Analysis of a diffuse-domain approach to handle complex geometries

Sebastian Franz Hans-Görg Roos Roland Gärtner Axel Voigt

Technische Universität Dresden

Prague, 13/04/2012

A note on the Analysis of a diffuse-domain approach to handle complex geometries

Sebastian Franz Hans-Görg Roos Roland Gärtner Axel Voigt

Technische Universität Dresden

Prague, 13/04/2012

Overview

Introduction

Analysis

Introduction

Consider an elliptic differential equation of second order given by

$$Lu = f$$
 in Ω , $u = g$ on $\partial \Omega$.

for a given geometry $\Omega \subset \mathbb{R}^n$, n = 1, 2, 3. Here Ω might be some *complicated subset or manifold* embedded in \mathbb{R}^n . A straightforward numerical approach to solve this problem numerically requires an *appropriately chosen mesh* of the domain Ω . For complicated domains the task of finding a suitable mesh becomes challenging and is one of the most time consuming parts in computational engineering.

Introduction

Consider an elliptic differential equation of second order given by

$$Lu = f$$
 in Ω , $u = g$ on $\partial \Omega$.

for a given geometry $\Omega \subset \mathbb{R}^n$, n = 1, 2, 3.

Here Ω might be some *complicated subset or manifold* embedded in \mathbb{R}^n . A straightforward numerical approach to solve this problem numerically requires an *appropriately chosen mesh* of the domain Ω . For complicated domains the task of finding a suitable mesh becomes challenging and is one of the most time consuming parts in computational engineering.

Introduction

An alternative is to embed the problem into a larger, but simpler domain $\widehat{\Omega}$ and modify the differential equation.

The approach we want to use is called *diffuse-domain approximation*. It describes the domain Ω *implicitly*, using a phase-field function Φ , given by

$$\Phi(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{r(x)}{\mu}\right) \right).$$

Here $0 < \mu \ll 1$ is a small parameter and r(x) the signed-distance function measuring the distance between x and $\partial \Omega$.

Introduction

An alternative is to embed the problem into a larger, but simpler domain $\hat{\Omega}$ and modify the differential equation. The approach we want to use is called *diffuse-domain approximation*. It describes the domain Ω *implicitly*, using a

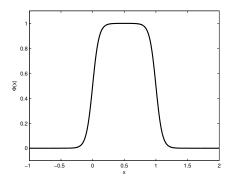
phase-field function Φ , given by

(

$$\Phi(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{r(x)}{\mu}\right) \right)$$

Here $0 < \mu \ll 1$ is a small parameter and r(x) the signed-distance function measuring the distance between x and $\partial \Omega$.

Introduction



Phase-field function Φ for the signed-distance function $r(x) = \max\{-x, x - 1\}$ and $\mu = 0.1$.

Introduction

Let us assume the simple problem $Lu = -\Delta u + cu = f$ in Ω with $c \ge \gamma \ge 0$ and u = g on $\partial \Omega$. Moreover, assume all data to be smooth.

Then the diffuse domain approximation is given by

$$L_{\mu}u_{\mu} = -\nabla \cdot (\Phi \nabla u_{\mu}) + \Phi c u_{\mu} + \frac{1 - \Phi}{\mu^{\alpha}} u_{\mu} = \Phi f + \frac{1 - \Phi}{\mu^{\alpha}} g \quad \text{in } \widehat{\Omega},$$
$$u_{\mu} = g \quad \text{on } \partial \widehat{\Omega},$$

Introduction

Let us assume the simple problem $Lu = -\Delta u + cu = f$ in Ω with $c \ge \gamma \ge 0$ and u = g on $\partial \Omega$. Moreover, assume all data to be smooth.

Then the diffuse domain approximation is given by

$$egin{aligned} & L_{\mu}u_{\mu}=-
abla\cdot(\Phi
abla u_{\mu})+\Phi cu_{\mu}+rac{1-\Phi}{\mu^{lpha}}u_{\mu}=\Phi f+rac{1-\Phi}{\mu^{lpha}}g & ext{in }\widehat{\Omega}, \ & u_{\mu}\ =\ g & ext{on }\partial\widehat{\Omega}, \end{aligned}$$

Introduction

Let us assume the simple problem $Lu = -\Delta u + cu = f$ in Ω with $c \ge \gamma \ge 0$ and u = g on $\partial \Omega$. Moreover, assume all data to be smooth.

