the length ofE, by xE,1, xE,2 the end
points of E and by λE,1, λE,2 the linear functions on E satisfying λE,i(xE,j ) = δij ,
i, j = 1, 2, where δij denotes the Kronecker symbol. For any edge E, we denote by
tE = (tE1, tE2) the unit tangent vector to E which points from xE,1 to xE,2 and by
nE ≡ (−tE2, tE1) a normal vector to E. For any inner edge E ∈ E ih, we define the
jump of a function v across E by

[|v|]E = (v|K)|E − (v|K̃ )|E ,
whereK, K̃ are the two elements adjacent toE denoted in such a way that nE points
into K̃. If an edge E ∈ Eh lies on the boundary of �, then we set [|v|]E = v|E .

Throughout the paper we use standard notation Pk(�), L2(�), Hk(�) = Wk,2(�)

etc. for the usual function spaces, see, e.g., Ciarlet [3]. We only mention that we
denote by L2

0(�) the space of functions from L2(�) having zero mean value on �.
The norm and seminorm in the Sobolev spaceHk(�)will be denoted by ‖ ·‖k,� and
| · |k,�, respectively. Finally, we use the notation |G| to denote the two-dimensional
Lebesgue measure of a set G ⊂ R

2.

3. Definition of the P mod
3 Element and the Respective Finite-element Space

The space of Pmod3 shape functions on the standard reference triangle K̂ is given by

Pmod3 (K̂) = P3(K̂)⊕ span{̂b1, b̂2, b̂3} ,
where b̂1, b̂2 and b̂3 are functions on K̂ associated respectively with the edges Ê1,

Ê2 and Ê3 of K̂. According to Knobloch [10], we assume that

b̂1 ∈ H 1(K̂) , b̂1|∂K̂\Ê1
= 0 , (4)

b̂1|Ê1
is odd with respect to the midpoint of Ê1, (5)

∫

Ê1

[(1 − 2 λ̂2)+ b̂1] q̂ dσ̂ = 0 ∀ q̂ ∈ Pk(Ê1) , (6)
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where k ≥ 3 and λ̂2 is the barycentric coordinate on K̂ with respect to the vertex

x̂2 which is the vertex of K̂ opposite the edge Ê2 (the remaining vertices x̂1 and x̂3

and the barycentric coordinates λ̂1 and λ̂3 are defined analogously). The functions

b̂2 and b̂3 are simply defined by affine transformations of b̂1, i.e., b̂i = b̂1 ◦ F̂i ,
i = 2, 3, where F̂2 and F̂3 are affine regular mappings on R

2 such that F̂i(K̂) = K̂,

F̂i(Êi) = Ê1, i = 2, 3.

Because of the proof of the inf-sup condition, we further assume that, for any func-

tion g : R
2 → R such that g(x, y) = g(y, x) for all x, y ∈ R, the function b̂1

satisfies
∫

K̂

b̂1 g(̂λ2, λ̂3) dx̂ = 0 . (7)

Moreover, denoting

A = 1

|K̂|
∫

K̂

b̂1 λ̂2 dx̂ , (8)

we assume that

A �= 1
18
, A �= 1

45
. (9)

The value of A should not be too close to 1/18 or 1/45 since then the inf-sup con-

stant β obtained in this paper is close to zero. Examples of the function b̂1 satisfying
all the above assumptions are

b̂1 = (28 λ̂2 λ̂3 − 126 λ̂2
2 λ̂

2
3)(̂λ2 − λ̂3) (⇒ k = 4, A = 29/360) ,

b̂1 = (54 λ̂2 λ̂3 − 594 λ̂2
2 λ̂

2
3 + 1716 λ̂3

2 λ̂
3
3)(̂λ2 − λ̂3)

(⇒ k = 6, A = 347/4200) .

For any element K ∈ Th, we introduce a regular affine mapping FK : K̂ → K such

that FK(K̂) = K and we define the Pmod3 finite-element space by

Vmod,3
h = {vh ∈ L2(�) ; vh ◦ FK ∈ Pmod3 (K̂) ∀ K ∈ Th ,∫

E

[|vh|]E q dσ = 0 ∀ q ∈ P3(E), E ∈ Eh} .

