Convergence Behavior of Barrier-Penalty Methods Applied to Optimal Control with PDEs

C. Grossmann^{*)} Technical University Dresden Institute for Numerical Mathematics *Christian.Grossmann@tu-dresden.de*

Charles University Prague April 14-th, 2012

^{*)} joint work with M.Winkler, Univ. Bundeswehr Munich

Scope of the Talk

- Problem Formulation, Basic Properties
- Penalties for Control Bounds, Approximate Reduction
- Discretization of Reduced Problems
- Numerical Examples
- Outlook

1. Problem Formulation, Basic Properties

1.1. Distributed Controls (see G/Kunz/Meischner[3], G/Winkler[4])

 $\Omega \subset \mathbb{R}^n, \ n = 2, 3$ bounded convex domain, $q, b, d \in L_{\infty}(\Omega)$ given.

Considered optimal control problem

$$\begin{aligned}
\hat{J}(y,u) &:= \frac{1}{2} \int_{\Omega} (y-q)^2 + \frac{\alpha}{2} \int_{\Omega} u^2 \to \min! \\
\text{s.t.} &-\Delta y &= u \quad \text{in } \Omega, \\
y + \frac{\partial y}{\partial n} &= 0 \quad \text{on } \Gamma := \partial \Omega, \\
u &\in U_{ad},
\end{aligned} \tag{1}$$

 $\alpha > 0$ regularization parameter $U_{ad} \subset L^2(\Omega)$ set of admissible controls (convex, closed). C.Grossmann Prague, April 14-th, 2012

$$U_{ad} := \left\{ u \in L^2(\Omega) : u \le b \quad \text{a.e.in } \Omega \right\}$$
(2)

in case of only control constraints - or

$$U_{ad} := \left\{ u \in L^2(\Omega) : u \le b, \ y \le d \quad \text{a.e.in } \Omega \right\}$$
(3)

in case of state and control constraints. One-sided bounds only to simplify the presentation.

General assumption:

$$U_{ad} \neq \emptyset.$$

State equations of (1) in the weak sense in $V := H^1(\Omega)$, $a(\cdot, \cdot) : V \times V \to \mathbb{R}$ defined by

$$a(y,v) := \int_{\Omega} \nabla y \cdot \nabla v + \int_{\Gamma} yv \quad \forall y, v \in V.$$
(4)

Lemma

For any $u \in U_{ad}$ there is a unique $y \in V$ such that

$$a(y,v) = (u,v) \quad \forall v \in V.$$
(5)

 $Su := y \text{ and } V \hookrightarrow L^2(\Omega) \text{ defines a linear, continuous mapping}$ $S : L^2(\Omega) \to L^2(\Omega).$

Thus, problem (1) can be reduced to

$$J(u) := \hat{J}(Su, u) \to \text{ min! s.t. } u \in U_{ad}.$$
(6)

 U_{ad} is nonempty, closed and convex and J is continuous and strongly convex.

Remark

Since Ω is convex, the solution $y \in V$ of (5) has the additional regularity $y \in H^2(\Omega)$. Hence, S is a linear, continuous mapping from $L^2(\Omega)$ to $H^2(\Omega)$.

Theorem

Problem (6) possesses a unique optimal solution \bar{u} and $(S\bar{u}, \bar{u}) \in V \times U_{ad}$ is the unique optimal solution of (1). Further, system

$$(\bar{y} - q, y) - a(y, \bar{v}) = 0 \quad \forall y \in V,$$

$$a(\bar{y}, v) - (\bar{u}, v) = 0 \quad \forall v \in V,$$

$$\alpha(\bar{u}, u - \bar{u}) + (u - \bar{u}, \bar{v}) \geq 0 \quad \forall u \in U_{ad}$$
(7)

is necessary and sufficient for $\bar{u} \in U_{ad}$ to be optimal.

Remark

The inequality in system (7) is equivalent to

$$\bar{u} = P(\bar{u} - \sigma(\bar{v} + \alpha \bar{u})) \tag{8}$$

for any $\sigma > 0$, where P is the $L^2(\Omega)$ -ortho-projection onto U_{ad} . For sufficiently small $\sigma > 0$ the mapping

$$Tu := P(u - \sigma((S')^*(Su - q) + \alpha u)) \quad \forall u \in U$$
(9)

is a contraction. (Here S' = S)

Especially for $\sigma = 1/\alpha$ formula (8) yields $\bar{u} = P(-\frac{1}{\alpha}\bar{v})$ i.e., \bar{u} is expressed by the remaining variables (see Hinze[6]). If only control constraints occur then P is easy to evaluate, not so in case of state constraints!

