

A New Successive Linear Programming Framework for Constrained Equations

Markus Herrich

based on a joint work with

Francisco Facchinei Andreas Fischer Università di Roma TU Dresden "La Sapienza"

Contents

Problem

Successive Linear Programming (SLP) Algorithm

Local Convergence Properties

Discussion of Assumptions

Outlook

Problem

$$F(z) = 0$$
 s.t. $z \in \Omega$

with

- $F: \mathbb{R}^n \to \mathbb{R}^m$ (at least) locally Lipschitz continuous,
- $\Omega \subseteq \mathbb{R}^n$ is nonempty, closed and convex,
- nonempty solution set Z,
- let $G: \mathbb{R}^n \to \mathbb{R}^{m \times n}$ be a given map

A New Successive Linear Programming Algorithm

For given z^k determine a solution $(z(z^k), \gamma(z^k))$ of the problem

$$\min_{z,\gamma} \quad \gamma \\
 \|F(z^k) + G(z^k)(z - z^k)\| \le \gamma \|F(z^k)\|^2, \\
 \|z - z^k\| \le \gamma \|F(z^k)\|, \\
 z \in \Omega, \, \gamma \ge 0.$$
(1)

Set $z^{k+1} := z(z^k)$.

For any $z^k \in \mathbb{R}^n$ the subproblem has a solution. Thus, the algorithm is well-defined for any $z^0 \in \mathbb{R}^n$.

If Ω is polyhedral and $\|\cdot\| = \|\cdot\|_{\infty}$ then (1) is a linear program.

Local Convergence Properties

Assumptions

Let $z^* \in Z$ be an arbitrary but fixed solution. Moreover, let $\delta > 0$ denote the radius of the ball

$$\mathcal{B}_{\delta}(z^*) := \{ w \in \mathbb{R}^n \mid ||w - z^*|| \le \delta \}.$$

Assumption 1 (Error Bound):

There is $\ell > 0$ so that

$$dist[s, Z] \le \ell ||F(s)||$$

for all $s \in \mathcal{B}_{\delta}(z^*) \cap \Omega$.

Assumption 2:

There is $\Gamma>0$ so that for any $s\in\mathcal{B}_{\delta}(z^*)\cap\Omega$ there exists $s^{\diamond}\in\Omega$ such that

$$||s^{\diamond} - s|| \leq \Gamma ||F(s)||,$$

$$||F(s) + G(s)(s^{\diamond} - s)|| \leq \Gamma ||F(s)||^{2}.$$

Assumption 3:

There is $\hat{\alpha} > 0$ so that for all $s \in \mathcal{B}_{\delta}(z^*) \cap \Omega$ and all $\alpha \in [0, \delta]$

$$w \in \mathcal{L}(s, \alpha)$$
 implies $||F(w)|| \le \hat{\alpha}\alpha^2$

where

$$\mathcal{L}(s,\alpha) := \left\{ w \in \Omega \mid \|w - s\| \le \alpha, \|F(s) + G(s)(w - s)\| \le \alpha^2 \right\}.$$

Convergence Result

Theorem 1

Let Assumptions 1 – 3 be satisfied. Then, there is $\epsilon > 0$ so that $z^0 \in \mathcal{B}_{\epsilon}(z^*) \cap \Omega$ implies that the sequence $\{z^k\}$ generated by the SLP Algorithm converges Q-quadratically to some $\hat{z} \in Z$.

Discussion of Assumptions

Relations to Classical Smoothness Conditions

Proposition 2

Let F be $C^{1,1}$ (differentiable with locally Lipschitz continuous Jacobian) and G(s) := F'(s). Then,

- Assumption 2 is satisfied, if Assumption 1 (Error Bound) holds,
- Assumption 3 is satisfied.

Instead of assuming that F' is locally Lipschitz, Proposition 1 remains valid if a smoothness condition in Kanzow/Yamashita/Fukushima 2004 is used, i.e., if there is $\kappa>0$ so that

$$||F(s) + G(s)(w - s) - F(w)|| \le \kappa ||w - s||^2$$

holds for all $w, s \in \mathcal{B}_{2\delta}(z^*) \cap \Omega$.

Relations to Classical Smoothness Conditions (Continuued)

Proposition 3

Let *F* be strongly semismooth at z^* and $G(s) \in \partial_B F(s)$. Then,

- Assumption 2 is satisfied, if z* is a locally isolated solution,
- Assumption 3 is satisfied, if $m \ge n$ and $\partial_B F(z^*)$ has rank n.

Together with appropriate regularity conditions, Assumptions 2 and 3 are implied by state-of-the-art smoothness conditions (Qi and Qi/Sun).

Assumptions 2 and 3 for Reformulated KKT Systems

Let us consider the KKT system

$$\Psi(x, u) := H(x) + \sum_{i=1}^{m_g} u_i \nabla g_i(x) = 0,$$

 $u \ge 0, \ g(x) \le 0, \ u^{\top} g(x) = 0,$

where $H: \mathbb{R}^{n_0} \to \mathbb{R}^{n_0}$ and $g: \mathbb{R}^{n_0} \to \mathbb{R}^{m_g}$ are assumed to be sufficiently smooth.

Reformulation:

$$F(z) := F(x, u, y) := \begin{pmatrix} \Psi(x, u) \\ g(x) + y \\ \min\{u_1, y_1\} \\ \vdots \\ \min\{u_{m_g}, y_{m_g}\} \end{pmatrix} = 0 \quad \text{s.t.} \quad z \in \Omega$$
 (2)

with

$$\Omega := \mathbb{R}^{n_0} \times \mathbb{R}_+^{m_g} \times \mathbb{R}_+^{m_g} \subseteq \mathbb{R}^n.$$

Theorem 4

If Assumption 1 holds and if there is a neighborhood $\mathcal{U}(z^*)$ of $z^* = (x^*, u^*, v^*)$ so that $z = (x, u, v) \in Z \cap \mathcal{U}(z^*)$ implies $x = x^*$ then Assumption 2 is satisfied.

Theorem 5

Assumption 3 is satisfied for problem (2).

Corollary 6

Suppose that at z^* the following second-order condition holds:

$$d^{\top}\Psi_{x}(x^{*}, u^{*})d \neq 0 \tag{3}$$

for all $d \in \mathbb{R}^{n_0}$ with

$$\nabla g_i(x)^{\top} d \leq 0 \, \forall i \in \mathcal{I}_0(x^*) \quad \text{and} \quad \nabla g_i(x)^{\top} d = 0 \, \forall i \in \mathcal{I}_0(x^*) \text{ with } u_i^* > 0.$$

Then, the x-part of the solution $z^* = (x^*, u^*, v^*)$ is locally unique and Assumption 1 is satisfied (\rightarrow Fernández/Solodov 2009).

Hence, the SLP algorithm converges locally quadratically to a solution of (2).

Outlook

- Globalization
- Applications to GNEPS
- Inexact versions of the SLP algorithm