The above assumptions imply that (see Knobloch [10] for a proof)
∫

E

[|vh|]E q dσ = 0 ∀ vh ∈ Vmod,3
h , q ∈ Pk(E), E ∈ Eh , (10)

where k is the integer introduced in (6). Thus, choosing the function b̂1 in a suitable
way, we can enforce the validity of (10) with an arbitrarily high k.
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To describe a basis of the space Vmod,3
h , let us first introduce some notation. Con-

sider any K ∈ Th and any E ∈ Eh such that E ⊂ ∂K. Let i ∈ {1, 2, 3} be such that

E = FK(Êi). Then we set

bK,E =
{± b̂i ◦ F−1

K in K,
0 in � \K,

where the sign is chosen in such a way that
∫

E

(bK,E |K) λE,1 dσ > 0 . (11)

Further, for any edgeE ∈ Eh, we denote by ζE the standard nonconforming piecewise
linear basis function associated withE, i.e., ζE is piecewise linear, equals 1 onE and
vanishes at the midpoints of all edges different from E.

Now consider any inner edge E ∈ E ih and let us denote by K, K̃ the two elements

adjacent to E, by E, E1, E2 the edges of K, and by E, E3, E4 the edges of K̃. Then
we define functions ψE , χE by

ψE = ζE + βE,1 bK,E1 + βE,2 bK,E2 + βE,3 bK̃,E3
+ βE,4 bK̃,E4

, (12)

χE =
{
bK,E in K,
bK̃,E in � \K,

(13)

where βE,i = −1 if xEi,1 ∈ E and βE,i = 1 if xEi,1 �∈ E, i = 1, . . . , 4. It is easy

to verify that ψE ∈ Vmod,3
h and χE ∈ Vmod,3

h ∩ H 1
0 (�). Further, for any inner edge

E ∈ E ih, we introduce functions �E, ϕE ∈ Vmod,3
h vanishing outside the two elements

adjacent to E and defined by

�E |K = λ1 λ2 , ϕE |K = λ1 λ2 (λ1 − λ2)

for any elementK adjacent to E, where λ1, λ2 are the barycentric coordinates onK
with respect to xE,1, xE,2, respectively. Finally, for any element K ∈ Th, we define
the bubble function πK by

πK |K = λ1 λ2 λ3 , πK |�\K = 0 ,

where λ1, λ2, λ3 are the barycentric coordinates on K. Then

Vmod,3
h = span

{
{ψE, χE, �E, ϕE}E∈E ih

∪ {πK}K∈Th

}
.

Consequently, the functions from Vmod,3
h are determined by four degrees of freedom

on each inner edge E, e.g., by the moments

1
hE

∫

E

v λ
j

E,1 dσ , j = 0, 1, 2, 3 ,

and by one degree of freedom on each elementK ∈ Th, e.g., by the mean value over
K. This is illustrated by Fig. 1. Combining these degrees of freedom, we can also
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Fig. 1. Degrees of freedom of the Pmod3 element (see the text for details)

define degrees of freedom which are dual to the basis functions of Vmod,3
h introduced

above. Such degrees of freedom are convenient for implementing the Pmod3 element.
Since all the basis functions can be obtained by affine transformations of functions

defined on the reference element K̂, we have (cf. Ciarlet [3, Sect. 15])

|ψE |1,h + |χE |1,� + |�E |1,� + |ϕE |1,� ≤ C , |πK |1,� ≤ C (14)

for any E ∈ E ih and K ∈ Th, where the constant C depends only on σ and b̂1.

4. Inf-sup Condition for the P mod
3 /P disc

2 Element

In this section, we prove that the spaces Vmod,3
h ≡ [Vmod,3

h ]2 and Q2
h (cf. (1)) satisfy

the inf-sup condition (2). The proof of the inf–sup condition will be related to the
macroelement technique of Boland and Nicolaides [1], and Stenberg [15] which was
extended to the nonconforming case by Crouzeix and Falk [5], and Knobloch [9].

