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Setting Continuous setting Discrete setting

Poisson equation
Let Q ¢ RY, d > 2, be a polygonal domain and f € L2(Q) the
source term.

—Au=f in Q,
u=2~0 on 9002
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Setting Continuous setting Discrete setting

Poisson equation
Let Q ¢ RY, d > 2, be a polygonal domain and f € L2(Q) the
source term.

—Au=f in Q,
u=2~0 on 9002

Weak formulation
Find u € H}(Q) such that

(Vu, Vv) = (f,v) VYve H(Q) (1)
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Setting Continuous setting Discrete setting

Poisson equation
Let Q ¢ RY, d > 2, be a polygonal domain and f € L2(Q) the
source term.

—Au=f in Q,
u=2~0 on 9002

Weak formulation
Find u € H}(Q) such that

(Vu, Vv) = (f,v) VYve H(Q) (1)

@ u is termed the potential
@ —Vuis termed the flux
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Setting Continuous setting Discrete setting

Q Setting

@ Discrete setting
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Setting Continuous setting Discrete setting

ging nodes

@ 7 (h > 0): a family of partitions of 2 into a finite number of
closed simplices, hanging nodes allowed

@ OK: the boundary of element K

@ Fy: the set of the faces of element K

@ Fi ={IiT =0KNIK K,K € Tp}

@ Fp={NTCcoQ3KeTy: I €Fx}

@ Fp:=FUFP

@ hx =diam(K) for K € T,
pk: the diameter of the largest d-dimensional ball inscribed
into K

e ForT e F.: let K~ and KR be such that I' ¢ KE N KR
@ nr: a unit normal vector to I'
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Setting Continuous setting Discrete setting

sumptions

h
shape regularity: 3Cs > 0 : p—K < CsVKeTy,
K

local quasi-uniformity:  3Cy > 0: hx < Cyhy VK, K €T
sharing a face
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Setting Continuous setting Discrete setting

( ,Th) ={v;v|k € H¢(K) VK € Tp},
= {SK}KGTM sk > 1

° th. the broken gradient for v € H'(Q, Tp)

@ [v]r: the jump of voverT, T € F}

@ (v)r: the average of vonT, T € F},

@ (V)r:=[v]r:=thetraceof vonT, I € 7B

@ PPx(K) is the space of polynomial functions on K of

degree at most px

@ Nk :=dim(PPx(K))

o SP={v;vel2(Q) v|x € PP(K) VK e Thl,
= {Px}kem Pk =1

o N :=dim(SP)
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Setting Continuous setting Discrete setting

alerkin formulation

For up, v, € SP, we define:

a(up, vp) == Z /KVuh -V dX — Z /F<Vuh -n)[vy] dS

KeTh refp

0y /r (V- m)[up] dS+ 3 /r o[us][vi] dS,

reFy reFy

g(Vh) ::/ th dx,
Q

@ o a penalty parameter

@ #=-1,0=1,and ¢ = 0 corresponds to the symmetric,
nonsymmetric, and incomplete variants of the DGM, resp.
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Setting Continuous setting Discrete setting

Exact discrete problem
Find up, € Sf, such that

a(up, vh) = €(vy) Vvn € SP.
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Setting Continuous setting Discrete setting

roblem

Exact discrete problem
Find up, € Sf, such that

a(up, vn) = £(vh) Vvh € Sf.
Matrix formulation
® {yj}j-1.n: abasis of SP
© A={Aj}ij=1.n:={ale}, vi)}ij=1.N

o Up:={U}itn
o F:={lo)}i=1.N
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Setting Continuous setting Discrete setting

roblem

Exact discrete problem
Find up, € Sf, such that

a(up, vh) = £(vn) Vvh € S,
Matrix formulation
® {yj}j-1.n: abasis of SP
© A={Aj}ij=1.n:={ale}, vi)}ij=1.N
© Un:= {UL}/:LN
o F:={lei)}i=1.N

