Introduction	Solution	

tic Expansion

EM Error (

Computational Result

Control Constraints 00000000

Optimal Control Subject to a Singularly Perturbed Convection-Diffusion Equation

Christian Reibiger, Hans-Görg Roos

000	00	00000	000	0000	00000000
	Introduction				
_	Motivation				
2	Solution Properti	es			
3	Asymptotic Expa • Construction • Properties • Estimates	nsion			
4	Error of the FE-NUsed MeshAnalysis	Aethod on a Shish	ıkin mesh		
5	Computational R • The Problem • Results	esults			
6	Extension to BoxProblemSolution EstimNumerical Error	-Constraints for t ates or Estimates	he Optima	I Control	

Introduction	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
	Introduction				
	Motivation				
2	Solution Proper	rties			
3	Asymptotic Exp	pansion			
	 Construction 				
	Properties				
	 Estimates 				
4	Error of the FE	-Method on a S	hishkin n		
	Used Mesh				
	 Analysis 				
5	Computational	Results			
	The Problem	Results			
	Poculto				
		C			
6	Extension to Bo	ox-Constraints f	or the Op	otimal Control	
	Problem				
	 Solution Esti 	mates			
	Numerical Er	ror Estimates			

Introduction ●00	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Motivation					

Consider

$$\begin{split} \min_{y,u} J(y,q) &\coloneqq \min_{y,q} \frac{1}{2} \|y - y_d\|_0^2 + \frac{\lambda}{2} \|q\|_0^2, \\ Ly &\coloneqq -\varepsilon y'' + by' + cy = f + q \text{ in } (0,1), \\ y(0) &= y(1) = 0. \end{split}$$

Assume

$$\begin{split} &0<\varepsilon\ll 1,\\ &\lambda>0,\\ &|b(x)|\geq\beta>0,\\ &c>0,\\ &b,c,f,y_d \text{ sufficiently smooth.} \end{split}$$

Introduction 000	Solution Properties	Asymptotic Expansion 00000	FEM Error 000	Computational Results	Control Constraints
Motivation					

Using the adjoint state p (cf. TRÖLTZSCH 2009)

$$\begin{aligned} \lambda q+p &= 0,\\ L^*p &= -\varepsilon p'' - bp' + (c-b')p = y - y_0,\\ p(0) &= p(1) = 0 \end{aligned}$$

gives equivalent problem

$$-\varepsilon y'' + by' + cy + rac{1}{\lambda} p = f, \quad y(0) = y(1) = 0, \ -\varepsilon p'' - bp' + (c - b')p - y = -y_0, \quad p(0) = p(1) = 0.$$

Introduction	Solution Properties	Asymptotic Expansion 00000	FEM Error 000	Computational Results	Control Constraints 00000000
Motivation					

This leads to a system

$$\begin{split} &-\varepsilon u_1''+a_1u_1'+b_{11}u_1+b_{12}u_2=f_1,\quad u_1(0)=u_1(1)=0,\\ &-\varepsilon u_2''-a_2u_2'+b_{22}u_2-b_{21}u_1=f_2,\quad u_2(0)=u_2(1)=0, \end{split}$$

assuming

$$a_1, a_2 \ge \alpha > 0,$$

 $b_{11}, b_{22} \ge 0,$
 $b_{12}b_{21} > 0, b_{12}, b_{21} \ge \beta > 0$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
	1 1 1				
1	Introduction				
_	Motivation				
2	Solution Proper	ties			
3	Asymptotic Exp	ansion			
	 Construction 				
	Properties				
	Estimates				
	Error of the EE.	Method on a S	hishkin m		
	Used Mesh				
	• Analysis				
5	Computational	Results			
	• The Problem				
_	Results				
6	Extension to Bo	x-Constraints for	or the Op	timal Control	
	Problem				
	• Solution Estir	nates			
	• Numerical Er	ror Estimates			

Introduction	Solution Properties	Asymptotic Expansion	FEM Error	Computational Results	Control Constraints		
000	●0	00000	000		00000000		
Solution Properties							

If the assumptions

$$\begin{array}{l} 2b_{11}b_{21}-(a_{1}b_{21}+\varepsilon b_{21}')'\geq 0\\ 2b_{22}b_{12}+(a_{2}b_{12}-\varepsilon b_{12}')'\geq 0 \end{array}$$

hold the system has an unique weak solution $u \in H_0^1(0,1)$.

Introduction 000	Solution Properties ⊙●	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints		
Solution Properties							

Assume

Then the reduced problem ($\varepsilon = 0$) has an unique solution u with

$$|u_1|_{k+1} + |u_2|_{k+1} < C(||f_1||_k + ||f_2||_k),$$

Introduction 000	Solution Properties ⊙●	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints		
Solution Properties							

Assume

Then the reduced problem ($\varepsilon = 0$) has an unique solution u with

$$|u_1|_{k+1} + |u_2|_{k+1} < C(||f_1||_k + ||f_2||_k),$$

• Constant coefficients fulfill the prerequisites of the last two theorems.