Then the diffuse domain approximation is given by

$$L_{\mu}u_{\mu} = -\nabla \cdot (\Phi \nabla u_{\mu}) + \Phi c u_{\mu} + \frac{1 - \Phi}{\mu^{\alpha}} u_{\mu} = \Phi f + \frac{1 - \Phi}{\mu^{\alpha}} g \quad \text{in } \widehat{\Omega},$$
$$u_{\mu} = g \quad \text{on } \partial \widehat{\Omega},$$

Introduction

Let us assume the simple problem $Lu = -\Delta u + cu = f$ in Ω with $c \ge \gamma \ge 0$ and u = g on $\partial \Omega$. Moreover, assume all data to be smooth.

Then the diffuse domain approximation is given by

$$\begin{split} \mathcal{L}_{\mu} u_{\mu} &= -\nabla \cdot (\Phi \nabla u_{\mu}) + \Phi c u_{\mu} + \frac{1 - \Phi}{\mu^{\alpha}} u_{\mu} = \Phi f + \frac{1 - \Phi}{\mu^{\alpha}} g \quad \text{in } \widehat{\Omega}, \\ u_{\mu} &= g \quad \text{on } \partial \widehat{\Omega}, \end{split}$$

Introduction

Let us assume the simple problem $Lu = -\Delta u + cu = f$ in Ω with $c \ge \gamma \ge 0$ and u = g on $\partial \Omega$. Moreover, assume all data to be smooth.

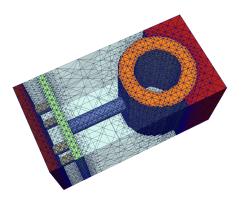
Then the diffuse domain approximation is given by

$$L_{\mu}u_{\mu} = -\nabla \cdot (\Phi \nabla u_{\mu}) + \Phi c u_{\mu} + \frac{1 - \Phi}{\mu^{\alpha}} u_{\mu} = \Phi f + \frac{1 - \Phi}{\mu^{\alpha}} g \quad \text{in } \widehat{\Omega},$$
$$u_{\mu} = g \quad \text{on } \partial \widehat{\Omega},$$

The End

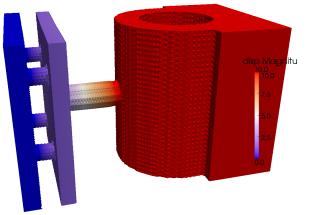
Examples - Ion Channel in Cell Surface

Work done by group of A. Voigt, IWR TU Dresden



Examples

Examples – Ion Channel in Cell Surface

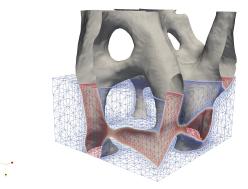


Work done by group of A. Voigt, IWR TU Dresden

Computed displacement

Examples – Structure of Bones

Work done by group of A. Voigt, IWR TU Dresden



Phase field function generated from tomography data

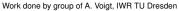
Examples - Structure of Bones

Work done by group of A. Voigt, IWR TU Dresden

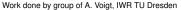
× z

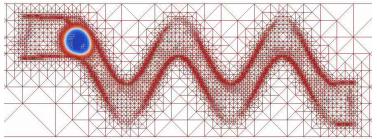
Solution component of elasticity equations

Examples – Navier-Stokes Equations

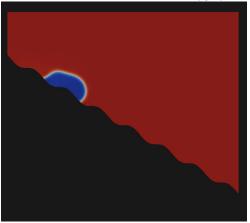


Examples – Navier-Stokes Equations





Examples – Sliding Raindrop



Work done by group of A. Voigt, IWR TU Dresden

Thus the method seems to work quite fine.

But can convergence be proven?

Thus the method seems to work quite fine.

But can convergence be proven?

