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1. Problem Formulation, Basic Properties

1.1. Distributed Controls (see G/Kunz/Meischner[3], G/Winkler[4])

Q C R", n = 2,3 bounded convex domain,

q,b,d € Loo(Q2) given.

Considered optimal control problem

J(y, u)

s.t. — Ay

Jy
y—l—%

U

1
/(y—q)2+a/u2—>min!
2 Ja 2 Ja

u in Q, (1)
0 on [ := 09,
Uad7

a > 0 regularization parameter
Uad C L?() set of admissible controls (convex, closed).

C.Grossmann

Prague, April 14-th, 2012



Uga = {u € L*(Q):u<b aein Q} (2)
in case of only control constraints - or
Uws i ={ueL*(Q):u<b, y<d aeinQ} (3)

in case of state and control constraints.
One-sided bounds only to simplify the presentation.

General assumption: Upg # 0
w )

State equations of (1) in the weak sense in V := H(Q),
a(+,) : V. xV — R defined by

a(y,v) :—/QVy-Vv—i-/ryv Yy,v € V. (4)
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Lemma
For any u € Uyq there is a unique y € V such that

a(y,v) = (u,v) YveV. (5)

Su =y and V — L?(Q) defines a linear, continuous mapping
S L2(Q) — L*(Q).

Thus, problem (1) can be reduced to
J(u) := J(Su,u) — min! s.t. u € Uy. (6)

U,q is nonempty, closed and convex and J is continuous and
strongly convex.
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Remark

Since Q is convez, the solution y € V' of (5) has the additional
reqularity y € H*(Q). Hence, S is a linear, continuous mapping

from L?(Q) to H?(R).

Theorem

Problem (6) possesses a unique optimal solution 4 and
(Su,u) € V x Uyq is the unique optimal solution of (1). Further,

system
=0 WeV,

)
a(g,v) — (a,v) = 0 YveV, (7)
) > 0 Vue Uy

is necessary and sufficient for 4 € Uy to be optimal.
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Remark
The inequality in system (7) is equivalent to

= P(i — o + ai)) 8)

for any o > 0, where P is the L?(Q)-ortho-projection onto Upg.
For sufficiently small o > 0 the mapping

Tu := P(u—o((S)(Su—q) +au)) YueU 9)

1S a contraction.

Especially for o = 1/a formula (8) yields % = P(—1%) ie., @ is
expressed by the remaining variables (see Hinze[6]).

If only control constraints occur then P is easy to evaluate,
not so in case of state constraints!
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1.2. Case of Boundary Controls (see G/Winkler[5])

Consider the semi-linear boundary control problem

Jy,u)=3%[(y—q)®> + % [u?— min!
Q

:
subject to —Ay+ f(hy) = 0 inQ, (10)
%+y = u onl,ueUyy.
with

Uad::{ueﬁ(l’) ca<u<b ae onl}

q € L?(Q), a,beR, a<bgiven. f € C?(Q xR) — R, twice
L-continuously differentiable and Minty monotone, i. e.

(f(z,8) — f(z,t))(s —t) >0 VxecQ, s, tcR (11)
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The state equation (10) is understood as weak formulation
a(ya U) + (f(?y)a U)Q = (Uﬂ))r Vo eV, (12)
Lemma

For any uw € U problem (12) possesses a unique solution y € V.
The operator S : U — V defined by Su := 1y s Lipschitz
continuous, i.e. there is some ¢ > 0 such that

|Su — Sty < cl|lu—alu Yu, o € U, (13)
and weakly sequentially continuous, i.e.
up—=uinlU = yp,—yinV yg:=Sug, y:=Su. (14)

Furthermore holds — y, — y in L?(Q).
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The control-to-state mapping leads to the reduced problem

1 e} .
J(u) = 55u—qlgo+ 5 ulgr — minl stu€ U (15)

Theorem

Problem (15) possesses an optimal solution 4 € Ugq. Any
optimal solution 4 € Uyg of (15) satisfies

(J'(a),u—a) >0 Vu € Uy, (16)
which is equivalent to

(Sti —q,5"(u—1))q+a(d,u—=a) >0 Vu € Uyyq. (17)
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2. Penalties for Control Bounds

Let
Uyg = {u € L2(Q) cu<b aein Q}

Barrier-penalty modification

J(u,8) == J(u) + /Q d(u(z) — b(x), s)dx (18)

of the objective. Here s > 0 denotes the penalty parameter with
s — 0+ and ¢ : R — R some barrier-penalty function that
satisfies

0 t
9 oft.s) = u <) vt € dom o, 5) (19)
with an appropriate function 9 : R — R.
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Results for the finite dimensional case

Problem
J:R" - R and g : R™ — R™, sufficiently smooth and consider

J(u) — min! s.t. uweR" g(u) <O0. (20)
Auxiliary problem via general barrier-penalty approach