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
	Introduction				
	Motivation				
2	Solution Proper	ties			
3	Asymptotic Exp	ansion			
	 Construction 				
	Properties				
	Estimates				
4	Error of the FE	-Method on a S	hishkin n	nesh	
	• Used Mesh				
	Analysis				
5	Computational	Results			
	• The Problem				
	Results				
6	Extension to Bo	ox-Constraints f	or the Op	timal Control	
	Problem				
	• Solution Esti	mates			
	• Numerical Er	ror Estimates			

Introduction 000	Solution Properties	Asymptotic Expansion ●0000	FEM Error 000	Computational Results	Control Constraints 00000000
Construction					

Decompose u in

$$u_{1} = \tilde{S}_{1} + E_{10} + E_{11} + R_{1n}, \quad u_{2} = \tilde{S}_{2} + E_{20} + E_{21} + R_{2n}$$
$$\tilde{S}_{1} = \sum_{k=0}^{n} \varepsilon^{k} u_{1,k}, \quad E_{10} = \sum_{k=0}^{n} \varepsilon^{k} v_{k}(\xi), \quad E_{11} = \sum_{k=0}^{n} \varepsilon^{k} w_{k}(\eta),$$
$$\tilde{S}_{2} = \sum_{k=0}^{n} \varepsilon^{k} u_{2,k}, \quad E_{20} = \sum_{k=0}^{n} \varepsilon^{k} r_{k}(\xi), \quad E_{21} = \sum_{k=0}^{n} \varepsilon^{k} s_{k}(\eta)$$

with the local variables $\xi \coloneqq x/\varepsilon$, $\eta \coloneqq (1-x)/\varepsilon$.

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints 00000000
Construction					

Decompose u in

$$u_{1} = \tilde{S}_{1} + E_{10} + E_{11} + R_{1n}, \quad u_{2} = \tilde{S}_{2} + E_{20} + E_{21} + R_{2n}$$
$$\tilde{S}_{1} = \sum_{k=0}^{n} \varepsilon^{k} u_{1,k}, \quad E_{10} = \sum_{k=0}^{n} \varepsilon^{k} v_{k}(\xi), \quad E_{11} = \sum_{k=0}^{n} \varepsilon^{k} w_{k}(\eta),$$
$$\tilde{S}_{2} = \sum_{k=0}^{n} \varepsilon^{k} u_{2,k}, \quad E_{20} = \sum_{k=0}^{n} \varepsilon^{k} r_{k}(\xi), \quad E_{21} = \sum_{k=0}^{n} \varepsilon^{k} s_{k}(\eta)$$

with the local variables $\xi \coloneqq x/\varepsilon$, $\eta \coloneqq (1-x)/\varepsilon$. Fulfilling

$$L(\tilde{S}_1, \tilde{S}_2) = f + \mathcal{O}(\varepsilon^{n+1}), \qquad \tilde{S}_1(0) = 0, \ \tilde{S}_2(1) = 0,$$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints 00000000
Construction					

Decompose u in

$$u_{1} = \tilde{S}_{1} + E_{10} + E_{11} + R_{1n}, \quad u_{2} = \tilde{S}_{2} + E_{20} + E_{21} + R_{2n}$$
$$\tilde{S}_{1} = \sum_{k=0}^{n} \varepsilon^{k} u_{1,k}, \quad E_{10} = \sum_{k=0}^{n} \varepsilon^{k} v_{k}(\xi), \quad E_{11} = \sum_{k=0}^{n} \varepsilon^{k} w_{k}(\eta),$$
$$\tilde{S}_{2} = \sum_{k=0}^{n} \varepsilon^{k} u_{2,k}, \quad E_{20} = \sum_{k=0}^{n} \varepsilon^{k} r_{k}(\xi), \quad E_{21} = \sum_{k=0}^{n} \varepsilon^{k} s_{k}(\eta)$$

with the local variables $\xi \coloneqq x/\varepsilon$, $\eta \coloneqq (1-x)/\varepsilon$. Fulfilling

$$\begin{split} L\left(\tilde{S}_{1}, \ \tilde{S}_{2}\right) &= f + \mathcal{O}(\varepsilon^{n+1}), \qquad \tilde{S}_{1}(0) = 0, \ \tilde{S}_{2}(1) = 0, \\ L\left(\tilde{E}_{10}, \ \tilde{E}_{20}\right) &= \mathcal{O}(\varepsilon^{n+1}), \qquad E_{20}(0) = -\tilde{S}_{2}(0), \\ L\left(\tilde{E}_{11}, \ \tilde{E}_{21}\right) &= \mathcal{O}(\varepsilon^{n+1}), \qquad E_{11}(1) = -\tilde{S}_{1}(1). \end{split}$$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Construction					

$$a_1u'_{1,0} + b_{11}u_{1,0} + b_{12}u_{2,0} = f_1 \quad u_{1,0}(0) = 0,$$

$$-a_2u'_{2,0} + b_{22}u_{2,0} - b_{21}u_{1,0} = f_2 \quad u_{2,0}(1) = 0,$$

Introduction 000	Solution Properties	Asymptotic Expansion 0●000	FEM Error 000	Computational Results	Control Constraints
Construction					

