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Goal and motivation

Modelling of fluid-structure interaction
Importance of this problem in several domains of human
activity

Development of airplanes and turbines
Some problems of civil engineering
Car industry
Medicine, etc.

Interested in the problem of the simulation of the airflow
through the human vocal folds
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ALE mapping

Regular one-to-one ALE mapping:

At : Ω̄ref −→ Ω̄t

X ⊂ Ω̄ref 7−→ x = x(X, t) = At(X) ⊂ Ω̄t
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Domain velocity

Domain velocity

z̃ : Ω̄ref × (0,T ) −→ IR2

z̃(X, t) =
∂

∂t
x(X, t) =

∂

∂t
At(X)

z(x, t) = z̃(A−1
t (x), t), t ∈ (0,T ), x ∈ Ω̄t
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ALE derivative

ALE derivative of a function f = f (x, t), x ∈ Ωt , t ∈ (0,T ) :

DA

Dt
f (x, t) =

∂ f̃
∂t

(X, t), X = A−1
t (x)

f̃ (X, t) = f (At(X), t), X ∈ Ωref , t ∈ (0,T )

Form of the time derivative of the function f

∂f
∂t

=
DA

Dt
f + f div(z)− div(f z)
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Continuous problem in time dependent domains

Bounded domain Ω ⊂ IR2, ∂Ωt = ΓI ∪ ΓO ∪ ΓWt ,t ∈ [0,T ]

Navier-Stokes equations in the conservative ALE form

DAw
Dt

+
2∑
s=1

∂gs(w)

∂xs
+wdivz =

2∑
s=1

∂Rs (w,∇w)

∂xs
, (1)

where gs(w) = fs(w)− zsw, s = 1, 2

Termodynamical relations

p = (γ − 1)(E − ρ |v|2 /2)

θ =

(
E
ρ
− 1

2
|v|2
)
/cv
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State vector w: w = (ρ, ρv1, ρv2,E )T ∈ IR4

Inviscid flux of the quantity w in the direction xs :

fs(w) = (ρvs , ρv1vs + δ1sp, ρv2vs + δ2sp, (E +p)vs)T , s = 1, 2

Viscous flux of the quantity w in the direction xs :

Rs (w,∇w) = (0, τs1, τs2, τs1v1 + τs2v2 + k
∂θ

∂xs
)T , s = 1, 2

τij = λδijdivv + 2µdij(w), i , j = 1, 2

dij(w) =
1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
, i , j = 1, 2
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Initial condition
w(x, 0) = w0(x), x ∈ Ω

Boundary conditions

Inlet ΓI : ρ|ΓI×(0,T ) = ρD ,

v|ΓI×(0,T ) = vD = (vD1, vD1)T ,

2∑
j=1

(
2∑
i=1

τijni

)
vj + k

∂θ

∂n
= 0 on ΓI × (0,T );

Wall ΓWt : vΓWt
= z,

∂θ

∂n
= 0;

Outlet ΓO :
2∑
i=1

τijni = 0,
∂θ

∂n
= 0 j = 1, 2;
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Space semidiscretization

Discontinuous Galerkin finite element method (DGFEM)

Partition Tht of Ω̄ht (polygonal approximation of the domain
Ω̄t) consisting of triangles Ki , i ∈ I , Γij = ∂Ki ∪ ∂Kj
Space of the approximate solution - discontinuous piecewise
polynomial functions:

Sht = [Sht ]4,

Sht = {ϕh; ϕh|K ∈ P r (K ) ∀K ∈ Tht}4 ,

r ≥ 1 - integer and P r (K ) denotes the space of all polynomials
on K of degree ≤ r
ϕh ∈ Sht - in general discontinuous on interfaces of the
elements
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Derivation of the discrete problem

multiply system (1) by a test function ϕh ∈ Sht
integrate over K ∈ Tht
use Green’s theorem

sum over all K ∈ Tht
introduce the concept of the numerical flux

∑
Ki∈Tht

∫
Ki

DAw(t)
Dt

·ϕhdx+ bh (w,ϕh)

+Jh (w,ϕh) + ah (w,ϕh) + dh (w,ϕh) = lh (w,ϕh)
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Approximate solution

The approximate solution is defined as wh ∈ Sht such that

∑
K∈Tht

∫
K

DAwh(t)
Dt

·ϕhdx+ bh (wh(t),ϕh)