Analysis

We consider the following one-dimensional model problem

$$Lu := -u'' + cu = f \text{ in } \Omega = (0, 1)$$

 $u(0) = A, u(1) = 0,$

and apply the diffuse-domain approach *only to the left* boundary condition. We set $\hat{\Omega} = (-1, 1)$. Then the appropriate phase-field function Φ is given by

$$\Phi(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{-x}{\mu}\right) \right) = \frac{1}{1 + \exp(-\frac{2x}{\mu})}.$$

Analysis

We consider the following one-dimensional model problem

$$Lu := -u'' + cu = f \text{ in } \Omega = (0, 1)$$

 $u(0) = A, u(1) = 0,$

and apply the diffuse-domain approach *only to the left boundary condition*. We set $\widehat{\Omega} = (-1, 1)$. Then the appropriate phase-field function Φ is given by

$$\Phi(x) = \frac{1}{2} \left(1 - \tanh\left(\frac{-x}{\mu}\right) \right) = \frac{1}{1 + \exp(-\frac{2x}{\mu})}$$

Analysis

Thus, our diffuse-domain approach reads

$$egin{aligned} L_{\mu}u_{\mu}&:=-(\Phi u_{\mu}')'+\Phi cu_{\mu}+rac{1-\Phi}{\mu^{lpha}}u_{\mu}=\Phi f+rac{1-\Phi}{\mu^{lpha}}A & ext{in }\widehat{\Omega}\ u_{\mu}(-1)&=A, \quad u_{\mu}(1)=0. \end{aligned}$$

Analysis - Step 1

Lemma (Existence and Uniqueness)

For each $\mu > 0$ and $\alpha > 0$ exists a unique solution u_{μ} .

Proof. Classical existence theory.

Lemma (Boundedness) The solution u_{μ} is bounded uniformly with respect to μ and α .

Proof. Barrier function and maximum principle

Analysis – Step 1

Lemma (Existence and Uniqueness)

For each $\mu > 0$ and $\alpha > 0$ exists a unique solution u_{μ} .

Proof. Classical existence theory.

Lemma (Boundedness)

The solution u_{μ} is bounded uniformly with respect to μ and α .

Proof.

Barrier function and maximum principle.

Analysis – Step 2

Lemma

For $\alpha > 2$, $\theta > 0$ arbitrary but fixed and $\mu < \mu_0$, where μ_0 is sufficiently small, we have

 $u_{\mu}(x) = A + \mathcal{O}(\mu^{lpha}) \quad \textit{for } x \in [0, heta \mu].$

Proof. By scaling $\xi = x/\mu$ we obtain in $(-1, \theta + 1)$ the scaled problem

$$-\mu^{\alpha-2}\frac{\partial}{\partial\xi}\left(\tilde{\Phi}\frac{\partial}{\partial\xi}\tilde{u}_{\mu}\right) + \left[\mu^{\alpha}\tilde{\Phi}\tilde{c} + (1-\tilde{\Phi})\right]\tilde{u}_{\mu} = \mu^{\alpha}\tilde{\Phi}\tilde{f} + (1-\tilde{\Phi})A,$$
$$\tilde{u}_{\mu}(-1) = \alpha_{1}, \quad \tilde{u}_{\mu}(\theta+1) = \alpha_{2},$$

— a singularly perturbed boundary value problem for lpha \geq

Analysis – Step 2

Lemma

For $\alpha > 2$, $\theta > 0$ arbitrary but fixed and $\mu < \mu_0$, where μ_0 is sufficiently small, we have

$$u_{\mu}(x)=oldsymbol{A}+\mathcal{O}\left(\mu^{lpha}
ight) \quad ext{ for } x\in [0, heta\mu].$$

Proof. By scaling $\xi = x/\mu$ we obtain in $(-1, \theta + 1)$ the scaled problem

$$-\mu^{\alpha-2}\frac{\partial}{\partial\xi}\left(\tilde{\Phi}\frac{\partial}{\partial\xi}\tilde{u}_{\mu}\right) + \left[\mu^{\alpha}\tilde{\Phi}\tilde{c} + (1-\tilde{\Phi})\right]\tilde{u}_{\mu} = \mu^{\alpha}\tilde{\Phi}\tilde{f} + (1-\tilde{\Phi})A,$$
$$\tilde{u}_{\mu}(-1) = \alpha_{1}, \quad \tilde{u}_{\mu}(\theta+1) = \alpha_{2},$$

— a singularly perturbed boundary value problem for lpha \geq

Analysis – Step 2

Lemma

For $\alpha > 2$, $\theta > 0$ arbitrary but fixed and $\mu < \mu_0$, where μ_0 is sufficiently small, we have

$$u_{\mu}(x)=oldsymbol{A}+\mathcal{O}\left(\mu^{lpha}
ight) \quad ext{ for } x\in [0, heta\mu].$$