Problem

J(u, ) = J(u) + Zqﬁi(gi(u), s) st. ueR" (21)
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Theorem

Let @ a local solution of (20) and u(s) a related local solution of
(21). Further, assume that LICQ and strict complementarity
locally hold. Then

and with some ¢ > 0 and sy > 0 we have

lla(s) —al| <es Vs € (0,so]

Difficulties: ¢ = ¢(n) with ¢(n) — oo for n — oo,
local application of implicit function theorem
(using second order sufficiency conditions).
In optimal control: no "uniform’ strict
complementarity.
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For optimal control consider either the quadratic loss

O(t) = max{0,1},  é(t,s) = % max?{0, £}

or the smoothed exact penalty

P(t) =46 (1 - \/1t+7t2> o(t,s) =96 (t+ V82 +t2) .

0 > ||7]|eo + € with some € > 0, optimal multiplier .

log-barrier quadratic loss smoothed exact

Log-barrier analyzed by Schiela [8].

C.Grossmann Prague, April 14-th, 2012



Back to optimal control

For the smoothed exact as well as for the quadratic loss
functional under mild additional assumptions holds

Theorem (G/Kunz/Meischner|3])
For any s > 0 the penalty problem

J(u,s) — min! s.t. u e L*(Q) (22)

possesses a unique solution u(s) and there holds |ir’(r)1+ a(s) = .
S—

Further, if only control constraints occur then

17 = a(s)]| = O(Vs).
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Theorem (Improved estimate, Winkler[Dipl.thesis 2011])

Assume that only control constraints are considered. Then in
case of the quadratic loss penalty some some ¢ > 0 exists such
that

[u(s) —all < cs

holds.

Proof (main idea)
The unconstrained auxiliary problem yields

s+ o () —o

Direct calculations lead to
Tu(s) = Pu(s) with Tu:= P(u— oJ'(u)).
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Taking o > 0 such that T" contracts. With @ = T'w and with

u® := u(s) we obtain
lus) =@l < 2 ITu(s) —u(s)]
= 125 [1Pu(s) —u(s)].
Now,
[lu(s) — Pu(s)|| < s||o|| Vs >0 (shown in C/K/M[3])
completes the proof. O



Remark

The penalty multiplier v(s) := ¥ ((a(s) — b)/s) approzimates the

timal multiplier © b
PR PR E S a(s) = o) < ella(s) -l

Problem (22) by (18) leads to the necessary and sufficient
optimality conditions
(@(s) —q,y) —aly, 0(s)) = 0 VyeV,
—a(g(s),v) + (u(s),v) = 0 VweV, (23)
at(s)+o(s) +¥((a(s) —b)/s) = 0 ae. in Q.

Theorem

For any s > 0 system (23) possesses a unique solution

(4(s), 0(s), u(s))-
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The structure of ¢ allows to find @(s) in dependence of ¥(s).
Due to o € H2(Q) and H?(Q2) — C(Q) this can be done by

pointwise.

Let 4(s) := ¢g(9(s), s). Then (23) leads to the reduced optimality
System

(#(s) = ¢,9) — aly, v(s))
—a(y(s),v) + (9(v(s), 5), )

0 vyev,

24
0 YweV. o

Theorem

For any s > 0 the system (24) possesses a unique solution
(u(s),v(s)) € V xV and u(s) := g(v(s), s) forms the optimal
solution of the problem (22).
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Consider the boundary control case (10).
Assumption: There exist 4, > 0 such that

J' @[,k = 6hl§ e Y lhllor < e

Theorem

Let {sr} C Ry with s — 0 for k — oo. Then any related
sequence uy = u(sg) is bounded in U and therefore {uy} weakly
compact. Any weakly convergent {uy}x C {ur} converges also
strongly in U to u, i.e. limgex k—oo ||u(sk) — tllor = 0.
Further, some o € (0,1), sg > 0 exist such that

20

lu(sk) — oy < ] |llo,r sk VEk € K, s € (0, so],

-0
where U denotes the optimal Lagrange multiplier at @ related to
the constraint u < b.
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3. Discretization of Reduced Problems

Consider conforming finite element discretizations
Vi CV

applied to the control reduced systems (24).
This leads to the finite dimensional nonlinear systems

(Tn — @, yn) — a(yn,on) = 0 Yyp € Vi,

_ _ (25)
—a(n,vp) + (9(Vn, s),vn) = 0 Vo, € Vj.

Like in the continuous case system (25) defines uniquely the
solution (7x(s),0r(s)) € Vi, X V.
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Remark

Unlike in full discretization no a-priori discretization of the
control space U is used. The penalty yields an approximate
projection.