We denote by {xi}Nhi=1 the inner vertices of the triangulation Th and, for any vertex
xi , we introduce a macroelement

i =
⋃

K∈Th, xi∈K
K

consisting of elements grouped around xi . Further, we denote

Vi,3
h = {vh ∈ Vmod,3

h ; vh = 0 in � \i} , i = 1, . . . , Nh ,

Q̃2
h = {qh ∈ L2

0(�) ; qh|K ∈ P2(K) ∩ L2
0(K) ∀ K ∈ Th} ,

Qh = {qh ∈ L2
0(�) ; qh|K ∈ P0(K) ∀ K ∈ Th} .

The following theorem shows that, for proving the inf-sup condition for the spaces
Vmod,3
h and Q2

h, it suffices to verify that they satisfy certain local conditions on the
macroelements i .

Theorem 1: For any q̃h ∈ Q̃2
h and any i ∈ {1, . . . , Nh}, let there exists vih ∈ Vi,3

h

satisfying

bh(v
i
h, q̄h) = 0 ∀ q̄h ∈ Qh , (15)

bh(v
i
h, q̃h) = ‖q̃h‖2

0,i , (16)

|vih|1,h ≤ C ‖q̃h‖0,i , (17)
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where C is a constant independent of h. Then there exists a constant β > 0 depending

only on C, σ , b̂1 and � such that

sup
vh∈Vmod,3h \{0}

bh(vh, qh)

|vh|1,h
≥ β ‖qh‖0,� ∀ qh ∈ Q2

h . (18)

Proof: See the proof of Theorem 2 in Knobloch [9]. ��

Remark 1: The assumption that any element K ∈ Th has at least one vertex in �
(cf. Sect. 2) assures that any element K ∈ Th is contained in at least one macroele-
ment, which is crucial for the proof of Theorem 1.

To verify the validity of the assumptions of Theorem 1, it is convenient to replace
the basis functions χE , �E , ϕE and πK introduced in Sect. 3 by functions having

some special properties. Consider any E ∈ E ih and let K, K̃ be the two elements

adjacent to E denoted in such a way that nE points into K̃. Then we set

χE = χE − 180AϕE ,

�E = 6 �E − ψE −






10πK in K,

10πK̃ in K̃,

0 in � \ {K ∪ K̃},
ϕE = χE − 10ϕE ,

πE = (180A− 10) h2
E

(
πK

|K| − πK̃

|K̃|
)
.

Some properties of these functions are summarized in the following two lemmas.

Lemma 1: For any E ∈ E ih, the functions χE , �E , ϕE and πE satisfy
∫

E

χE dσ =
∫

E

�E q dσ =
∫

E

ϕE q dσ = 0 ∀ q ∈ P1(E) , (19)

∫

K

χE q dx =
∫

K

�E dx =
∫

K

ϕE dx = 0 ∀ q ∈ P1(K), K ∈ Th , (20)

bh(α �E, qh) = bh(αϕE, qh) = 0 ∀ α ∈ R
2, qh ∈ Q1

h , (21)

bh(χE nE + πE tE, qh) = 0 ∀ qh ∈ Q1
h . (22)

Proof: Consider any E ∈ E ih. Then
∫

E

χE λE,1 dσ = hE

6
,

∫

E

ϕE λE,1 dσ = hE

60
, (23)

where the first equality follows from (6), (11) and (13). Further, we know that �E |E =
6 λE,1 λE,2 − 1 and χE |E , ϕE |E are odd. Thus, it is easy to see that (19) holds.
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Let us consider any K ∈ Th adjacent to E. In view of (7), it is easy to verify that
(20) holds for �E , ϕE and χE with q = 1 and q = ζE |K , where ζE is the noncon-
forming piecewise linear basis function defined in Sect. 3. Let λ1 be the barycentric
coordinate on K with respect to xE,1. Then, according to (11), (7) and (8), we have

∫

K

χE λ1 dx = A |K| (24)

and since
∫
K
ϕE λ1 dx = |K|/180, we deduce that

∫
K
χE λ1 dx = 0. This completes

the proof of (20).

