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Abstract

An unwelcome feature of the popular streamline upwind/Petrov–Galerkin (SUPG)
stabilization of convection–dominated convection–diffusion equations is the presence
of spurious oscillations at layers. A review and a comparison of the most methods
which have been proposed to remove or, at least, to diminish these oscillations
without leading to excessive smearing of the layers are given in Part I, [26]. In
the present paper, the most promising of these SOLD methods are investigated
in more detail for P1 and Q1 finite elements. In particular, the dependence of the
results on the mesh, the data of the problems and parameters of the methods are
studied analytically and numerically. Furthermore, the numerical solution of the
nonlinear discrete problems is discussed and the capability of adaptively refined
grids for reducing spurious oscillations is examined. Our conclusion is that, also
for simple problems, any of the SOLD methods generally provides solutions with
non–negligible spurious oscillations.
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1 Introduction

This paper is a continuation of [26], in the following cited as Part I, which
was devoted to a review and a comparison of finite element techniques de-
veloped to diminish spurious oscillations in discrete solutions of convection–
dominated problems. Like in Part I, we consider the steady scalar convection–
diffusion equation

−ε ∆u + b · ∇u = f in Ω, u = ub on ∂Ω. (1)

We assume that Ω is a bounded domain in R
2 with a polygonal boundary ∂Ω,

ε > 0 is the constant diffusivity, b ∈ W 1,∞(Ω)2 is a given convective field,
f ∈ L2(Ω) is an outer source of u, and ub ∈ H1/2(∂Ω) represents the Dirichlet
boundary condition. In our numerical tests we shall also consider less regular
functions ub.

A popular finite element discretization technique for (1) is the streamline
upwind/Petrov–Galerkin (SUPG) method which is frequently used because of
its stability properties and higher–order accuracy. Since, in the convection–
dominated regime, the SUPG solutions typically contain oscillations in layer
regions, various stabilizing terms have been proposed to be added to the SUPG
discretization in order to obtain discrete solutions in which the local oscilla-
tions are suppressed. In Part I, we called such techniques spurious oscillations
at layers diminishing (SOLD) methods.

Part I presented a review of most SOLD methods published in the literature,
discussed their derivation, proposed some alternative choices of parameters in
the methods and categorized them. Some numerical studies gave a first im-
pression of the behavior of the SOLD methods. These numerical tests were
performed in a two–dimensional domain using the conforming P1 finite ele-
ment and it was observed that there are large differences between the SOLD
methods. In some cases, the SOLD methods were able to significantly improve
the SUPG solution and to provide a discrete solution with negligible spurious
oscillations and without an excessive smearing of layers. However, it was not
possible to identify a method which could be preferred in all the test cases.
There are some methods which never produced good results since they either
do not suppress the oscillations sufficiently or they are very diffusive and smear
the layers considerably.

The aim of the present paper is to perform deeper investigations of those
SOLD methods which gave acceptable results in Part I. We shall formulate
the SOLD methods in the two–dimensional case and for conforming linear
and bilinear finite elements. Formulations valid also in the three–dimensional
case and for more general finite element spaces can be found in Part I. We
do not consider the Mizukami–Hughes method [35,33] investigated in Part I
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since its applicability is rather limited. We shall investigate how strongly the
methods depend on the computational mesh and the data of the problem.
For methods containing parameters, we shall seek their optimal values and
study the dependence of the results on the parameters. Since most of the
SOLD methods are nonlinear, we shall also address algorithms for computing
the discrete solution. Finally, the question will be studied whether adaptively
refined grids help to suppress the spurious oscillations in SUPG solutions.

Our investigations will be performed on academic test examples whose solu-
tions possess characteristic features of solutions of convection–diffusion equa-
tions. These academic problems allow to study the SOLD methods analyti-
cally, at least in the limit ε → 0+. The analysis enables us to identify clearly
those methods which can be expected to suppress the spurious oscillations and
to study the dependence of the results on parameters in some of the methods.

The analysis presented in this paper will include the consideration of mod-
erately anisotropic grids. Using such grids might not be reasonable for the
considered examples since these grids are not adapted to the layers of the
solution. Our motivation for looking at moderately anisotropic grids comes
from applications. First, the meshing of complicated domains leads easily to
anisotropic elements with moderate aspect ratio. Second, convection–diffusion
equations are often just a part of a coupled system of equations, like in the
k–ε turbulence model [36] or in the simulation of precipitation processes [29].
For such problems, an adaptation of the grid is performed rather with respect
to other equations in the system, for instance with respect to the Navier–
Stokes equations in the mentioned examples. Thus, one has to face the situ-
ation that the grids might be not particularly well adapted with respect to
the convection–diffusion equation but the SOLD methods still should provide
satisfactory results.

The paper is organized in the following way. In the next section, we formu-
late the usual Galerkin discretization of (1) and introduce the SUPG method.
In Section 3, the SOLD methods investigated in this paper are briefly re-
viewed. Then, in Section 4, we shall investigate the properties of the SOLD
methods for three model problems. Section 5 is devoted to the computation
of the discrete solution and, in Section 6, the usefulness of adaptively refined
grids for the suppression of spurious oscillations is studied. Finally, Section 7
presents our conclusions.

Throughout the paper, we use the standard notations P1, Q1, L2(Ω),
H1(Ω) = W 1,2(Ω), etc. for the usual function spaces, see, e.g., Ciarlet [9].
The inner product in the space L2(Ω) or L2(Ω)2 will be denoted by (·, ·). For
a vector a ∈ R

2, the symbol |a| stands for its Euclidean norm.
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2 The Galerkin method and the SUPG method

To define a finite element discretization of (1), we introduce a triangulation
Th of the domain Ω consisting of a finite number of open elements K. We shall
assume that all elements of Th are either triangles or convex quadrilaterals.
The discretization parameter h in the notation Th is a positive real number
satisfying diam(K) ≤ h for any K ∈ Th. We assume that Ω =

⋃
K∈Th

K and
that the closures of any two different elements of Th are either disjoint or
possess either a common vertex or a common edge.

We introduce the finite element space

Vh = {v ∈ H1
0 (Ω) ; v|K ∈ R(K) ∀ K ∈ Th} ,

where R(K) = P1(K) if K is a triangle and R(K) = Q1(K) if K is a rectangle.
If K is a general convex quadrilateral, then R(K) is defined by transforming
the space Q1((0, 1)2) onto K by means of a bilinear one-to-one mapping, see,
e.g., Ciarlet [9]. Finally, let ubh ∈ H1(Ω) be a function whose trace approx-
imates the boundary condition ub. Then the usual Galerkin finite element
discretization of the convection–diffusion equation (1) reads:

Find uh ∈ H1(Ω) such that uh − ubh ∈ Vh and

a(uh, vh) = (f, vh) ∀ vh ∈ Vh ,

where

a(u, v) = ε (∇u,∇v) + (b · ∇u, v) .

It is well known that this discretization is inappropriate if convection dom-
inates diffusion since then the discrete solution is usually globally polluted by
spurious oscillations. An improvement can be achieved by adding a stabiliza-
tion term to the Galerkin discretization. One of the most efficient procedures
of this type is the streamline upwind/Petrov–Galerkin (SUPG) method de-
veloped by Brooks and Hughes [3]. To formulate this method, we define the
residual

Rh(u) = −ε ∆h u + b · ∇ u − f ,

where ∆h is the Laplace operator defined elementwise, i.e., (∆h v)|K = ∆(v|K)
for any K ∈ Th and any piecewise smooth function v. Then the SUPG method
reads:

Find uh ∈ H1(Ω) such that uh − ubh ∈ Vh and

a(uh, vh) + (Rh(uh), τ b · ∇ vh) = (f, vh) ∀ vh ∈ Vh , (2)

6



where τ ∈ L∞(Ω) is a nonnegative stabilization parameter. The choice of τ
may dramatically influence the accuracy of the discrete solution and therefore
it has been a subject of an extensive research over the last three decades, see,
e.g., the review in Part I. Unfortunately, a general optimal definition of τ is
still not known. In our computations, we define τ , on any element K ∈ Th, by
the formula

τ |K =
hK

2 |b|

(
coth PeK − 1

PeK

)
with PeK =

|b| hK

2 ε
, (3)

where hK is the element diameter in the direction of the convection vector b.
We refer to Part I for various justifications of this formula and for a precise
definition of hK . If convection strongly dominates diffusion in Ω and hence the
local Péclet numbers PeK are very large, the parameter τ is basically given
by

τ |K =
hK

2 |b| ∀ K ∈ Th . (4)

Note that, generally, the parameters hK , PeK and τ |K are functions of the
points x ∈ K.