Convergence analysis

follows widely standard arguments of conforming FEM
discretization.

Galerkin orthogonality

(Th — U,yn) — a(yn, on —0) = 0 Yy, € Vp,
_a(gh - ga Uh) ol (g(q_}ha S) - 9(67 S)?”h) =0 \v/lvh S Vh-
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Define

Galerkin projections
Uh, Up € Vi Ofg,’l_)Ebe

(l(:lj = g]h,vh) =0 Vvh € Vh

zal a(Yn, v —Tp) =0 Vyp € Vi

Lemma (Schiela[8])
From (26) with the Galerkin projections follows

(On — U, 91 — Un) — (9(Vn, s) — g(¥, s), o — vp) = 0.
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Theorem

There exist some constant ¢ > 0 such that
15— Gnll® + 115 — B> < ¢ (15 — Gnll® + 115 — 8 ?)
with the Galerkin projections i, On, € Vp.

Remark
If no state constraints are given then this constant is
independent of the embedding parameter s > 0.
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4. Numerical Example

Consider piecewise linear conforming finite elements
ViyCV

with a criss-cross triangulation applied to the control reduced
systems (24).

Example 1

J(y,) 2”3/_QHO + %”UH(2)—>IIHD'

s.t. —Ay = wu inQ=][0,1]?
9y _
o Ty = 0 onl,
u€Uyg = {uelU: —4 <u <12 a.e. inQ}

with g(z1,22) = z1 + 22.
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Solution obtained with loss penalty for s = 10719 and overall

0.4
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optimal state §
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Similar results for the smoothed exact penalty
4

V14 t2

Unlike in the quadratic loss penalty case here feasibility is
obtained for sufficiently small s > 0.

W(t) =6 (1+ ).

A W‘ w
I
: m mmm

il
A‘Mﬂﬂt m ” il

vmw,mm

optimal control optimal state g adjoint state ©
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Experimental order of convergence in long-step path following
with one Newton step per iteration and reduction

Sg+1 = 0.5 5%

s EOCy(y) | EOC1(y) | EOCh(u)
1 1.0097 0.9419 1.3334
24 1.00 0.9955 1.0279
28 1.00 1.00 1.0026
2712 1.00 1.00 1.00
216 1.00 1.00 1.00
2—20 1.00 1.00 1.00
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Accuracies for a 1D-example with known exact solution

quadratic loss log-barrier smoothed exact
S lla(s) — @l | EOC lz(s) —a| | EOC la(s) —a| | EOC
275 1 0.1869 0.9171 | 4.4882 0.6552 | 0.8625 0.77546
2710 | 0.0061 0.9972 | 0.3717 0.7499 | 0.0408 0.9272
2715 | 0.0002 0.9999 | 0.0257 0.7864 | 0.0014 0.9869
2720 | 6.0315 E-06 | 1.0000 | 0.0014 0.9115 | 4.4722 E-05 | 0.9991
2725 | 1.8848 E-07 | 1.0000 | 4.5904 E-05 | 0.9954 | 1.3985 E-06 | 0.9999

Quadratic ——

Quadratic
L¢

og
Smoothed ——
1 KO1 ——
KO 2
0.01

0.0001

Exponential

1e-06

1e-08

3 & ' 1e-10
1e08 1e07 1e08 1e05 00001 0001 001 0.1 1 1e-06  1e-05  0.0001  0.001 0.01 01 1
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Modification of Example 1 by the additional state constraint
y(z) < 1.2 in Q

and with no control bounds.

Numerical results for N = 256 and s = 103

y
16+ o
0.015

-0.005

-0.017"

optimal state y adjoint state v
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optimal control u approximate multiplier
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Example 2

J(y,u) =3y —all} + 2lul — min!

st. —Ay+y> = 0 inQ=][0,1]?
g% +y = w onl,
w€Uy = {uel?T):0<u<22 ae onl}

with ¢(x1,22) =21 + 22.
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0.04

optimal state adjoint state

25 .

1.5

0.5

=B

B C D A

optimal control

Solution obtained for N = 200 (each direction), s = 1074.
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Obtained experimental order of convergence

s |un(s) —@n|| EOC

2705 193¢ —02 0.84
2710 6.79¢e —04  0.99
2715 2.13¢—05 1.00
2720 6.66e — 07 1.00
2=%  2.08e —08 1.00
2730 6.49¢ — 10 1.01

Error e(s) := [Jup(s) — apl|
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Outlook

o extend the analytical proof for the numerically observed
convergence rate O(s) to more general types of
barrier-penalty functions;

o deriving specific solution techniques for the elimination of
uy, for reduced FEM discretizations;

e finding sharp bounds for the radius of convergence of
Newton’s method;

e studying long-step path-following Newton methods;

e study of stability and convergence properties in the case of
state constraints.
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