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1. Problem Formulation, Basic Properties

1.1. Distributed Controls (see G/Kunz/Meischner[3], G/Winkler[4])

Ω ⊂ Rn, n = 2, 3 bounded convex domain,
q, b, d ∈ L∞(Ω) given.

Considered optimal control problem

Ĵ(y, u) :=
1

2

∫
Ω
(y − q)2 +

α

2

∫
Ω
u2 → min!

s.t. −∆y = u in Ω, (1)

y +
∂y

∂n
= 0 on Γ := ∂Ω,

u ∈ Uad,

α > 0 regularization parameter
Uad ⊂ L2(Ω) set of admissible controls (convex, closed).
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Uad :=
{
u ∈ L2(Ω) : u ≤ b a.e.in Ω

}
(2)

in case of only control constraints - or

Uad :=
{
u ∈ L2(Ω) : u ≤ b, y ≤ d a.e.in Ω

}
(3)

in case of state and control constraints.
One-sided bounds only to simplify the presentation.

General assumption: Uad 6= ∅.

State equations of (1) in the weak sense in V := H1(Ω),
a(·, ·) : V × V → R defined by

a(y, v) :=

∫
Ω
∇y · ∇v +

∫
Γ
yv ∀y, v ∈ V. (4)
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Lemma

For any u ∈ Uad there is a unique y ∈ V such that

a(y, v) = (u, v) ∀v ∈ V. (5)

Su := y and V ↪→ L2(Ω) defines a linear, continuous mapping
S : L2(Ω) → L2(Ω).

Thus, problem (1) can be reduced to

J(u) := Ĵ(Su, u) → min! s.t. u ∈ Uad. (6)

Uad is nonempty, closed and convex and J is continuous and
strongly convex.
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Remark

Since Ω is convex, the solution y ∈ V of (5) has the additional
regularity y ∈ H2(Ω). Hence, S is a linear, continuous mapping
from L2(Ω) to H2(Ω).

Theorem

Problem (6) possesses a unique optimal solution ū and
(Sū, ū) ∈ V ×Uad is the unique optimal solution of (1). Further,
system

(ȳ − q, y)− a(y, v̄) = 0 ∀y ∈ V,

a(ȳ, v)− (ū, v) = 0 ∀v ∈ V,

α(ū, u− ū) + (u− ū, v̄) ≥ 0 ∀u ∈ Uad

(7)

is necessary and sufficient for ū ∈ Uad to be optimal.
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Remark

The inequality in system (7) is equivalent to

ū = P (ū− σ(v̄ + αū)) (8)

for any σ > 0, where P is the L2(Ω)-ortho-projection onto Uad.
For sufficiently small σ > 0 the mapping

Tu := P (u− σ((S′)∗(Su− q) + αu)) ∀u ∈ U (9)

is a contraction. (Here S′ = S)

Especially for σ = 1/α formula (8) yields ū = P (− 1
α v̄) i.e., ū is

expressed by the remaining variables (see Hinze[6]).
If only control constraints occur then P is easy to evaluate,
not so in case of state constraints!
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1.2. Case of Boundary Controls (see G/Winkler[5])

Consider the semi-linear boundary control problem

J̃(y, u) := 1
2

∫
Ω

(y − q)2 + α
2

∫
Γ

u2 → min!

subject to −∆y + f(·, y) = 0 in Ω,

∂y
∂n

+ y = u on Γ, u ∈ Uad .

(10)

with
Uad := {u ∈ L2(Γ) : a ≤ u ≤ b a.e. on Γ }

q ∈ L2(Ω), a, b ∈ R, a < b given. f ∈ C2(Ω× R) → R, twice
L-continuously differentiable and Minty monotone, i. e.