An alternative to the SUPG method is the Galerkin/least–squares method
introduced by Hughes et al. [21] or its modification proposed by Franca et
al. [16]. A similar stabilization can also be obtained using the subgrid scale
method of Hughes [20]. In addition, for transient problems, stabilization terms
of the discussed type also result by applying the characteristic Galerkin method
of Douglas and Russell [15] or the Taylor–Galerkin method of Donéa [14]. See
also Codina [11] for a comparison of these methods. However, all these meth-
ods are identical to the SUPG method (up to the choice of the stabilization
parameter) if problem (1) has constant coefficients and is discretized using
linear triangular or bilinear rectangular finite elements. Since this will be the
case in all the model problems discussed in this paper, we confine ourselves to
the SUPG method in the following.

3 Spurious oscillations at layers diminishing methods

Because the SUPG method is not monotone, a discrete solution satisfy-
ing (2) usually still contains spurious oscillations. Although these oscillations
are localized in narrow regions along sharp layers, they are often not negligible
and they are not permissible in many applications. A possible remedy is to
add a suitable artificial diffusion term to the SUPG method. In Part I, meth-
ods of this type are called spurious oscillations at layers diminishing (SOLD)
methods. Here, we describe these methods only very briefly and refer to the
review in Part I for details. To make similarities and differences between the
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methods better visible, we shall formulate the methods in a slightly different
way than in Part I.

There are three basic classes of SOLD methods: methods adding isotropic
artificial diffusion, methods adding crosswind artificial diffusion, and meth-
ods where the additional artificial diffusion stems from an edge stabilization.
The amount of the artificial diffusion in these methods typically depends on
the unknown discrete solution uh. Thus, the resulting methods are nonlinear
(although the original problem (1) is linear).

The methods of the first class add the isotropic artificial diffusion term

(ε̃∇uh,∇vh) (5)

to the left–hand side of the SUPG discretization (2). The parameter ε̃ is
nonnegative and usually depends on uh. For the first time, a SOLD term
which can be written in the form (5) was introduced by Hughes et al. [22].
Further approaches were proposed by Tezduyar and Park [38] and Galeão and
do Carmo [17]. According to the criteria and tests in Part I (and according to
further numerical experiments we have performed in [24,25]), one of the best
choices of ε̃ in (5) is to set

ε̃ = max

{
0,

τ |b| |Rh(uh)|
|∇uh|

− τ
|Rh(uh)|2
|∇uh|2

}
, (6)

as proposed by do Carmo and Galeão [8], abbreviated with dCG91 in Part I.
Here and in the following, we always assume that ε̃ = 0 if the denominator of
a formula defining ε̃ vanishes. Almeida and Silva [1] suggested to multiply the
negative term in (6) by

ζh = max

{
1,

b · ∇uh

Rh(uh)

}
,

which is method AS97 in Part I. However, in our tests, we often observed no
significant differences to the results obtained with (6). Another ε̃, motivated
by assumptions needed for theoretical investigations, can be found in Knopp et
al. [34]. Further modifications of the above approaches were proposed by do
Carmo and Galeão [8] and do Carmo and Alvarez [7], who introduced rather
complicated definitions of ε̃ which should suppress the addition of the artificial
diffusion in regions where the solution of (1) is smooth. The SOLD term (5)
was also used by Johnson [30], who proposed to set

ε̃|K = max{0, C [diam(K)]2 |Rh(uh)| − ε} ∀ K ∈ Th , (7)

where C is a nonnegative parameter (method J90 in Part I).

Johnson et al. [32] modified the SUPG discretization (2) by adding artificial
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diffusion in the crosswind direction only. This corresponds to the additional
term

(ε̃ b
⊥ · ∇uh, b

⊥ · ∇vh) with b
⊥ =

(−b2, b1)

|b| (8)

on the left–hand side of (2). In [32], the parameter ε̃ was defined by

ε̃|K = max{0, |b| h3/2
K − ε} ∀ K ∈ Th (9)

so that the resulting method (JSW87 in Part I) is linear but non–consistent
and hence it is restricted to finite elements of first order of accuracy. Moreover,
the numerical tests from Part I show that this method is very diffusive.

Codina [10] proposed to define ε̃ in (8), for any K ∈ Th, by

ε̃|K = max

{
0, C

diam(K) |Rh(uh)|
2 |∇uh|

− ε
|Rh(uh)|
|b · ∇uh|

}
, (10)

where C is a suitable constant, and he recommended to set C ≈ 0.7 for
(bi)linear finite elements. This is method C93 in Part I. For f 6= 0, we ob-
served that, in some cases, this choice of ε̃ does not lead to a reduction of the
oscillations (see the discussion to Example 1 in the next section). Therefore,
in Part I, we replaced (10) by

ε̃|K = max

{
0, C

diam(K) |Rh(uh)|
2 |∇uh|

− ε

}
, (11)

called method KLR02 3 in Part I. Here, we shall also call this method modi-
fied method of Codina. If f = 0 and ∆h uh = 0, it is equivalent to the original
method (10). A modification of (10), leading to properties convenient for the-
oretical investigations, was proposed by Knopp et al. [34].

For triangulations consisting of weakly acute triangles, Burman and Ern [4]
proposed to use (8) with ε̃ defined, on any K ∈ Th, by

ε̃|K =
τ |b| |Rh(uh)|

|∇uh|
|b| |∇uh|

|b| |∇uh| + |Rh(uh)|
×

×|b| |∇uh| + |Rh(uh)| + tan αK |b| |b⊥ · ∇uh|
|Rh(uh)| + tanαK |b| |b⊥ · ∇uh|

. (12)

The parameter αK is equal to π/2 − βK where βK is the largest angle of
K. If βK = π/2, it is recommended in [4] to set αK = π/6. To improve
the convergence of the nonlinear iterations, we replaced in Part I |Rh(uh)| by
|Rh(uh)|reg with |x|reg ≡ x tanh(x/2) as proposed already in [4]. The resulting
method was called BE02 1.
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In Part I, we also introduced a simplification of (12), called BE02 2, defined
by

ε̃ =
τ |b| |Rh(uh)|

|∇uh|
|b| |∇uh|

|b| |∇uh| + |Rh(uh)|
, (13)

which adds less artificial diffusion than (12). In (13), we do not apply any
regularization of the absolute values. We call this method modified method of
Burman and Ern. Based on the evaluation of the numerical studies in Part I
and [24,25], in our opinion, this method and the modified method of Codina
are the best methods among the methods adding crosswind artificial diffusion.

It is also possible to add both isotropic and crosswind artificial diffusion
terms to the left–hand side of (2). Denoting the parameters in (5) and (8) by
ε̃ iso and ε̃ cross, respectively, Codina and Soto [12] proposed to set

ε̃ iso = max{0, ε̃ dc − τ |b|2} , ε̃ cross = ε̃ dc − ε̃ iso ,

where ε̃ dc is defined by a formula similar to (11). However, in the numerical
tests we have performed up to now, we have not observed an advantage in
using this approach instead of (8) with ε̃ given by (11).

There are some similarities between the definitions of ε̃ in (6), (7) and (10)–
(13). Particularly, the presence of a term of the type h |Rh(uh)|/|∇uh| seems
to be important. Indeed, if convection is strongly dominant (and hence (4)
approximately holds), we have in (6), (12) and (13)

τ |b| |Rh(uh)|
|∇uh|

≈ hK |Rh(uh)|
2 |∇uh|

. (14)

Remark 1. The recently published Y Zβ scheme for scalar convection–dif-
fusion equations [2], originally proposed by Tezduyar [37] for compressible
flows, gives for β = 1 exactly the parameter (14) if, in contrast to [2], in
the definition of the local element length the convection is used instead of
the gradient of the solution. Using the latter replaces hK by the element size
orthogonal to the convection, see the discussion of this choice in Section 4.