+ah (wh(t),ϕh) + Jh (wh(t),ϕh) + dh (wh(t),ϕh)

= lh (wh(t),ϕh)

holds for all ϕh ∈ Sht , all t ∈ (0,T ) and wh(0) = w0
h

(=approximation of the initial state w0)
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Time discretization - semi-implicit scheme

Partition 0 = t0 < t1 < t2 < . . . of the interval (0,T )

Time step τk = tk+1 − tk
ALE derivative - the first order backward difference

DAwh
Dt

(x, tk+1) ≈
wk+1
h (x)− ŵkh(x)

τk
, x ∈ Ωhtk+1

ŵjh(x) = wj
(
Atj
(
A−1
tk+1

)
(x)
)
, x ∈ Ωhtk+1

Remaining terms treated with the aid of a linearization and
extrapolation
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Semi-implicit discrete problem

Problem is linear with respect to wk+1
h

wk+1
h ∈ Shtk+1 ,(
wk+1
h − ŵkh
τk

,ϕh

)
+ b̂h

(
ŵkh ,w

k+1
h ,ϕh

)
+âh

(
ŵkh ,w

k+1
h ,ϕh

)
+ Jh

(
wk+1
h ,ϕh

)
+ dh

(
wk+1
h ,ϕh

)
= lh (wB ,ϕh)

∀ϕh ∈ Shtk+1 , k = 0, 1, . . .

J. Hasnedlová Fluid-structure interaction



Flow problem
Elasticity

ALE mapping
Coupled problem
Numerical results

Conclusion

Remarks

Discret problem is equivalent on each time level to a linear
algebraic system, which is solved by GMRES with a block
diagonal preconditioning.
Scheme for the solution of inviscid flow:

µ = λ = κ = 0
Boundary conditions in the form b̂h (the determination of the
state wk+1

h |Γij for Γij ⊂ ∂Ωhtk+1 ) realized by linearized local
initial-boundary value Riemann problem
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Continuous problem for elasticity

Bounded domain Ωb ⊂ IR2, ∂Ωb = ΓbD ∪ ΓW , t ⊂ [0,T ]
Dynamic equations for the isotropic elastic body

ρb
∂2ui
∂t2

+ Cρb
∂ui
∂t

+
2∑
j=1

∂τbij
∂xj

= fi in Ωb, t ⊂ [0,T ] , i = 1, 2, (2)

where the term Cρb ∂ui∂t , i = 1, 2 with C ≥ 0 performs damping
Initial condition

u(0, ·) = u0,
∂u
∂t

(0, ·) = r0 in Ωb

Boundary condition

u = 0 in (0,T )× ΓbD
2∑
j=1

τbij nj = T ni in (0,T )× ΓbW
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Space discretization

Finite element method (FEM)

Partition Tht of Ω̄bh (polygonal approximation of the domain
Ω̄b) consisting of triangles Ki , i ∈ I , Γij = ∂Ki ∪ ∂Kj
Space of the approximate solution - piecewise polynomial
functions:

Xh = [Xh]2,

Xh = {yh; yh|K ∈ P r (K ) ∀K ∈ Th}2 ,

r ≥ 1 - integer and P r (K ) denotes the space of all
polynomials on K of degree ≤ r
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Derivation of the discrete problem

multiply system (2) by a test function yh ∈ Xh
integrate over Ωbh
use Green’s theorem

d2

dt2
(
ρbu(t), yh

)
0,Ωbh

+
d
dt
(
Cρbu(t), yh

)
0,Ωbh

+ a (u, yh; t)

= (f(t), yh)0,Ωbh
+ (Tn(t), yh)0,ΓWh

application of the generalized Hook’s law for an isotropic material

a (u, yh; t) =

∫
Ωbh

2∑
i,j=2

(
λ̃divu(t)δij + 2µ̃eij(u(t))

) ∂yi
∂xj
dx,

where λ̃ and µ̃ are the Lame koeficients and
eij = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i , j = 1, 2 is the tenzor of small deformation
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Approximate solution

The approximate solution is defined as uh ∈ Vh such that there
exist u′h and u′′h and holds

d2

dt2

(
ρbuh(t), yh

)
0,Ωbh

+
d
dt

(
Cρbuh(t), yh

)
0,Ωbh

+ a (uh, yh; t)

= (f(t), yh)0,Ωbh
+ (Tnh(t), yh)0,ΓWh

holds for all yh ∈ Vh =
{
yh ∈ Xh| yh|ΓbDh = 0

}
, almost all

t ∈ (0,T ) and

uh(x, 0) = u0
h(x), x ∈ Ωbh,

u′h(x, 0) = u0
r (x), x ∈ Ωbh,

(= approximation of the initial state u0 a u0
r )
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Time discretization

There is the system of second order ordinary differential
equations arising from the space discretization of the elasticity
problem.

