Shape sensitivity analysis in discretized contact problems with a solution-dependent coefficient of friction

Jaroslav Haslinger¹ Jiří V. Outrata² <u>Róbert Pathó</u>¹

¹ Department of Numerical Mathematics, Charles University in Prague

² Institute of Information Theory and Automation, AS CR, Prague

Workshop Prague-Dresden Prague, 13-14th April 2012

A D > A P > A B > A

History

Shape optimization in discretized static contact problems with:

- Ino friction [e.g. Haslinger, Neittaanmäki, 1996]
- given friction (Tresca law) [e.g. Haslinger, Neittaanmäki, 1996]
- Scoulomb law 2D case [Beremlijski, Haslinger, Kočvara, Outrata, 2002]
- Scoulomb law 3D case [Beremlijski, Haslinger, Kočvara, Kučera, Outrata, 2009]

Goal

Extend the results to contact problems, where the coefficient of friction depends on the solution, i.e. the unknown displacement.

イロト 不得下 イヨト イヨト

Geometrical setting

Elastic body and its contact boundary:

$$\Omega(\alpha) := \{ (x_1, x_2) \mid a < x_1 < b, \ \alpha(x_1) < x_2 < \gamma \}, \quad \mathsf{\Gamma}_c(\alpha) := \mathsf{Gr}\,\alpha,$$

where

$$\alpha \in U_{ad} := \{ \alpha \in C^{1,1}([a, b]) \mid 0 \le \alpha \le C_0, \ |\alpha'| \le C_1, \ |\alpha''| \le C_2, \\ \operatorname{meas} \Omega(\alpha) = C_3 \}.$$

R. Pathó (Charles University)

Contact shape optimization

Signorini problem

$$\begin{aligned} \operatorname{div} \sigma(\mathbf{u}) + \mathbf{F} &= \mathbf{0} \quad \text{in } \Omega(\alpha), \\ \mathbf{u} &= \mathbf{0} \quad \text{on } \Gamma_{u}, \\ (\sigma(\mathbf{u})n &\equiv) \mathbf{T}(\mathbf{u}) &= \mathbf{P} \quad \text{on } \Gamma_{P}, \end{aligned}$$
$$\begin{pmatrix} (u_{2}(\cdot, \alpha(\cdot)) &\equiv) & u_{2} \circ \alpha &\geq & -\alpha \\ T_{2}(\mathbf{u}) \circ \alpha &\geq & \mathbf{0} \\ (u_{2} \circ \alpha + \alpha) & T_{2}(\mathbf{u}) \circ \alpha &= & \mathbf{0} \end{cases} \quad \text{in } (a, b) \end{aligned}$$

3

イロト イヨト イヨト イヨト

Signorini problem with given friction

$$\begin{aligned} \operatorname{div} \sigma(\mathbf{u}) + \mathbf{F} &= \mathbf{0} \quad \text{in } \Omega(\alpha), \\ \mathbf{u} &= \mathbf{0} \quad \text{on } \Gamma_{u}, \\ (\sigma(\mathbf{u})n &\equiv) \mathbf{T}(\mathbf{u}) &= \mathbf{P} \quad \text{on } \Gamma_{P}, \end{aligned}$$
$$\begin{pmatrix} (u_{2}(\cdot, \alpha(\cdot)) &\equiv) & u_{2} \circ \alpha &\geq -\alpha \\ T_{2}(\mathbf{u}) \circ \alpha &\geq 0 \\ (u_{2} \circ \alpha + \alpha) T_{2}(\mathbf{u}) \circ \alpha &= 0 \end{pmatrix} \quad \text{in } (a, b) \\ \begin{pmatrix} u_{1} &= \mathbf{0} &\Rightarrow |T_{1}(\mathbf{u})| \leq \mathcal{F} & g \\ u_{1} &\neq \mathbf{0} &\Rightarrow T_{1}(\mathbf{u}) &= -\operatorname{sgn}(u_{1})\mathcal{F} & g \end{pmatrix} \quad \text{on } \Gamma_{c}(\alpha) \end{aligned}$$

3

・ロト ・回ト ・ヨト ・ヨト

Signorini problem with given friction and solution-dependent coefficient of friction:

$$\begin{aligned} \operatorname{div} \sigma(\mathbf{u}) + \mathbf{F} &= \mathbf{0} \quad \text{in } \Omega(\alpha), \\ \mathbf{u} &= \mathbf{0} \quad \text{on } \Gamma_{u}, \\ (\sigma(\mathbf{u})n \equiv) \mathbf{T}(\mathbf{u}) &= \mathbf{P} \quad \text{on } \Gamma_{P}, \end{aligned}$$
$$\begin{pmatrix} (u_{2}(\cdot, \alpha(\cdot)) \equiv) & u_{2} \circ \alpha \geq -\alpha \\ T_{2}(\mathbf{u}) \circ \alpha \geq 0 \\ (u_{2} \circ \alpha + \alpha) T_{2}(\mathbf{u}) \circ \alpha = 0 \end{pmatrix} \quad \text{in } (a, b) \\ \begin{pmatrix} u_{1} &= \mathbf{0} \quad \Rightarrow \quad |T_{1}(\mathbf{u})| \leq \mathcal{F}(\mathbf{0})g \\ u_{1} \neq \mathbf{0} \quad \Rightarrow \quad T_{1}(\mathbf{u}) = -\operatorname{sgn}(u_{1})\mathcal{F}(|u_{1}|)g \end{pmatrix} \quad \text{on } \Gamma_{c}(\alpha) \end{aligned}$$