The third class of SOLD methods is based on so–called edge stabilizations,
which add the term

∑

K∈Th

∫

∂K

ΨK(uh) sign

(
∂uh

∂t∂K

)
∂vh

∂t∂K
dσ (15)

to the left–hand side of (2), t∂K being a tangent vector to the boundary ∂K
of K. Various choices of the nonnegative function ΨK were proposed by Bur-
man and Hansbo [6] and Burman and Ern [5]. To make the convergence of
the nonlinear iterative process possible, the sign operator is regularized by
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Fig. 1. Triangulations used in Section 4.

replacing it by the hyperbolic tangent as recommended in [6]. Our numerical
tests in Part I and in [27] indicate that some SOLD methods based on edge
stabilizations work comparatively well on unstructured grids with acute tri-
angles, but still away from being perfect. In general, these methods lead to a
more pronounced smearing of layers in comparison with the best methods of
the previous two classes. The best edge stabilization method in the numerical
studies of Part I is defined by ΨK(uh) = γ |(Rh(uh)|K)|, where γ is a nonnega-
tive parameter. This method was called BE05 2 in Part I. We shall see in the
next section that the parameter γ should be proportional to the area |K| of
the respective element K, i.e., γ|K = C |K| with some C ≥ 0. Then (15) can
be written in the form

∑

K∈Th

|K|
∫

∂K

C

∣∣∣Rh(uh)|K
∣∣∣

∣∣∣ ∂uh

∂t∂K

∣∣∣

∂uh

∂t∂K

∂vh

∂t∂K

dσ , (16)

which has a similar structure like many of the SOLD terms discussed above.

4 Properties of SOLD methods for model problems

In this section, we shall investigate the properties of the SOLD methods
described in the previous section by applying them to three model problems
whose solutions possess characteristic features of solutions of (1), in particular,
parabolic and exponential boundary layers and interior layers. The goal of
these investigations consists in understanding why the methods work well or
not. All numerical results have been double–checked by computing them with
two different codes, one of them was MooNMD, [28].

In all model problems, we shall consider (1) with

Ω = (0, 1)2 and ε = 10−8 . (17)

Moreover, we shall confine ourselves to the two types of triangulations de-
picted in Fig. 1. To characterize these triangulations, we shall use the notion
‘N1×N2 mesh’ where N1 and N2 are the numbers of vertices in the horizontal
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Fig. 2. Example 1: (a) solution u and (b) discrete solution uh obtained using the
SUPG method with the Q1 finite element on a 21 × 21 mesh.

and vertical directions, respectively. The corresponding mesh widths will be
denoted by h1 and h2, i.e., h1 = 1/(N1 − 1) and h2 = 1/(N2 − 1).

Example 1 (Solution with parabolic and exponential boundary layers). We
consider the convection–diffusion equation (1) with (17) and

b = (1, 0)T , f = 1 , ub = 0 .

The solution u(x, y) of this problem, see Fig. 2(a), possesses an exponential
boundary layer at x = 1 and parabolic (characteristic) boundary layers at
y = 0 and y = 1. Outside the layers, the solution u(x, y) is very close to x.
This test problem was used, e.g., by Mizukami and Hughes [35].

For this special example, the stabilization parameter τ given in (3) is op-
timal along lines y = const outside the parabolic layers. Therefore, for both
the P1 and Q1 finite elements, the SUPG method gives a nodally exact solu-
tion outside the parabolic layers. However, there are strong oscillations at the
parabolic layers, see Fig. 2(b), which shows a SUPG solution for the Q1 finite
element. For the P1 finite element, the solution is similar. To measure the
quality of a discrete solution uh at the parabolic layers, we define the values

osc := max
y∈[0,1]

{uh(0.5, y) − uh(0.5, 0.5)} , (18)

smear := max
y∈[h2,1−h2]

{uh(0.5, 0.5) − uh(0.5, y)} , (19)

see also Part I. The first value measures the oscillations at the parabolic layers.
In the case that the oscillations are suppressed to the most part, the second
value measures the smearing of these layers.

To investigate the optimality of the definitions of ε̃ presented in the previous
section, we introduce a parameter η such that, for any K ∈ Th,

ε̃|K = η
diam(K) |Rh(uh)|

2 |∇uh|
if ∇uh 6= 0 . (20)
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Fig. 3. Example 1, discretization with a crosswind SOLD term given by (8) and
(20), dependence of the measures for oscillations (� P1, N Q1) and smearing (• P1,
H Q1) respectively defined by (18) and (19) on the parameter η. (a) 65 × 33 mesh,
(b) 65 × 65 mesh, (c) 33 × 65 mesh.

This ansatz is based on the similarities between the SOLD methods discussed
at the end of Section 3. The relation (20) can be satisfied provided that ε̃ = 0 if
Rh(uh) = 0, which is true in all the cases except for (9). Of course, η generally
depends on uh, Th and the data of (1). Nevertheless, we can also consider ε̃
defined by (20) with a constant value of η, which resembles the first term of
(10) and (11). Fig. 3 shows how the value of η influences the oscillations and
smearing along the line x = 0.5 in a discrete solution of Example 1 defined
using the crosswind artificial diffusion term (8). We observe that there is a
clear optimal value of η which, however, depends on the used triangulation.
We also see that the optimal values of η are nearly the same for both the
P1 and Q1 finite elements. Using (20) together with the isotropic artificial
diffusion term (5), the curves and the optimal values of η are very similar to
those in Fig. 3.

The optimal values of η from Fig. 3 correspond to discrete solutions which
are nodally exact along the line x = 0.5. We would like to derive now an
analytic expression for the optimal value of η by requiring that the discrete
solution be nodally exact outside the exponential boundary layer. For sim-
plicity, we shall consider the case ε → 0+ so that the nodally exact discrete
solution satisfies uh(x, y) = x for (x, y) ∈ [0, 1 − h1] × [h2, 1 − h2], where h1

and h2 are defined in Fig. 1. By the definition of the SOLD methods, we have,
for any vh ∈ Vh,

(Rh(uh), vh + τ b · ∇ vh) + (ε̃∇uh,∇vh) = 0 (21)

or

(Rh(uh), vh + τ b · ∇ vh) + (ε̃ b
⊥ · ∇uh, b

⊥ · ∇vh) = 0 . (22)

In what follows, we shall assume that supp vh ⊂ [0, 1 − h1] × [0, 1]. Then it is
easy to verify that, for both the P1 and Q1 finite elements, the nodally exact
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discrete solution satisfies (Rh(uh), τ b·∇ vh) = 0 provided that τ is independent
of x (for the P1 finite element, this is true even for any τ ∈ L∞(Ω) and it follows
from the fact that, for any K ∈ Th, either Rh(uh)|K = 0 or b · ∇ vh|K = 0
– see below). Therefore, the optimal value of η is independent of the choice
of τ . It also shows that the SUPG method alone is not able to provide an
oscillation–free solution.

Let us consider the P1 finite element. Then for elements K lying in
[0, 1 − h1] × [h2, 1 − h2] or having exactly one vertex at the boundary y = 0
or y = 1, we have b · ∇uh|K = 1 and hence Rh(uh)|K = 0. Thus, the only
elements K in [0, 1− h1]× [0, 1] which may lead to non–vanishing parameters
ε̃|K are elements with two vertices at y = 0 or y = 1. If K is such an element,
we may assume that the vertex of K not lying on y = 0 or y = 1 has the
coordinates (ih1, h2) or (ih1, 1 − h2) with i ∈ {1, . . . , N1 − 3} since the two
elements which have all three vertices on the boundary of [0, 1 − h1] × [0, 1]
do not have to be considered. Then ∇uh|K = (0,±ih1/h2) and, consequently,
for any η, we get (ε̃∇uh,∇vh) = (ε̃ b

⊥ · ∇uh, b
⊥ · ∇vh) so that we do not have

to distinguish between (21) and (22). If vh equals 1 at the interior vertex of
K and vanishes at all other vertices of the triangulation, the conditions (21)
and (22) reduce to

(Rh(uh), vh)K + (ε̃∇uh,∇vh)K = 0 ,

where (·, ·)K denotes the inner product in L2(K) or L2(K)2. Since
(∇uh ·∇vh)|K = ih1/h

2
2 and R(uh)|K = −f = −1, we deduce that the optimal

value of ε̃ is

ε̃opt|K =
h2

2

3 i h1

and that the optimal value of η is

ηopt =
2

3

√√√√1 +

(
h1

h2

)2
. (23)

This formula is in a very good agreement with the optimal values of η observed
in Fig. 3. Note also that ηopt does not depend on K and it depends on the used
triangulation only through the aspect ratio of the elements of the triangulation
defined by

ν :=
h1

h2
. (24)

The graphs in Fig. 3 indicate that a SOLD term of the form (5) or (8)
can be expected to lead to an oscillation–free solution only if, on any element
K ⊂ [0, 1 − h1] × [0, 1] with two vertices at y = 0 or y = 1, the value of ε̃
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corresponding to the nodally exact discrete solution uh is at least ε̃opt. Inserting
uh into the formulas (6), (7) and (10)–(13) from Section 3, we obtain the
following relations between ε̃ and ε̃opt (we drop the notation for restriction
to K):

(6) : ε̃ =
3

2

(
ν − 1

i

)
ε̃opt ,

(7) : ε̃ = 3 i ν
(
C h2 (1 + ν2) − ε

h2

)
ε̃opt ,

(9) : ε̃ = 3 i ν2
(√

h1 −
ε

h1

)
ε̃opt ,

(10) : ε̃ = 0 since b · ∇uh = 0 ,

(11) : ε̃ =
(
C

3

2

√
1 + ν2 − 3 i ν ε

h2

)
ε̃opt ,

(12) : ε̃ =
3 i ν2

2 (1 + i ν)

√
3 + i ν (1 +

√
3)√

3 + i ν
ε̃opt ,

(13) : ε̃ =
3 i ν2

2 (1 + i ν)
ε̃opt .

