A new approach 00000000

Numerical verification 0000

On a new approach of using exponentially fitted splines for singularly perturbed convection-diffusion problems

Martin Schopf

Fachrichtung Mathematik Institut für Numerische Mathematik

14th April 2012

A new approach 00000000

Numerical verification 0000

1 Background

Problem Exponentially fitted splines

2 A new approach Motivation Error analysis

3 Numerical verification

Background ●○○○ A new approach 00000000

Numerical verification $_{\rm OOOO}$

Convection-diffusion problem

$$\mathcal{L}u \coloneqq -\varepsilon u'' - bu' + cu = f \quad \text{in } \Omega = (0, 1),$$
$$u(0) = u(1) = 0,$$

 $0<\varepsilon\ll 1$, b , c , f smooth and for $x\in [0,1]$

$$0 < \beta \le b(x),$$

$$c(x) \ge C_0 > 0,$$

$$c(x) + \frac{1}{2}b'(x) \ge C_1 > 0.$$

Standard methods fail!

Two techniques of layer-adapted discretization:

- Fine mesh to resolve layer
- Adequate base functions

Background ●○○○ A new approach 00000000

Numerical verification $_{\rm OOOO}$

Convection-diffusion problem

$$\mathcal{L}u \coloneqq -\varepsilon u'' - bu' + cu = f \quad \text{in } \Omega = (0, 1),$$
$$u(0) = u(1) = 0,$$

 $0<\varepsilon\ll 1$, b , c , f smooth and for $x\in [0,1]$

$$0 < \beta \le b(x),$$

$$c(x) \ge C_0 > 0,$$

$$c(x) + \frac{1}{2}b'(x) \ge C_1 > 0.$$

Standard methods fail!

Two techniques of layer-adapted discretization:

- Fine mesh to resolve layer
- Adequate base functions

Background ○●○○ A new approach 00000000

Numerical verification 0000

Hemker, 1977: exponentially fitted spline ψ_i : Let $\Omega_N = \{x_i\}_{i=0,\dots,N}$ equidistant grid; \overline{b} and \overline{c} piecewise constant approximations of b and c

$$\overline{\mathcal{L}}\psi_i \coloneqq -\varepsilon\psi_i'' - \overline{b}\psi_i' + \overline{c}\psi_i = 0 \quad \text{in } \Omega \setminus \Omega_N, \\
\psi_i(x_j) = \delta_{ij}, \quad i = 0, \dots, N-1.$$

Error of the Ritz-Galerkin $\overline{\mathcal{L}}$ -spline FEM for a constant coefficient problem, $\varepsilon = 10^{-8}$, N = 32

N	$\sqrt{\varepsilon} \left u - u_N^{\overline{\mathcal{L}}\text{-spline}} \right _1$		$\left\ u - u_N^{\overline{\mathcal{L}}\text{-spline}} \right\ _0$		$\left\ u - u_N^{\overline{\mathcal{L}}\text{-spline}} \right\ _\infty$	
	error	rate	error	rate	error	rate
32	1.88e-1	0 49	1.81e-2	0.98	2.93e-2	0 99
64	1.34e-1	0.49	9.17e-3	0.99	1.47e-2	0.99
128	9.53e-2	:	4.61e-3	:	7.37e-3	:
:	-	0.50	:	1.00	:	1.00
32768	5.98e-3	0.00	1.81e-5	2.00	2.89e-5	2100

Background ○○○● A new approach 00000000

Numerical verification

$$\left\| u - u_N^{\overline{\mathcal{L}}\text{-spline}} \right\|_{\varepsilon} \le C N^{-1/2}$$
 is sharp! (*)

Stynes and O'Riordan 1991: use $\overline{\mathcal{L}}$ -splines only in the layer region: in all elements that cover $[0, 2\varepsilon/\beta \ln(1/\varepsilon)]$.

• First order convergence in L₂ and for interpolation error

• No improvement over (*) uniformly in arepsilon

Background ○○○● A new approach 00000000

Numerical verification

$$\left\| u - u_N^{\overline{\mathcal{L}}\text{-spline}} \right\|_{\varepsilon} \le C N^{-1/2}$$
 is sharp! (*)

Stynes and O'Riordan 1991: use $\overline{\mathcal{L}}$ -splines only in the layer region: in all elements that cover $[0, 2\varepsilon/\beta \ln(1/\varepsilon)]$.