The proof of (21) and (22) is based on the fact that, due to the Gauss integral
theorem,

bh(v, qh) =
∑

K∈Th

(
∇qh|K ·

∫

K

v dx −
∫

∂K

(qh v)|K · n∂K dσ
)

∀ qh ∈ Q1
h

for any piecewiseH 1 vector field v (n∂K denotes the unit outer normal vector to the
boundary of K). Thus, the validity of (21) immediately follows from (10), (19) and
(20). To prove (22), we have to show that, for any K ∈ Th adjacent to E and for any
q ∈ P1(K),

∇q ·
∫

K

πE tE dx −
∫

E

q χE nE · n∂K dσ

=
[

1
6
(18A− 1) h2

E tE · ∇q −
∫

E

q χE dσ
]

nE · n∂K |E = 0 . (25)

Since χE |E is odd, this is obvious for q = 1 and q = ζE |K . Denoting by E1 the edge
of K opposite xE,1 and setting q = ζE1 |K , it follows from (23) that

∫
E
χE q dσ =

−hE/3 and
∫
E
ϕE q dσ = −hE/30. Further, tE · ∇q = 2/hE and hence we deduce

that the term in the square brackets in (25) vanishes. Consequently, (25) holds for
any q ∈ P1(K). ��

Lemma 2: Consider any E ∈ E ih and letK ∈ Th be an element adjacent to E. Let E1
and E2 be the remaining two edges of K opposite xE,1 and xE,2, respectively. Then

∫

K

�E ζE dx = 4
45
(45A− 1) |K| , (26)

∫

K

�E ζE1 dx =
∫

K

�E ζE2 dx = 2
45
(1 − 45A) |K| , (27)

∫

E

�E ζ
2
E1

dσ =
∫

E

�E ζ
2
E2

dσ = − 2
15
hE , (28)

∫

K

ϕE (ζE1 − ζE2) dx = 2
9
(1 − 18A) |K| , (29)

∫

K

πK ζE dx =
∫

K

πK ζE1 dx =
∫

K

πK ζE2 dx = |K|
180

, (30)

where ζE , ζE1 and ζE2 are the nonconforming piecewise linear basis functions associated
with the edges E, E1 and E2, respectively, introduced in Sect. 3.
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Proof: A straightforward computation gives (28), (30) and, using (7) and (24),
∫

K

ψE ζE dx = 1
3
(1 − 12A) |K| ,

∫

K

ψE ζE1 dx =
∫

K

ψE ζE2 dx = 2A |K| ,
∫

K

�E ζE dx = |K|
20

,

∫

K

�E ζE1 dx =
∫

K

�E ζE2 dx = |K|
60

,

∫

K

χE ζE2 dx = −
∫

K

χE ζE1 dx = 2A |K| ,
∫

K

ϕE ζE2 dx = −
∫

K

ϕE ζE1 dx = |K|
90

.

Combining these relations, we obtain (26), (27) and (29). ��

Now we can prove the main result of this paper.

Theorem 2: There exists a constant β > 0 depending only on σ , b̂1 and � such that
the inf-sup condition (18) holds.

Proof: Consider any i ∈ {1, . . . , Nh} and let the macroelement i consist of ele-
ments K1, . . . , Kn, i.e.,

i =
n⋃

j=1

Kj ,

and let Kj−1 and Kj have a common edge Ej , j = 1, . . . , n, see Fig. 2. Here and
in the following, the index 0 is considered as the index n and the index n + 1 is
considered as the index 1. Without loss of generality, we may assume that xEj ,1 = xi

Fig. 2. Notation inside a macroelement i
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for j = 1, . . . , n. Then, for any j ∈ {1, . . . , n}, the normal vector nEj points into
Kj and the tangent vector tEj points from xi to the other vertex of Ej (cf. Fig. 2).

Now, let us consider any function q̃h ∈ Q̃2
h. We shall show that there exist a function

vih ∈ Vi,3
h and a constant C (depending only on σ and b̂1) which satisfy (15), (17)

and

bj (v
i
h, q) = (̃qh, q)Kj ∀ q ∈ P2(Kj ), j = 1, . . . , n , (31)

where

bj (v
i
h, q) = −

∫

Kj

q div vih dx , (̃qh, q)Kj =
∫

Kj

q̃h q dx .