Proof. By scaling $\xi = x/\mu$ we obtain in $(-1, \theta + 1)$ the scaled problem

$$-\mu^{\alpha-2}\frac{\partial}{\partial\xi}\left(\tilde{\Phi}\frac{\partial}{\partial\xi}\tilde{u}_{\mu}\right) + \left[\mu^{\alpha}\tilde{\Phi}\tilde{c} + (1-\tilde{\Phi})\right]\tilde{u}_{\mu} = \mu^{\alpha}\tilde{\Phi}\tilde{f} + (1-\tilde{\Phi})A,$$
$$\tilde{u}_{\mu}(-1) = \alpha_{1}, \quad \tilde{u}_{\mu}(\theta+1) = \alpha_{2},$$

— a singularly perturbed boundary value problem for $\alpha > 2$.

Analysis – Step 2

Proof cont.

Thus, for $\xi \in [0, \theta]$ the function \tilde{u}_{μ} matches the solution of the problem

$$(1-\tilde{\Phi})\tilde{u}_0 = \mu^{\alpha}\tilde{\Phi}\tilde{f} + (1-\tilde{\Phi})A.$$

Thus,

$$\tilde{u}_{\mu}(\xi) = \boldsymbol{A} + \mathcal{O}(\mu^{\alpha}).$$

Analysis – Step 2

Proof cont.

Thus, for $\xi \in [0, \theta]$ the function \tilde{u}_{μ} matches the solution of the problem

$$(1-\tilde{\Phi})\tilde{u}_0 = \mu^{\alpha}\tilde{\Phi}\tilde{f} + (1-\tilde{\Phi})A.$$

Thus,

$$\tilde{u}_{\mu}(\xi) = \mathbf{A} + \mathcal{O}(\mu^{\alpha}).$$

Analysis – Step 2

Proof cont.

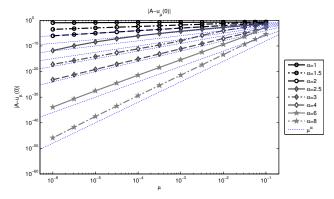
Thus, for $\xi \in [0, \theta]$ the function \tilde{u}_{μ} matches the solution of the problem

$$(1-\tilde{\Phi})\tilde{u}_0 = \mu^{\alpha}\tilde{\Phi}\tilde{f} + (1-\tilde{\Phi})A.$$

Thus,

$$u_{\mu}(\boldsymbol{x}) = \boldsymbol{A} + \mathcal{O}\left(\mu^{\alpha}\right).$$

Analysis – Step 2



Fulfilment of the condition $u_{\mu}(0) \approx A$ for various values of α

Analysis – Step 3

Proposition For $\alpha > 2$ and $\mu < \mu_0$, where μ_0 is sufficiently small, we have

$$|u_{\mu}(x) - A| \leq C_{\mu} \text{ and } |u_{\mu}'(x)| \leq C \text{ for } x \in \left[heta_{\mu}, rac{lpha - 2}{2}_{\mu} |\ln \mu|
ight].$$

Remark to Proposition The scaled differential equation

$$-\mu^{\alpha-2}\frac{\partial}{\partial\xi}\left(\tilde{\Phi}\frac{\partial}{\partial\xi}\tilde{u}_{\mu}\right) + \left[\mu^{\alpha}\tilde{\Phi}\tilde{c} + (1-\tilde{\Phi})\right]\tilde{u}_{\mu} = \mu^{\alpha}\tilde{\Phi}\tilde{f} + (1-\tilde{\Phi})A$$

changes its behaviour at $t = \frac{\alpha - 2}{2} |\ln \mu|$ because

$$1 - \tilde{\Phi}(t) = \mathcal{O}\left(\mu^{\alpha - 2}\right).$$

Analysis – Step 3

Proposition For $\alpha > 2$ and $\mu < \mu_0$, where μ_0 is sufficiently small, we have

$$|u_{\mu}(x) - A| \leq C\mu \text{ and } |u'_{\mu}(x)| \leq C \text{ for } x \in \left[heta \mu, rac{lpha - 2}{2}\mu |\ln \mu|
ight].$$

