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History

Shape optimization in discretized static contact problems with:

Q no friction  [e.g. Haslinger, Neittaanmaki, 1996]
Q given friction (Tresca law) [e.g. Haslinger, Neittaanmiki, 1996]
© Coulomb law - 2D case  [Beremlijski, Haslinger, Ko¢vara, Outrata, 2002]

@ Coulomb law - 3D case  [Beremlijski, Haslinger, Ko¢vara, Kutera, Outrata, 2009]

Goal

Extend the results to contact problems, where the coefficient of friction depends on the
solution, i.e. the unknown displacement.
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Geometrical setting
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Elastic body and its contact boundary:
Qo) ={(x,x) |a<x1 < b, a(x1) < x> <7}, Tc(a):=Gra, J

where

a€ Uy :={aeC""([a,b])]|0<a< G, || <G, |a" < G,
meas Q(a) = G}.
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Classical formulation

Signorini problem
divo(u)+ F=0 in Q(«),

u=0 onl,,

(o(u)n=)T(u)=P onTlp,
(o) =) moa

To(u)oa
(troa+a)Ta(u)oa

in (a, b)
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Classical formulation

Signorini problem with given friction
divo(u)+ F=0 in Q(«),
u=0 onl,,
T(u)=P onTlp,

moa > —«
To(u)oa > 0 in (a, b)
(leoa+a)To(u)oa = 0
n=0 = |T(u)|<F g
m#0 = Ti(u)=—sgn(u)F on Te(a)
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Classical formulation

Signorini problem with given friction and solution-dependent coefficient of friction:
divo(u)+ F=0 in Q(«),
u=0 onl,,
T(u)=P onTlp,
oo >
To(u)oa > 0 in (a, b)
(roa+a)T2(u)oa =

u=0 = [Ti(u) < F(0)g
n#0 = Ti(u) = —sgn(um)F(juml)g } on le(@)

4/16
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Classical formulation

Signorini problem with given friction and solution-dependent coefficient of friction:
divo(u)+ F=0 in Q(«),
u=0 onl,,
T(u)=P onTlp,
moa

>
T(u)oa > 0 in (a, b)
(roa+a)T2(u)oa =

u=0 = [Ti(u) < F(0)g
n#0 = Ti(u) = —sgn(um)F(juml)g } on le(@)

oij(u) = cjwew(u) Vi,j=1,2,

Cijki = Gjil = Ckij Vi j, k,1=1,2,
FCenr > 0 cjwéiibu > Canii€iy V& = &ji € R.
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Variational formulation

Notation:

V(a) :={veH(Qa))|v=0 ae onTl,}
K(a):={veV(a)| vwoa>—a ae. in(a,b)},

a(u7v) = /Q( )C,'jk/Ek/(u)E,'j(V) dx; L(V) = /Q( )F,'V,' dX+/ P;v; ds.
e’ e p

Weak formulation of the state problem:

Find u € K(«) such that:
A=) +/ FluDg(w] = ml) ds > Liv—u) W € K(a).

(o

Existence, uniqueness, discretization ... [Haslinger, Vlach, 2005]
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Derivation of the algebraic state problem

Let:

® U.q C RE convex, compact,

o K(a):={veR"|v, > —a} for any o € Uad,

where the subvector v, € R” corresponds to normal displacement at the contact nodes.

Primal formulation of the state problem:

Find u € () such that:

(A(a)u,v —u), + Zwi(a)f(l(ur)f\)(l(vr)il = [(u-)il)

> (L(a),v — u)n W € K(e).
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Derivation of the algebraic state problem

Let:

® U.q C RE convex, compact,

o K(a):={veR"|v, > —a} for any o € Uad,

where the subvector v, € R” corresponds to normal displacement at the contact nodes.

Mixed formulation of the state problem:

Find (u, 2) € R" x 27 such that:
(A(a)u,v —u)n + Zw;(a)F(I(uT)f\)(l(vT)il = [(ur)il)

> (L(a),v —u), Yv e R,
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Derivation of the algebraic state problem

Let:

@ Usq C R convex, compact,

o K(a) :=={veR"|v, > —a} for any a € Uaq,

where the subvector v, € R” corresponds to normal displacement at the contact nodes.