Setting q = q̃h|Kj in (31) and summing up over j = 1, . . . , n, we then obtain (16).
According to Theorem 1, this will prove the inf-sup condition (18).

It was shown in the proof of Lemma 2 in Knobloch [9] that there exists a uniquely
determined function vi,1h ∈ span{χEj nEj , ψEj tEj }nj=1 such that

bj (v
i,1
h , q) = (̃qh, q)Kj ∀ q ∈ P1(Kj ), j = 1, . . . , n , (32)

|vi,1h |1,h ≤ C ‖q̃h‖0,i , (33)

with C depending only on σ and b̂1. Obviously,

bh(v
i,1
h , q̄h) = 0 ∀ q̄h ∈ Qh . (34)

Let us denote

vi,2h =
n∑

k=1

{αk �Ek nEk + βk ϕEk tEk } ,

vi,3h =
n∑

k=1

{γk (χEk nEk + πEk tEk )+ δk �Ek tEk }

with constants αk, βk, γk, δk, k = 1, . . . , n, to be determined later. According to (21)
and (22), we have

bh(v
i,2
h , qh) = bh(v

i,3
h , qh) = 0 ∀ qh ∈ Q1

h (35)

and hence, setting

vih = vi,1h + vi,2h + vi,3h ,

we obtain a function from Vi,3
h satisfying

bj (v
i
h, q) = (̃qh, q)Kj ∀ q ∈ P1(Kj ), j = 1, . . . , n .
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Our aim is to choose the constants αk, βk, γk, δk, k = 1, . . . , n, in such a way that
vih also satisfies (31). For this, it is sufficient to fulfil

bj (v
i
h, ζ

2
Ej
) = (̃qh, ζ

2
Ej
)Kj , j = 1, . . . , n , (36)

bj (v
i
h, ζ

2
Ej+1

) = (̃qh, ζ
2
Ej+1

)Kj , j = 1, . . . , n , (37)

bj (v
i
h, q̄j ) = (̃qh, q̄j )Kj , j = 1, . . . , n , (38)

where

q̄j = (ζ 2
Ej

+ ζ 2
Ej+1

+ ζ 2
Ei,j
)|Kj

and Ei,j is the edge of Kj opposite xi .

Consider any j ∈ {1, . . . , n}. Integrating by parts and applying (10), we derive for
any v ∈ Vi,3

h and q ∈ P 2(Kj )

bj (v, q) =
∫

Kj

v · ∇q dx +
∫

Ej

q v · nEj dσ −
∫

Ej+1

q v · nEj+1 dσ . (39)

Particularly, we get

bj (v
i,2
h , q) =

∫

Kj

∇q · (αj �Ej nEj + βj ϕEj tEj + αj+1 �Ej+1
nEj+1

+βj+1 ϕEj+1
tEj+1) dx + αj

∫

Ej

q �Ej dσ − αj+1

∫

Ej+1

q �Ej+1
dσ .

Is is easy to see that

tEj · ∇ζEj+1 |Kj = − 2
hEj

, tEj+1 · ∇ζEj |Kj = − 2
hEj+1

. (40)

In addition, in view of the Gauss integral theorem, we have

|Kj | (∇ζEj |Kj ) =
∫

Kj

∇ζEj dx =
∫

∂Kj

(ζEj |Kj )n∂Kj dσ = hEj n∂Kj |Ej ,

where n∂Kj is the unit outer normal vector to the boundary of Kj . An analogous
relation also holds for ζEj+1 . This implies that

tEj · ∇q̄j = 4
hEj

(ζEi,j − ζEj+1) ,

tEj+1 · ∇q̄j = 4
hEj+1

(ζEi,j − ζEj ) ,

nEj · ∇q̄j = 2 hEj
|Kj | (ζEi,j − ζEj )− 2 hEj+1

|Kj | nEj · nEj+1 (ζEi,j − ζEj+1) ,

nEj+1 · ∇q̄j = −2 hEj+1

|Kj | (ζEi,j − ζEj+1)

+ 2 hEj
|Kj | nEj · nEj+1 (ζEi,j − ζEj ) .
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Thus, we derive using (19) and (26)–(29) that

bj (v
i,2
h , q̄j ) = 12A (αj+1 hEj+1 − αj hEj )+ 8

9
(1 − 18A) |Kj |

(
βj

hEj
+ βj+1

hEj+1

)
.