These relations have to be understood in the way that a right–hand side is
replaced by zero if it is negative. As we see, ε̃ of the original method by Cod-
ina defined by (10) cannot be expected to lead to an oscillation–free discrete
solution since, for the nodally exact discrete solution, we have ε̃ = 0 on any
element in [0, 1−h1]× [0, 1]. On the other hand, using C = ηopt in the modified
method of Codina with ε̃ given by (11), we have ε̃ ≈ ε̃opt (provided that the
ε–dependent term can be neglected) and hence we obtain nearly the nodally
exact solution. The methods with ε̃ defined by (7) and (9) do not seem to be
practical since the ratio ε̃/ε̃opt decreases when refining the mesh while keeping
the aspect ratio fixed. The remaining three definitions of ε̃, i.e., (6), (12) and
(13), enable to satisfy the condition ε̃ ≥ ε̃opt for sufficiently large aspect ratios,
in particular, for ν ≥ 5/3, ν ≥ 0.9 and ν ≥ (1 +

√
7)/3, respectively.

In the quadrilateral case, it is not possible to derive simple formulas for
ε̃opt and ηopt, but the results in Fig. 3 suggest that the optimal values of η do
not differ much from (23). Therefore, conditions for obtaining an oscillation–
free solution can be derived by requiring that the parameters ε̃ in (5) and (8)
satisfy

ε̃|K ≥ ηopt
diam(K) |Rh(uh)|

2 |∇uh|
=

h2

3

|Rh(uh)|
|∇uh|

∀ K ∈ Th (25)

for any function uh. The resulting relations also apply to the P1 finite element
but are less sharp than above. It is obvious that, for the method of do Carmo
and Galeão and for the modified method of Burman and Ern, i.e., for ε̃ given
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Fig. 4. Example 1, discrete solutions on 41 × 21 meshes: (a) P1 finite element,
isotropic artificial diffusion given by (6) and (b) Q1 finite element, crosswind artifi-
cial diffusion given by (13).

by (6) or (13), respectively, the inequality (25) may hold only if

τ |b| >
h2

3
, (26)

which is equivalent to ν > 2/3. If ν ≤ 2/3, we have to expect spurious
oscillations in the discrete solution as it is demonstrated in Fig. 4. The in-
equality (26) suggests to define τ in (6) and (13) using the element diameter
h⊥

K in the direction orthogonal to the convection vector b instead of using hK .
For instance, in the convection–dominated case, we can use the formula

τ |K =
h⊥

K

2 |b| ∀ K ∈ Th , (27)

which in fact removes the spurious oscillations visible in Fig. 4. For ε̃ given
by (12), the necessary condition obtained from (25) is weaker than (26) but,
for a 41 × 21 mesh, we get a similar discrete solution as in Fig. 4 (slightly
better for the P1 finite element and slightly worse for the Q1 finite element).
On the other hand, if we use ε̃ given by (11), spurious oscillations should not
appear for C > 2/3 > ηopt, which is particularly satisfied by the value C ≈ 0.7
recommended in [10]. However, for certain triangulations, the layers can be
smeared as Fig. 3 indicates.

As we already showed, ε̃ defined by (10) is not appropriate in case of the
P1 finite element. The situation is different for the Q1 finite element for which
similar results can be obtained as with (11) provided that the term (8) is
evaluated using a quadrature formula with nodes which are not ‘too near’ to
the boundary of Ω.

Finally, let us mention a further drawback of ε̃ defined by (7). If the func-
tions f and ub in (1) are multiplied by a constant α, then the solution u
changes to α u. For the SOLD methods defined using the terms (5) and (8),
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this property is valid if and only if the value of ε̃ does not change after re-
placing uh, f by α uh, α f , respectively. This is true for most of the definitions
of ε̃ mentioned in Section 3, however not for the formula (7). Let us assume
that, for a given mesh, the parameter C in (7) is defined in such a way that
the corresponding discrete solution is a good approximation to the solution
of Example 1. Now, replacing f = 1 by f = α, we typically obtain with (7)
either an oscillatory solution (if |α| < 1) or a solution excessively smearing
the layers (if |α| > 1). This shows that the formula (7) cannot be expected
to lead to a qualitatively correct discrete solution unless C depends on uh or
the data of problem (1). This was probably also recognized by Johnson [31]
who proposed to set C = β/ maxΩ |uh| in (7) where β is a constant. However,
a constant value of β allows to remove spurious oscillations only at the price
of a significant smearing of the layers and hence the method does not attain
the quality of the best SOLD methods (see also Part I).

For the edge stabilization term (16) and both the P1 and Q1 finite elements,
it is easy to derive that the function uh(x, y) = x satisfies the respective
discrete problem for ε → 0+ and test functions vh ∈ Vh with supp vh ⊂
[0, 1 − h1] × [0, 1] if C = 1/6. However, in practice, the discrete solution is
slightly worse at the parabolic boundary layers due to the regularization of
the sign operator. Moreover, in contrast to the modified method of Codina,
the discrete solution is significantly smeared along the exponential boundary
layer. A sharp approximation of this layer requires to set C = 0 in this region.

To summarize the discussion to Example 1, among the SOLD methods
adding the isotropic diffusion term (5) or the crosswind diffusion term (8), the
only SOLD method which gives satisfactory results seems to be the modified
method of Codina defined by (8) and (11), but only with an appropriately cho-
sen constant C. The edge stabilization (16) enables to compute a satisfactory
solution if the parameter C is layer–adapted.

Example 2 (Solution with interior layer and exponential boundary layers).
We consider the convection–diffusion equation (1) with (17) and

b = (cos(−π/3), sin(−π/3))T , f = 0 ,

ub(x, y) =





0 for x = 1 or y ≤ 0.7,

1 else.

The solution, see Fig. 5(a), possesses an interior (characteristic) layer in the
direction of the convection starting at (0, 0.7). On the boundary x = 1 and on
the right part of the boundary y = 0, exponential layers are developed. This
example was used, e.g., by Hughes et al. [22].

The position of spurious oscillations in the solutions obtained with the
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Fig. 5. Example 2: (a) solution u and (b) discrete solution uh obtained using the
SUPG method with the P1 finite element on a 31 × 31 mesh.

SUPG method depends on h1 and h2. If the mesh is constructed such that

h1b2 + h2b1 < 0 , (28)

then, for both the P1 and Q1 finite elements, the SUPG solution contains
oscillations along the interior layer and along the boundary layer at x = 1.
However, there are no oscillations along the boundary layer at y = 0 and this
layer is not smeared. This is illustrated by Fig. 5(b) which shows a SUPG
solution for the P1 finite element. For the Q1 finite element the discrete so-
lution is very similar. If h1b2 + h2b1 > 0, then the SUPG solution contains
oscillations along the interior layer and along the boundary layer at y = 0 but
no oscillations and no smearing occur along the boundary layer at x = 1. For
shortness of presentation, we shall consider only the case (28) in the following.

For a nodally exact solution, the SUPG term will not vanish in Example 2
(in contrast to Example 1). Thus, for obtaining a nodally exact solution with a
SOLD method, the choice of the SUPG parameter τ will be of importance, too.
The chosen parameter has to ensure that there is no smearing of layers since
smeared layers cannot be corrected with SOLD methods. With the approach
presented in Section 2, the SUPG parameter in Example 2 will be the same on
each element. We found that the choice (3) is optimal in the class of globally
constant parameters in the sense that any larger value leads to a smearing of
the layer at y = 0 and any smaller value results in spurious oscillations at this
layer and increases the oscillations at x = 1.