$$\begin{aligned} a_1 u_{1,0}' + b_{11} u_{1,0} + b_{12} u_{2,0} &= f_1 \quad u_{1,0}(0) = 0, \\ -a_2 u_{2,0}' + b_{22} u_{2,0} - b_{21} u_{1,0} &= f_2 \quad u_{2,0}(1) = 0, \end{aligned}$$

$$k \ge 0: -v_k'' + \tilde{a}_{1,0}v_k' = g_{k1} (v_1, v_1', \dots, v_{k-1}, v_{k-1}', r_1, \dots, r_{k-1})$$

$$\lim_{\xi \to \infty} v_k(\xi) = 0,$$

$$\lim_{\xi \to \infty} r_k(\xi) = 0,$$

$$\lim_{\xi \to \infty} r_k(\xi) = 0,$$

$$r_k(0) = -u_{2,k}(0),$$

Introduction 000	Solution Properties	Asymptotic Expansion 0●000	FEM Error 000	Computational Results	Control Constraints
Construction					

$$\begin{aligned} a_1u'_{1,0} + b_{11}u_{1,0} + b_{12}u_{2,0} &= f_1 \quad u_{1,0}(0) = 0, \\ -a_2u'_{2,0} + b_{22}u_{2,0} - b_{21}u_{1,0} &= f_2 \quad u_{2,0}(1) = 0, \end{aligned}$$

$$k \ge 0: -v_k'' + \tilde{a}_{1,0}v_k' = g_{k1}(v_1, v_1', \dots, v_{k-1}, v_{k-1}', r_1, \dots, r_{k-1})$$

$$\lim_{\xi \to \infty} v_k(\xi) = 0,$$

$$\lim_{\xi \to \infty} r_k(\xi) = 0,$$

$$\lim_{\xi \to \infty} r_k(\xi) = 0,$$

$$r_k(0) = -u_{2,k}(0),$$

$$\begin{aligned} & -w_k'' - \hat{a}_{1,0}w_k' = h_{k1}\left(w_1, w_1', \dots, w_{k-1}, w_{k-1}', s_1, \dots, s_{k-1}\right) & \lim_{\eta \to \infty} w_k(\eta) = 0, \\ & -w_k(0) = -u_{1,k}(1), \\ & -s_k'' + \hat{a}_{2,0}s_k' = h_{k2}\left(s_1, s_1', \dots, s_{k-1}, s_{k-j}', w_1, \dots, w_{k-1}\right) & \lim_{\eta \to \infty} s_k(\eta) = 0, \end{aligned}$$

Introduction 000	Solution Properties	Asymptotic Expansion 0●000	FEM Error 000	Computational Results	Control Constraints
Construction					

$$\begin{aligned} a_1 u_{1,0}' + b_{11} u_{1,0} + b_{12} u_{2,0} &= f_1 \quad u_{1,0}(0) = 0, \\ -a_2 u_{2,0}' + b_{22} u_{2,0} - b_{21} u_{1,0} &= f_2 \quad u_{2,0}(1) = 0, \end{aligned}$$

$$\begin{aligned} k &\geq 0: \\ -v_k'' + \tilde{a}_{1,0}v_k' = g_{k1}\left(v_1, v_1', \dots, v_{k-1}, v_{k-1}', r_1, \dots, r_{k-1}\right) & \lim_{\xi \to \infty} v_k(\xi) = 0, \\ -r_k'' - \tilde{a}_{2,0}r_k' = g_{k2}\left(r_1, r_1', \dots, r_{k-1}, r_{k-1}', v_1, \dots, v_{k-1}\right) & \lim_{\xi \to \infty} r_k(\xi) = 0, \\ r_k(0) &= -u_{2,k}(0), \end{aligned}$$

$$\begin{aligned} & -w_k'' - \hat{a}_{1,0}w_k' = h_{k1}\left(w_1, w_1', \dots, w_{k-1}, w_{k-1}', s_1, \dots, s_{k-1}\right) & \lim_{\eta \to \infty} w_k(\eta) = 0, \\ & -w_k(0) = -u_{1,k}(1), \\ & -s_k'' + \hat{a}_{2,0}s_k' = h_{k2}\left(s_1, s_1', \dots, s_{k-1}, s_{k-j}', w_1, \dots, w_{k-1}\right) & \lim_{\eta \to \infty} s_k(\eta) = 0, \end{aligned}$$

$$\begin{split} k \geq 1: \\ a_1 u_{1,k}' + b_{11} u_{1,k} + b_{12} u_{2,k} &= u_{1,k-1}'' \quad u_{1,k}(0) = -v_k(0), \\ -a_2 u_{2,k}' + b_{22} u_{2,k} - b_{21} u_{1,k} &= u_{2,k-1}'' \quad u_{2,k}(1) = -s_k(1). \end{split}$$