- First order convergence in L₂ and for interpolation error
- No improvement over (*) uniformly in ε

A new approach

Numerical verification 0000

Solution Decomposition: Let b, c, f be sufficiently smooth, then

$$u = S + E$$

$$\mathcal{L}S = f \text{ in } (0, 1),$$

$$-bS'(0) + cS(0) = f(0),$$

$$S(1) = 0,$$

$$\|S\|_2 \le C,$$

$$\begin{aligned} \mathcal{L}E &= 0 \text{ in } (0,1), \\ E(0) &= -S(0), \\ E(1) &= 0, \\ \left| E^{(i)}(x) \right| \leq C \varepsilon^{-i} \mathrm{e}^{-\beta x/\varepsilon} \end{aligned}$$

A new approach

Numerical verification 0000

Derivation of the method: weak formulations:

$$V \coloneqq \{v \in H^1(\Omega) : v(1) = 0\}$$
$$a(w, v) \coloneqq \varepsilon(w', v') + (-bw' + cw, v)$$

 $S, E \in V$ s.t.

$$\underbrace{a^{S}(S,v)}_{:=a(S,v) = f^{S}(v) \text{ for all } v \in V,} = a(S,v) + \varepsilon \frac{c(0)}{b(0)} S(0)v(0) \qquad a(E,v) = 0 \text{ for all } v \in H_{0}^{1}(\Omega), \\ E(0) = -S(0), \qquad E(0) = -S(0),$$

Bilinear forms coercive in V with respect to:

$$\begin{aligned} \|\cdot\|_{\varepsilon,0}, & \|\cdot\|_{\varepsilon}, \\ \|v\|_{\varepsilon,0}^2 \coloneqq \|v\|_{\varepsilon}^2 + |v(0)|^2. & \|v\|_{\varepsilon}^2 \coloneqq \varepsilon |v|_1^2 + \|v\|_0^2. \end{aligned}$$

A new approach

Numerical verification 0000

Derivation of the method: weak formulations:

$$V \coloneqq \{v \in H^1(\Omega) : v(1) = 0\}$$
$$a(w, v) \coloneqq \varepsilon(w', v') + (-bw' + cw, v)$$

 $S, E \in V$ s.t.

$$\underbrace{a^{S}(S,v)}_{:=a(S,v) = f^{S}(v) \text{ for all } v \in V,}_{i=a(S,v) + \varepsilon \frac{c(0)}{b(0)}S(0)v(0)} a(E,v) = 0 \text{ for all } v \in H_{0}^{1}(\Omega), \\ E(0) = -S(0), \\ f^{S}(v) := (f,v) + \varepsilon \frac{f(0)}{b(0)}v(0),$$

Bilinear forms coercive in V with respect to:

$$\| \cdot \|_{\varepsilon,0}, \qquad \qquad \| \cdot \|_{\varepsilon}, \\ \|v\|_{\varepsilon,0}^2 \coloneqq \|v\|_{\varepsilon}^2 + |v(0)|^2. \qquad \qquad \|v\|_{\varepsilon}^2 \coloneqq \varepsilon |v|_1^2 + \|v\|_0^2.$$

A new approach

Numerical verification

Derivation of the method: Discretization:

$$u_N = S_N + E_N$$

with

$$\begin{split} S_N \in V^S_N(\subset V) & \text{span of standard hat functions over } \{x_i\}_{i=0}^{N-1} \\ a^S(S_N, v) = f^S(v) & \text{for all } v \in V^S_N, \end{split}$$

$$E_N \in V_N^E(\subset V) \text{ span of } \overline{\mathcal{L}} \text{ splines } \psi_i \text{ over } \{x_i\}_{i=0}^{N-1}$$
$$a(E_N, v) = 0 \text{ for all } v \in V_N^E \cap H_0^1(\Omega),$$
$$E_N(0) = -S_N(0).$$

Use $\overline{\mathcal{L}}$ splines only for the approximation of the layer component!

A new approach

Numerical verification

Derivation of the method: Discretization:

$$u_N = S_N + E_N$$

with

$$\begin{split} S_N \in V^S_N(\subset V) & \text{span of standard hat functions over } \{x_i\}_{i=0}^{N-1} \\ a^S(S_N, v) = f^S(v) & \text{for all } v \in V^S_N, \end{split}$$

$$E_N \in V_N^E(\subset V) \text{ span of } \overline{\mathcal{L}} \text{ splines } \psi_i \text{ over } \{x_i\}_{i=0}^{N-1}$$
$$a(E_N, v) = 0 \text{ for all } v \in V_N^E \cap H_0^1(\Omega),$$
$$E_N(0) = -S_N(0).$$

Use $\overline{\mathcal{L}}$ splines only for the approximation of the layer component!