C.Grossmann

1.2. Case of Boundary Controls (see G/Winkler[5])

Consider the semi-linear boundary control problem

$$\widetilde{J}(y,u) := \frac{1}{2} \int_{\Omega} (y-q)^2 + \frac{\alpha}{2} \int_{\Gamma} u^2 \to \min!$$
subject to
$$-\Delta y + f(\cdot, y) = 0 \quad \text{in } \Omega, \qquad (10)$$

$$\frac{\partial y}{\partial n} + y = u \quad \text{on } \Gamma, \ u \in U_{ad}.$$

with

$$U_{ad} := \{ u \in L^2(\Gamma) : a \le u \le b \text{ a.e. on } \Gamma \}$$

 $q \in L^2(\Omega), a, b \in \mathbb{R}, a < b$ given. $f \in C^2(\Omega \times \mathbb{R}) \to \mathbb{R}$, twice L-continuously differentiable and Minty monotone, i.e.

$$(f(x,s) - f(x,t))(s-t) \ge 0 \quad \forall x \in \overline{\Omega}, \ s, \ t \in \mathbb{R}$$
(11)

The state equation (10) is understood as weak formulation

$$a(y,v) + (f(\cdot, y), v)_{\Omega} = (u, v)_{\Gamma} \qquad \forall v \in V.$$
(12)

Lemma

For any $u \in U$ problem (12) possesses a unique solution $y \in V$. The operator $S: U \to V$ defined by Su := y is Lipschitz continuous, i.e. there is some c > 0 such that

$$\|Su - S\tilde{u}\|_{V} \le c \,\|u - \tilde{u}\|_{U} \qquad \forall u, \tilde{u} \in U,$$
(13)

and weakly sequentially continuous, i.e.

$$u_k \rightarrow u \text{ in } U \implies y_k \rightarrow y \text{ in } V \quad y_k := Su_k, \ y := Su.$$
(14)

Furthermore holds $y_k \to y$ in $L^2(\Omega)$.

The control-to-state mapping leads to the reduced problem

$$J(u) := \frac{1}{2} \|Su - q\|_{0,\Omega}^2 + \frac{\alpha}{2} \|u\|_{0,\Gamma}^2 \to \text{ min! s.t. } u \in U_{ad} \quad (15)$$

Theorem

Problem (15) possesses an optimal solution $\bar{u} \in U_{ad}$. Any optimal solution $\bar{u} \in U_{ad}$ of (15) satisfies

$$\langle J'(\bar{u}), u - \bar{u} \rangle \ge 0 \qquad \forall \, u \in U_{ad},$$
 (16)

which is equivalent to

$$(S\bar{u}-q,S'(u-\bar{u}))_{\Omega}+\alpha(\bar{u},u-\bar{u})_{\Gamma}\geq 0 \qquad \forall u\in U_{ad}.$$
(17)

2. Penalties for Control Bounds

Let

$$U_{ad} = \left\{ u \in L^2(\Omega) : u \le b \quad \text{a.e.in } \Omega \right\}$$

Barrier-penalty modification

$$\tilde{J}(u,s) := J(u) + \int_{\Omega} \phi(u(x) - b(x), s) dx$$
(18)

of the objective. Here s > 0 denotes the penalty parameter with $s \to 0+$ and $\phi : \mathbb{R} \to \overline{\mathbb{R}}$ some barrier-penalty function that satisfies

$$\frac{\partial}{\partial t}\phi(t,s) = \psi\left(\frac{t}{s}\right) \ \forall t \in \operatorname{dom} \phi(\cdot,s) \tag{19}$$

with an appropriate function $\psi : \mathbb{R} \to \overline{\mathbb{R}}$.