Introduction 000	Solution Properties	Asymptotic Expansion ○○●○○	FEM Error 000	Computational Results	Control Constraints
Properties					

The terms of boundary layer correction have the form

$$egin{aligned} \mathsf{v}_i(\xi) \in \mathbb{P}_{i-1}(\xi) \, e^{-\mathsf{a}_2(0)\xi}, & \mathsf{w}_i(\eta) \in \mathbb{P}_i(\eta) \, e^{-\mathsf{a}_1(1)\eta}, \ r_i(\xi) \in \mathbb{P}_i(\xi) \, e^{-\mathsf{a}_2(0)\xi}, & s_i(\eta) \in \mathbb{P}_{i-1}(\eta) \, e^{-\mathsf{a}_1(1)\eta}, \end{aligned}$$

where $\mathbb{P}_n(x)$ denotes the set of polynomials in the unknown x of degree less or equal to n.

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Properties					

The terms of boundary layer correction have the form

$$egin{aligned} \mathsf{v}_i(\xi) \in \mathbb{P}_{i-1}(\xi) \, e^{-a_2(0)\xi}, & \mathsf{w}_i(\eta) \in \mathbb{P}_i(\eta) \, e^{-a_1(1)\eta}, \ r_i(\xi) \in \mathbb{P}_i(\xi) \, e^{-a_2(0)\xi}, & s_i(\eta) \in \mathbb{P}_{i-1}(\eta) \, e^{-a_1(1)\eta}, \end{aligned}$$

where $\mathbb{P}_n(x)$ denotes the set of polynomials in the unknown x of degree less or equal to n.

In particular

$$\begin{split} v_0(\xi) &= 0, & w_0(\eta) = -u_{1,0}(1) \, e^{-a_1(1)\eta}, \\ r_0(\xi) &= -u_{2,0}(0) \, e^{-a_2(0)\xi}, & s_0(\eta) = 0 \end{split}$$

holds. Therefore E_{10} and E_{21} are only weak layers.

Introduction 000	Solution Properties	Asymptotic Expansion ○○○●○	FEM Error 000	Computational Results	Control Constraints
Properties					

The remainders R_{in} , $i \in \{1, 2\}$ satisfy

 $\begin{aligned} R_{in}(0) &\in \mathfrak{O}(\varepsilon^{n+1}), \\ R_{in}(1) &\in \mathfrak{O}(\varepsilon^{n+1}), \\ \mathcal{L}(R_{1n}, R_{2n}) &\in \mathfrak{O}(\varepsilon^{n+1/2}). \end{aligned}$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Properties					

The remainders R_{in} , $i \in \{1, 2\}$ satisfy

 $\begin{aligned} R_{in}(0) &\in \mathfrak{O}(\varepsilon^{n+1}), \\ R_{in}(1) &\in \mathfrak{O}(\varepsilon^{n+1}), \\ \mathcal{L}(R_{1n}, R_{2n}) &\in \mathfrak{O}(\varepsilon^{n+1/2}). \end{aligned}$

This provides

$$|R_{in}|_1 \leq \varepsilon^{-1} ||f_{in}|| \leq \varepsilon^n C,$$

$$|R_{in}|_2 \leq \varepsilon^{-1} (||f_{in}|| + ||R_{in}||_1) \leq \varepsilon^{n-1} C.$$

Introduction 000	Solution Properties	Asymptotic Expansion ○○○○●	FEM Error 000	Computational Results	Control Constraints
Estimates					

For sufficient smooth coefficients a, b and inhomogeneity f we can decompose the solution in

$$u_1 = S_1 + E_{10} + E_{11},$$

$$u_2 = S_2 + E_{20} + E_{21},$$

with
$$\left\|S_{1}^{(k)}\right\|, \left\|S_{2}^{(k)}\right\| \leq C,$$

 $\left|E_{10}^{(k)}\right| \leq C\varepsilon^{1-k}\varepsilon_{I}(x), \quad \left|E_{11}^{(k)}\right| \leq C\varepsilon^{-k}\varepsilon_{r}(x),$
 $\left|E_{20}^{(k)}\right| \leq C\varepsilon^{-k}\varepsilon_{I}(x), \quad \left|E_{21}^{(k)}\right| \leq C\varepsilon^{1-k}\varepsilon_{r}(x)$

for $k \leq 2$. Where the generic constant C is independent of ε and

$$\mathcal{E}_{I}(x) := e^{-\alpha \frac{x}{\varepsilon}}, \quad \mathcal{E}_{r}(x) := e^{-\alpha \frac{1-x}{\varepsilon}}.$$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error	Computational Results	Control Constraints 00000000
	Introduction				
	Motivation				
2	Solution Proper				
3	Asymptotic Exp	ansion			
	Construction				
	Properties				
	Estimates				
4	Error of the FE-	Method on a S	hishkin m	nesh	
	• Used Mesh				
	Analysis				
5	Computational	Results			
	• The Problem				
	Results				
6	Extension to Bo	x-Constraints for	or the Op	timal Control	
	Problem				
	Solution Estir	nates			
	• Numerical Er	ror Estimates			