3

<ロ> (日) (日) (日) (日) (日)

Signorini problem with given friction and solution-dependent coefficient of friction:

$$\begin{aligned} \operatorname{div} \sigma(\mathbf{u}) + \mathbf{F} &= \mathbf{0} \quad \text{in } \Omega(\alpha), \\ \mathbf{u} &= \mathbf{0} \quad \text{on } \Gamma_u, \\ (\sigma(\mathbf{u})n &\equiv) \mathbf{T}(\mathbf{u}) &= \mathbf{P} \quad \text{on } \Gamma_P, \\ \begin{pmatrix} u_2(\cdot, \alpha(\cdot)) &\equiv \end{pmatrix} u_2 \circ \alpha &\geq -\alpha \\ T_2(\mathbf{u}) \circ \alpha &\geq 0 \\ (u_2 \circ \alpha + \alpha) T_2(\mathbf{u}) \circ \alpha &= 0 \\ \end{pmatrix} \quad \text{in } (\mathbf{a}, \mathbf{b}) \\ \begin{pmatrix} u_1 &= \mathbf{0} \quad \Rightarrow \quad |T_1(\mathbf{u})| \leq \mathcal{F}(\mathbf{0})g \\ u_1 &\neq \mathbf{0} \quad \Rightarrow \quad T_1(\mathbf{u}) = -\operatorname{sgn}(u_1)\mathcal{F}(|u_1|)g \\ \end{pmatrix} \quad \text{on } \Gamma_c(\alpha) \\ \\ \sigma_{ij}(\mathbf{u}) &= c_{ijkl}\varepsilon_{kl}(\mathbf{u}) \quad \forall i, j = 1, 2, \\ c_{ijkl} &= c_{jikl} = c_{klij} \quad \forall i, j, k, l = 1, 2, \\ \exists C_{ell} > \mathbf{0} : \quad c_{ijkl}\xi_{ij}\xi_{kl} \geq C_{ell}\xi_{ij}\xi_{ij} \quad \forall \xi_{ij} = \xi_{ji} \in \mathbb{R}. \end{aligned}$$

R. Pathó (Charles University)

3

<ロ> (日) (日) (日) (日) (日)

Variational formulation

Notation:

$$\begin{split} \mathbf{V}(\alpha) &:= \{ \mathbf{v} \in \mathbf{H}^{1}(\Omega(\alpha)) \mid \mathbf{v} = \mathbf{0} \text{ a.e. on } \Gamma_{u} \}, \\ \mathbf{K}(\alpha) &:= \{ \mathbf{v} \in \mathbf{V}(\alpha) \mid v_{2} \circ \alpha \geq -\alpha \text{ a.e. in } (a, b) \}, \\ \mathbf{a}(\mathbf{u}, \mathbf{v}) &:= \int_{\Omega(\alpha)} c_{ijkl} \varepsilon_{kl}(\mathbf{u}) \varepsilon_{ij}(\mathbf{v}) \, dx; \quad L(\mathbf{v}) := \int_{\Omega(\alpha)} F_{i} v_{i} \, dx + \int_{\Gamma_{P}} P_{i} v_{i} \, ds. \end{split}$$

Weak formulation of the state problem:

$$\begin{cases} \text{Find } \mathbf{u} \in \mathbf{K}(\alpha) \text{ such that:} \\ a(\mathbf{u}, \mathbf{v} - \mathbf{u}) + \int_{\Gamma_c(\alpha)} \mathcal{F}(|u_1|) g(|v_1| - |u_1|) \, ds \geq L(\mathbf{v} - \mathbf{u}) \quad \forall \mathbf{v} \in \mathbf{K}(\alpha). \end{cases}$$

Existence, uniqueness, discretization ... [Haslinger, Vlach, 2005]

R. Pathó (Charles University)

イロト イヨト イヨト イヨト

Derivation of the algebraic state problem

Let:

- $\mathcal{U}_{ad} \subset \mathbb{R}^p_+$ convex, compact,
- $\mathcal{K}(\alpha) := \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{v}_{\nu} \geq -\alpha \}$ for any $\alpha \in \mathcal{U}_{ad}$,

where the subvector $\mathbf{v}_{\nu} \in \mathbb{R}^{\rho}$ corresponds to normal displacement at the contact nodes.