Reduced algebraic state problem:

Find (ur,u,,A) € R? x R” x Rf such that:

0 E ATT(a)uT + ATV(a)uV - I-‘r(a) + Ql(a, u‘r);
0=A()u; + A, (a)u, — XA — L, (),

06 UV+CY+NR5_(A)7

(P(ex))

where:  (Qi(a,ur)), := wi(a)F(|(u-)iDo|(ur)i| Vi=1,...,p.
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State GE and its solvability

Introducing the state variable y := (uT7 u,, )\)T, we may rewrite (P(a)) as:

0 € F(a,y) +Q(er,y). (GE) |
where:
Arr(a) Ar(a) O 2 L () Qi (o, yq)
Flayy) = | Avr(a) Av(a) —I| |y, ]| — | L(a) ], Qley):= 0
0 I 0 Y3 —a NR';(Y3)

Theorem

Let the coefficient of friction F : Ry — R, be Lipschitz continuous with a sufficiently
small modulus. Then the mapping:

S:a—{y|0cF(a,y)+Q(a,y)}

is single-valued and Lipschitz continuous in Uag.
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Shape optimization and ImP

Let J : (o, y) — R be a continuously differentiable cost functional. Then the shape
optimization problem reads as:

minimize  J(a,y)
(P) § subj. to 0€F(a,y) + Q(a,y)
o € U

From now on let the assumptions of Theorem hold. Then:
Implicit Programming:

P < (B { minimize 7(e0) = St 5c0)

Given & € U,q, we need to compute:
@ the solution to the GE: ¥y := S(&),

o one Clarke's subgradient: & € 0J(&) = VaJ(&,¥) + (05(&)) TVyJ(a,y)
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Generalized differentiation - basic definitions

For a set A C R" and x € A denote by

Na(x) := {x* € R"‘ lim sup% < 0} and  Na(X) := Limsup Na(x)
A - n A

—X X—X

the regular (Fréchet) and limiting (Mordukhovich) normal cones to A at X, respectively.

For a multifunction Q : R” = R™ and (X,¥) € Gr Q the multifunction
D*Q(x,¥) : R™" = R", defined by

D*Q(%,¥)(y") = {x" € R" [ (x", —y") € Nero(X,¥)}

is called the limiting (Mordukhovich) coderivative of Q at (X, ¥).

Q is said to be calm at (X,y) provided 3L > 0 3 neighbourhoods U, V of x, ¥, resp.:

Q(x) NV C Q) + L|jx — X[ aBm(0,1) V¥x € U.
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Sensitivity analysis - the adjoint GE

Lemma
D*S(&)(V,J(&,¥)) C (35(&)) V,J(&,y) V& € Usg. J

.. cf. [Mordukhovich, 1994]

= Our goal is to determine one element from D*S(&)(V,J(&,¥))!
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Sensitivity analysis - the adjoint GE

Lemma
D*S(&)(V,J(&,¥)) C (35(&)) V,J(&,y) V& € Usg. J

.. cf. [Mordukhovich, 1994]

= Our goal is to determine one element from D*S(&)(V,J(&,¥))!

Theorem
(i) The multifunction:

M: p— {(a,y) | p+ P(a,y) € GrQ},

where ®(a,y) := (ay, —F(a,y))T is calm at (0, &, ¥).
(ii) For each p* € D*S(&)(V,J(&,¥)) there exists a vector v* such that:

(—vyz(a,w) € VF(&,9)"v" + D"Q(&.3, ~F(& y))(v"). (AGE)

v

... for (ii) cf. [Ko¢vara, Outrata, 2004]
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Sensitivity analysis - adjoint GE

Sketch of the proof of (i):
By contradiction:

@ Show that noncalmness of M at (0, &,y) implies noncalmness of
M: B {(a,y) | (0,0,p) + ®(a.y) € GrQ}

at (0,&,Y);

V.
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Sensitivity analysis - adjoint GE

Sketch of the proof of (i):
By contradiction:

@ Show that noncalmness of M at (0, &,y) implies noncalmness of

M: b {(a,y)](0,0,p) + P(cx,y) € GrQ}
at (0, &, y);

o Observe, that: (a,y) € M(ﬁT) s peFlay)+ Qla,y) = 0e Fa,§) + Qa, §),
where § := (y;, y, — Py, ¥3)  and

_ brr(0) Anfa) O L-(a) +B; — Ar(a)ps
F(e,§) == | Avr(a) Avu(a) —I|§— | L(a)+pP, —Av(a)ps |,
0 I 0 -«

i.e. § is the unique solution to the state problem on the domain Q(«), but with a
different load vector;

-~
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Sensitivity analysis - adjoint GE

