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Goal and motivation

@ Modelling of fluid-structure interaction
@ Importance of this problem in several domains of human
activity
e Development of airplanes and turbines
e Some problems of civil engineering
e Car industry
e Medicine, etc.
@ Interested in the problem of the simulation of the airflow

through the human vocal folds

] \
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Flow problem

ALE mapping

Regular one-to-one ALE mapping:

At o Qref — Qt
XCQer — x=x(X,t) = A(X) C Q

Q, .y Q,,
LL e \HJ L \ ]

= .
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Flow problem

Domain velocity

Domain velocity

7: Qs x (0, T) — R?
3(X, 1) = 2x(X, 1) = 2 A(X)
2= 5 = G

z(x,t) = 2(A;1(x),t), t € (0, T), x € Q;
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Flow problem

ALE derivative

@ ALE derivative of a function f = f(x,t), x € Q¢, t € (0, T):

DA

_of o
NDitf(xv t)_ at(x’t)’ X_At (X)

f(X,t) =f(A(X),t), X E Qper, t€(0,T)
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Flow problem

ALE derivative

@ ALE derivative of a function f = f(x,t), x € Q¢, t € (0, T):

DA of 1
Ef(xv t) - a(xa t)a X= At (X)

F(X,t) = f(A(X), 1), X € Qper, t € (0, T)
@ Form of the time derivative of the function f

of DA )
9 = ?f-i-fdlv( z) — div(fz)
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Flow problem

Continuous problem in time dependent domains

e Bounded domain Q € R?, 0Q; =T, UTo UTy,,t € [0, T]

@ Navier-Stokes equations in the conservative ALE form

DAW 0g.(w) . 2. OR, (w, Vw)
i + Z “oxe + wdivz = Z B (1)

s=1 s=1

where g (w) = fs(w) — zsw, s =1,2
@ Termodynamical relations

p = (y-1)(E-p}/2)
E
S
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Flow problem

o State vector w: w = (p, pv1, pvo, E)T € R*

@ Inviscid flux of the quantity w in the direction x; :
fs(w) = (pvs, pvivs + 615p, pvavs + d2sp, (E+P)V5)Ta s=1,2

@ Viscous flux of the quantity w in the direction x; :

00

Rs(w,Vw) = (0,7s1,7s2, Ts1V1 + Ts2V2 + k@x )T, s=1,2
S
Tij = )\(5,'jdiVV+2,ud,'j(W), i,j = 1,2
1 8V,' ov;
djj = S |l—=+=32), =12
IJ(W) 2 (aXJ + 8X,'>’ Iv./ 9
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Flow problem

@ Initial condition
w(x,0) =w’(x), x€Q

@ Boundary conditions

Inlet ) : plr,x(0,7) = PD;

V|r,x(0,T) =vp = (vp1, VD1)T,

2 2

J i=1
00
Wall Iy, : Viw, =2, o= 0;
2
00 .
Outlet o : ;T,-jn,-:o, %20121,2;
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Flow problem

Space semidiscretization

Discontinuous Galerkin finite element method (DGFEM)
° F_’artition The of Qpe (polygonal approximation of the domain
Q) consisting of triangles K;, i € I, [';; = 0K; U 0K;
@ Space of the approximate solution - discontinuous piecewise
polynomial functions:

Sht — [Sht]4a
She = {on onlk € PT(K) VK € Tpe}?,

e r>1-integer and P"(K) denotes the space of all polynomials

on K of degree < r
e ¢ € Sp; - in general discontinuous on interfaces of the

elements
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Flow problem

Derivation of the discrete problem

e multiply system (1) by a test function ¢p, € Sy,

DAw(t
S [ 20 gins by
K. t
K€ The !

+Jn (W, op) + an (W, @p) + dp (W, 0) = Ih (W, @p)
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Flow problem

Derivation of the discrete problem

@ integrate over K € Ty,

DAw(t
S [ 20 gin by
K. t
K€ The !

+Jn (W, op) + an (W, @p) + dn (W, 0) = Ih (W, pp)
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Flow problem

Derivation of the discrete problem

@ use Green's theorem

DAw(t
S [ 20 gon o)
K; t
K€ The !