C.Grossmann

Results for the finite dimensional case

Problem

 $J: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$, sufficiently smooth and consider

$$J(u) \rightarrow min!$$
 s.t. $u \in \mathbb{R}^n, g(u) \le 0.$ (20)

Auxiliary problem via general barrier-penalty approach

Problem

$$\tilde{J}(u,s) := J(u) + \sum_{i=1}^{m} \phi_i(g_i(u),s) \qquad s.t. \quad u \in \mathbb{R}^n$$
(21)

Theorem

Let \bar{u} a local solution of (20) and $\bar{u}(s)$ a related local solution of (21). Further, assume that LICQ and strict complementarity locally hold. Then

$$\lim_{s\to 0+}\bar{u}(s)=\bar{u}$$

and with some c > 0 and $s_0 > 0$ we have

$$\|\bar{u}(s) - \bar{u}\| \le c s \quad \forall s \in (0, s_0].$$

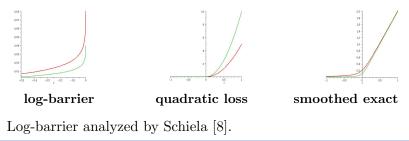
Difficulties: c = c(n) with $c(n) \to \infty$ for $n \to \infty$, local application of implicit function theorem (using second order sufficiency conditions). In optimal control: no 'uniform' strict complementarity. For optimal control consider either the quadratic loss

$$\psi(t) := \max\{0, t\}, \qquad \phi(t, s) = \frac{1}{2s} \max^2\{0, t\}$$

or the smoothed exact penalty

$$\psi(t) := \delta\left(1 + \frac{t}{\sqrt{1+t^2}}\right) \qquad \phi(t,s) = \delta\left(t + \sqrt{s^2 + t^2}\right).$$

 $\delta \geq \|\bar{v}\|_{\infty} + \varepsilon$ with some $\varepsilon > 0$, optimal multiplier \bar{v} .



Back to optimal control

For the smoothed exact as well as for the quadratic loss functional under mild additional assumptions holds

Theorem (G/Kunz/Meischner[3])

For any s > 0 the penalty problem

$$\tilde{J}(u,s) \to min! \quad s.t. \ u \in L^2(\Omega)$$
 (22)

possesses a unique solution $\bar{u}(s)$ and there holds $\lim_{s \to 0+} \bar{u}(s) = \bar{u}$. Further, if only control constraints occur then

$$\|\bar{u} - \bar{u}(s)\| = O(\sqrt{s}).$$

Theorem (Improved estimate, Winkler[Dipl.thesis 2011]) Assume that only control constraints are considered. Then in case of the quadratic loss penalty some some c > 0 exists such that

$$\|u(s) - \bar{u}\| \le c s$$

holds.

Proof (main idea) The unconstrained auxiliary problem yields

$$J'(u(s)) + \psi\left(\frac{u(s) - b}{s}\right) = 0.$$

Direct calculations lead to

$$Tu(s) = Pu(s)$$
 with $Tu := P(u - \sigma J'(u)).$

Taking $\sigma > 0$ such that T contracts. With $\bar{u} = T\bar{u}$ and with $u^0 := u(s)$ we obtain

$$||u(s) - \bar{u}|| \leq \frac{1}{1 - \kappa} ||Tu(s) - u(s)|| = \frac{1}{1 - \kappa} ||Pu(s) - u(s)||.$$

Now,

 $\|u(s) - Pu(s)\| \le s \|\bar{v}\| \qquad \forall s > 0 \qquad (\text{shown in C/K/M[3]})$

completes the proof.

Remark

The penalty multiplier $\bar{v}(s) := \psi((\bar{u}(s) - b)/s)$ approximates the optimal multiplier \bar{v} by $\|\bar{v}(s) - \bar{v}\| \le c \|\bar{u}(s) - \bar{u}\|.$

Problem (22) by (18) leads to the necessary and sufficient optimality conditions

$$\begin{aligned} &(\bar{y}(s) - q, y) - a(y, \bar{v}(s)) &= 0 \quad \forall y \in V, \\ &-a(\bar{y}(s), v) + (\bar{u}(s), v) &= 0 \quad \forall v \in V, \\ &\alpha \, \bar{u}(s) + \bar{v}(s) + \psi((\bar{u}(s) - b)/s) &= 0 \quad \text{a.e. in } \Omega. \end{aligned}$$

Theorem

For any s > 0 system (23) possesses a unique solution $(\bar{y}(s), \bar{v}(s), \bar{u}(s)).$

The structure of ψ allows to find $\bar{u}(s)$ in dependence of $\bar{v}(s)$. Due to $\bar{v} \in H^2(\Omega)$ and $H^2(\Omega) \hookrightarrow C(\bar{\Omega})$ this can be done by pointwise.