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error ●○○	Computational Results	Control Constraints
Used Mesh					

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error ●○○	Computational Results	Control Constraints
Used Mesh					

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error ●○○	Computational Results	Control Constraints
Used Mesh					

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error ○●0	Computational Results	Control Constraints
Analysis					

Provided the former estimates of the asymptotic expansion hold we have for the nodal interpolant u^{l} to the solution u

 $\|u-u'\|_{\varepsilon}\leq CN^{-1}\ln N,$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error ○●○	Computational Results	Control Constraints
Analysis					

Provided the former estimates of the asymptotic expansion hold we have for the nodal interpolant u^{l} to the solution u

$$\|u-u'\|_{\varepsilon}\leq CN^{-1}\ln N,$$

Proof.

Estimate as in the standard case

$$\|S_1 - S_1'\|_{\varepsilon} + \|E_{11} - E_{11}'\|_{\varepsilon} \le CN^{-1} \ln N.$$

By standard interpolation results we can estimate

$$\begin{split} \|E_{10} - E_{10}'\|_{0} &\leq \begin{cases} \tilde{C}h|E_{10}|_{1} \leq C\varepsilon^{1/2}N^{-1}, & \varepsilon < N^{-1} \\ \tilde{C}h^{2}|E_{10}|_{2} \leq C\varepsilon^{-1/2}N^{-2}, & \varepsilon \geq N^{-1} \end{cases} \leq CN^{-3/2}, \\ |E_{10} - E_{10}'|_{1} \leq \tilde{C}h|E_{10}|_{2} \leq C\varepsilon^{-1/2}N^{-1}. \end{split}$$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error ○O●	Computational Results	Control Constraints
Analysis					

If the former estimates of the asymptotic expansion hold we have for the solution u^N of the discretised problem

 $\|u-u^N\|_{\varepsilon}\leq CN^{-1}\ln N.$

Introduction 000	Solution Properties	Asymptotic Expansion 00000	FEM Error ○○●	Computational Results	Control Constraints
Analysis					

If the former estimates of the asymptotic expansion hold we have for the solution u^N of the discretised problem

$$\|u-u^N\|_{\varepsilon}\leq CN^{-1}\ln N.$$

Proof.

• Use a symmetric version of the differential equation system. Thus we have the coerzitivity of the associated bilinear form *a* and the Galerkin orthogonality of our method.

Introduction 000	Solution Properties	Asymptotic Expansion 00000	FEM Error ○O●	Computational Results	Control Constraints
Analysis					

If the former estimates of the asymptotic expansion hold we have for the solution u^N of the discretised problem

$$\|u-u^N\|_{\varepsilon}\leq CN^{-1}\ln N.$$

Proof.

- Use a symmetric version of the differential equation system. Thus we have the coerzitivity of the associated bilinear form *a* and the Galerkin orthogonality of our method.
- Using $\chi \coloneqq u' u^N$ and $\psi \coloneqq u' u$ this provides $\gamma \|\chi\|_{\varepsilon}^2 \le a(\chi, \chi) = a(\psi, \chi).$

Introduction 000	Solution Properties	Asymptotic Expansion 00000	FEM Error ○○●	Computational Results	Control Constraints
Analysis					

If the former estimates of the asymptotic expansion hold we have for the solution u^N of the discretised problem

$$\|u-u^N\|_{\varepsilon}\leq CN^{-1}\ln N.$$

Proof.

- Use a symmetric version of the differential equation system. Thus we have the coerzitivity of the associated bilinear form *a* and the Galerkin orthogonality of our method.
- Using $\chi \coloneqq u' u^N$ and $\psi \coloneqq u' u$ this provides $\gamma \|\chi\|_{\varepsilon}^2 \le a(\chi, \chi) = a(\psi, \chi).$
- Finally one can show (cf. T. LINSS 2010)

$$a(\psi, \chi) \leq C \|\psi\|_{\varepsilon} \|\chi\|_{\varepsilon}.$$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
1	Introduction				
	Motivation				
2	Solution Proper	rties			
3	Asymptotic Exp	ansion			
	 Construction 				
	Properties				
	 Estimates 				
	Error of the FE	Method on a S	hishkin n	nesh	
	Llood Moch				
	 Analysis 				
5	Computational	Results			
	The Problem				
	Results				
6	Extension to Bo	ox-Constraints f	or the Op	otimal Control	
	Problem				
	Solution Estin	mates			
	Numerical Fr	ror Estimates			

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
The Problem					

We solve the following problem numerically

$$\begin{aligned} &-\varepsilon u_1'' + \sqrt{2} u_1' + u_2 = 2, & u_1(0) = u_1(1) = 0, \\ &-\varepsilon u_2'' - \sqrt{2} u_2' - u_1 = 1, & u_2(0) = u_2(1) = 0. \end{aligned}$$

Introduction 000	Solution Properties	Asymptotic Expansion 00000	FEM Error 000	Computational Results	Control Constraints
The Problem					

We solve the following problem numerically

$$\begin{aligned} &-\varepsilon u_1'' + \sqrt{2} u_1' + u_2 = 2, & u_1(0) = u_1(1) = 0, \\ &-\varepsilon u_2'' - \sqrt{2} u_2' - u_1 = 1, & u_2(0) = u_2(1) = 0. \end{aligned}$$

• We know the exact solution.