(f(x, s)− f(x, t))(s− t) ≥ 0 ∀x ∈ Ω̄, s, t ∈ R (11)
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The state equation (10) is understood as weak formulation

a(y, v) + (f(·, y), v)Ω = (u, v)Γ ∀v ∈ V. (12)

Lemma

For any u ∈ U problem (12) possesses a unique solution y ∈ V .
The operator S : U → V defined by Su := y is Lipschitz
continuous, i.e. there is some c > 0 such that

‖Su− Sũ‖V ≤ c ‖u− ũ‖U ∀u, ũ ∈ U, (13)

and weakly sequentially continuous, i.e.

uk ⇀ u in U =⇒ yk ⇀ y in V yk := Suk, y := Su. (14)

Furthermore holds yk → y in L2(Ω).
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The control-to-state mapping leads to the reduced problem

J(u) :=
1

2
‖Su− q‖2

0,Ω +
α

2
‖u‖2

0,Γ → min! s.t. u ∈ Uad (15)

Theorem

Problem (15) possesses an optimal solution ū ∈ Uad. Any
optimal solution ū ∈ Uad of (15) satisfies

〈J ′(ū), u− ū〉 ≥ 0 ∀u ∈ Uad, (16)

which is equivalent to

(Sū− q, S′(u− ū))Ω + α (ū, u− ū)Γ ≥ 0 ∀u ∈ Uad. (17)
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2. Penalties for Control Bounds

Let
Uad =

{
u ∈ L2(Ω) : u ≤ b a.e.in Ω

}
Barrier-penalty modification

J̃(u, s) := J(u) +

∫
Ω
φ(u(x)− b(x), s)dx (18)

of the objective. Here s > 0 denotes the penalty parameter with
s→ 0+ and φ : R → R some barrier-penalty function that
satisfies

∂

∂t
φ(t, s) = ψ

(
t

s

)
∀t ∈ domφ(·, s) (19)

with an appropriate function ψ : R → R.
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Results for the finite dimensional case

Problem

J : Rn → R and g : Rn → Rm, sufficiently smooth and consider

J(u) → min! s.t. u ∈ Rn, g(u) ≤ 0. (20)

Auxiliary problem via general barrier-penalty approach

Problem

J̃(u, s) := J(u) +
m∑

i=1

φi(gi(u), s) s.t. u ∈ Rn (21)
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Theorem

Let ū a local solution of (20) and ū(s) a related local solution of
(21). Further, assume that LICQ and strict complementarity
locally hold. Then

lim
s→0+

ū(s) = ū

and with some c > 0 and s0 > 0 we have

‖ū(s)− ū‖ ≤ c s ∀s ∈ (0, s0].

Difficulties: c = c(n) with c(n) →∞ for n→∞,
local application of implicit function theorem
(using second order sufficiency conditions).
In optimal control: no ’uniform’ strict
complementarity.
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For optimal control consider either the quadratic loss

ψ(t) := max{0, t}, φ(t, s) =
1

2s
max2{0, t}

or the smoothed exact penalty

ψ(t) := δ

(
1 +

t√
1 + t2

)
φ(t, s) = δ

(
t+

√
s2 + t2

)
.

δ ≥ ‖v̄‖∞ + ε with some ε > 0, optimal multiplier v̄.

log-barrier quadratic loss smoothed exact

Log-barrier analyzed by Schiela [8].
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Back to optimal control

For the smoothed exact as well as for the quadratic loss
functional under mild additional assumptions holds

Theorem (G/Kunz/Meischner[3])

For any s > 0 the penalty problem

J̃(u, s) → min! s.t. u ∈ L2(Ω) (22)

possesses a unique solution ū(s) and there holds lim
s→0+

ū(s) = ū.

Further, if only control constraints occur then

‖ū− ū(s)‖ = O(
√
s).
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Theorem (Improved estimate, Winkler[Dipl.thesis 2011])

Assume that only control constraints are considered. Then in
case of the quadratic loss penalty some some c > 0 exists such
that

‖u(s)− ū‖ ≤ c s

holds.

Proof (main idea)
The unconstrained auxiliary problem yields

J ′(u(s)) + ψ

(
u(s)− b

s

)
= 0.

Direct calculations lead to

Tu(s) = Pu(s) with Tu := P (u− σJ ′(u)).
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Taking σ > 0 such that T contracts. With ū = T ū and with
u0 := u(s) we obtain

‖u(s)− ū‖ ≤ 1
1− κ ‖Tu(s)− u(s)‖

= 1
1− κ ‖Pu(s)− u(s)‖.