Find U, € RN such that
Up=F. (2)
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Setting Continuous setting Discrete setting

problem |

The algebraic system (2) is possibly not solved exactly.
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Setting Continuous setting Discrete setting

problem |

The algebraic system (2) is possibly not solved exactly.
Let an /-th step of a linear algebraic solver be given.
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Setting Continuous setting Discrete setting

oroblem |

The algebraic system (2) is possibly not solved exactly.
Let an /-th step of a linear algebraic solver be given.
Algebraic residual vector

@ R': the residual algebraic vector associated with U,
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Setting Continuous setting Discrete setting

roblem |

The algebraic system (2) is possibly not solved exactly.
Let an /-th step of a linear algebraic solver be given.
Algebraic residual vector

@ R': the residual algebraic vector associated with U,

o R := {Ri}}*: the subvector of the residual A’
associated with the element K, K € 7j
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Setting Continuous setting Discrete setting

oroblem |

The algebraic system (2) is possibly not solved exactly.
Let an /-th step of a linear algebraic solver be given.
Algebraic residual vector

@ R': the residual algebraic vector associated with U,

o R := {Ri}}*: the subvector of the residual A’
associated with the element K, K € 7j

Definition (Local residual function)

ri € PPK(K), (rk, ok )k = Ric;jforj=1... Nk, K € Tp

Definition (Residual function)

S T
r, € Sy, ik = ri forall K € T

Vit Dolejsi, Alexandre Ern, lvana Sebestova, and Martin Vohralik = Reconstruction-based AEE for DGMs & algebraic error



Setting Continuous setting Discrete setting

problem |

Matrix formulation

Find U, € RN such that .
AU, =F R
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Setting Continuous setting Discrete setting

problem |

Matrix formulation
Find U, € RN such that .
AU,=F-R.
Inexact discrete problem
Find u}, € S such that .
a(up, vn) = €(va) — (rh, va) Yvi € Sh. (3)
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Setting Continuous setting Discrete setting

oroblem I

Matrix formulation
Find U, € RN such that .
AU,=F-R.
Inexact discrete problem
Find u}, € S such that .
a(up, vn) = €(va) — (rh, va) Yvi € Sh. (3)

Error components
Total error in a computational approximation: e}, := u — uj,
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Setting Continuous setting Discrete setting

oroblem I

Matrix formulation

Find U, € RN such that .
AU, =F R

Inexact discrete problem
Find u}, € S such that .
a(up, vh) = €(vn) — (rh, vn) Yvh € SP. ()
Error components _ .
Total error in a computational approximation: e}, := u — uj,

@ discretization error: u — up
e algebraic error: up — U,

Vit Dolejsi, Alexandre Ern, lvana Sebestova, and Martin Vohralik = Reconstruction-based AEE for DGMs & algebraic error



Upper bound Flux reconstructions A guaranteed a posteriori estimate

Q Upper bound
@ Flux reconstructions
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Upper bound Flux reconstructions A guaranteed a posteriori estimate

lon components

Total flux reconstruction: t, = d} + a),

e d/: discretization flux reconstruction
e al: algebraic error flux reconstruction
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Upper bound Flux reconstructions A guaranteed a posteriori estimate

on components

Total flux reconstruction: t, = d} + al,
e d/: discretization flux reconstruction
@ a,: algebraic error flux reconstruction
Construction in Raviart-Thomas—Nédélec (RTN) spaces:
@ RTNg, (K) := [P¥(K)] + xPI¥(K) for K € Tp,
@ RTNq(7h) := {Vvh; vh € [L2(Q)]9, vhlk € RTNg, (K)V K €
T}, d = {9k }keT» Ak =0
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Upper bound Flux reconstructions A guaranteed a posteriori estimate

reconstruction

Definition (Discretization flux reconstruction)
Let ul, solve (3). Forall K € T, T € Fx and g, € PP(T),