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results ●○○○	Control Constraints
The Problem					

We solve the following problem numerically

$$\begin{aligned} &-\varepsilon u_1'' + \sqrt{2} \, u_1' + u_2 = 2, & u_1(0) = u_1(1) = 0, \\ &-\varepsilon u_2'' - \sqrt{2} \, u_2' - u_1 = 1, & u_2(0) = u_2(1) = 0. \end{aligned}$$

- We know the exact solution.
- All assumptions are met.

Christian Reibiger, Hans-Görg Roos

©TECHNISCHE UNIVERSITÄT DRESDEN

Christian Reibiger, Hans-Görg Roos

®TECHNISCHE UNIVERSITÄT DRESDEN

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
1	Introduction				
	Motivation				
2	Solution Proper				
3	Asymptotic Exp	ansion			
	Construction				
	Properties				
	Estimates				
4	Error of the FE-	Method on a S	hishkin m	iesh	
<u> </u>	• Used Mesh				
	Analysis				
5	Computational	Results			
	• The Problem				
	Results				
6	Extension to Bo	x-Constraints for	or the Op	timal Control	
	Problem				
	 Solution Estir 	nates			
	Numerical Err	ror Estimates			

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints ●0000000
Problem					

Consider

$$\min_{y,u} J(y,q) \coloneqq \min_{y,q} \frac{1}{2} \|y - y_d\|_0^2 + \frac{\lambda}{2} \|q\|_0^2,$$

$$Ly \coloneqq -\varepsilon y'' + by' + cy = f + q \text{ in } (0, 1),$$
$$y(0) = y(1) = 0,$$
$$q \in Q_{ad} \coloneqq \{q \in L_2 \mid q_a \le q \le q_b\}$$

Assume

$$\begin{split} |f^{(k)}| &\leq C \left(1 + \varepsilon^{-k} \mathcal{E}_{I}\left(x\right) + \varepsilon^{-k - \frac{1}{2}} \mathcal{E}_{r}\left(x\right) \right), \\ |q_{a}^{(k)}|, |q_{b}^{(k)}| &\leq C \left(1 + \varepsilon^{-k} \mathcal{E}_{I}\left(x\right) + \varepsilon^{-k - \frac{1}{2}} \mathcal{E}_{r}\left(x\right) \right) \text{ or } \infty, \\ |y_{d}^{(k)}| &\leq C \left(1 + \varepsilon^{-k - \frac{1}{2}} \mathcal{E}_{I}\left(x\right) + \varepsilon^{-k} \mathcal{E}_{r}\left(x\right) \right) \end{split}$$

for $k \in \{0, 1\}$.

Christian Reibiger, Hans-Görg Roos

GTECHNISCHE UNIVERSITÄT DRESDEN

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints ○●○○○○○○
Problem					

Using the adjoint state *p* (cf. TRÖLTZSCH 2009)

$$q = -\lambda^{-1} \Pi(p) := -\lambda^{-1} \max\left(-\lambda q_b, \min(p, -\lambda q_a)\right)$$
$$L^* p = -\varepsilon p'' - bp' + (c - b')p = y - y_0,$$
$$p(0) = p(1) = 0$$

gives equivalent problem

$$-\varepsilon y'' + by' + cy + rac{1}{\lambda}\Pi(p) = f, \quad y(0) = y(1) = 0, \ -\varepsilon p'' - bp' + (c - b')p - y = -y_0, \quad p(0) = p(1) = 0.$$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Solution Estima	tes				

The following estimates hold

$$\begin{aligned} |p^{(k)}| &\leq C \left(1 + \varepsilon^{-k} \mathcal{E}_{I}(x) + \varepsilon^{1-k} \mathcal{E}_{r}(x) \right), \\ |y^{(k)}| &\leq C \left(1 + \varepsilon^{1-k} \mathcal{E}_{I}(x) + \varepsilon^{-k} \mathcal{E}_{r}(x) \right). \end{aligned}$$

for $k \in \{0,1,2\}$ and

$$|q^{(k)}| \leq C \left(1 + \varepsilon^{-k} \mathcal{E}_{l}(x) + \varepsilon^{1-k} \mathcal{E}_{r}(x)\right)$$

for $k \in \{0, 1\}$.