Let us first investigate the quality of the approximation of the interior layer.
For simplicity, we shall confine ourselves to the P1 finite element unless stated
otherwise. To measure the oscillations of a discrete solution uh at the interior
layer, we define the value

oscint := max

{
max

(x,y)∈G
uh(x, y) − 1,

∣∣∣∣∣ min
(x,y)∈G

uh(x, y)

∣∣∣∣∣

}
, (29)
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Fig. 6. Example 2, dependence of η2, η3 and η4 on ν (from bottom to top) for the
P1 finite element and meshes with h1 = 1/64: (a) isotropic artificial diffusion (5)
and (b) crosswind artificial diffusion (8).

where (x, y) are the nodes in G := [0, 0.5] × [0.25, 1]. Let us again consider
SOLD methods defined using the term (5) or (8) with ε̃ given by (20). Nu-
merical tests show that the value of oscint is a non–increasing function of η on
a given mesh. Given an integer m, we define

ηm := min{η ∈ R
+
0 ; oscint(η) ≤ 10−m} .

This value depends on the aspect ratio ν defined in (24). In view of (28),
we have ν >

√
3/3. Fig. 6 presents the dependence of η2, η3 and η4 on the

aspect ratio for both the isotropic and the crosswind artificial diffusion and for
h1 = 1/64. Of course, h2 and consequently the number of degrees of freedom is
different for different aspect ratios. We checked with several values for h1 that
the results presented in Fig. 6 depend only on ν. Thus, one would get the same
results for a fixed number of degrees of freedom with varying h1 and h2. Fig. 6
shows that the smallest value of η assuring that oscillations will not exceed a
given tolerance increases with increasing aspect ratio. Qualitatively, the results
for the Q1 finite element are the same as for the P1 finite element: increasing
aspect ratios require increasing parameters η to suppress the oscillations below
given thresholds.

For small ε, formula (20) for ε̃ is the main part of the method of Codina
given by (8) and (10). Particularly, the results in Fig. 6 show that, in contrast
to Example 1, the recommended value C ≈ 0.7 does not generally lead to
sufficiently small spurious oscillations.

Now let us turn our attention to the method of do Carmo and Galeão given
by (5) and (6) and the modified method of Burman and Ern given by (8) and
(13). Comparing the formulas (6) and (13) with (20), one finds, using (4), that
for obtaining comparable results as for ε̃ defined by (20) with a given value of
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Fig. 7. Example 2, dependence on ν of η2 for the isotropic and the crosswind artificial
diffusion and of the functions from the right–hand sides of (30) and (31).

η, the condition

η ≤ hK

diam(K)
=

2√
3
√

1 + ν2
(30)

should be satisfied. The investigations of Example 1 suggested to define τ
in (6) and (13) by (27). Since an interior layer is a characteristic layer, it
is natural to ask whether this modification is reasonable also in the present
example. Then, instead of (30), we obtain the condition

η ≤ h⊥
K

diam(K)
=

2 ν

(
√

3 + ν)
√

1 + ν2
. (31)

Fig. 7 compares the curves η2 = η2(ν) for both the isotropic and the cross-
wind artificial diffusion with the functions on the right–hand sides of (30) and
(31). Values of the right–hand sides of (30) and (31) below the curves of η2(ν)
indicate that the values of (6) and (13) are too small to suppress the oscilla-
tions at the interior layer below the value 10−2. Thus, Fig. 7 shows that the
method of do Carmo and Galeão and the modified method of Burman and
Ern will generally lead to non–negligible spurious oscillations at the interior
layer of Example 2. Replacing hK by h⊥

K in the definition of τ used in (6)
and (13), oscillations of size at least 10−2 should appear for any aspect ratio
and they should be mostly even larger than for τ defined using hK . Thus, in
contrast to Example 1, τ in (6) and (13) should be defined rather using hK

for small aspect ratios (ν . 1.5) and using even a measure larger than hK , for
instance diam(K), for larger aspect ratios.

Next, the usefulness of the curves presented in Fig. 7 will be demonstrated.
Considering, e.g., ν = 2, one expectation is that the method of Codina given
by (8) and (10) with C = 0.7, whose parameter ε̃ corresponds to the full lines,
leads to a solution with small spurious oscillations at the interior layer (less
than 10−2). In contrast, the methods of do Carmo and Galeão, (5) and (6),
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Fig. 8. Example 2, discrete solution uh obtained on 21 × 41 meshes using (a) the
method of do Carmo and Galeão and the Q1 finite element and (b) the method of
Codina with C = 0.7 and the P1 finite element.

and of Burman and Ern, (8) and (13), whose parameters correspond to the
dash–dot line, should produce solutions with larger oscillations at the inte-
rior layer. Fig. 8 shows numerical examples which confirm both expectations.
For the methods (5), (6) and (8), (13), the results obtained with both the P1

and the Q1 finite elements are similar. In particular, these solutions possess
non–negligible spurious oscillations at the beginning of the interior layer. Con-
sidering the method of Codina and the Q1 finite element, the violation of the
discrete maximum principle at the beginning of the interior layer is larger and
mainly in form of undershoots. For the method of Burman and Ern given by
(8) and (12), the results are similar as for the method of Codina but slightly
worse with respect to the spurious oscillations.

As pointed out above, the results of a SOLD method depend not only
on the definition of ε̃ but also on the definition of τ in the SUPG term. In
addition, we explained that the formula (3) is optimal with respect to the
boundary layer at y = 0. Neglecting for the moment the quality of the so-
lution at this boundary layer, one can ask whether increasing τ can help to
reduce the spurious oscillations at the characteristic layer. However, the expec-
tations are rather low because, in case of a characteristic layer, the influence
of the choice of τ is usually weak since the SUPG method stabilizes in the
streamline direction which is nearly perpendicular to the direction in which
oscillations appear. Fig. 9 shows a comparison of η4 for both the isotropic and
the crosswind artificial diffusion and for two choices of τ . One choice of τ is
the same as before and the other one is given by the formula (3) where hK

is replaced by diam(K). The use of the element diameter in the definition of
τ is quite common in practice. It can be seen that increasing the amount of
the streamline diffusion provided by the SUPG method requires to introduce
more crosswind diffusion by the SOLD term if larger aspect ratios are used
to reduce the oscillations at the characteristic layer below 10−4. In summary,
generally, the spurious oscillations at the interior layer present in the solution
of a SOLD method cannot be expected to become smaller if higher values of
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Fig. 9. Example 2, dependence of η4 on ν for the isotropic and the crosswind artificial
diffusion and for the SUPG parameter τ defined either by (3) or by (3) with hK

replaced by diam(K).

the SUPG parameter τ are used.

Let us now consider the boundary layers. One can observe in Fig. 8 that
the boundary layer at y = 0 is slightly smeared and that oscillations appear
along the boundary layer at x = 1. The smearing is not surprising since the
SUPG solution approximates the boundary layer at y = 0 nodally exactly for
ε → 0+. Thus, along the boundary layer at y = 0, the optimal choice of ε̃ in
a SOLD term is ε̃ = 0, i.e., ηopt = 0 in (20). To investigate the optimality of ε̃
for the boundary layer at x = 1 with y ∈ [h2, 1], let us again consider ε → 0+
and ε̃ given by (20). The optimal solution has the values uh = 1 at the nodes
with x = 1 − h1. A straightforward computation reveals that the value of η
for obtaining this optimal solution is

ηopt =
h1b2 + h2b1

diam(K)b2

for the isotropic artificial diffusion (5) and

ηopt =
(h1b2 + h2b1)|b|2

diam(K)b3
2

for the crosswind artificial diffusion (8). These formulas hold for both the P1

and the Q1 finite elements. One can see that the optimal choice of η depends
not only on the aspect ratio of the elements of the triangulation but also on
the direction of the convection vector b. The most important conclusion is that
different values of η should be used in different regions of the computational
domain.

To find a universal formula for the optimal value of η is very difficult or even
impossible. This will be demonstrated by studying a limit case of Example 2
where the limit is approached in two different ways. First, consider the limit
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case b1 → 0+ and b2 → −1, |b| = 1. Then, for both SOLD terms (5) and (8),
we get

ηopt =
h1

diam(K)
along the boundary x = 1 if b = (0,−1).

On the other hand, consider b = (0,−1), the boundary conditions of Exam-
ple 2 and a constant right–hand side f > 0 of (1). The optimal solution on
the mesh line at x = 1 − h1 has the form u(x, y) = f(1 − y) + 1 (away from
the lower boundary). Now, using the considerations leading to (23) gives

ηopt =
2h1

3diam(K)
along the boundary x = 1 if b = (0,−1) (32)

independently of the choice of f . In particular, (32) holds for f → 0+ and
hence we obtained two different limit values of ηopt.