A new approach

Numerical verification

Error analysis: Smooth part *S*: Standard arguments give

$$||S - S_N||_{\varepsilon} \le CN^{-1},$$

$$S(0) - S_N(0)| \le CN^{-1}.$$

Layer part *E*:

$$E^{I}(x) \coloneqq \sum_{i=0}^{N-1} E(x_i)\psi_i(x)$$

Using stability estimates (estimate of the Green's function):

$$\begin{split} \|(E^{I})'\|_{L_{1}(0,1)} &\leq \|E'\|_{L_{1}(0,1)} + \|(E^{I} - E)'\|_{L_{1}(0,1)} \\ &\leq \|E'\|_{L_{1}(0,1)} + \frac{2}{\beta} \|\overline{\mathcal{L}}(E^{I} - E)\|_{L_{1}(0,1)} \\ &\leq C \big(\varepsilon \|E''\|_{L_{1}(0,1)} + \|E'\|_{L_{1}(0,1)} + \|E\|_{L_{1}(0,1)} \big) \leq C. \end{split}$$

Error analysis: Layer part *E* (2):

Interpolation error:

$$\begin{split} \|E - E^{I}\|_{\infty} &\leq C \|\mathcal{L}(E - E^{I})\|_{L_{1}(0,1)} = C \|\mathcal{L}E^{I} - \overline{\mathcal{L}}E^{I}\|_{L_{1}(0,1)} \\ &\leq C \int_{0}^{1} \left|\overline{b}(x) - b(x)\right| \left|(E^{I})'(x)\right| + \left|\overline{c}(x) - c(x)\right| \left|E^{I}(x)\right| \mathrm{d}x. \\ &\leq C \left(\|\overline{b} - b\|_{\infty} + \|\overline{c} - c\|_{\infty}\right) \leq C N^{-1}. \end{split}$$

In energy norm: Use $\mathcal{L}E = \overline{\mathcal{L}}E^I = 0$ in a weak sense (tested with $E - E^I$) and the L_{∞} estimate to obtain

$$||E - E^I||_{\varepsilon} \le CN^{-1}.$$

Error analysis: Layer part E (3):

Discrete error: Let $\omega \in V_N^E$ with $\omega(0) = 0$ and $\|\overline{b} - b\|_{\infty} \le Ch_N$, then

$$\|\omega\|_{\varepsilon} \le CN^{-1/2} \left(\sum_{j=1}^{N-1} \omega^2(x_j)\right)^{1/2} \le C \max_{j=1,\dots,N-1} |\omega(x_j)|.$$

Proof: use $0 = (\overline{\mathcal{L}}\omega, \omega)_{(x_i, x_{i+1})}$ and integration by parts.

- Consider $\omega(x) \coloneqq (E^I E_N)(x) (E^I E_N)(0)\psi_0(x)$
- Estimate $(E^I E_N)(0)\psi_0(x)$ (for $\epsilon \leq CN^{-1}$)
- Discrete L_{∞} estimates available
- Use comparison principle to control the influence of $E_N(0) = -S_N(0) \approx -S(0).$

Error analysis: Layer part E (3):

Discrete error: Let $\omega \in V_N^E$ with $\omega(0) = 0$ and $\|\overline{b} - b\|_{\infty} \le Ch_N$, then

$$\|\omega\|_{\varepsilon} \le CN^{-1/2} \left(\sum_{j=1}^{N-1} \omega^2(x_j)\right)^{1/2} \le C \max_{j=1,\dots,N-1} |\omega(x_j)|.$$

Proof: use $0 = (\overline{\mathcal{L}}\omega, \omega)_{(x_i, x_{i+1})}$ and integration by parts.

- Consider $\omega(x) \coloneqq (E^I E_N)(x) (E^I E_N)(0)\psi_0(x)$
- Estimate $(E^I E_N)(0)\psi_0(x)$ (for $\epsilon \leq CN^{-1}$)
- Discrete L_{∞} estimates available
- Use comparison principle to control the influence of $E_N(0) = -S_N(0) \approx -S(0).$

A new approach

Result:

Assume $||S||_2 \leq C$ and the bounds on E from the solution decomposition. Suppose $\varepsilon \leq C_2 h_N$ and let \overline{b} and \overline{c} be $\mathcal{O}(N^{-1})$ piecewise constant approximations of b and c, respectively. Then for $u_N \coloneqq S_N + E_N$ it holds

$$\|u - u_N\|_{\varepsilon} \le CN^{-1}$$

Problem: amount of calculations is **doubled**!