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Solution Estima	ates				

• Define $q_0 := -\lambda^{-1} \Pi(x \mapsto 0)$ achieving $\|q_0\|_0 \le C$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints ○○○●○○○○
Solution Estimation	ates				

- Define $q_0 := -\lambda^{-1} \Pi(x \mapsto 0)$ achieving $\|q_0\|_0 \le C$
- **2** Costfunctional is uniformly bounded for q_0
- **③** Optimal solution satisfies $||q||_0 \leq C$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Solution Estima	ates				

- Define $q_0 := -\lambda^{-1} \Pi(x \mapsto 0)$ achieving $\|q_0\|_0 \le C$
- **2** Costfunctional is uniformly bounded for q_0
- Optimal solution satisfies $\|q\|_0 \leq C$
- Analysis shows bounds of the form $y = S_y + E_y$, $||S_y||_1 \le C$, $|E_y^k(x)| \le \varepsilon^{-k} \mathcal{E}_r(x), k \in \{0,1\}$
- Analysis shows bounds for $p = S_p + E_p$, $||S_p||_1 \le C$, $|E_p^k(x)| \le \varepsilon^{-k} \mathcal{E}_l(x), k \in \{0,1\}$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Solution Estima	ates				

- Define $q_0 := -\lambda^{-1} \Pi(x \mapsto 0)$ achieving $\|q_0\|_0 \le C$
- **2** Costfunctional is uniformly bounded for q_0
- Optimal solution satisfies $\|q\|_0 \leq C$
- Analysis shows bounds of the form $y = S_y + E_y$, $||S_y||_1 \le C$, $|E_y^k(x)| \le \varepsilon^{-k} \mathcal{E}_r(x), k \in \{0,1\}$
- Analysis shows bounds for $p = S_p + E_p$, $||S_p||_1 \le C$, $|E_p^k(x)| \le \varepsilon^{-k} \mathcal{E}_I(x)$, $k \in \{0, 1\}$
- **(**) We know $q = -\lambda^{-1} \Pi(p)$ therfore we have bound for q in L_{∞}

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Solution Estima	ates				

- Define $q_0 := -\lambda^{-1} \Pi(x \mapsto 0)$ achieving $\|q_0\|_0 \le C$
- **2** Costfunctional is uniformly bounded for q_0
- Optimal solution satisfies $\|q\|_0 \leq C$
- Analysis shows bounds of the form $y = S_y + E_y$, $||S_y||_1 \le C$, $|E_y^k(x)| \le \varepsilon^{-k} \mathcal{E}_r(x), k \in \{0,1\}$
- Analysis shows bounds for $p = S_p + E_p$, $||S_p||_1 \le C$, $|E_p^k(x)| \le \varepsilon^{-k} \mathcal{E}_l(x)$, $k \in \{0, 1\}$
- **()** We know $q = -\lambda^{-1} \Pi(p)$ therfore we have bound for q in L_{∞}
- Analysis shows bounds for y and y'
- **③** Analysis shows bounds for p and p'

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints ○○○●○○○○
Solution Estimation	ates				

- Define $q_0 := -\lambda^{-1} \Pi(x \mapsto 0)$ achieving $\|q_0\|_0 \le C$
- **2** Costfunctional is uniformly bounded for q_0
- Optimal solution satisfies $\|q\|_0 \leq C$
- Analysis shows bounds of the form $y = S_y + E_y$, $||S_y||_1 \le C$, $|E_y^k(x)| \le \varepsilon^{-k} \mathcal{E}_r(x), k \in \{0,1\}$
- Analysis shows bounds for $p = S_p + E_p$, $||S_p||_1 \le C$, $|E_p^k(x)| \le \varepsilon^{-k} \mathcal{E}_l(x)$, $k \in \{0, 1\}$
- **()** We know $q = -\lambda^{-1} \Pi(p)$ therfore we have bound for q in L_{∞}
- Analysis shows bounds for y and y'
- 3 Analysis shows bounds for p and p'
- We know $q = -\lambda^{-1} \Pi(p)$ therfore we have bounds for q'

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints ○○○●○○○○
Solution Estimation	ates				

- Define $q_0 := -\lambda^{-1} \Pi(x \mapsto 0)$ achieving $\|q_0\|_0 \le C$
- 2 Costfunktional is uniformly bounded for q_0
- Optimal solution satisfies $\|q\|_0 \leq C$
- Analysis shows bounds of the form $y = S_y + E_y$, $||S_y||_1 \le C$, $|E_y^k(x)| \le \varepsilon^{-k} \mathcal{E}_r(x), k \in \{0,1\}$
- Solution Analysis shows bounds for $p = S_p + E_p$, $||S_p||_1 \le C$, $|E_p^k(x)| \le \varepsilon^{-k} \mathcal{E}_l(x)$, $k \in \{0, 1\}$
- **()** We know $q = -\lambda^{-1} \Pi(p)$ therfore we have bound for q in L_{∞}
- Analysis shows bounds for y and y'
- **③** Analysis shows bounds for p and p'
- **(2)** We know $q = -\lambda^{-1} \Pi(p)$ therfore we have bounds for q'
- ${\color{black}\textcircled{0.5ex}}$ We can deduce the remaining bounds for y'' and p''