Let $\bar{u}(s) := g(\bar{v}(s), s)$. Then (23) leads to the reduced optimality system

$$(\bar{y}(s) - q, y) - a(y, \bar{v}(s)) = 0 \quad \forall y \in V, -a(\bar{y}(s), v) + (g(\bar{v}(s), s), v) = 0 \quad \forall v \in V.$$
 (24)

Theorem

For any s > 0 the system (24) possesses a unique solution $(\bar{u}(s), \bar{v}(s)) \in V \times V$ and $\bar{u}(s) := g(\bar{v}(s), s)$ forms the optimal solution of the problem (22). Consider the boundary control case (10). **Assumption**: There exist $\delta, \varepsilon > 0$ such that $J''(\bar{u})[h,h] \ge \delta \|h\|_{0,\Gamma}^2 \qquad \forall \|h\|_{0,\Gamma} \le \varepsilon.$

Theorem

Let $\{s_k\} \subset \mathbb{R}_+$ with $s_k \to 0$ for $k \to \infty$. Then any related sequence $u_k := u(s_k)$ is bounded in U and therefore $\{u_k\}$ weakly compact. Any weakly convergent $\{u_k\}_{\mathcal{K}} \subset \{u_k\}$ converges also strongly in U to \bar{u} , i.e. $\lim_{k \in \mathcal{K}, k \to \infty} ||u(s_k) - \bar{u}||_{0,\Gamma} = 0$. Further, some $\sigma \in (0, 1)$, $s_0 > 0$ exist such that

$$\|u(s_k) - \bar{u}\|_{\mathbf{0},\mathsf{\Gamma}} \leq \frac{2\sigma}{1-\sigma} \|\bar{v}\|_{\mathbf{0},\mathsf{\Gamma}} s_k \quad \forall k \in \mathcal{K}, \, s_k \in (\mathbf{0}, s_{\mathbf{0}}],$$

where \bar{v} denotes the optimal Lagrange multiplier at \bar{u} related to the constraint $u \leq b$.

C.Grossmann

Consider conforming finite element discretizations

$$V_h \subset V$$

applied to the control reduced systems (24). This leads to the finite dimensional nonlinear systems

$$(\bar{y}_h - q, y_h) - a(y_h, \bar{v}_h) = 0 \quad \forall y_h \in V_h, -a(\bar{y}_h, v_h) + (g(\bar{v}_h, s), v_h) = 0 \quad \forall v_h \in V_h.$$
 (25)

Like in the continuous case system (25) defines uniquely the solution $(\bar{y}_h(s), \bar{v}_h(s)) \in V_h \times V_h$.

Remark

Unlike in full discretization no a-priori discretization of the control space U is used. The penalty yields an approximate projection.

Convergence analysis

follows widely standard arguments of conforming FEM discretization.

Galerkin orthogonality

$$(\bar{y}_h - \bar{y}, y_h) - a(y_h, \bar{v}_h - \bar{v}) = 0 \quad \forall y_h \in V_h, -a(\bar{y}_h - \bar{y}, v_h) + (g(\bar{v}_h, s) - g(\bar{v}, s), v_h) = 0 \quad \forall v_h \in V_h.$$
(26)

Define

Galerkin projections

 $\tilde{y}_h,\,\tilde{v}_h\in V_h$ of $\bar{y},\,\bar{v}\in V$ by

$$a(\bar{y} - \tilde{y}_h, v_h) = 0 \quad \forall v_h \in V_h$$

and

$$a(y_h, \overline{v} - \widetilde{v}_h) = 0 \quad \forall y_h \in V_h.$$

Lemma (Schiela[8])

From (26) with the Galerkin projections follows

$$(\bar{y}_h - \bar{y}, \tilde{y}_h - \bar{y}_h) - (g(\bar{v}_h, s) - g(\bar{v}, s), \tilde{v}_h - \bar{v}_h) = 0.$$

Theorem

There exist some constant c > 0 such that

$$\|\bar{y} - \bar{y}_h\|^2 + \|\bar{v} - \bar{v}_h\|^2 \le c \left(\|\bar{y} - \tilde{y}_h\|^2 + \|\bar{v} - \tilde{v}_h\|^2\right)$$

with the Galerkin projections $\tilde{y}_h, \tilde{v}_h \in V_h$.