For the edge stabilization term (16) and both the P1 and Q1 finite elements,
one can show similarly as above that the optimal value of the parameter C at
x = 1 is

Copt =
h1b2 + h2b1

4 h1b2
.

For b = (0,−1), the limit values of the optimal C at x = 1 are 1/6 for
Example 1 and 1/4 for Example 2 and hence they also differ by the factor
2/3. Choosing C = Copt in Example 2 still leads to oscillations at the interior
layer. These can be suppressed by increasing the value of C in this region.
This shows once again that different values of the parameter should be used in
different regions of the computational domain to obtain a globally satisfactory
solution.

The above discussion supports our conclusion to Example 1 that the best
SOLD methods are the modified method of Codina and the edge stabilization
(16), however, only if the parameter C is chosen appropriately, i.e., layer–
adapted. Nevertheless, one generally cannot expect that the discrete solutions
will be without any spurious oscillations.

Example 3 (Solution with two interior layers). We consider the convection–
diffusion equation (1) with (17) and

b = (1, 0)T , ub = 0 ,

f(x, y) =





16 (1 − 2 x) for (x, y) ∈ [0.25, 0.75]2,

0 else.

The solution, see Fig. 10(a), possesses two interior (characteristic) layers at
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Fig. 10. Example 3: (a) solution u and (b) discrete solution uh obtained using the
SUPG method with the P1 finite element on a 33 × 33 mesh.
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Fig. 11. Example 3, discrete solution uh obtained on a 33 × 33 mesh using the
modified method of Codina with C = 0.7 and the P1 finite element: (a) view as in
Fig. 10(a) and (b) view as in Fig. 10(b).

(0.25, 0.75) × {0.25} and (0.25, 0.75) × {0.75}. In (0.25, 0.75)2, the solution
u(x, y) is very close to the quadratic function (4 x− 1)(3− 4 x). This example
was first considered by John and Knobloch [25].

This is an example of a problem for which all the SOLD methods mentioned
in Section 3 fail. Note that, in contrast to Example 2, the data of Example 3
satisfy the requirements for defining the standard weak formulation of (1).
Moreover, the solution of Example 3 belongs to H2(Ω), cf. Grisvard [18].

As expected, the SUPG solution of Example 3 possesses spurious oscilla-
tions along the interior layers, see Fig. 10(b). To visualize both undershoots
and overshoots, we present the SUPG solution at an angle for which the plane
z = 0 reduces to a line. Applying the modified method of Codina with C = 0.7,
the spurious oscillations present in the SUPG solution are significantly sup-
pressed, however, the solution is wrong in the region (0.75, 1) × (0, 1), see
Fig. 11. Very similar results are obtained for any of the SOLD methods men-
tioned in Section 3 and for both the P1 and Q1 finite elements.

Note that, in view of the discontinuous right–hand side f , the SOLD meth-
ods should be implemented using quadrature formulas whose nodes do not lie
on the edges of the triangulations. However, such nodes cannot be avoided
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Table 1
Example 3, values of min defined in (33) obtained for the P1 finite element using
the methods from Sections 2 and 3.

mesh

method 17 × 17 33 × 33 65 × 65 129 × 129

SUPG 1.31e-1 1.33e-1 1.34e-1 1.34e-1

dCG91 2.37e-2 1.27e-2 2.42e-3 nc

KLR02 3, C = 0.4714 1.93e-2 1.88e-2 1.22e-2 6.85e-3

KLR02 3, C = 0.7 8.52e-3 1.38e-3 2.65e-4 nc

BE02 1 1.37e-2 9.33e-3 nc nc

BE02 2 1.85e-2 7.74e-3 1.20e-3 nc

BE05 2, C = 1/6 1.06e-2 6.77e-3 3.98e-3 2.04e-3

BE05 2, C = 0.4 2.79e-3 1.59e-3 8.24e-4 nc

Table 2
Example 3, values of diff defined in (33) obtained for the P1 finite element using
the methods from Sections 2 and 3.

mesh

method 17 × 17 33 × 33 65 × 65 129 × 129

SUPG 3.30e-3 9.52e-5 3.83e-5 1.53e-4

dCG91 2.62e-1 2.95e-1 2.81e-1 nc

KLR02 3, C = 0.4714 2.88e-1 3.24e-1 3.37e-1 3.37e-1

KLR02 3, C = 0.7 2.82e-1 2.74e-1 2.42e-1 nc

BE02 1 3.77e-1 4.36e-1 nc nc

BE02 2 2.78e-1 2.94e-1 2.76e-1 nc

BE05 2, C = 1/6 2.76e-1 3.05e-1 3.25e-1 3.36e-1

BE05 2, C = 0.4 2.53e-1 2.56e-1 2.43e-1 nc

when evaluating the edge stabilization term (16), which complicates the im-
plementation of this method.

To measure the spurious oscillations of a discrete solution uh to Example 3,
we define the values

min := − min
0.4≤x≤0.6

uh(x, y) , diff := max
x≥0.8

uh(x, y) − min
x≥0.8

uh(x, y) , (33)

where y ∈ [0, 1] and min uh and maxuh are computed using values of uh at
the vertices of Th. Tables 1 and 2 show the values of min and diff , respec-
tively, for the P1 finite element, most of the SOLD methods discussed above
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and several meshes. The abbreviations denoting the methods can be found in
Section 3 and are the same as in Part I. The abbreviation nc means that the
nonlinear iterative process did not converge, see the next section. This hap-
pens mainly for the finest mesh. Generally, the convergence of the nonlinear
iterations deteriorates if the mesh becomes finer or the parameter C in (11)
or (16) increases. We consider two values of C for each method. First, since
interior layers are characteristic layers, we use the optimal values of C found
in the investigations of Example 1. For (11), we further use the value C = 0.7
recommended in [10]. For (16), the value C = 0.4 corresponds to the choice of
C in Part I. Table 1 shows that all the SOLD methods significantly reduce the
undershoots along the interior layers present in the SUPG solution (the same
holds for overshoots). For the considered meshes, the maximal undershoots
of the SUPG method are not influenced by the size of the mesh width. In
contrast to this, for all the SOLD methods, the undershoots become smaller
if the mesh is refined. The undershoots also decrease if the parameter C in
(11) or (16) increases. However, for larger values of C, the smearing of the
discrete solution is more pronounced and, as we mentioned, the convergence
of the nonlinear iterative process deteriorates.

Table 2 shows that the wrong part of the discrete solution in (0.8, 1) ×
(0, 1) is of comparable magnitude for all the SOLD methods and does not
improve significantly if the mesh is refined or C is increased (both in the
range where the nonlinear iterative schemes converge). Therefore, we conclude
that, using the SOLD methods described in Section 3, it is not feasible to
obtain a qualitatively correct approximation of the solution to Example 3. An
open question is whether appropriately defined non–constant parameters in
the modified method of Codina (11) or the edge stabilization (16) might lead
to satisfactory solutions.

5 The solution of the nonlinear discrete problems

The discrete SOLD problems can be written in the form

ah(uh; uh, vh) = 〈f, vh〉 ∀ vh ∈ Vh ,

where ah(uh; ·, ·) is a bilinear form and the first argument of ah enters the
definition of ah through the parameter ε̃ or the respective term in (16). Thus,
it is straightforward to compute the discrete solution by means of the following
iterative scheme. Given an approximation uk

h of the solution of the SOLD
system, compute ũk+1

h by solving

ũk+1
h : ah(u

k
h; ũ

k+1
h , vh) = 〈f, vh〉 ∀ vh ∈ Vh . (34)

26



The next iterate is defined as

uk+1
h := uk

h + ωk+1(ũ
k+1
h − uk

h)

with the damping factor ωk+1 > 0.

As initial iterate u0
h, we use the solution obtained with the SUPG method.

Thus, apart from the spurious oscillations, the initial iterate coincides already
rather well with the solution wished to be obtained with the SOLD methods.

Our experiences are that an appropriate choice of the damping factors {ωk}
is often essential for the convergence of the iterative process and the number
of iterations. Appropriate damping factors depend on the SOLD scheme, the
problem and its data, the grid and the choice of parameters in parameter–
dependent SOLD schemes and these damping factors might be very different.
Since it is not practicable in applications that the user should find every
time an appropriate damping factor, it is necessary to use a strategy for an
automatic and dynamic choice of this factor.