Now, we set

βj =
27Ah2

Ej

2 (18A− 1) |Kj−1|
αj . (41)

Then we obtain

bj (v
i,2
h , q̄j ) = −12AhEj

(
1 + |Kj |

|Kj−1|
)
αj . (42)

Further, it follows from (39) and (20) that, for any q ∈ P2(Kj ) which is even along
all edges of Kj , we have

bj (v
i,3
h , q) =

∫

Kj

∇q · [(γj πEj + δj �Ej ) tEj + (γj+1 πEj+1 + δj+1 �Ej+1
) tEj+1 ] dx .

Particularly, using (27) and (30), we obtain

bj (v
i,3
h , q̄j ) = 0 . (43)

Applying (40) and again (27) and (30), we derive

bj (v
i,3
h , ζ

2
Ej
) = −2

9
(18A− 1) hEj+1 γj+1 + 8

45
(45A− 1) |Kj |

δj+1

hEj+1

, (44)

bj (v
i,3
h , ζ

2
Ej+1

) = 2
9
(18A− 1) hEj γj + 8

45
(45A− 1) |Kj | δj

hEj
. (45)

For any j ∈ {1, . . . , Nh} and any v ∈ H 1(Kj )
2 and q ∈ P2(Kj ), let us denote

rj (v, q) = (̃qh, q)Kj − bj (v, q) .

In view of (41)–(43), we see that (38) is satisfied if we set

αj = − |Kj−1|
12AhEj (|Kj−1| + |Kj |) rj (v

i,1
h , q̄j ) , j = 1, . . . , n .

Further, owing to (44) and (45), we deduce that (36) and (37) hold, if we set, for
j = 1, . . . , n,

γj = 9
|Kj−1| rj (vi,1h + vi,2h , ζ

2
Ej+1

)− |Kj | rj−1(v
i,1
h + vi,2h , ζ

2
Ej−1

)

2 (18A− 1) hEj (|Kj−1| + |Kj |) ,

δj = 45hEj
rj−1(v

i,1
h + vi,2h , ζ

2
Ej−1

)+ rj (v
i,1
h + vi,2h , ζ

2
Ej+1

)

8 (45A− 1) (|Kj−1| + |Kj |) .
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The validity of (15) follows from (34) and (35) and hence it remains to prove (17).
First, note that

rj (v, q) ≤ √|Kj | (‖q̃h‖0,Kj +
√

2 |v|1,Kj ) ‖q‖0,∞,Kj

∀ v ∈ H 1(Kj )
2, q ∈ P2(Kj ) .

Using (3), we deduce that

h2
Ej

≤ σ hEj �Kj−1 ≤ 2 σ |Kj−1| , |Kj−1| ≤ 1
2
hEj hKj−1 ≤ σ

2
h2
Ej
.

Similarly, we get

h2
Ej

≤ 2 σ |Kj | , |Kj | ≤ σ

2
h2
Ej
.

Thus, by virtue of (9), (33) and the above relations, we derive that |αj | + |βj |
≤ C ‖q̃h‖0,i

, j = 1, . . . , Nh, with C depending only on σ and b̂1. Since all

angles in the elements of Th are bounded from below by arcsin(1/σ), the number n of
elements in i satisfies n ≤ 2π/ arcsin(1/σ). Therefore, according to (14), we have

|vi,2h |1,h ≤ C ‖q̃h‖0,i
, again with C depending only on σ and b̂1. Consequently, we

deduce that also |γj | + |δj | ≤ C ‖q̃h‖0,i
, j = 1, . . . , Nh, and |vi,3h |1,h ≤ C ‖q̃h‖0,i

with C depending only on σ and b̂1. ��
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