(dh, -1, G)r := (—(VUj, - n) + oup], gr)r (4)
and for all r,, € [PP<—1(K)]9,

(d’},, rh)K = (—VU;‘,, rh)K + 0 Z Wr(l‘h ‘N, [UH)r (5)
refg

where wr = % for interior faces, wr := 1 for boundary faces.
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Upper bound Flux reconstructions A guaranteed a posteriori estimate

reconstruction

Definition (Algebraic error flux reconstruction)
Let perform additional v steps of the algebraic iterative solver.
This gives _ '
AU = F - R™
and . _
a(up™, vi) = L(vi) — (r}™,vi) Vv, e SP.

Let di, and d}"™ be given by (4), (5)
(/ is replaced by i + v in the latter case). Then, we define

aj,:=d.™ —dj. (6)
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Upper bound Flux reconstructions A guaranteed a posteriori estimate

Q Upper bound

@ A guaranteed a posteriori estimate
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Upper bound Flux reconstructions A guaranteed a posteriori estimate

teriori error estimate

Theorem (Estimate distinguishing individual error components)

Let u € H}(S) be the weak solution given by (1). Let an i-th
algebraic solver step be given and let u;'7 e SP,

p = {Px}keT,, Pk > 0, be the DGM output given by (3).
Consider v > 0 additional algebraic steps. Then

||Vh(u o U;I)“ < 21/277{1isc + 772"11g + 77£em' (7)
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Upper bound Flux reconstructions A guaranteed a posteriori estimate

@ HJ(Q) nonconformity estimator:
UII;NC,K = ||V (uh — Zav(uh))llk
@ residual estimator:
Tk = Crxhilf—V -t — r'™||x

@ H(div, Q) nonconformity estimator:

ek = > weh2Crkllth - n]lr
refg

@ algebraic reminder estimator:

Themk = Cr.ahallr™ |k
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Upper bound Flux reconstructions A guaranteed a posteriori estimate

D error compon

@ discretization estimator:
. . ) 1/2 . S
Ndise.K = TN, K TR kT Z thK/ Cr k| [dp-n][Ir 4[|V up+di |«
refg
@ algebraic estimator:
i i h/2c i,
Mgk = lapllk + > wrhd=Cr kllfah - n]|r
reFg

1/2

° 77.i = {ZKeT,,(n.i,K)Q}

Cp.k, Cr k, and Cr q come from the Poincare, trace, and
Friedrichs inequalities, resp.
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Lower bound Stopping criteria and efficiency

© Lower bound
@ Stopping criteria and efficiency

Vit jSi Ern, lvana Sebestova tin Vohralik econstruction-based AEE for DGMs & algebraic error



Lower bound Stopping criteria and efficiency

riteria

@ "ag, Yrem > 0 : user-specified weights
@ stop the algebraic solver as soon as

771{em,K < ’Yl’em(n(liisc,K + nzlilg,K) VK € Th (8)
nelllg,K < ’Ya/gncliisc,K VK e 7?1 (9)
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Lower bound Stopping criteria and efficiency

e estimate

Theorem (Local efficiency of the estimate)

Let u € H}(Q2) be the weak solution given by (1). Let an i-th
algebraic solver step be given and let u;', be its output given by
(3). Lett] = di + al, with the discretization flux di, given by (4),
(5) and the algebraic flux ag given by (6). Let f be a piecewise
polynomial of degree p. Let v be chosen and the algebraic
solver stopped as soon as the local stopping criteria (8) and (9)
hold. Then, for a generic constant C in particular independent
ofiandv,

j 2 j 2 j 2 i 112 —1 1112
(n!iisc,K) + (nzlilg,K) + (nr’em,K) < Cthe;)HTK + E : hl‘ H[U;;]Hra
rE]':K

where T denotes the set of the element K with its neighbors
and Fk denotes the set of faces that share at least a vertex
with K.
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