Primal formulation of the state problem:

$$\begin{array}{l} \text{Find } \mathbf{u} \in \mathcal{K}(\boldsymbol{\alpha}) \text{ such that:} \\ \langle \mathbb{A}(\boldsymbol{\alpha})\mathbf{u}, \mathbf{v} - \mathbf{u} \rangle_n + \sum_{i=1}^p \omega_i(\boldsymbol{\alpha}) \mathcal{F}(|(\mathbf{u}_{\tau})_i|) \big(|(\mathbf{v}_{\tau})_i| - |(\mathbf{u}_{\tau})_i| \big) \\ \\ \geq \langle \mathsf{L}(\boldsymbol{\alpha}), \mathbf{v} - \mathbf{u} \rangle_n \qquad \quad \forall \mathbf{v} \in \mathcal{K}(\boldsymbol{\alpha}). \end{array}$$

(日) (同) (日) (日)

Derivation of the algebraic state problem

Let:

- $\mathcal{U}_{ad} \subset \mathbb{R}^p_+$ convex, compact,
- $\mathcal{K}(\alpha) := \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{v}_{\nu} \geq -\alpha \}$ for any $\alpha \in \mathcal{U}_{ad}$,

where the subvector $\mathbf{v}_{\nu} \in \mathbb{R}^{\rho}$ corresponds to normal displacement at the contact nodes.

Mixed formulation of the state problem:

$$\begin{array}{l} \left(\begin{array}{l} \mathsf{Find} \; (\mathbf{u}, \boldsymbol{\lambda}) \in \mathbb{R}^n \times \mathbb{R}_+^p \; \mathsf{such that:} \\ \left\langle \mathbb{A}(\boldsymbol{\alpha}) \mathbf{u}, \mathbf{v} - \mathbf{u} \right\rangle_n + \sum_{i=1}^p \omega_i(\boldsymbol{\alpha}) \mathcal{F}(|(\mathbf{u}_{\tau})_i|) \big(|(\mathbf{v}_{\tau})_i| - |(\mathbf{u}_{\tau})_i| \big) \\ \\ \geq \langle \mathsf{L}(\boldsymbol{\alpha}), \mathbf{v} - \mathbf{u} \rangle_n + \langle \boldsymbol{\lambda}, \mathbf{v}_{\nu} - \mathbf{u}_{\nu} \rangle_p \quad \forall \mathbf{v} \in \mathbb{R}^n, \\ \left\langle \boldsymbol{\mu} - \boldsymbol{\lambda}, \mathbf{u}_{\nu} + \boldsymbol{\alpha} \rangle_p \geq 0 \quad \forall \boldsymbol{\mu} \in \mathbb{R}_+^p. \end{array} \right.$$

(日) (同) (日) (日)

Derivation of the algebraic state problem

Let:

- $\mathcal{U}_{ad} \subset \mathbb{R}^p_+$ convex, compact,
- $\mathcal{K}(\alpha) := \{ \mathbf{v} \in \mathbb{R}^n \mid \mathbf{v}_{\nu} \geq -\alpha \}$ for any $\alpha \in \mathcal{U}_{ad}$,

where the subvector $\mathbf{v}_{
u} \in \mathbb{R}^p$ corresponds to normal displacement at the contact nodes.

Reduced algebraic state problem:

$$(\tilde{\mathcal{P}}(\boldsymbol{\alpha})) \begin{cases} \mathsf{Find} \ (\mathbf{u}_{\tau}, \mathbf{u}_{\nu}, \boldsymbol{\lambda}) \in \mathbb{R}^{p} \times \mathbb{R}^{p} \times \mathbb{R}^{p}_{+} \text{ such that:} \\ \mathbf{0} \in \mathbb{A}_{\tau\tau}(\boldsymbol{\alpha})\mathbf{u}_{\tau} + \mathbb{A}_{\tau\nu}(\boldsymbol{\alpha})\mathbf{u}_{\nu} - \mathbf{L}_{\tau}(\boldsymbol{\alpha}) + \mathbf{Q}_{1}(\boldsymbol{\alpha}, \mathbf{u}_{\tau}) \\ \mathbf{0} = \mathbb{A}_{\nu\tau}(\boldsymbol{\alpha})\mathbf{u}_{\tau} + \mathbb{A}_{\nu\nu}(\boldsymbol{\alpha})\mathbf{u}_{\nu} - \boldsymbol{\lambda} - \mathbf{L}_{\nu}(\boldsymbol{\alpha}), \\ \mathbf{0} \in \mathbf{u}_{\nu} + \boldsymbol{\alpha} + N_{\mathbb{R}^{p}_{+}}(\boldsymbol{\lambda}), \end{cases}$$

where: $(\mathbf{Q}_1(\boldsymbol{\alpha},\mathbf{u}_{\tau}))_i := \omega_i(\boldsymbol{\alpha})\mathcal{F}(|(\mathbf{u}_{\tau})_i|)\partial|(\mathbf{u}_{\tau})_i| \quad \forall i = 1, \dots, p.$