The dynamic choice of the damping factor which we used in our computa-
tions is illustrated with the pseudo code in Fig. 12. Our approach contains a
number of parameters, whose values for the results presented in this section
are given on lines 1–2. These values seemed reasonable choices in our opinion
and we did not try to optimize them for the examples considered in this pa-
per. Our strategy for the dynamic choice of the damping factor is based on
the following principles:

• There is an upper bound ωmax for the damping factor. The upper bound is
adjusted dynamically in the course of the iterative process. Initially, we set
ωmax = 1, i.e., no damping.

• There is a lower bound ωmin for the damping factor. This bound is fixed.
We used in the computations presented in this paper ωmin = 0.01. Note
that very small damping factors lead in general to a very large number of
iterations and thus to inefficient schemes.

• The iterate uk+1
h is accepted if the norm |Rh(u

k+1
h )| of its residual

〈Rh(u
k+1
h ), vh〉 := ah(u

k+1
h ; uk+1

h , vh) − 〈f, vh〉 , vh ∈ Vh ,

is smaller than |Rh(u
k
h)| or if ω is not allowed to decrease any more, see the

pseudo code presented in Fig. 12, lines 10–14. If |Rh(u
k+1
h )| < |Rh(u

k
h)| and

if there was no rejection of an iterate uk+1
h for a larger value of ω before,

the maximal damping factor will be increased, see line 12, and then the
damping factor will be increased, too, see line 13.

• If the proposal for the iterate uk+1
h is not accepted, ω will be decreased, see

line 16. In addition, if in the step k + 1 an iterate is rejected the first time,
ωmax will be decreased too, see lines 17–20. Now, a new proposal for uk+1

h
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1. ωmin := 0.01; ωmax := 1

2. c1 := 1.001; c2 := 1.1; c3 := 1.001; c4 := 0.9
3. compute SUPG solution u0

h and residual r0

4. ω := ωmax; k := 0

5. while rk > tolerance do

6. compute ũk+1
h satisfying (34)

7. first damp := 1

8. uk+1
h := uk

h + ω(ũk+1
h − uk

h)
9. compute residual rk+1

10. if rk+1 < rk or ω ≤ c1ωmin then

11. if rk+1 < rk and first damp = 1 then

12. ωmax := min{1, c3ωmax}
13. ω := min{ωmax, c2ω}
14. endif

15. else

16. ω := max{ωmin, ω/2}
17. if first damp = 1 then

18. ωmax := max{ωmin, c4ωmax}
19. first damp := 0

20. endif

21. goto line 8

22. endif

23. k := k + 1
24. endwhile

Fig. 12. Dynamic choice of the damping factor.

is computed with the new value of the damping factor. The acceptance or
rejection of this new proposal is checked the same way as for the former
damping factor.

The main features of this approach are as follows:

• The damping factor decreases in general if the residual increases.
• The decrease of the damping factor stops at the threshold ωmin so that also

a non–monotone sequence with respect to the norm of the residual can be
computed.

• The damping factor as well as the maximal damping parameter increase if
the residual decreases to improve the efficiency of the nonlinear iteration
scheme. Thus, a strong damping, which might be necessary only at the
beginning of the iterative process, influences the damping factor at the end
of the process only slightly.

In the simulations presented in this paper, the linear systems were solved
by a sparse direct solver (UMFPACK, [13]). Since the costs for solving the
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linear systems are always the same, this leads to a fair comparison of the costs
of the iterative process for all SOLD schemes by simply giving the number of
nonlinear iterations.

In practice, it suffices to solve the linear systems only approximately by
a few steps of an iterative method without affecting the convergence of the
nonlinear iterative method much. This approach might be faster, depending on
the iterative linear system solver. However, different numbers of iterations for
solving the linear systems are in general necessary for different SOLD schemes,
which makes it harder to perform a fair comparison.

Below, our experiences with respect to the solution of the nonlinear discrete
problems corresponding to the examples of Section 4 are reported. Tables with
characteristic results are presented, where besides the dynamic approach for
computing the damping factor also numbers of iterations with fixed factors are
given. The computations were carried out for the P1 and the Q1 finite elements
on 65× 65, 33× 65 and 65× 33 meshes. The iterative processes were stopped
if the l2–norm of the residual vector was smaller than 10−8 or after 100 000
iterations (nc = not convergent in the tables). Again, the abbreviations of the
SOLD methods given in Section 3 are used.

The numbers of iterations generally depend on the used quadrature formula
and this dependence is stronger for the Q1 finite element than for the P1 finite
element. All results in this paper were computed using Gaussian quadrature
formulas of order 5 (with 7 nodes in case of triangles and 9 nodes in case of
rectangles). Of course, for Examples 1 and 2 discretized using the P1 finite
element, the results are independent of the used quadrature formula since all
integrands are constant or linear.

We would like to emphasize that analytical results concerning the existence
and uniqueness of solutions to the nonlinear discrete problems are not avail-
able. Thus, it cannot be excluded that a failure of all used damping strategies
has its reason in the non–existence of the solution of the nonlinear discrete
problem.

Example 1. The nonlinear discrete problems on the 65× 65 and the 65× 33
meshes could be mostly solved without damping, see Table 3. Apart from
dCG91 and BE05 2 with C = 0.4, the iterative schemes converged in only few
iterations. Solving the problems on the 33× 65 mesh required for some SOLD
methods considerable damping, see Table 4 for the Q1 finite element. For the
P1 finite element, the convergence was mostly even worse than in Table 4 and
dCG91 did not converge at all. Except the latter case, the dynamic choice
of the damping factor was always successful, but often more iterations were
needed than with the best fixed damping factor, cf. also the last row in Table 3.
In these computations, the dynamic approach proposes many damping factors
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Table 3
Example 1, number of iterations for solving the nonlinear SOLD problems, 65× 65
mesh, P1 finite element

method ω = 0.25 ω = 0.5 ω = 0.75 ω = 1 dynamic

dCG91 472 236 161 169 169

KLR02 3, C = 0.4714 71 32 18 9 9

KLR02 3, C = 0.7 108 50 32 22 22

BE02 1 76 36 24 28 28

BE02 2 92 44 27 19 19

BE05 2, C = 1/6 164 78 50 29 29

BE05 2, C = 0.4 1010 506 345 nc 10943

Table 4
Example 1, number of iterations for solving the nonlinear SOLD problems, 33× 65
mesh, Q1 finite element

method ω = 0.25 ω = 0.5 ω = 0.75 ω = 1 dynamic

dCG91 394 nc nc nc 935

KLR02 3, C = 0.2981 73 33 20 13 13

KLR02 3, C = 0.7 119 64 63 157 66

BE02 1 235 173 218 nc 339

BE02 2 213 380 nc nc 353

BE05 2, C = 1/6 78 36 23 72 72

BE05 2, C = 0.4 nc nc nc nc nc

close to ωmin because the norm of the residual is slightly oscillating, before
finally convergence is achieved. Note that the numbers of iterations for the
optimal constant in KLR02 3 are very small on both meshes.

Example 2. The nonlinear discrete SOLD problems in this example were
harder to solve than for Example 1, in particular for the P1 finite element.
Even on the equidistant mesh, strong damping was necessary, see Table 5.
The dynamic choice of the damping factor always led to the convergence of
the iterative process on this mesh. Using the P1 finite element on the 65× 33
mesh, the nonlinear problems could be solved only for KLR02 3 and BE05 2
with sufficiently small parameters. The solution of the discrete problems with
the Q1 finite element was much easier on all grids, see Table 6 for representative
results.

Example 3. Using the equidistant 65 × 65 mesh with the P1 and Q1 finite
element, the discrete equations could be solved without damping for most
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Table 5
Example 2, number of iterations for solving the nonlinear SOLD problems, 65× 65
mesh, P1 finite element

method ω = 0.25 ω = 0.5 ω = 0.75 ω = 1 dynamic

dCG91 160 nc nc nc 340

KLR02 3, C = 0.7 194 nc nc nc 408

BE02 1 nc nc nc nc 389

BE02 2 210 nc nc nc 412

BE05 2, C = 0.4 362 nc nc nc 536

Table 6
Example 2, number of iterations for solving the nonlinear SOLD problems, 65× 65
mesh, Q1 finite element

method ω = 0.25 ω = 0.5 ω = 0.75 ω = 1 dynamic

dCG91 67 36 29 33 33

KLR02 3, C = 0.7 102 58 51 60 60

BE02 1 213 275 nc nc 203

BE02 2 84 47 39 45 45

BE05 2, C = 0.4 689 nc nc nc 7520

of the SOLD methods, see Table 7. Only for BE02 1 and BE05 2 with C =
0.4, it was not possible to solve them at all, see also Tables 1 and 2. These
tables show also that the solution of the nonlinear problems for the P1 finite
element on the next finer equidistant grid became more difficult. We could
obtain convergence only for the parameter–dependent SOLD schemes with
sufficiently small parameters. For the P1 finite element on the 33 × 65 mesh,
the iterative processes was not convergent for dCG91, BE02 2 and KLR02 3
with C = 0.7. The results for the Q1 finite element and the 33 × 65 mesh are
presented in Table 8. Again, the need of damping can be observed as well as the
successfulness of the dynamic approach (however, on the expense of somewhat
more iterations than for the best fixed damping factors). On 65 × 33 meshes,
the only method which did not converge at all was BE05 2 with C = 0.4.