+Jn (W, op) + an (W, @p) + dn (W, @) = Ih (W, pp)
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Flow problem

Derivation of the discrete problem

@ sum over all K € Ty,

DAw(t
S [ 20 pons o)
K. t
K€ The !

+Jn (W, op) + an (W, @p) + dn (W, 0) = Ih (W, pp)
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Flow problem

Derivation of the discrete problem

multiply system (1) by a test function pp € Spt
integrate over K € Tp;

use Green's theorem

sum over all K € Ty,

introduce the concept of the numerical flux

DAw(t
S [ 20 gin by
K. t
K€ The !

+Jn (W, op) + an (W, @p) + dn (W, 0) = Ih (W, pp)
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Flow problem

Approximate solution

The approximate solution is defined as wy, € Sy such that

DAw,(t
E /Dh( ) - pdx + by (Wh(t), ©p)
p t
KeTh:

+an (Wh(t), pp) + In (Wh(t), pp) + dn (Wh(t), ¢4)
= In (wh(t), op)

holds for all ¢, € Spe, all t € (0, T) and wj(0) = w?
(=approximation of the initial state w?)
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Flow problem

Time discretization - semi-implicit scheme

@ Partition 0 =ty < t; < tp < ... of the interval (0, T)
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Flow problem

Time discretization - semi-implicit scheme

o Time step Ty = txy1 — ti

J. Hasnedlova Fluid-structure interaction



Flow problem

Time discretization - semi-implicit scheme

@ ALE derivative - the first order backward difference

DAwy, wiTL(x) — Wi(x)
Dt (X, tk—i-l) ~ h . , XE thk+1

W (x) = w/ (Atj (A;kil) (x)) . X € Qpy,,y
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Flow problem

Time discretization - semi-implicit scheme

@ Partition 0 =ty < t; < tp < ... of the interval (0, T)

o Time step Ty = txy1 — ti

@ ALE derivative - the first order backward difference
DAwy, wit(x) — Wi (x)

~ h
Dt (X, tk-l-l) =~ e , X€& thk+1

W (x) = w/ (Atj (A;kil) (x)) . X € Qpy,,y

@ Remaining terms treated with the aid of a linearization and
extrapolation
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Flow problem

Semi-implicit discrete problem

Problem is linear with respect to wﬁ“

k+1 "k
w — W A
h h k . k+1
(7 (loh> + bh (Wh7 Wh ) @h)

+3h <Wﬁ7 Wh 7()Dh) + Jh <WZ+17 (Ph> + dh ( k+17 (ph>

= Ih(wg, py)
VCPh E Shtk+17 k - 0,1,...
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Flow problem

Remarks

@ Discret problem is equivalent on each time level to a linear
algebraic system, which is solved by GMRES with a block
diagonal preconditioning.

@ Scheme for the solution of inviscid flow:

o u=A=rk=0 A
e Boundary conditions in the form b, (the determination of the

state wﬁ+1|r,.j for [jj C OQhpy,,, ) realized by linearized local
initial-boundary value Riemann problem
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Elasticity

Continuous problem for elasticity

@ Bounded domain Q° C R?, 00 =Th Uy, t C [0, T]
@ Dynamic equations for the isotropic elastic body

2 b
pb%t‘éurc ba”’+za“ —finQp tC[0,T], i=1,2 (2)

where the term Cp® %‘f, i =1,2 with C > 0 performs damping
@ Initial condition

Ou

u(0,) = u°, E(O’ ) =r"in Q,
@ Boundary condition
u = 0in(0,T)xT}
2
S rhng = Trin(0,T)x Ty
j=1
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Elasticity

Space discretization

Finite element method (FEM)

@ Partition Tj; of Qﬁ (polygonal approximation of the domain
QP) consisting of triangles K;, i € I, i = 0K; U OK;

@ Space of the approximate solution - piecewise polynomial
functions:

Xp = [Xh]27
Xn = {yn ynlk € P"(K) VK € Tp}?,

@ r > 1 - integer and P"(K) denotes the space of all
polynomials on K of degree < r
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Elasticity

Derivation of the discrete problem

@ multiply system (2) by a test function y, € X,
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Elasticity

Derivation of the discrete problem

@ integrate over Q7
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Elasticity