(a)

State GE and its solvability

Introducing the state variable $\mathbf{y} := (\mathbf{u}_{\tau}, \mathbf{u}_{\nu}, \boldsymbol{\lambda})^T$, we may rewrite $(\tilde{\mathcal{P}}(\alpha))$ as:

 $\mathbf{0} \in \mathbf{F}(\alpha, \mathbf{y}) + \mathbf{Q}(\alpha, \mathbf{y}),$ (GE)

where:

$$\mathbf{F}(\boldsymbol{\alpha},\mathbf{y}) := \begin{pmatrix} \mathbb{A}_{\tau\tau}(\boldsymbol{\alpha}) & \mathbb{A}_{\tau\nu}(\boldsymbol{\alpha}) & \mathbf{0} \\ \mathbb{A}_{\nu\tau}(\boldsymbol{\alpha}) & \mathbb{A}_{\nu\nu}(\boldsymbol{\alpha}) & -\mathbb{I} \\ \mathbf{0} & \mathbb{I} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 \\ \mathbf{y}_2 \\ \mathbf{y}_3 \end{pmatrix} - \begin{pmatrix} \mathbf{L}_{\tau}(\boldsymbol{\alpha}) \\ \mathbf{L}_{\nu}(\boldsymbol{\alpha}) \\ -\boldsymbol{\alpha} \end{pmatrix}, \ \mathbf{Q}(\boldsymbol{\alpha},\mathbf{y}) := \begin{pmatrix} \mathbf{Q}_1(\boldsymbol{\alpha},\mathbf{y}_1) \\ \mathbf{0} \\ N_{\mathbb{R}^p_+}(\mathbf{y}_3) \end{pmatrix}$$

Theorem

Let the coefficient of friction $\mathcal{F} : \mathbb{R}_+ \to \mathbb{R}_+$ be Lipschitz continuous with a sufficiently small modulus. Then the mapping:

$${\mathcal S}: {oldsymbol lpha} \mapsto \{ {oldsymbol y} \mid {oldsymbol 0} \in {oldsymbol F}({oldsymbol lpha}, {oldsymbol y}) + {oldsymbol Q}({oldsymbol lpha}, {oldsymbol y}) \}$$

is single-valued and Lipschitz continuous in \mathcal{U}_{ad} .

(日) (同) (日) (日)

Shape optimization and ImP

Let $J : (\alpha, \mathbf{y}) \mapsto \mathbb{R}$ be a *continuously differentiable* cost functional. Then the shape optimization problem reads as:

$$(\mathbb{P}) \left\{ \begin{array}{ll} \text{minimize} & J(\alpha, \mathbf{y}) \\ \text{subj. to} & \mathbf{0} \in \mathbf{F}(\alpha, \mathbf{y}) + \mathbf{Q}(\alpha, \mathbf{y}) \\ & \alpha \in \mathcal{U}_{ad} \end{array} \right.$$

From now on let the assumptions of Theorem hold. Then:

Implicit Programming:

$$(\mathbb{P}) \iff (\tilde{\mathbb{P}}) \begin{cases} \text{minimize} & \mathcal{J}(\alpha) := J(\alpha, S(\alpha)) \\ \text{subj. to} & \alpha \in \mathcal{U}_{ad} \end{cases}$$

Given $ar{m{lpha}}\in\mathcal{U}_{\mathit{ad}}$, we need to compute:

- the solution to the GE: $\bar{\mathbf{y}} := S(\bar{\alpha})$,
- one Clarke's subgradient: $\boldsymbol{\xi} \in \bar{\partial} \mathcal{J}(\bar{\boldsymbol{\alpha}}) = \nabla_{\alpha} J(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}}) + \left(\bar{\partial} S(\bar{\boldsymbol{\alpha}})\right)^T \nabla_y J(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}})$

(a)

Generalized differentiation - basic definitions

For a set $A \subset \mathbb{R}^n$ and $\bar{\mathbf{x}} \in A$ denote by

$$\widehat{N}_{A}(\bar{\mathbf{x}}) := \left\{ \mathbf{x}^{*} \in \mathbb{R}^{n} \middle| \limsup_{\mathbf{x} \xrightarrow{A} \neq \bar{\mathbf{x}}} \frac{\langle \mathbf{x}^{*}, \mathbf{x} - \bar{\mathbf{x}} \rangle_{n}}{\|\mathbf{x} - \bar{\mathbf{x}}\|_{n}} \leq 0 \right\} \quad \text{and} \quad N_{A}(\bar{\mathbf{x}}) := \limsup_{\mathbf{x} \xrightarrow{A} \neq \bar{\mathbf{x}}} \widehat{N}_{A}(\mathbf{x})$$

the regular (Fréchet) and limiting (Mordukhovich) normal cones to A at $\bar{\mathbf{x}}$, respectively.