A new approach

Result:

Assume $||S||_2 \leq C$ and the bounds on E from the solution decomposition. Suppose $\varepsilon \leq C_2 h_N$ and let \overline{b} and \overline{c} be $\mathcal{O}(N^{-1})$ piecewise constant approximations of b and c, respectively. Then for $u_N \coloneqq S_N + E_N$ it holds

$$\|u - u_N\|_{\varepsilon} \le CN^{-1}.$$

Problem: amount of calculations is doubled!

A new approach

Numerical verification

Work reduction(1): $\ell := \min\{i : x_i \ge \varepsilon/\beta \ln N\} \ge 1 \implies |E(x)| \le CN$

 $\ell := \min\{i : x_i \ge \varepsilon/\beta \ln N\} \ge 1 \implies |E(x)| \le CN^{-1} \text{ for } x \ge x_\ell.$ New interpolant:

$$\tilde{E}^{I}(x) \coloneqq \sum_{i=0}^{\ell-1} E(x_i)\psi_i(x).$$

Clearly $\tilde{E}^{I}(x) = 0$ for $x \ge x_{\ell}$, $E^{I} - \tilde{E}^{I} \in V_{N}^{E}$ vanishes at the end points of (0, 1), hence

$$\begin{aligned} \|E^{I} - \tilde{E}^{I}\|_{\varepsilon} &\leq C \max_{j=\ell,\dots,N-1} \left|E^{I}(x_{j}) - \tilde{E}^{I}(x_{j})\right| \\ &\leq C \max_{j=\ell,\dots,N-1} \left|E(x_{j})\right| \leq CN^{-1}. \end{aligned}$$

 $||E - \tilde{E}^I||_{\varepsilon} \le ||E - E^I||_{\varepsilon} + ||E^I - \tilde{E}^I||_{\varepsilon} \le CN^{-1}.$

Work reduction(1):

 $\ell := \min\{i : x_i \ge \varepsilon/\beta \ln N\} \ge 1 \implies |E(x)| \le CN^{-1} \text{ for } x \ge x_\ell.$ New interpolant:

$$\tilde{E}^{I}(x) \coloneqq \sum_{i=0}^{\ell-1} E(x_i)\psi_i(x).$$

Clearly $\tilde{E}^{I}(x) = 0$ for $x \ge x_{\ell}$, $E^{I} - \tilde{E}^{I} \in V_{N}^{E}$ vanishes at the end points of (0, 1), hence

$$\begin{split} \|E^{I} - \tilde{E}^{I}\|_{\varepsilon} &\leq C \max_{j=\ell,\dots,N-1} \left|E^{I}(x_{j}) - \tilde{E}^{I}(x_{j})\right| \\ &\leq C \max_{j=\ell,\dots,N-1} \left|E(x_{j})\right| \leq CN^{-1}. \end{split}$$

 $||E - \tilde{E}^I||_{\varepsilon} \le ||E - E^I||_{\varepsilon} + ||E^I - \tilde{E}^I||_{\varepsilon} \le CN^{-1}.$

Work reduction(2):

Assume $||S||_2 \leq C$ and the bounds on E from the solution decomposition. Suppose $\varepsilon \leq C_2 h_N$ and let \overline{b} and \overline{c} be $\mathcal{O}(N^{-1})$ piecewise constant approximations of b and c, respectively. Let $\tilde{E}_N \in \tilde{V}_N^E \coloneqq \operatorname{span}\{\psi_i, i = 0, \dots, \ell - 1\}$ s.t. $\tilde{E}_N(0) = -S_N(0)$ and

$$a(\tilde{E}_N, v) = 0$$
, for all $v \in \tilde{V}_N^E \cap H_0^1(\Omega)$.

Then $\tilde{u}_N \coloneqq S_N + \tilde{E}_N$ satisfies

$$\|u - \tilde{u}_N\|_{\varepsilon} \le CN^{-1}.$$

In the case $x_1 := \frac{1}{N} \ge \frac{\varepsilon}{\beta} \ln N$ the approximation \tilde{u}_N can be calculated in a simple **post-processing**:

$$\tilde{u}_N(x) = S_N(x) - S_N(0)\psi_0(x).$$

Work reduction(2):

Assume $||S||_2 \leq C$ and the bounds on E from the solution decomposition. Suppose $\varepsilon \leq C_2 h_N$ and let \overline{b} and \overline{c} be $\mathcal{O}(N^{-1})$ piecewise constant approximations of b and c, respectively. Let $\tilde{E}_N \in \tilde{V}_N^E \coloneqq \operatorname{span}\{\psi_i, i = 0, \dots, \ell - 1\}$ s.t. $\tilde{E}_N(0) = -S_N(0)$ and

$$a(\tilde{E}_N, v) = 0$$
, for all $v \in \tilde{V}_N^E \cap H_0^1(\Omega)$.