Suitable solution of the system can be obtain by Newmark
method ⇒ linear algebraic system.
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Computation of the ALE mapping

Motion of the computational mesh in the domain occupied by
the fluid solved as a special stationary problem of linear
elasticity

2∑
j=1

∂τ aij
∂xj

= 0 in Ωf i = 1, 2

Use of finite element method (FEM) - linear elements

Resulting linear system solved by the method of conjugated
gradients
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Transmission conditions

The interaction between the flow and the structure takes place on
their common boundary Γ̃Wt at the time t :

Γ̃Wt =
{
x ∈ IR2; x = X+ u(X, t), X ∈ ΓbW

}
.

Transmission condition (fluid → structure):∑2
j=1 τ

b
ij (X)nj(X) = −

∑2
j=1 τ

f
ij (x)nj(X), i = 1, 2

where x = X+ u(X, t)

Transmission condition (structure → fluid):

v(x, t) = zD(x, t) =
∂u(X, t)
∂t

J. Hasnedlová Fluid-structure interaction
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Weak coupling

Computational scheme:
1 Compute the approximate solution of the flow problem on the

time level tm.
2 Compute the stress tensor of the fluid τ fij and the

aerodynamical force acting on the structure and transform it
to the interface ΓbWh.

3 Solve the elasticity problem, compute the deformation uh,m at
time tm and approximate the domain Ωhtm+1 .

4 Determine the ALE mapping Atm+1h and approximate the
domain velocity zh,m+1.

5 Set m := m + 1, go to 1).
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Strong coupling

Computational scheme:
1 Assume that the approximate solution wmh of the flow problem and the

deformation uh,m of the structure are known on the time level tm.
2 Set u0

h,m+1 := uh,m, k := 1 and apply the iterative process:
1 Compute the stress tensor of the fluid τ fij and the aerodynamical force

acting on the structure and transform it to the interface ΓbWh.
2 Solve the elasticity problem, compute the approximation of the

deformation ukh,m+1 and construct the approximation Ωkhtm+1
of the flow

domain at time tm+1.
3 Determine the approximations of ALE mapping Aktm+1h

and the domain

velocity zkh,m+1.

4 Solve the flow problem in Ωkhtm+1
and obtain the approximate solution

wkh,m+1.

5 If the variation of the displacement ukh,m+1 and uk−1
h,m+1 is larger than the

prescribed tolerance, go to a) and k := k + 1. Else
Ωhtm+1 := Ωkhtm , w

m+1
h := wkh,m+1, u

m+1
h := ukh,m, m := m + 1 and goto

2).
J. Hasnedlová Fluid-structure interaction



Flow problem
Elasticity

ALE mapping
Coupled problem
Numerical results

Conclusion

Computational geometry

Geometry of the channel inspired by the shape of vocal folds
and a part of supraglottal space
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Flow parameters

Input parameters and boundary conditions for the airflow

inlet flow velocity 4 m/s

viscosity 15 · 10−6 kgm−1s−1

density 1.225 kg/m3

outlet pressure 97611 Pa

Re = 5227

k = 2.428 · 10−2 kgms−3K−1

cv = 721.428 m2s−2K−1
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Parameters of the solid body and for the computation of
the ALE mapping

Parameters of the solid body

density 1040 kgm−3

damping coefficient C = 0.1

Young modulus Eb = 25000 Pa

Poisson ration σb = 0.4

Parameters for the computation of the ALE mapping

E = 10000.0 Pa

σ = 0.49
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Comparison of the influence of the density of the
computational mesh

Testing meshes:

red . . . 5398/1998 elements in flow/structure part of the
channel

green . . . 10130/2806 elements in flow/structure part of the
channel

blue . . . 20484/4076 elements in flow/structure part of the
channel

Observed quantity: pav =
∫

ΓO

(
p(x , t)− 1

T

∫ T
0 p(x , t)dt

)
/
∫

ΓO
dS
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Weak x strong coupling