For a multifunction $Q : \mathbb{R}^n \Rightarrow \mathbb{R}^m$ and $(\bar{\mathbf{x}}, \bar{\mathbf{y}}) \in \text{Gr } Q$ the multifunction $D^*Q(\bar{\mathbf{x}}, \bar{\mathbf{y}}) : \mathbb{R}^m \Rightarrow \mathbb{R}^n$, defined by

$$D^*Q(\bar{\mathbf{x}},\bar{\mathbf{y}})(\mathbf{y}^*) := \{\mathbf{x}^* \in \mathbb{R}^n \mid (\mathbf{x}^*,-\mathbf{y}^*) \in N_{\mathrm{Gr}\,Q}(\bar{\mathbf{x}},\bar{\mathbf{y}})\}$$

is called the limiting (Mordukhovich) coderivative of Q at $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$.

Q is said to be calm at $(\bar{\mathbf{x}}, \bar{\mathbf{y}})$ provided $\exists L > 0 \exists$ neighbourhoods U, V of $\bar{\mathbf{x}}, \bar{\mathbf{y}}$, resp.:

$$Q(\mathbf{x}) \cap V \subset Q(\bar{\mathbf{x}}) + L \|\mathbf{x} - \bar{\mathbf{x}}\|_n \mathbb{B}_m(\mathbf{0}, 1) \quad \forall \mathbf{x} \in U.$$

イロト イポト イヨト イヨト

Lemma

$$D^*S(ar{lpha})(
abla_y J(ar{lpha},ar{f y})) \subset ig(ar{\partial} S(ar{lpha})ig)^T
abla_y J(ar{lpha},ar{f y}) \quad orall ar{m lpha} \in \mathcal{U}_{ad}.$$

- ... cf. [Mordukhovich, 1994]
- \implies Our goal is to determine one element from $D^*S(\bar{\alpha})(\nabla_y J(\bar{\alpha}, \bar{\mathbf{y}}))!$

イロト イヨト イヨト イヨト

Lemma

$$D^*S(ar{lpha})(
abla_y J(ar{lpha},ar{f y})) \subset ig(ar{\partial} S(ar{lpha})ig)^T
abla_y J(ar{lpha},ar{f y}) \quad orall ar{ar{lpha}} \in \mathcal{U}_{ad}.$$

... cf. [Mordukhovich, 1994]

 \implies Our goal is to determine one element from $D^*S(\bar{\alpha})(\nabla_y J(\bar{\alpha}, \bar{\mathbf{y}}))!$

Theorem

(i) The multifunction:

$$M: \mathbf{p} \mapsto \{(\boldsymbol{lpha}, \mathbf{y}) \mid \mathbf{p} + \Phi(\boldsymbol{lpha}, \mathbf{y}) \in \mathsf{Gr}\, Q\},$$

where $\Phi(\alpha, \mathbf{y}) := (\alpha, \mathbf{y}, -\mathbf{F}(\alpha, \mathbf{y}))^T$ is calm at $(\mathbf{0}, \bar{\alpha}, \bar{\mathbf{y}})$. (ii) For each $\mathbf{p}^* \in D^*S(\bar{\alpha})(\nabla_y J(\bar{\alpha}, \bar{\mathbf{y}}))$ there exists a vector \mathbf{v}^* such that:

$$\begin{pmatrix} \mathbf{p}^* \\ -\nabla_y J(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}}) \end{pmatrix} \in \nabla \mathbf{F}(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}})^T \mathbf{v}^* + \frac{\mathbf{D}^* \mathbf{Q}}{\mathbf{Q}}(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}}, -\mathbf{F}(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}}))(\mathbf{v}^*). \tag{AGE}$$

... for (ii) cf. [Kočvara, Outrata, 2004]

3

(日) (同) (三) (三)

Sketch of the proof of (i):

By contradiction:

• Show that noncalmness of M at $(\mathbf{0}, \bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}})$ implies noncalmness of

$$\widetilde{M}:\, \widetilde{\mathbf{p}}\mapsto \{(oldsymbollpha, \mathbf{y})\mid (\mathbf{0}, \mathbf{0}, \widetilde{\mathbf{p}})+\Phi(oldsymbollpha, \mathbf{y})\in {\sf Gr}\,Q\}$$

at $(\mathbf{0}, \bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}});$

Sketch of the proof of (i):

By contradiction:

• Show that noncalmness of M at $(\mathbf{0}, \bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}})$ implies noncalmness of

$$\widetilde{M}:\, \widetilde{\mathbf{p}}\mapsto \{(oldsymbol{lpha}, \mathbf{y}) \mid (\mathbf{0}, \mathbf{0}, \widetilde{\mathbf{p}}) + \Phi(oldsymbol{lpha}, \mathbf{y}) \in \mathsf{Gr}\, Q\}$$

at $(\mathbf{0}, \bar{\boldsymbol{lpha}}, \bar{\mathbf{y}});$

• Observe, that: $(\alpha, \mathbf{y}) \in \widetilde{M}(\widetilde{\mathbf{p}}) \Leftrightarrow \widetilde{\mathbf{p}} \in F(\alpha, \mathbf{y}) + Q(\alpha, \mathbf{y}) \Leftrightarrow \mathbf{0} \in \widetilde{F}(\alpha, \widetilde{\mathbf{y}}) + Q(\alpha, \widetilde{\mathbf{y}}),$ where $\widetilde{\mathbf{y}} := (\mathbf{y}_1, \mathbf{y}_2 - \widetilde{\mathbf{p}}_2, \mathbf{y}_3)^T$ and

$$\widetilde{\mathcal{F}}(lpha, \widetilde{\mathbf{y}}) := egin{pmatrix} \mathbb{A}_{ au au}(lpha) & \mathbb{A}_{ au
u}(lpha) & \mathbf{0} \ \mathbb{A}_{
u au}(lpha) & -\mathbb{I} \ \mathbf{0} & \mathbb{I} & \mathbf{0} \end{pmatrix} \widetilde{\mathbf{y}} - egin{pmatrix} \mathsf{L}_{
u}(lpha) + \widetilde{\mathbf{p}}_1 - \mathbb{A}_{
u
u}(lpha) \widetilde{\mathbf{p}}_3 \ \mathbb{L}_{
u}(lpha) + \widetilde{\mathbf{p}}_2 - \mathbb{A}_{
u
u}(lpha) \widetilde{\mathbf{p}}_3 \ - lpha \end{pmatrix},$$

i.e. $\tilde{\mathbf{y}}$ is the unique solution to the state problem on the domain $\Omega(\alpha)$, but with a different load vector;

Sketch of the proof of (i):

By contradiction:

• Show that noncalmness of M at $(\mathbf{0}, \bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}})$ implies noncalmness of

$$\widetilde{M}:\, \widetilde{\mathbf{p}}\mapsto \{(oldsymbol{lpha}, \mathbf{y}) \mid (\mathbf{0}, \mathbf{0}, \widetilde{\mathbf{p}}) + \Phi(oldsymbol{lpha}, \mathbf{y}) \in \mathsf{Gr}\, Q\}$$

at $(\mathbf{0}, \bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}});$

• Observe, that: $(\alpha, \mathbf{y}) \in \widetilde{M}(\widetilde{\mathbf{p}}) \Leftrightarrow \widetilde{\mathbf{p}} \in F(\alpha, \mathbf{y}) + Q(\alpha, \mathbf{y}) \Leftrightarrow \mathbf{0} \in \widetilde{F}(\alpha, \widetilde{\mathbf{y}}) + Q(\alpha, \widetilde{\mathbf{y}}),$ where $\widetilde{\mathbf{y}} := (\mathbf{y}_1, \mathbf{y}_2 - \widetilde{\mathbf{p}}_2, \mathbf{y}_3)^T$ and

$$\widetilde{\mathsf{F}}(lpha, \widetilde{\mathbf{y}}) := egin{pmatrix} \mathbb{A}_{ au au}(lpha) & \mathbb{A}_{ au
u}(lpha) & \mathbf{0} \ \mathbb{A}_{
u au}(lpha) & -\mathbb{I} \ \mathbf{0} & \mathbb{I} & \mathbf{0} \end{pmatrix} \widetilde{\mathbf{y}} - egin{pmatrix} \mathsf{L}_{
u}(lpha) + \widetilde{\mathbf{p}}_1 - \mathbb{A}_{
u
u}(lpha) \widetilde{\mathbf{p}}_3 \ \mathbb{L}_{
u}(lpha) + \widetilde{\mathbf{p}}_2 - \mathbb{A}_{
u
u}(lpha) \widetilde{\mathbf{p}}_3 \ - lpha \end{pmatrix},$$

i.e. $\tilde{\mathbf{y}}$ is the unique solution to the state problem on the domain $\Omega(\alpha)$, but with a different load vector;

 Show that on a fixed domain the solution y depends Lipschitz continuously on the load vector L;

Sketch of the proof of (i):

By contradiction:

• Show that noncalmness of M at $(\mathbf{0}, \bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}})$ implies noncalmness of

$$\widetilde{M}:\, \widetilde{\mathbf{p}}\mapsto \{(oldsymbol{lpha}, \mathbf{y}) \mid (\mathbf{0}, \mathbf{0}, \widetilde{\mathbf{p}}) + \Phi(oldsymbol{lpha}, \mathbf{y}) \in \mathsf{Gr}\, Q\}$$