Remark 2. The numerical studies show that even for the academic test prob-
lems considered in this paper, it was sometimes difficult to solve the nonlinear
SOLD problems. Considering more challenging problems, like the one defined
by Hemker in [19], the difficulties in the solution of the nonlinear problems
became even greater. For instance, convergence for KLR02 3 on reasonably
structured grids could be achieved only for rather small constants C.

Remark 3. Another possibility for solving the nonlinear discrete problems
is to apply Newton’s method. However, it is rather difficult to implement
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Table 7
Example 3, number of iterations for solving the nonlinear SOLD problems, 65× 65
mesh, P1 finite element

method ω = 0.25 ω = 0.5 ω = 0.75 ω = 1 dynamic

dCG91 158 86 59 49 49

KLR02 3, C = 0.4714 157 74 46 33 33

KLR02 3, C = 0.7 199 115 89 115 110

BE02 1 nc nc nc nc nc

BE02 2 178 93 65 62 62

BE05 2, C = 1/6 173 83 53 37 37

BE05 2, C = 0.4 nc nc nc nc nc

Table 8
Example 3, number of iterations for solving the nonlinear SOLD problems, 33× 65
mesh, Q1 finite element

method ω = 0.25 ω = 0.5 ω = 0.75 ω = 1 dynamic

dCG91 475 nc nc nc 599

KLR02 3, C = 0.2981 123 58 36 25 25

KLR02 3, C = 0.7 247 168 nc nc 345

BE02 1 332 974 nc nc 461

BE02 2 317 432 nc nc 381

BE05 2, C = 1/6 150 72 46 33 33

BE05 2, C = 0.4 565 277 184 146 1640

since one deals with non–smooth operators. Moreover, a very good initial
approximation is often needed (which can be computed using the iterative
scheme given above). Nevertheless, Newton’s method may help in a later stage
of the iterative process.

Our experiences concerning the solution of the nonlinear SOLD problems
can be summarized as follows:

• Generally, it was easier to solve the problems for the Q1 finite element than
for the P1 finite element.

• The larger the constant in the SOLD methods KLR02 3 and BE05 2, the
more iterations were needed. If the constant became too large (size de-
pended on the problem, the grid etc.), the iterative process did not solve
the nonlinear problem any more.

• It was often easier to solve the problems arising from the SOLD method
BE02 2 than those coming from BE02 1.
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• Solving the problems obtained with the edge stabilization BE05 2 required
in general somewhat more iterations than solving the problems coming from
KLR02 3, if in both SOLD methods reasonable constants with respect to
the reduction of the spurious oscillations have been chosen. Moreover, the
convergence of BE05 2 was much more sensitive to the choice of the param-
eter C than it was for the method KLR02 3.

• If the nonlinear discrete problems could be solved at all, the dynamic choice
of the damping factor was generally among the successful approaches. If
damping was necessary, the dynamic approach needed often more iterations
than an appropriately chosen fixed damping factor.

6 Numerical results obtained with adaptive methods

In several discussions with our colleagues about Part I, the question arose
whether the application of adaptive methods is useful for the reduction of
spurious oscillations. In this section, we shall study this question for adaptive
grids obtained with two residual–based error estimators, which are typically
used in applications.

There are different ways of defining criteria for a fair comparison of the
results obtained with adaptive methods and with SOLD schemes. One possible
criterion is to require that the number of degrees of freedom is roughly the
same. A different one might be that the computing times are similar. Since
the solution of the nonlinear discrete problems of the SOLD methods often
is rather time–consuming (because of the large number of iterations), it is
possible to solve the linear problems on adaptive meshes with much more
degrees of freedom in the same time. Both criteria might be of interest and
thus, we will present results on adaptive meshes starting with a few thousand
degrees of freedom up to more than 100 000 degrees of freedom.

Exemplarily, computational studies for Example 2 will be presented. As
starting grid for the adaptive refinement, we used the triangular grid from
Fig. 1 with h1 = h2 = 1/16 (289 degrees of freedom). The control of the
adaptive refinement process was performed analogously to the way described
in Section 4 of [23]. The oscillations at the interior layer were measured with
oscint defined in (29) and the oscillations at the exponential boundary layer
with

oscexp := max
x≥0.7

(max{0, uh(x, y) − 1}) .

We will present results for residual–based error estimators in the H1–semi
norm and the L2–norm, see Verfürth [39]. For a detailed description of these
estimators and their implementation, we refer to [23]. The gradient indica-
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Fig. 13. Example 2, oscillations on adaptively refined grids: (a) interior layer and
(b) exponential layer.
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Fig. 14. Example 2, adaptive grids with more than 100 000 degrees of freedom:
(a) L2–error estimator and (b) H1–semi norm error estimator.

tor and a residual–based error estimator in the energy norm considered in
[23] failed to refine the region of the interior layer. This coincides with their
behavior observed in Examples 6.4 and 6.5 of [23].

The computational results for oscint and oscexp are presented in Fig. 13
and the final grids for both error estimators in Fig. 14. The meshes match
the expectations on the error estimators since the regions of all layers are
refined and a deeper refinement occurs at the exponential boundary layers. The
graphs in Fig. 13 show that the adaptive refinement of the layer regions neither
reduces the spurious oscillations at the interior layer nor at the boundary
layers. The adaptively refined meshes are still too coarse in these regions to
resolve the layers and to suppress the oscillations.

This section showed exemplarily that a suppression of spurious oscillations
cannot be achieved with adaptively refined grids whose elements do not resolve
the layers.
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7 Conclusions

This paper studied in detail SOLD methods which were identified in Part I
as the best ones. In particular, the limits of the available methods were demon-
strated. Analytical and numerical studies showed that SOLD methods without
user–chosen parameters are in general not able to remove the spurious oscil-
lations of the solution obtained with the SUPG discretization. For the two
studied methods involving a parameter, the modified method of Codina (8),
(11) and the edge stabilization (16), values of the parameter could be derived
in two examples such that the spurious oscillations were almost removed. It
turned out that a spatially constant choice of the parameters was not sufficient
in general and that the optimal parameters depended on the data of the prob-
lem and on the grid. In addition, an example was presented for which none of
the investigated methods provided a qualitatively correct discrete solution.

The iterative solution of the nonlinear discrete problems was also studied.
The number of iterations or the convergence of the iterative process depended
again on the problem, the grid and the parameters of the SOLD methods.
In particular, the convergence of the nonlinear iterative process for the edge
stabilization (16) proved to be rather sensitive to this parameter. It could be
observed that the convergence is often strongly influenced by the choice of an
appropriate damping factor and a strategy was proposed for an automatic and
dynamic computation of this factor.

Finally, it was demonstrated that adaptive grid refinement generally does
not lead to a suppression of the spurious oscillations of the solutions computed
with the SUPG discretization.

Considering the reduction of the spurious oscillations, the sharpness of the
layers and the computational overhead for solving the nonlinear discrete prob-
lem, the SOLD methods involving parameters, i.e., the modified method of
Codina (8), (11) and the edge stabilization method (16), seem to be the only
reasonably promising approaches among the studied SOLD methods. How-
ever, the appropriate definition of the generally non–constant parameters in
these methods will represent a great difficulty in more complicated problems
and in applications. Future research should develop an a posteriori algorithm
for an automatic choice of these parameters.

The current situation can be summarized as follows: it is in general com-
pletely open how to obtain oscillation–free solutions using the considered
classes of methods.
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P. Salgado (eds.), Numerical Mathematics and Advanced Applications,
Proceedings of ENUMATH 2005, Springer–Verlag, Berlin, 2006, pp. 336–344.

[25] V. John, P. Knobloch, A computational comparison of methods diminishing
spurious oscillations in finite element solutions of convection–diffusion
equations, in: J. Chleboun, K. Segeth, T. Vejchodský (eds.), Proceedings of the
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