Then $\tilde{u}_N \coloneqq S_N + \tilde{E}_N$ satisfies

$$\|u - \tilde{u}_N\|_{\varepsilon} \le CN^{-1}.$$

In the case $x_1 := \frac{1}{N} \ge \frac{\varepsilon}{\beta} \ln N$ the approximation \tilde{u}_N can be calculated in a simple **post-processing**:

$$\tilde{u}_N(x) = S_N(x) - S_N(0)\psi_0(x).$$

A new approach 00000000

Numerical verification • 000

Test problem 1

$$\mathcal{L}u \coloneqq -\varepsilon u'' - u' + \frac{1}{2}u = f \quad \text{in } \Omega = (0, 1),$$
$$u(0) = u(1) = 0,$$

where $0 < \varepsilon \ll 1$ and f such that u = S + E with

$$S(x) = 1 - 2x + x^{3},$$

$$E(x) = \frac{1}{1 - e^{-2\sigma}} \left(e^{-x/(2\varepsilon) + \sigma(x-2)} - e^{-\left(1/(2\varepsilon) + \sigma\right)x} \right),$$

and $\sigma = \sqrt{b^2 + 4 \varepsilon c}/(2\varepsilon).$

N	$\left S-S_{N}\right _{1}$		$\left\ S-S_N ight\ _0$		$\left\ S-S_N\right\ _{\infty}$	
	error	rate	error	rate	error	rate
32 64 128 256 512 1024 2048 4096 8192 16384 32768	3.12e-2 1.56e-2 7.81e-3 3.91e-3 1.95e-3 9.77e-4 4.88e-4 2.44e-4 1.22e-4 6.10e-5 3.05e-5	$\begin{array}{c} 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ 1.00\\ \end{array}$	4.08e-4 1.02e-4 2.55e-5 6.38e-6 1.59e-6 3.99e-7 9.97e-8 2.49e-8 6.23e-9 1.56e-9 3.89e-10	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	7.25e-4 1.82e-4 4.57e-5 1.14e-5 2.86e-6 7.15e-7 1.79e-7 4.47e-8 1.12e-8 2.79e-9 6.98e-10	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

errors and convergence rates for $S-S_N$, $\varepsilon=10^{-2k},\,k=2,\ldots,6$

A new approach

Numerical verification 0000

Test problem 2

$$\begin{aligned} \mathcal{L} u &\coloneqq -\varepsilon u'' - (1+2x)u' + (1+\sqrt{x})u = 0 & \text{in } \Omega = (0,1), \\ u(0) &= 1, \quad u(1) = 0, \end{aligned}$$

where $0 < \varepsilon \ll 1$.

	$\varepsilon = 10^{-8}$				$\varepsilon \in \{10^{-6}, 10^{-8}, 10^{-10}, 10^{-12}\}$		
N	$\sqrt{\varepsilon} \ G(u_N^F)\ $	$\tilde{u}_N^2) - \tilde{u}_N' \ _0$	$\ u_N^R - \tilde{u}_N\ _0$		$\sqrt{\varepsilon} \ G(u_N^R) - \tilde{u}_N'\ _0$	$\ u_N^R - \tilde{u}_N\ _0$	
	error	rate	error	rate	max error	max error	
32	1.47e-2	0.06	1.53e-6	0 00	1.47e-2	1.53e-5	
64	7.59e-3	0.90	7.72e-7	0.90	7.59e-3	7.72e-6	
128	3.85e-3	0.96	3.88e-7	0.99	3.85e-3	3.88e-6	
256	1.94e-3	0.99	1.95e-7	1.00	1.94e-3	1.95e-6	
512	9.73e-4	0.99	9.75e-8	1.00	9.73e-4	9.73e-7	
1024	4.87e-4	1.00	4.88e-8	1.00	4.87e-4	4.86e-7	
2048	2.44e-4	1.00	2.44e-8	1.00	2.44e-4	2.42e-7	
4096	1.22e-4	1.00	1.22e-8	1.00	1.22e-4	1.20e-7	
8192	6.10e-5	1.00	6.10e-9	1.00	6.10e-5	5.93e-8	
16384	3.05e-5	1.00	3.05e-9	1.00	3.05e-5	2.88e-8	
32768	1.53e-5	1.00	1.53e-9	1.00	1.53e-5	1.35e-8	

estimated errors and convergence rates for variable coefficients