Now,

‖u(s)− Pu(s)‖ ≤ s ‖v̄‖ ∀ s > 0 (shown in C/K/M[3])

completes the proof.
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Remark

The penalty multiplier v̄(s) := ψ((ū(s)− b)/s) approximates the
optimal multiplier v̄ by ‖v̄(s)− v̄‖ ≤ c ‖ū(s)− ū‖.

Problem (22) by (18) leads to the necessary and sufficient
optimality conditions

(ȳ(s)− q, y)− a(y, v̄(s)) = 0 ∀y ∈ V,
−a(ȳ(s), v) + (ū(s), v) = 0 ∀v ∈ V,

α ū(s) + v̄(s) + ψ((ū(s)− b)/s) = 0 a.e. in Ω.

(23)

Theorem

For any s > 0 system (23) possesses a unique solution
(ȳ(s), v̄(s), ū(s)).
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The structure of ψ allows to find ū(s) in dependence of v̄(s).
Due to v̄ ∈ H2(Ω) and H2(Ω) ↪→ C(Ω̄) this can be done by
pointwise.

Let ū(s) := g(v̄(s), s). Then (23) leads to the reduced optimality
system

(ȳ(s)− q, y)− a(y, v̄(s)) = 0 ∀y ∈ V,

−a(ȳ(s), v) + (g(v̄(s), s), v) = 0 ∀v ∈ V.
(24)

Theorem

For any s > 0 the system (24) possesses a unique solution
(ū(s), v̄(s)) ∈ V × V and ū(s) := g(v̄(s), s) forms the optimal
solution of the problem (22).
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Consider the boundary control case (10).
Assumption: There exist δ, ε > 0 such that

J ′′(ū)[h, h] ≥ δ‖h‖2
0,Γ ∀ ‖h‖0,Γ ≤ ε.

Theorem

Let {sk} ⊂ R+ with sk → 0 for k →∞. Then any related
sequence uk := u(sk) is bounded in U and therefore {uk} weakly
compact. Any weakly convergent {uk}K ⊂ {uk} converges also
strongly in U to ū, i.e. limk∈K,k→∞ ‖u(sk)− ū‖0,Γ = 0.

Further, some σ ∈ (0, 1), s0 > 0 exist such that

‖u(sk)− ū‖0,Γ ≤
2σ

1− σ
‖v̄‖0,Γ sk ∀k ∈ K, sk ∈ (0, s0],

where v̄ denotes the optimal Lagrange multiplier at ū related to
the constraint u ≤ b.
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3. Discretization of Reduced Problems

Consider conforming finite element discretizations

Vh ⊂ V

applied to the control reduced systems (24).
This leads to the finite dimensional nonlinear systems

(ȳh − q, yh)− a(yh, v̄h) = 0 ∀yh ∈ Vh,

−a(ȳh, vh) + (g(v̄h, s), vh) = 0 ∀vh ∈ Vh.
(25)

Like in the continuous case system (25) defines uniquely the
solution (ȳh(s), v̄h(s)) ∈ Vh × Vh.
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Remark

Unlike in full discretization no a-priori discretization of the
control space U is used. The penalty yields an approximate
projection.

Convergence analysis

follows widely standard arguments of conforming FEM
discretization.

Galerkin orthogonality

(ȳh − ȳ, yh)− a(yh, v̄h − v̄) = 0 ∀yh ∈ Vh,

−a(ȳh − ȳ, vh) + (g(v̄h, s)− g(v̄, s), vh) = 0 ∀vh ∈ Vh.
(26)
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Define

Galerkin projections

ỹh, ṽh ∈ Vh of ȳ, v̄ ∈ V by

a(ȳ − ỹh, vh) = 0 ∀vh ∈ Vh

and a(yh, v̄ − ṽh) = 0 ∀yh ∈ Vh.

Lemma (Schiela[8])

From (26) with the Galerkin projections follows

(ȳh − ȳ, ỹh − ȳh)− (g(v̄h, s)− g(v̄, s), ṽh − v̄h) = 0.
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Theorem

There exist some constant c > 0 such that

‖ȳ − ȳh‖2 + ‖v̄ − v̄h‖2 ≤ c
(
‖ȳ − ỹh‖2 + ‖v̄ − ṽh‖2

)
with the Galerkin projections ỹh, ṽh ∈ Vh.