Remark to Proposition The scaled differential equation

$$-\mu^{\alpha-2}\frac{\partial}{\partial\xi}\left(\tilde{\Phi}\frac{\partial}{\partial\xi}\tilde{u}_{\mu}\right)+\left[\mu^{\alpha}\tilde{\Phi}\tilde{c}+(1-\tilde{\Phi})\right]\tilde{u}_{\mu}=\mu^{\alpha}\tilde{\Phi}\tilde{f}+(1-\tilde{\Phi})A$$

changes its behaviour at $t = \frac{\alpha - 2}{2} |\ln \mu|$ because

$$1 - ilde{\Phi}(t) = \mathcal{O}\left(\mu^{lpha - 2}
ight).$$

Analysis – Step 3

Remark to Proposition, cont. In the interval $[\theta, \beta t]$ with $0 < \beta < 1$, it can be analysed as boundary-value problem and we obtain

$$u_{\mu} = \mathbf{A} + \mathcal{O}\left(\mu^{\alpha(1-\beta)+2\beta}\right) + \Psi,$$

where Ψ is a layer term of the structure

$$\Psi(\xi) = \mathcal{O}\left(\exp\left(-rac{t-\xi}{\mu^{rac{(lpha-2)(1-eta)}{2}}}
ight)
ight).$$

Thus, for $\xi \in [\theta, \tilde{\beta}t]$ with $0 < \tilde{\beta} < \beta < 1$, we observe $u_{\mu} - A = \mathcal{O}(\mu^2)$ if μ is sufficiently small. But the *layer term* Ψ *dominates* for larger ξ and numerically we observe near $\xi = t$ only $u_{\mu} - A = \mathcal{O}(\mu)$.

Analysis – Step 3

Remark to Proposition, cont. In the interval $[\theta, \beta t]$ with $0 < \beta < 1$, it can be analysed as boundary-value problem and we obtain

$$u_{\mu} = \mathbf{A} + \mathcal{O}\left(\mu^{\alpha(1-\beta)+2\beta}\right) + \Psi,$$

where Ψ is a layer term of the structure

$$\Psi(\xi) = \mathcal{O}\left(\exp\left(-rac{t-\xi}{\mu^{rac{(lpha-2)(1-eta)}{2}}}
ight)
ight).$$

Thus, for $\xi \in [\theta, \tilde{\beta}t]$ with $0 < \tilde{\beta} < \beta < 1$, we observe $u_{\mu} - A = \mathcal{O}(\mu^2)$ if μ is sufficiently small. But the *layer term* Ψ *dominates* for larger ξ and numerically we observe near $\xi = t$ only $u_{\mu} - A = \mathcal{O}(\mu)$.

Analysis – Step 3

Remark to Proposition, cont. In the interval $[\theta, \beta t]$ with $0 < \beta < 1$, it can be analysed as boundary-value problem and we obtain

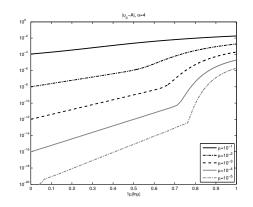
$$u_{\mu} = \mathbf{A} + \mathcal{O}\left(\mu^{\alpha(1-\beta)+2\beta}\right) + \Psi,$$

where Ψ is a layer term of the structure

$$\Psi(\xi) = \mathcal{O}\left(\exp\left(-rac{t-\xi}{\mu^{rac{(lpha-2)(1-eta)}{2}}}
ight)
ight).$$

Thus, for $\xi \in [\theta, \tilde{\beta}t]$ with $0 < \tilde{\beta} < \beta < 1$, we observe $u_{\mu} - A = \mathcal{O}(\mu^2)$ if μ is sufficiently small. But the *layer term* Ψ *dominates* for larger ξ and numerically we observe near $\xi = t$ only $u_{\mu} - A = \mathcal{O}(\mu)$.

Analysis – Step 3



Behaviour of $|u_{\mu} - A|$ in $[0, \mu| \ln \mu|]$ for $\alpha = 4$

Analysis – Step 4

Lemma

Assume the previous proposition holds true. For $\alpha > 2$ and $\mu < \mu_0$, where μ_0 is sufficiently small, we have

$$|u_{\mu}(x) - A| \leq C\mu^{1-\varepsilon}$$
 in $\left[\frac{\alpha-2}{2}\mu|\ln\mu|, \frac{\alpha-1}{2}\mu|\ln\mu|\right],$

where $\varepsilon > 0$ is arbitrarily small.