Remark

If no state constraints are given then this constant is independent of the embedding parameter s > 0.

4. Numerical Example

Consider piecewise linear conforming finite elements

$$V_h \subset V$$

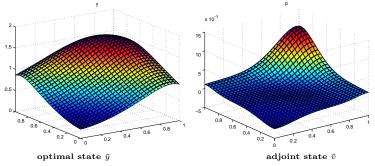
with a criss-cross triangulation applied to the control reduced systems (24).

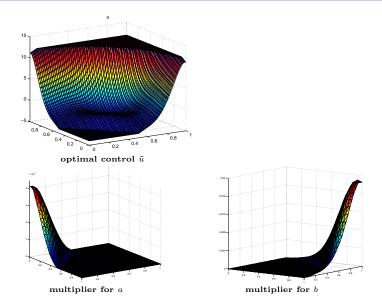
Example 1

$$\begin{split} J(y,u) &:= \frac{1}{2} \|y - q\|_0^2 &+ \quad \frac{\alpha}{2} \|u\|_0^2 \to \min! \\ \text{s.t.} &- \Delta y &= \quad u \quad \text{in } \Omega = [0,1]^2 \\ &\quad \frac{\partial y}{\partial n} + y &= \quad 0 \quad \text{on } \Gamma, \\ &\quad u \in U_{ad} \quad := \quad \{u \in U: \ -4 \leq u \leq 12 \quad \text{a.e. in } \Omega\} \\ \text{with } q(x_1,x_2) &= x_1 + x_2 \,. \end{split}$$

C.Grossmann

Solution obtained with loss penalty for $s = 10^{-10}$ and overall N = 900.

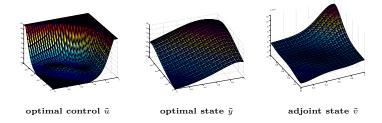




Similar results for the smoothed exact penalty

$$\psi(t) = \delta \left(1 + \frac{t}{\sqrt{1+t^2}}\right).$$

Unlike in the quadratic loss penalty case here feasibility is obtained for sufficiently small s > 0.



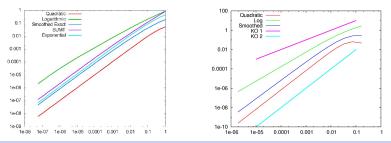
Experimental order of convergence in long-step path following with one Newton step per iteration and reduction

$$s_{k+1} = 0.5 \, s_k$$

s	$EOC_0(y)$	$EOC_1(y)$	$EOC_0(u)$
1	1.0097	0.9419	1.3334
2 ⁻⁴	1.00	0.9955	1.0279
2 ⁻⁸	1.00	1.00	1.0026
2 ⁻¹²	1.00	1.00	1.00
2 ⁻¹⁶	1.00	1.00	1.00
2 ⁻²⁰	1.00	1.00	1.00

Accuracies for a 1D-example with known exact solution

	quadratic	loss	log-barr	ier	smoothed	exact
s	$\ ar{u}(s)-ar{u}\ $	EOC	$\ ar{u}(s)-ar{u}\ $	EOC	$\ ar{u}(s)-ar{u}\ $	EOC
2 ⁻⁵	0.1869	0.9171	4.4882	0.6552	0.8625	0.77546
2^{-10}	0.0061	0.9972	0.3717	0.7499	0.0408	0.9272
2^{-15}	0.0002	0.9999	0.0257	0.7864	0.0014	0.9869
2^{-20}	6.0315 E-06	1.0000	0.0014	0.9115	4.4722 E-05	0.9991
2^{-25}	1.8848 E-07	1.0000	4.5904 E-05	0.9954	1.3985 E-06	0.9999



C.Grossmann

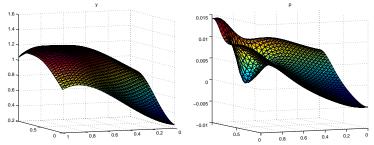
Prague, April 14-th, 2012

Modification of Example 1 by the additional state constraint

$$y(x) \leq 1.2$$
 in Ω

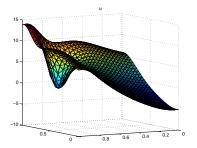
and with no control bounds.