Derivation of the discrete problem

@ use Green's theorem
2

d d
@ (pbu(t)’Yh) Qb + (Cp ( )a yh)gygg + a(u’yh; t)
= (f(t)7Yh)0,Qg +(T" (t)7Yh)O,FW,,
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Elasticity

Derivation of the discrete problem

multiply system (2) by a test function y, € X,
@ integrate over Q7

@ use Green's theorem
2

d d
@ (pbu(t)’Yh) Qb + (Cp ( )a yh)gygg + a(u’yh; t)
= (f(t)7Yh)0,Qg +(T" (t)7Yh)O,FW,,

application of the generalized Hook's law for an isotropic material

a(u,y, t /Z Adivu(t 5U+2ueu(u(t)))

hlj 2

where X and ii are the Lame koeficients and

. — 1 ( 0y 8UJ
€j =2 (axj T3

,J = 1,2 is the tenzor of small deformation
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Elasticity

Approximate solution

The approximate solution is defined as u, € Vy, such that there
exist u}, and uj and holds

&/, d
i (P Uh(t)dh)()ﬂ2 T3t

(Cpbuh(t)aYh) , talupypt)
0.Q"

holds for all y, € Vj, = {yh € Xp| yh|F‘5h = 0} , almost all
t € (0,T) and

un(x,0) = uh(x), x € Qp,

uh(x,0) = ul(x), x € Qp,

r

o . . ] 0 0
(= approximation of the initial state u” a uy)
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Elasticity

Time discretization

@ There is the system of second order ordinary differential
equations arising from the space discretization of the elasticity
problem.

@ Suitable solution of the system can be obtain by Newmark
method = linear algebraic system.
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ALE mapping

Computation of the ALE mapping

@ Motion of the computational mesh in the domain occupied by
the fluid solved as a special stationary problem of linear
elasticity

i _q: .
Za—xj_Omel_l,Z

@ Use of finite element method (FEM) - linear elements

@ Resulting linear system solved by the method of conjugated
gradients
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Coupled problem

Transmission conditions

The interaction between the flow and the structure takes place on
their common boundary I'y, at the time t :

Cyw, = {xe R% x=X+u(X,t), Xe Fﬁv}.
Transmission condition (fluid — structure):

S mpX)m(X) = = Y7 Th)m(X), i=1,2
where x = X + u(X, t)

Transmission condition (structure — fluid):

Ju(X, t)
ot
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Coupled problem

Weak coupling

Computational scheme:

© Compute the approximate solution of the flow problem on the
time level t,,.

@ Compute the stress tensor of the fluid T,-Jf- and the
aerodynamical force acting on the structure and transform it
to the interface '), .

© Solve the elasticity problem, compute the deformation uy, , at
time t;, and approximate the domain ;.

© Determine the ALE mapping A;, . ,» and approximate the
domain velocity zj my1-

© Set m:=m+1, go to 1).
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Coupled problem

Strong coupling

Computational scheme:
© Assume that the approximate solution wj’ of the flow problem and the
deformation up m, of the structure are known on the time level tp,.
Q Set u?,ymﬂ ‘= Upm, k:=1 and apply the iterative process:
@ Compute the stress tensor of the fluid Tijf- and the aerodynamical force
acting on the structure and transform it to the interface r’;,,h.
@ Solve the elasticity problem, compute the approximation of the
deformation u£7m+1 and construct the approximation Qﬁt,,# of the flow

1
domain at time tp,41.

© Determine the approximations of ALE mapping A¥ and the domain
tmy1h
A k
velocity Zp i1
Solve the flow problem in QX and obtain the approximate solution
htmi1
k
W mil-
@ |If the variation of the displacement uX and 71 s larger than the
h,m+1 h,m+1
prescribed tolerance, go to a) and k := k + 1. Else
Qe = anm, wh”H:l = wﬁ7m+1, uh’"Jrl = u,k”m7 m:= m+ 1 and goto
2).
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Numerical results

Computational geometry

Geometry of the channel inspired by the shape of vocal folds
and a part of supraglottal space
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Numerical results

Flow parameters

Input parameters and boundary conditions for the airflow

inlet flow velocity 4 m/s

1571

viscosity 15 -107% kgm~
density 1.225 kg/m?3
outlet pressure 97611 Pa
Re = 5227

k =2.428-1072 kgms3K~!
¢, = 721.428 m?s—2K~!
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Numerical results