Proof. Idea: Consider the differential problem as *initial value* problem for $\hat{w} = \frac{\hat{u}_{\mu} - A}{\mu^2 |\ln \mu|^2}$ and use initial values gained by the proposition. Then, *bounds on the growth* of \hat{w} give the result.

Analysis – Step 4

Lemma

Assume the previous proposition holds true. For $\alpha > 2$ and $\mu < \mu_0$, where μ_0 is sufficiently small, we have

$$|u_{\mu}(x) - A| \leq C\mu^{1-\varepsilon}$$
 in $\left[\frac{\alpha-2}{2}\mu|\ln\mu|, \frac{\alpha-1}{2}\mu|\ln\mu|\right],$

where $\varepsilon > 0$ is arbitrarily small. Proof. Idea: Consider the differential problem as *initial value problem* for $\hat{w} = \frac{\hat{u}_{\mu} - A}{\mu^2 |\ln \mu|^2}$ and use initial values gained by the proposition. Then, *bounds on the growth* of \hat{w} give the result.

Analysis – Step 4

Lemma

Assume the previous proposition holds true. For $\alpha > 2$ and $\mu < \mu_0$, where μ_0 is sufficiently small, we have

$$|u_{\mu}(x) - A| \leq C\mu^{1-\varepsilon}$$
 in $\left[\frac{\alpha-2}{2}\mu|\ln\mu|, \frac{\alpha-1}{2}\mu|\ln\mu|\right],$

where $\varepsilon > 0$ is arbitrarily small. Proof. Idea: Consider the differential problem as *initial value problem* for $\hat{w} = \frac{\hat{u}_{\mu} - A}{\mu^2 |\ln \mu|^2}$ and use initial values gained by the proposition. Then, *bounds on the growth* of \hat{w} give the result.

Analysis – Step 2-4 combined

Remark Numerically we observe the slightly better result

$$|u_{\mu}(x) - A| \leq C\mu$$
 for $x \in \left[\frac{\alpha - 2}{2}\mu|\ln\mu|, \frac{\alpha - 1}{2}\mu|\ln\mu|
ight].$

Corollary From the previous steps we obtain for $x \in [0, \frac{\alpha-1}{2}\mu |\ln \mu|]$

 $|u(x) - u_{\mu}(x)| \le |u(x) - u(0)| + |u_{\mu}(x) - A| \le C\mu^{1-\varepsilon}$

where ε can be made arbitrarily small.

Analysis – Step 2-4 combined

Remark Numerically we observe the slightly better result

$$|u_{\mu}(x) - A| \leq C\mu$$
 for $x \in \left[\frac{\alpha - 2}{2}\mu|\ln\mu|, \frac{\alpha - 1}{2}\mu|\ln\mu|
ight].$

Corollary

From the previous steps we obtain for $x \in \left[0, \frac{\alpha-1}{2}\mu |\ln \mu|\right]$

$$|u(x) - u_{\mu}(x)| \le |u(x) - u(0)| + |u_{\mu}(x) - A| \le C\mu^{1-\varepsilon}$$

where ε can be made arbitrarily small.

Lemma

If $\alpha >$ 2 and $\mu < \mu_0$ where μ_0 is sufficiently small, then follows that

$$|(u-u_{\mu})(x)| \leq C\mu^{1-\varepsilon}$$
 in $[x_k, 1]$,

where $x_k = (\alpha - 1)\mu |\ln \mu|/2$.

Proof. The difference $w := u - u_{\mu}$ suffices in the interval $(x_k, 1]$ the boundary value problem (recall Lu = -u'' + cu = f)

$$Lw = \frac{1-\Phi}{\mu^{\alpha}\Phi}(u_{\mu} - A) + \frac{2}{\mu}(1-\Phi)u'_{\mu} =: h(x),$$
$$w(x_k) = \mathcal{O}\left(\mu^{1-\varepsilon}\right), \quad w(1) = 0.$$

Lemma

If $\alpha >$ 2 and $\mu < \mu_0$ where μ_0 is sufficiently small, then follows that

$$|(u-u_{\mu})(x)| \leq C\mu^{1-\varepsilon}$$
 in $[x_k,1]$,

where $x_k = (\alpha - 1)\mu |\ln \mu|/2$.