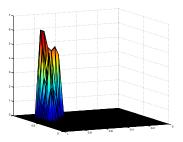
Numerical results for N = 256 and $s = 10^{-3}$



optimal state y

adjoint state v





 $\mathbf{optimal}\ \mathbf{control}\ u$

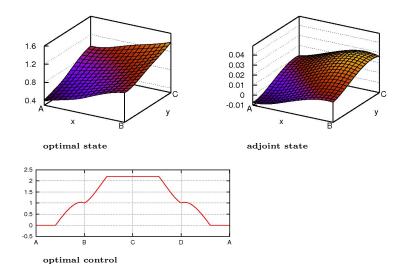
approximate multiplier

Example 2

$$J(y,u) := \frac{1}{2} ||y - q||_0^2 + \frac{\alpha}{2} ||u||_0^2 \to \min!$$

s.t. $-\Delta y + y^3 = 0$ in $\Omega = [0,1]^2$,
 $\frac{\partial y}{\partial n} + y = u$ on Γ ,
 $u \in U_{ad} := \{u \in L^2(\Gamma) : 0 \le u \le 2.2 \text{ a.e. on } \Gamma\}$

with $q(x_1, x_2) = x_1 + x_2$.



Solution obtained for N = 200 (each direction), $s = 10^{-40}$.

Obtained experimental order of convergence

s	$\ u_h(s)-ar{u}_h\ $	EOC
2 ⁻⁰⁵	1.93e - 02	0.84
2^{-10}	6.79e - 04	0.99
2^{-15}	2.13e - 05	1.00
2^{-20}	6.66e - 07	1.00
2^{-25}	2.08e - 08	1.00
2^{-30}	6.49e - 10	1.01

Error
$$e(s) := ||u_h(s) - \overline{u}_h||$$

Outlook

- extend the analytical proof for the numerically observed convergence rate O(s) to more general types of barrier-penalty functions;
- deriving specific solution techniques for the elimination of u_h for reduced FEM discretizations;
- finding sharp bounds for the radius of convergence of Newton's method;
- studying long-step path-following Newton methods;
- study of stability and convergence properties in the case of state constraints.

J.P. Dussault, P. - Shen, H. - Bandrauk, A.: Penalty algorithms in Hilbert spaces., Acta Math. Sin., Engl. Ser. 23(2007), 229-236.

Gugat, M. - Herty, M.: The smoothed-penalty algorithm for state constrained optimal control problems for partial differential equations, Optim. Methods Softw. 25(2010), 573-599.

Grossmann, C. - Kunz, H. - Meischner, R.: *Elliptic control by penalty techniques with control reduction*, System modeling and optimization, 251-267, IFIP Adv. Inf. Commun. Technol. 312, Springer, Berlin, 2009.

Grossmann, C. - Winkler, M.: Mesh-independent convergence of penalty methods applied to optimal control with partial differential equations, (to appear in Optimization (2012), DOI: 10.1080/02331934.2012.655693).

Grossmann, C. - Winkler, M.: The quadratic penalty method applied to boundary control of semilinear elliptic equations, 2012, (submitted)

Hinze, M.: A variational discretization concept in control constrained optimization: The linear-quadratic case, Comput. Optim. Appl. 30(2005), 45-61.

Krumbiegel K. - Neitzel I. - Rösch A.; Regularization for semilinear elliptic optimal control problems with pointwise state and control constraints, Comput. Optim. Appl. (2010). 1-27.

Schiela, A.: The control reduced interior point method, PhD-thesis, FU Berlin, 2006.

Tröltzsch, F.: Optimal Control of Partial Differential Equations. Theory, Methods and Applications. Amer. Math. Soc. (AMS), Providence, RI, 2010.

Winkler, M.: Strafmethoden für steuerbeschränkte Kontrollprobleme, Diploma thesis, TU Dresden, May 2011.