Used dimensionless time step τ = 0.001.
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Comparison of the influence of the density of the
computational mesh using the Fourier analysis

Weak x strong coupling
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Comparison of weak and strong coupling procedure on the
different meshes (5398, 10130, 20484 el. in the fluid part)
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Comparison of the behaviour of the fluid and the structure
in the narrowest part of the channel

Detail of the computational mesh and placement of sensors

Used computational mesh: 10130/2806 elements in flow/structure part of the

channel.
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Displacement of the structure and the pressure of the fluid in the
narrowest part of the channel
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Displacement of the structure and the pressure of the fluid in the
narrowest part of the channel - Fourier analysis
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Isolines of velocity and pressure

J. Hasnedlová Fluid-structure interaction



Flow problem
Elasticity

ALE mapping
Coupled problem
Numerical results

Conclusion

What has been done

Fluid-structure interaction
Weak coupling
Strong coupling

Study of several computational geometries and input
parameters

Preliminary tests of the influence of the mesh size on results -
observation of the convergence tendency
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Further work

Suitable tests of the influence of the mesh size on results
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Thank you for your attention!
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Details of the space discretization of the flow problem
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Convective terms

Approximation of fluxes∫
Γij

2∑
s=1

gs(w) (nij)s ·ϕdS ≈
∫

Γij

Hg (wh(t)|Γij ,wh(t)|Γji ,nij) ·ϕdS

bh (w,ϕ) = −
∑
Ki∈Tht

∫
Ki

2∑
s=1

gs(w(t)) · ∂ϕ
∂xs
dx

+
∑
Ki∈Tht

∑
j∈St(i)

∫
Γij

Hg (wh(t)|Γij ,wh(t)|Γji ,nij) ·ϕdS
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Diffusion form (IIPG)

ah (w,ϕ) =
∑
i∈I

∫
Ki

2∑
s=1

Rs (w,∇w) · ∂ϕ
∂xs
dx

−
∑
i∈I

∑
j∈s(i),j<i

∫
Γij

2∑
s=1

〈Rs (w,∇w)〉(nij)s · [ϕ] dS

−
∑
i∈I

∑
j∈γD(i)

∫
Γij

2∑
s=1

Rs (w,∇w) (nij)s ·ϕdS
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Interior and boundary penalty jump terms

Jh (w,ϕ) =
∑
i∈I

∑
j∈s(i),j<i

∫
Γij

σ [w] · [ϕ] dS+
∑
i∈I

∑
j∈γD(i)

∫
Γij

σw ·ϕdS ,

where σ|Γij = CWµ
d(Γij )

, CW > 0
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Form dh

dh (w,ϕh) =
∑
Ki∈Tht

∫
Ki
divz (w ·ϕ) dx
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Right-hand side form

lh (w,ϕ) =
∑
i∈I

∑
j∈γD(i)

∫
Γij

σwB ·ϕdS ,

where wB is defined on the basis of the Dirichlet boundary
conditions and extrapolation:

wB =

(
ρij , ρijz1, ρijz2, cvρijθij +

1
2
ρij |z|2

)
on ΓWt

wB =

(
ρD , ρDvD1, ρDvD2, cvρDθD +

1
2
ρD |vD |2

)
on ΓI

wB = wij on ΓO
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Details of the time discretization of the flow problem
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Semi-implicit linearized scheme

Linearization of the term bh (w,ϕh) :

bh (w,ϕh) = −
∑
Ki∈Tht

∫
Ki

2∑
s=1

gs(w(t)) · ∂ϕh
∂xs
dx

+
∑
Ki∈Tht

∑
j∈St(i)

∫
Γij

Hg (wh(t)|Γij ,wh(t)|Γji ,nij) ·ϕdS

Based on relation:

gs(w
k+1
h ) =

(
As(wk+1

h )− zk+1
s I

)
wk+1
h

≈
(
As(ŵkh)− zk+1

s I
)
wk+1
h ,

where As(w) = Dfs(w)
Dw =

(
∂fsi (w)
∂wj

)4

i ,j=1
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Linearization of the first term of bh (., .) :∑
K∈Thtk+1