Remark

If no state constraints are given then this constant is
independent of the embedding parameter s > 0.
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4. Numerical Example

Consider piecewise linear conforming finite elements

Vh ⊂ V

with a criss-cross triangulation applied to the control reduced
systems (24).

Example 1

J(y, u) := 1
2‖y − q‖2

0 + α
2 ‖u‖

2
0 → min!

s.t. −∆y = u in Ω = [0, 1]2

∂y
∂n

+ y = 0 on Γ,

u ∈ Uad := {u ∈ U : −4 ≤ u ≤ 12 a.e. in Ω}
with q(x1, x2) = x1 + x2 .
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Solution obtained with loss penalty for s = 10−10 and overall
N = 900.
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0

0.2

0.4

0.6

0.8

1
0.2

0.4
0.6

0.8
1  

0

1

2

3

4

x 10
−3

0
0.2

0.4
0.6

0.8
1

0.2
0.4

0.6
0.8

1  
0

0.004

0.008

0.012

0.016

0.02

multiplier for a multiplier for b

C.Grossmann Prague, April 14-th, 2012



Similar results for the smoothed exact penalty

ψ(t) = δ (1 +
t√

1 + t2
).

Unlike in the quadratic loss penalty case here feasibility is
obtained for sufficiently small s > 0.
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Experimental order of convergence in long-step path following
with one Newton step per iteration and reduction

sk+1 = 0.5 sk

s EOC0(y) EOC1(y) EOC0(u)

1 1.0097 0.9419 1.3334

2−4 1.00 0.9955 1.0279

2−8 1.00 1.00 1.0026

2−12 1.00 1.00 1.00

2−16 1.00 1.00 1.00

2−20 1.00 1.00 1.00
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Accuracies for a 1D-example with known exact solution

quadratic loss log-barrier smoothed exact
s ‖ū(s)− ū‖ EOC ‖ū(s)− ū‖ EOC ‖ū(s)− ū‖ EOC
2−5 0.1869 0.9171 4.4882 0.6552 0.8625 0.77546
2−10 0.0061 0.9972 0.3717 0.7499 0.0408 0.9272
2−15 0.0002 0.9999 0.0257 0.7864 0.0014 0.9869
2−20 6.0315 E-06 1.0000 0.0014 0.9115 4.4722 E-05 0.9991
2−25 1.8848 E-07 1.0000 4.5904 E-05 0.9954 1.3985 E-06 0.9999
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Modification of Example 1 by the additional state constraint

y(x) ≤ 1.2 in Ω

and with no control bounds.

Numerical results for N = 256 and s = 10−3
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Example 2

J(y, u) := 1
2‖y − q‖2

0 + α
2 ‖u‖

2
0 → min!

s.t. −∆y + y3 = 0 in Ω = [0, 1]2,

∂y
∂n

+ y = u on Γ,

u ∈ Uad := {u ∈ L2(Γ) : 0 ≤ u ≤ 2.2 a.e. on Γ}

with q(x1, x2) = x1 + x2 .

C.Grossmann Prague, April 14-th, 2012



optimal state adjoint state

optimal control

Solution obtained for N = 200 (each direction), s = 10−40.
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Obtained experimental order of convergence

s ‖uh(s)− ūh‖ EOC

2−05 1.93e− 02 0.84
2−10 6.79e− 04 0.99
2−15 2.13e− 05 1.00
2−20 6.66e− 07 1.00
2−25 2.08e− 08 1.00
2−30 6.49e− 10 1.01

Error e(s) := ‖uh(s)− ūh‖
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Outlook

extend the analytical proof for the numerically observed
convergence rate O(s) to more general types of
barrier-penalty functions;

deriving specific solution techniques for the elimination of
uh for reduced FEM discretizations;

finding sharp bounds for the radius of convergence of
Newton’s method;

studying long-step path-following Newton methods;

study of stability and convergence properties in the case of
state constraints.
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