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Numerical Error Estimates					

If the former estimates hold and we have

$$\left(L^{N}\right)^{*} = \left(L^{*}\right)^{\Lambda}$$

we can show for the solution u^N of the discretised problem

$$\left\| q-q^N \right\|_{\varepsilon} \leq C N^{-1} \ln N.$$

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Numerical Error Estimates					

If the former estimates hold and we have

$$\left(L^{N}\right)^{*} = \left(L^{*}\right)^{\Lambda}$$

we can show for the solution u^N of the discretised problem

$$\left\| q-q^N \right\|_{\varepsilon} \leq C N^{-1} \ln N.$$

- $(L^N)^* = (L^*)^N$ implies we should use the same mesh for the discretisation of q, p and y
- **2** But the boundary layer structure differs for p and y

Introduction 000	Solution Properties	Asymptotic Expansion 00000	FEM Error 000	Computational Results	Control Constraints
Numerical Error Estimates					

If the former estimates hold and we have

$$\left(L^{N}\right)^{*} = \left(L^{*}\right)^{\Lambda}$$

we can show for the solution u^N of the discretised problem

$$\left\| q-q^N \right\|_{\varepsilon} \leq CN^{-1} \ln N.$$

- $(L^N)^* = (L^*)^N$ implies we should use the same mesh for the discretisation of q, p and y
- 2 But the boundary layer structure differs for p and y
- $(L^N)^* = (L^*)^N$ gives that the discrete problem is an optimisation problem
- The other assumptions are quite reasonable

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints
Numerical Error Estimates					

Other Way of Proof - Use the System

We consider the weak formultaion of

$$-\varepsilon y'' + by' + cy + rac{1}{\lambda}\Pi(p) = f, \quad y(0) = y(1) = 0, \ -\varepsilon p'' - bp' + (c - b')p - y = -y_0, \quad p(0) = p(1) = 0.$$

Assuming $c - b'/2 \ge \lambda^{-1/2}$ we can conclude

$$\begin{aligned} a\left(\begin{pmatrix}y_1\\p_1\end{pmatrix},\begin{pmatrix}y_1-y_2\\p_1-p_2\end{pmatrix}\right) - a\left(\begin{pmatrix}y_2\\p_2\end{pmatrix},\begin{pmatrix}y_1-y_2\\p_1-p_2\end{pmatrix}\right) \\ &\geq C\left(\|y_1-y_2\|_{\varepsilon}^2 + \|p_1-p_2\|_{\varepsilon}^2\right), \end{aligned}$$

the monotony of the operator. We have continuity of the operator. Thus we have an unique solution of the system and its discrete counterparts (cf. E. ZEIDLER, 1990).

Introduction 000	Solution Properties	Asymptotic Expansion	FEM Error 000	Computational Results	Control Constraints ○○○○○●○
Numerical Error Estimates					

Assuming $q_a \leq 0 \leq q_b$ we get from the monotony of a by $y_2 = 0$ and $p_2 = 0$

$$a\left(\begin{pmatrix} y_1\\p_1 \end{pmatrix}, \begin{pmatrix} y_1\\p_1 \end{pmatrix}
ight) \geq C\left(\|y_1\|_{\varepsilon}^2 + \|p_1\|_{\varepsilon}^2
ight).$$

Thus we can use the standard analysis for linear operators to attain

$$\left\|y'-y^{N}\right\|_{\varepsilon}, \left\|p'-p^{N}\right\|_{\varepsilon} \leq CN^{-1} \ln N.$$

and we can derive first order error estimates for the numerical method for arbitrary discretisations with sufficient interpolation properties. But we have the prerequisits

$$c-b'/2\geq\lambda^{-1/2}$$
 and $q_{a}\leq0\leq q_{b}.$

Introduction 000	Solution Properties	Asymptotic Expansion 00000	FEM Error 000	Computational Results	Control Constraints	
Numerical Error Estimates						

Thank you for your attention.

ZHONGDI CEN,

Parameter-uniform finite difference scheme for a system of coupled singularly perturbed convection?diffusion equations.

International Journal of Computer Mathematics, 82 (2005) 2, 177-192.

TORSTEN LINSS,

Analysis of an Upwind Finite-Difference Scheme for a System of Coupled Singularly Perturbed Convection-Diffusion Equations. Computing, **79** (2007) 1, 23-32.

TORSTEN LINSS, MARTIN STYNES,

Numerical Solution of Systems of Singularly Perturbed Differential Equations. Computational Methods in Applied Mathematics, **9** (2009) 2: 165-191.

Local Error Estimates for SUPG Solutions of Advection-Dominated Elliptic Linear-Quadratic Optimal Control Problems. SIAM J. Numer. Anal., 47 (2010) 6, 4607?4638.

HANS-GÖRG ROOS, MARTIN STYNES, LUTZ TOBISKA,

Robust Numerical Methods for Singularly Perturbed Differential Equations. Springer Verlag, 2. Auflage, 2008.

EBERHARD ZEIDLER,

Nonlinear Functional Analysis and its Applications II/B. Springer Verlag, 1990.