∫
K

2∑
s=1

gs(w
k+1
h ) · ∂ϕh

∂xs
dx

≈
∑

K∈Thtk+1

∫
K

2∑
s=1

(
As(ŵkh)− zk+1

s I
)
wk+1
h · ∂ϕh

∂xs
dx,

The second term of bh (., .) is linearized with the aid of the
Vijayasundaram numerical flux:

Hg (wk+1
h |Γij ,w

k+1
h |Γji ,nij)

≈ P+

(〈
ŵkh
〉

Γij
,nij

)
wk+1
h |Γij + P−

(〈
ŵkh
〉

Γij
,nij

)
wk+1
h |Γji

where P+ and P− are positive and negative part of the matrix∑2
s=1

(
As(ŵkh(x))− zk+1

s I
)
ns
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b̂h
(
ŵkh ,w

k+1
h ,ϕh

)
= −

∑
K∈Thtk+1

∫
K

2∑
s=1

(
As(ŵkh)− zk+1

s I
)
wk+1
h · ∂ϕh

∂xs
dx

+
∑

Ki∈Thtk+1

∑
j∈Stk+1 (i)

∫
Γij

[
P+

(〈
ŵkh
〉

Γij
,nij

)
wk+1
h |Γij

+P−
(〈
ŵkh
〉

Γij
,nij

)
wk+1
h |Γji

]
·ϕhdS
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Linearization of the form ah
Based on the fact that Rs (w,∇w) is nonlinear in w but linear in
∇w and the following formula: Rs (w,∇w) =

∑2
j=1 Kij (w) ∂w∂xj

ah
(
wk+1,ϕ

)
≈ âh

(
ŵk ,wk+1,ϕ

)
:=
∑
i∈I

∫
Ki

2∑
s=1

2∑
t=1

Kst
(
ŵkh
) ∂wk+1

h
∂xt

· ∂ϕh
∂xs
dx

−
∑
i∈I

∑
j∈s(i),j<i

∫
Γij

2∑
s=1

〈
2∑
t=1

Kst
(
ŵkh
) ∂wk+1

h
∂xt

〉(nij)s · [ϕ] dS

−
∑
i∈I

∑
j∈γD(i)

∫
Γij

2∑
s=1

2∑
t=1

Kst
(
ŵkh
) ∂wk+1

h
∂xt

(nij)s ·ϕdS ,
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Semi-implicit discrete problem

Problem is linear with respect to wk+1
h

wk+1
h ∈ Shtk+1 ,(
wk+1
h − ŵkh
τk

,ϕh

)
+ b̂h

(
ŵkh ,w

k+1
h ,ϕh

)
+âh

(
ŵkh ,w

k+1
h ,ϕh

)
+ Jh

(
wk+1
h ,ϕh

)
+ dh

(
wk+1
h ,ϕh

)
= lh (wB ,ϕh)

∀ϕh ∈ Shtk+1 , k = 0, 1, . . .
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Details of the computation of the ALE mapping
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Computation of the ALE mapping

Bounded domain Ωf ⊂ IR2, ∂Ωf = ΓfD1
∪ ΓfD2

Stationary equations of linear elasticity for the isotropic elastic
body

2∑
j=1

∂τ aij
∂xj

= 0 in Ωf i = 1, 2, (3)

Boundary condition

u = u0 in ΓfD1

u = 0 in ΓfD2
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Space discretization

Finite element method (FEM)

Partition Tht of Ω̄fh (polygonal approximation of the domain
Ω̄f ) consisting of triangles Ki , i ∈ I , Γij = ∂Ki ∪ ∂Kj
Space of the approximate solution - discontinuous piecewise
polynomial functions:

Xh = [Xh]2,

Xh = {yh; yh|K ∈ P r (K ) ∀K ∈ Th}2 ,

r ≥ 0 - integer and P r (K ) denotes the space of all
polynomials on K of degree ≤ r
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Derivation of the discrete problem

multiply system (2) by a test function yh ∈ Xh
integrate over Ωfh
use Green’s theorem
application of the generalized Hook’s law for an isotropic
material∫

Ωfh

2∑
i ,j=2

(
λ̄divu(t)δij + 2µ̄eij(u(t))

) ∂yi
∂xj
dx = 0,

where λ̄ and µ̄ are the Lame koeficients and
eij = 1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i , j = 1, 2 is the tenzor of small

deformation
Resulting linear system solved by the method of conjugated
gradients
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