Proof. The difference $w := u - u_{\mu}$ suffices in the interval $(x_k, 1]$ the boundary value problem (recall Lu = -u'' + cu = f)

$$Lw = rac{1-\Phi}{\mu^lpha \Phi}(u_\mu - A) + rac{2}{\mu}(1-\Phi)u'_\mu =: h(x),$$

 $w(x_k) = \mathcal{O}\left(\mu^{1-arepsilon}
ight), \quad w(1) = 0.$

Lemma

If $\alpha >$ 2 and $\mu < \mu_0$ where μ_0 is sufficiently small, then follows that

$$|(u-u_{\mu})(x)| \leq C\mu^{1-\varepsilon}$$
 in $[x_k,1]$,

where $x_k = (\alpha - 1)\mu |\ln \mu|/2$.

Proof. The difference $w := u - u_{\mu}$ suffices in the interval $(x_k, 1]$ the boundary value problem (recall Lu = -u'' + cu = f)

$$Lw = rac{1-\Phi}{\mu^lpha \Phi}(u_\mu - A) + rac{2}{\mu}(1-\Phi)u'_\mu =: h(x),$$

 $w(x_k) = \mathcal{O}\left(\mu^{1-arepsilon}
ight), \quad w(1) = 0.$

Lemma

If $\alpha >$ 2 and $\mu < \mu_0$ where μ_0 is sufficiently small, then follows that

$$|(u-u_{\mu})(x)| \leq C\mu^{1-\varepsilon}$$
 in $[x_k,1]$,

where $x_k = (\alpha - 1)\mu |\ln \mu|/2$.

Proof. The difference $w := u - u_{\mu}$ suffices in the interval $(x_k, 1]$ the boundary value problem (recall Lu = -u'' + cu = f)

$$egin{aligned} &Lw = rac{1-\Phi}{\mu^lpha \Phi}(u_\mu - A) + rac{2}{\mu}(1-\Phi)u'_\mu =:h(x), \ &w(x_k) = \mathcal{O}\left(\mu^{1-arepsilon}
ight), \quad w(1) = 0. \end{aligned}$$

Lemma

If $\alpha >$ 2 and $\mu < \mu_0$ where μ_0 is sufficiently small, then follows that

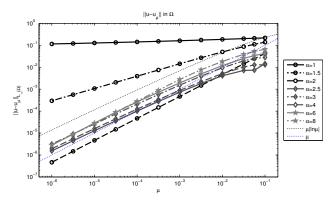
$$|(u-u_{\mu})(x)| \leq C\mu^{1-\varepsilon}$$
 in $[x_k,1]$,

where $x_k = (\alpha - 1)\mu |\ln \mu|/2$.

Proof. The difference $w := u - u_{\mu}$ suffices in the interval $(x_k, 1]$ the boundary value problem (recall Lu = -u'' + cu = f)

$$egin{aligned} &Lw = rac{1-\Phi}{\mu^lpha \Phi}(u_\mu - A) + rac{2}{\mu}(1-\Phi)u'_\mu =:h(x), \ &w(x_k) = \mathcal{O}\left(\mu^{1-arepsilon}
ight), \quad w(1) = 0. \end{aligned}$$

Analysis



Convergence of u_{μ} to *u* for various values of α .

Open questions:

- How to prove the proposition?
- Can the convergence result $|u u_{\mu}| \le C\mu^{1-\varepsilon}$ be improved to $|u u_{\mu}| \le C\mu |\ln \mu|$?
- Is there a simpler proof? ⇒ Better understanding of the behaviour of the method is needed.
- Extension to more than one dimension and more complicated domains.

Thank you for your attention.

Open questions:

- How to prove the proposition?
- Can the convergence result $|u u_{\mu}| \le C\mu^{1-\varepsilon}$ be improved to $|u u_{\mu}| \le C\mu |\ln \mu|$?
- Is there a simpler proof? ⇒ Better understanding of the behaviour of the method is needed.
- Extension to more than one dimension and more complicated domains.

Thank you for your attention.