Sketch of the proof of (i):
By contradiction:
@ Show that noncalmness of M at (0, &,y) implies noncalmness of
M: > {(a,y) | (0,0,p) + d(a,y) € GrQ}
at (0, &,Y);
o Observe, that: (a,y) € M(ﬁT) s peFlay)+ Qla,y) = 0e Fa,§) + Qa, §),
where § := (y;, y, — Py, ¥3)  and
Arr(a) Ary(a) 0 r(a) + By — Arv(c)ps

L
F(e,§) == | Avr(a) Avu(a) —I|§— | L(a)+pP, —Av(a)ps |,
0 I 0 -«

i.e. § is the unique solution to the state problem on the domain Q(«), but with a
different load vector;

@ Show that on a fixed domain the solution y depends Lipschitz continuously on the
load vector L;

-~
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Sensitivity analysis - adjoint GE

Sketch of the proof of (i):
By contradiction:
@ Show that noncalmness of M at (0, &,y) implies noncalmness of
M: > {(a,y) | (0,0,p) + d(a,y) € GrQ}
at (0, &,Y);
o Observe, that: (a,y) € M(ﬁT) s peFlay)+ Qla,y) = 0e Fa,§) + Qa, §),
where § := (y;, y, — Py, ¥3)  and
Arr(a) Ary(a) 0 r(a) + By — Arv(c)ps

L
F(e,§) == | Avr(a) Avu(a) —I|§— | L(a)+pP, —Av(a)ps |,
0 I 0 -«

i.e. § is the unique solution to the state problem on the domain Q(«), but with a
different load vector;

@ Show that on a fixed domain the solution y depends Lipschitz continuously on the
load vector L;

@ From these facts prove that M is calm at (0,a,y).
. ~
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Sensitivity analysis - computation of D*Q@

Recall:
Ql(avyl)
Q(a,y) = 0 ... components are decoupled,
NRﬁ(Ya)

therefore its coderivative can be computed componentwise:
D*Ql(dv yla ql)(qT)

bQ@.y.a)a)=| 0 (&, ¥,d) € GrQ vq".
D™ Nge (¥, @s)(a3)

3™ component is easy and well-known,

1** component is much more challenging!
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Sensitivity analysis - computation of D* Q4

Write Q; as a composition of an inner smooth mapping and an outer multifunction:

wi () F(|u1])0|usl ZoW,
Q:(a,u) = = (a,u) = (Z1 o V) (ax,u),
wp(a)F(up|)0|up| ZoV,

where: W, : (a,u) = (wila),u;)T  and  Z:(xi,x)" = x1F(|x2])0|xa|.
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Sensitivity analysis - computation of D* Q4

Write Q; as a composition of an inner smooth mapping and an outer multifunction:

wi () F(|u1])0|usl ZoW,
Q:(a,u) = = (a,u) = (Z1 o V) (ax,u),
wp(a)F(up|)0|up| ZoV,

where: W, : (a,u) = (wila),u;)T  and  Z:(xi,x)" = x1F(|x2])0|xa|.

Hence:

D*Qy(&,8,d)(qa") C VV(&,u)" D*Zi(V(&,),d)(a"), ]

at all points (&, u,q) € GrQ; for which the following holds:

Ker VV(a, )" N D*Z1(V(&,d),q)(0) = {0} ! (CQ)J
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Sensitivity analysis - final step

Notice, that the components of Z; are also decoupled, therefore the coderivative D*Z;
may be computed componentwise, i.e. in terms of D* 7!

The quantity D*Z(x1, X2, Z)(z*) may be expressed in terms of the data of our problem at
all reference points (X1, X2, z) € Gr Z and for all directions z* € R.

Different parts of Gr Z correspond the different mechanical regimes:
9 x| >0 = sliding,
@ X =0, |z| <x1F(0) = strong sticking,
@ X =0, |z] =x1F(0) =  weak sticking.
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Sensitivity analysis - final step

Notice, that the components of Z; are also decoupled, therefore the coderivative D*Z;
may be computed componentwise, i.e. in terms of D* 7!

The quantity D*Z(x1, X2, Z)(z*) may be expressed in terms of the data of our problem at
all reference points (X1, X2, z) € Gr Z and for all directions z* € R.

Different parts of Gr Z correspond the different mechanical regimes:
9 x| >0 = sliding,
@ X =0, |z| <x1F(0) = strong sticking,
@ X =0, |z] =x1F(0) =  weak sticking.

Corollary
(CQ) is satisfied for all (&, u,q) € GrQ;. J
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The End

Thank you for your attention... J
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