at $(\mathbf{0}, \bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}});$

• Observe, that: $(\alpha, \mathbf{y}) \in \widetilde{M}(\widetilde{\mathbf{p}}) \Leftrightarrow \widetilde{\mathbf{p}} \in F(\alpha, \mathbf{y}) + Q(\alpha, \mathbf{y}) \Leftrightarrow \mathbf{0} \in \widetilde{F}(\alpha, \widetilde{\mathbf{y}}) + Q(\alpha, \widetilde{\mathbf{y}}),$ where $\widetilde{\mathbf{y}} := (\mathbf{y}_1, \mathbf{y}_2 - \widetilde{\mathbf{p}}_2, \mathbf{y}_3)^T$ and

$$\widetilde{\mathsf{F}}(oldsymbol{lpha},\widetilde{\mathbf{y}}) := egin{pmatrix} \mathbb{A}_{ au au}(oldsymbol{lpha}) & \mathbb{A}_{ au
u}(oldsymbol{lpha}) & \mathbf{0} \ \mathbb{A}_{ uu au}(oldsymbol{lpha}) & -\mathbb{I} \ \mathbf{0} & \mathbb{I} & \mathbf{0} \end{pmatrix} \widetilde{\mathbf{y}} - egin{pmatrix} \mathsf{L}_{
u}(oldsymbol{lpha}) + \widetilde{\mathbf{p}}_1 - \mathbb{A}_{ uu
u}(oldsymbol{lpha}) \widetilde{\mathbf{p}}_3 \ \mathbb{L}_{
u}(oldsymbol{lpha}) + \widetilde{\mathbf{p}}_2 - \mathbb{A}_{
u
u}(oldsymbol{lpha}) \widetilde{\mathbf{p}}_3 \ \mathbb{A}_{
u
u}(oldsymbol{lpha}) = \mathbf{0} \end{pmatrix},$$

i.e. $\tilde{\mathbf{y}}$ is the unique solution to the state problem on the domain $\Omega(\alpha)$, but with a different load vector;

- Show that on a fixed domain the solution y depends Lipschitz continuously on the load vector L;
- From these facts prove that \widetilde{M} is calm at $(\mathbf{0}, \bar{\boldsymbol{\alpha}}, \bar{\mathbf{y}})$.

Sensitivity analysis - computation of D^*Q

Recall:

$$\mathbf{Q}(oldsymbol{lpha}, \mathbf{y}) = egin{pmatrix} \mathbf{Q}_1(oldsymbol{lpha}, \mathbf{y}_1) \ 0 \ \mathcal{N}_{\mathbb{R}^p_+}(\mathbf{y}_3) \end{pmatrix}$$

... components are decoupled,

therefore its coderivative can be computed componentwise:

$$D^*\mathbf{Q}(\bar{\boldsymbol{\alpha}},\bar{\mathbf{y}},\bar{\mathbf{q}})(\mathbf{q}^*) = \begin{pmatrix} D^*\mathbf{Q}_1(\bar{\boldsymbol{\alpha}},\bar{\mathbf{y}}_1,\bar{\mathbf{q}}_1)(\mathbf{q}_1^*) \\ 0 \\ D^*N_{\mathbb{R}^p_+}(\bar{\mathbf{y}}_3,\bar{\mathbf{q}}_3)(\mathbf{q}_3^*) \end{pmatrix} \quad \forall (\bar{\boldsymbol{\alpha}},\bar{\mathbf{y}},\bar{\mathbf{q}}) \in \mathsf{Gr}\,\mathbf{Q}\;\forall \mathbf{q}^*.$$

3rd component is easy and well-known,

1st component is much more challenging!

• • • • • • • • • • • •

Sensitivity analysis - computation of D^*Q_1

Write Q_1 as a composition of an inner smooth mapping and an outer multifunction:

$$\mathbf{Q}_{1}(\boldsymbol{\alpha},\mathbf{u}) = \begin{pmatrix} \omega_{1}(\boldsymbol{\alpha})\mathcal{F}(|u_{1}|)\partial|u_{1}|\\ \vdots\\ \omega_{p}(\boldsymbol{\alpha})\mathcal{F}(|u_{p}|)\partial|u_{p}| \end{pmatrix} = \begin{pmatrix} Z \circ \Psi_{1}\\ \vdots\\ Z \circ \Psi_{p} \end{pmatrix} (\boldsymbol{\alpha},\mathbf{u}) = (\mathbf{Z}_{1} \circ \Psi)(\boldsymbol{\alpha},\mathbf{u}),$$

where: $\Psi_i : (\boldsymbol{\alpha}, \mathbf{u}) \mapsto (\omega_i(\boldsymbol{\alpha}), u_i)^T$ and $Z : (x_1, x_2)^T \mapsto x_1 \mathcal{F}(|x_2|) \partial |x_2|.$

3

(a)