Parameters of the solid body and for the computation of
the ALE mapping

Parameters of the solid body
o density 1040 kgm—3
e damping coefficient C = 0.1
@ Young modulus E® = 25000 Pa
@ Poisson ration o® = 0.4
Parameters for the computation of the ALE mapping
e E =10000.0 Pa
e 0 =049
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Numerical results

Comparison of the influence of the density of the
computational mesh

Testing meshes:

@ red ... 5398/1998 elements in flow/structure part of the
channel

@ green ... 10130/2806 elements in flow/structure part of the
channel

@ blue ... 20484/4076 elements in flow/structure part of the
channel

Observed quantity: p,, = fro (p(x, t)—+ fOT p(x, t)dt) /fro ds
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Numerical results

Weak x strong coupling

150 150
100 100F ]
50, 50 J (W |
| 3 bl g 1o
PO S \/ L
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-50 50
1%0s 1Pos 0.05 0.06

Used dimensionless time step 7 = 0.001.
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Numerical results

Comparison of the influence of the density of the
computational mesh using the Fourier analysis

Weak x strong coupling
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Numerical results

Comparison of weak and strong coupling procedure on the
different meshes (5398, 10130, 20484 el. in the fluid part)

150, 100,
\
100] 4
50
50 - \ |
\ «\ 1 ‘ \[ [T TR |
. M H p \ \ S L T O | Y \ f ‘]H
o8 D \ 3 oby M A I I
il \ \\ o W R
50 f I
-50)|
-100
71%.;04 0.05 Q.06 il 0.07 0.08 Q.09 71%004 0.05 0.06 - Q.07 0.08 0.09
t[s] t[s!

Iy
S W i JW i e

w»
i i

71?04 0.05 0.08 0.07 0.08 0.09
tfs]

J. Hasnedlova Fluid-structure interaction



Numerical results

Comparison of the behaviour of the fluid and the struc
in the narrowest part of the channel

Detail of the computational mesh and placement of sensors
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Used computational mesh: 10130/2806 elements in flow/structure part of the

channel.
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Displacement of the structure and the pressure of the fluid in the

Numerical results

narrowest part of the channel

displacement [r]
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Numerical results

Displacement of the structure and the pressure of the fluid in the
narrowest part of the channel - Fourier analysis

sensor_00 [0.007700, -0.000810] sensor_01 [0.007700, -0.002100]
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Numerical results

Isolines of velocity and pressure
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Conclusion

What has been done

@ Fluid-structure interaction

o Weak coupling
e Strong coupling

o Study of several computational geometries and input
parameters

@ Preliminary tests of the influence of the mesh size on results -
observation of the convergence tendency
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Conclusion

Further work

Suitable tests of the influence of the mesh size on results
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Conclusion

Thank you for your attention!
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Conclusion

Details of the space discretization of the flow problem
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Conclusion

Convective terms

Approximation of fluxes

/ ng (ng), - pdS ~ / (©)Ir, wh(D)lr,n5) - @dS

'Jsl

by ( - > / ng sdx

KieTh ” Ki s=1

- Z Z / g(Wh(t)[r;, wh(t)lr;,n;) - pdS

Ki€The jeSe(i) " i
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Conclusion

Diffusion form (1IPG)

n(w, ) EE:J/ ji:l? , Vw) gdek

iel ’s 1

> > [ SR vl

i€l jes(i)j<i i s=1

XY [ SR Tw) ) s

iel jeyp(i) i s=1
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Conclusion

Interior and boundary penalty jump terms

Z Z /U[W] [SO]dS-i-Z Z /aw pdS,

i€l jes(i)j<i i€l jeyp(i)

where o|r, = 5("}/5, Cw >0

~—|

J. Hasnedlova Fluid-structure interaction



Conclusion

dn (W, ©},) Z /dwz w - ) dx

K€ Tyt
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Conclusion

Right-hand side form

/h(w,go):Z Z /r owg - pdS,

i€l jeyp(i)™ ¥
where wg is defined on the basis of the Dirichlet boundary
conditions and extrapolation:

1 2
wp = Pij, PijZ1, PijZ2, Cv,0ij9ij + Eﬂij |z| on [y,
1 2
wg = | pp,pPDVDI,PDVD2, CvpDUD + 5PD lvp| on [
wg = wj onlg
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Conclusion

Details of the time discretization of the flow problem
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Conclusion

Semi-implicit linearized scheme

Linearization of the term by (w, ¢},) :

by (w. 1) z/zgs )- 222 ax

Kie Ty ” Ki s=1

- Z Z / n(t)[r;, wa(t)lr;,ny) - edS

Ki€The j€S:(i) L

Based on relation:
g.(w l;+1) (As(w2+1) _ z;<+1]1) WZ+1

= <As(\ﬁlﬁ) — zf"'l]I) wi

4
)=

Iw;
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Conclusion

Linearization of the first term of by (.,.) :

a‘Ph
Z /Z wit) L %h 4

KeThtk+1
k k1 k+1 o
~ ¥ /z W) — 22w P
Xs
KeThtk+1

The second term of by, (.,.) is linearized with the aid of the
Vijayasundaram numerical flux:

H ( +1’|—U7 +1‘rji7nij)

T+ ~ k B k+1 A~ k B k+1
~ P <<Wh>r__7"u> Iry + B <<wh>r",nu> Wy,
y

y

where Pt and P~ are positive and negative part of the matrix
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Conclusion

7 ~ k k+1
bh (Wha w, -, ‘Ph)
2

- > /KZ( () — 2611w SPha

Ke Thtk+1

+ Y Y /[W(wz» nu)wh+1|ru

KEThtk+IJEStk+1( )

+P~ (<W2>F ’nU> WZ+1|rji:| : Sohds
ij
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Conclusion

Linearization of the form a,

Based on the fact that Rs (w, Vw) is nonlinear in w but linear in
ow

Vw and the following formula: Rs (w, Vw) = Ele Kjj (w) o

k+1 2 ~ ko k41
ah<W+a‘P>wah(W aw+7‘p>

owitt o,
= IZG;/I ;;Kst h) a)ﬁt e dx
2 2 S+
- (DKt (Wi ) —52—)(ny)s - [i0] dS
"26;165(2:),1<: L ; ; ‘ (Wh> Oxt i 7
2 2 41
_ Z Z / ZZKst <Wh) (”ij)s - dS,
icl jeyp(i) i s=1 t=1
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Conclusion

Semi-implicit discrete problem

Problem is linear with respect to wﬁ“

k+1 "k
w — W A
h h k . k+1
(7 (loh> + bh (Wh7 Wh ) @h)

+3h <Wﬁ7 Wh 7()Dh) + Jh <WZ+17 (Ph> + dh ( k+17 (ph>

= Ih(wg, py)
VCPh E Shtk+17 k - 0,1,...
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Conclusion

Details of the computation of the ALE mapping
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Conclusion

Computation of the ALE mapping

e Bounded domain Qf ¢ R2, 9Qf = I_’(D1 U I’sz

@ Stationary equations of linear elasticity for the isotropic elastic

body
2 or; ]
Z L =0in Qf i=1,2, (3)
Ox;
@ Boundary condition
u = uin FfDl
u = 0inl},
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Conclusion

Space discretization

Finite element method (FEM)

o Partition T, of QZ (polygonal approximation of the domain
Qf) consisting of triangles K;, i € I, i = 0K; U OK;

@ Space of the approximate solution - discontinuous piecewise
polynomial functions:

Xp = [Xh]27
Xn = {yn ynlk € P"(K) VK € Tp}?,

@ r >0 - integer and P"(K) denotes the space of all
polynomials on K of degree < r

J. Hasnedlova Fluid-structure interaction



Conclusion

Derivation of the discrete problem

e multiply system (2) by a test function y, € Xj
@ integrate over QZ
@ use Green's theorem
@ application of the generalized Hook's law for an isotropic
material
2 Sy
/ S (Mdiva(t)dy + 27ie; (u(t)) ZLidx =0,
Qf Ox;

hij=2

where )\ and [ are the Lame koeficients and

gj = % <‘g)‘;’_’ + g—g) , i,j = 1,2 is the tenzor of small
deformation

@ Resulting linear system solved by the method of conjugated
gradients
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