Sensitivity analysis - computation of D^*Q_1

Write Q_1 as a composition of an inner smooth mapping and an outer multifunction:

$$\mathbf{Q}_{1}(\boldsymbol{\alpha}, \mathbf{u}) = \begin{pmatrix} \omega_{1}(\boldsymbol{\alpha})\mathcal{F}(|u_{1}|)\partial|u_{1}|\\ \vdots\\ \omega_{p}(\boldsymbol{\alpha})\mathcal{F}(|u_{p}|)\partial|u_{p}| \end{pmatrix} = \begin{pmatrix} Z \circ \Psi_{1}\\ \vdots\\ Z \circ \Psi_{p} \end{pmatrix} (\boldsymbol{\alpha}, \mathbf{u}) = (\mathbf{Z}_{1} \circ \Psi)(\boldsymbol{\alpha}, \mathbf{u}),$$

where: $\Psi_{i} : (\boldsymbol{\alpha}, \mathbf{u}) \mapsto (\omega_{i}(\boldsymbol{\alpha}), u_{i})^{T}$ and $Z : (x_{1}, x_{2})^{T} \mapsto x_{1}\mathcal{F}(|x_{2}|)\partial|x_{2}|.$

Hence:

 $D^* \mathbf{Q}_1(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{u}}, \bar{\mathbf{q}})(\mathbf{q}^*) \subset \nabla \Psi(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{u}})^T D^* \mathbf{Z}_1(\Psi(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{u}}), \bar{\mathbf{q}})(\mathbf{q}^*),$

at all points $(\bar{\alpha}, \bar{\mathbf{u}}, \bar{\mathbf{q}}) \in \operatorname{Gr} \mathbf{Q}_1$ for which the following holds:

$$\operatorname{Ker} \nabla \Psi(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{u}})^{T} \cap D^{*} \mathbf{Z}_{1}(\Psi(\bar{\boldsymbol{\alpha}}, \bar{\mathbf{u}}), \bar{\mathbf{q}})(0) = \{0\} \; ! \tag{CQ}$$

(日) (同) (日) (日)

Sensitivity analysis - final step

Notice, that the components of Z_1 are also decoupled, therefore the coderivative D^*Z_1 may be computed componentwise, i.e. in terms of D^*Z !

The quantity $D^*Z(\bar{x}_1, \bar{x}_2, \bar{z})(z^*)$ may be expressed in terms of the data of our problem at all reference points $(\bar{x}_1, \bar{x}_2, \bar{z}) \in \text{Gr } Z$ and for all directions $z^* \in \mathbb{R}$.

Different parts of Gr Z correspond the different mechanical regimes:

- $|\bar{x}_2| > 0 \Rightarrow$ sliding,
- $\bar{x}_2 = 0, \ |z| < \bar{x}_1 \mathcal{F}(0) \Rightarrow$ strong sticking,
- $\bar{x}_2 = 0$, $|z| = \bar{x}_1 \mathcal{F}(0) \implies$ weak sticking.

イロト イポト イヨト イヨト

Sensitivity analysis - final step

Notice, that the components of Z_1 are also decoupled, therefore the coderivative D^*Z_1 may be computed componentwise, i.e. in terms of D^*Z !

The quantity $D^*Z(\bar{x}_1, \bar{x}_2, \bar{z})(z^*)$ may be expressed in terms of the data of our problem at all reference points $(\bar{x}_1, \bar{x}_2, \bar{z}) \in \text{Gr } Z$ and for all directions $z^* \in \mathbb{R}$.

Different parts of Gr Z correspond the different mechanical regimes:

- $|\bar{x}_2| > 0 \Rightarrow$ sliding,
- $ar{x}_2=0, \; |z|<ar{x}_1\mathcal{F}(0) \;\; \Rightarrow \;\;$ strong sticking,
- $\bar{x}_2 = 0$, $|z| = \bar{x}_1 \mathcal{F}(0) \implies$ weak sticking.

Corollary

(CQ) is satisfied for all $(\bar{\alpha}, \bar{\mathbf{u}}, \bar{\mathbf{q}}) \in Gr\mathbf{Q}_1$.

イロト イポト イヨト イヨト

References

F

P. Beremlijski, J. Haslinger, M. Kočvara, J. Outrata: Shape optimization in contact problems with Coulomb friction. SIAM J. Opt. 13, pp. 561-587 (2002)

P. Beremlijski, J. Haslinger, M. Kočvara, R. Kučera, J. Outrata: Shape optimization in three-dimensional contact problems with Coulomb friction. SIAM J. Opt. 20, pp. 416-444 (2009)

J. Haslinger, P. Neittaanmäki:

Finite element approximation for optimal shape, material and topology design, 2nd edition. J. Wiley & Sons, Chichester (1996)

J. Haslinger, O. Vlach:

Signorini problem with a solution dependent coefficient of friction (model with given friction): approximation and numerical realization. Appl. Math. 50, pp. 153–171 (2005)

M. Kočvara, J. V. Outrata:

Optimization problems with equilibrium constraints and their numerical solution. Math. Program. B 101, pp. 119–150 (2004)

B. S. Mordukhovich:

Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl. 183, pp. 250–288 (1994)

(日) (同) (日) (日)

Thank you for your attention...

イロト イヨト イヨト イヨト