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Consider an elliptic differential equation of second order given
by

Lu=f inQ, u=g onof.
for a given geometry Q c R”, n=1,2, 3.

Here Q might be some complicated subset or manifold
embedded in R".
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Introduction

Consider an elliptic differential equation of second order given
by

Lu=f inQ, u=g onof.

for a given geometry Q c R”, n=1,2, 3.

Here Q might be some complicated subset or manifold
embedded in R". A straightforward numerical approach to solve
this problem numerically requires an appropriately chosen
mesh of the domain Q. For complicated domains the task of
finding a suitable mesh becomes challenging and is one of the
most time consuming parts in computational engineering.
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An alternative is to embed the problem into a larger, but simpler
domain © and modify the differential equation.
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Introduction

An alternative is to embed the problem into a larger, but simpler
domain Q and modify the differential equation.

The approach we want to use is called diffuse-domain
approximation. It describes the domain Q implicitly, using a
phase-field function ®, given by

d(x) = ; (1 —tanh (r(:))) .

Here 0 < 1 < 1 is a small parameter and r(x) the
signed-distance function measuring the distance between x
and 09Q.
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Phase-field function @ for the signed-distance function
r(x) = max{—x,x —1}and = 0.1.
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Let us assume the simple problem Lu = —Au+cu = finQ
with ¢ > v > 0 and u = g on 992. Moreover, assume all data to
be smooth.
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Let us assume the simple problem Lu = —Au+cu = finQ
with ¢ > v > 0 and u = g on 992. Moreover, assume all data to

be smooth.
Then the diffuse domain approximation is given by
1-9 1- . =~
L,u,=-V-(®Vu,) + d>cuﬂ+7uu = df+ o g inQ,
u, = g onaQ,

where the data ¢, f and g are smoothly extended to Q. Here
a > 2 is an additional parameter enforcing the boundary

conditions.
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Introduction

Let us assume the simple problem Lu = —Au+cu = finQ
with ¢ > v > 0 and u = g on 992. Moreover, assume all data to

be smooth.
Then the diffuse domain approximation is given by

L.u, = -V - (®Vu,) + dcu, = of inQ,
u, = g ondQ,

where the data ¢, f and g are smoothly extended to Q. Here
a > 2 is an additional parameter enforcing the boundary

conditions.
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Let us assume the simple problem Lu = —Au+cu = finQ
with ¢ > v > 0 and u = g on 992. Moreover, assume all data to
be smooth.
Then the diffuse domain approximation is given by
1-¢ 11— . A
L,u, e u, e g inQ,
u, = g onaQ,

where the data ¢, f and g are smoothly extended to Q. Here
a > 2 is an additional parameter enforcing the boundary

conditions.
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Let us assume the simple problem Lu = —Au+cu = finQ
with ¢ > v > 0 and u = g on 992. Moreover, assume all data to

be smooth.
Then the diffuse domain approximation is given by
1-9 1- . =~
L,u,=-V-(®Vu,) + d>cuﬂ+7uu = df+ o g inQ,
u, = g onoQ,

where the data ¢, f and g are smoothly extended to Q. Here
a > 2 is an additional parameter enforcing the boundary

conditions.
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Examples
Examples — lon Channel in Cell Surface

Work done by group of A. Voigt, IWR TU Dresden
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Examples
Examples — lon Channel in Cell Surface

Work done by group of A. Voigt, IWR TU Dresden
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Examples

Examples — Structure of Bones

Work done by group of A. Voigt, IWR TU Dresden

Phase field function generated from tomography data
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Examples

Examples — Structure of Bones

Work done by group of A. Voigt, IWR TU Dresden
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Examples

Examples — Navier-Stokes Equations

Work done by group of A. Voigt, IWR TU Dresden
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Examples

Examples — Navier-Stokes Equations

Work done by group of A. Voigt, IWR TU Dresden
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Examples

Examples — Sliding Raindrop

Work done by group of A. Voigt, IWR TU Dresden
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Examples

Thus the method seems to work quite fine.

TECHNISCHE
@ UNIVERSITAT
DRESDEN M



Introduction
0O000000e

Examples

Thus the method seems to work quite fine.

But can convergence be proven?
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We consider the following one-dimensional model problem

Lu:=-u"+cu=f inQ=(0,1)
u(0)=A, u(1) =0,

and apply the diffuse-domain approach only to the left
boundary condition. We set Q = (—1,1).
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Analysis

We consider the following one-dimensional model problem

Lu:=—-u"+cu=f inQ=(0,1)
u(0)=A, u(1) =0,
and apply the diffuse-domain approach only to the left

boundary condition. We set Q = (—1,1).
Then the appropriate phase-field function ¢ is given by

d(x) = % <1 — tanh (_:)) = 1+ex1p(2lf)'
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Thus, our diffuse-domain approach reads

L _a¢A in Q

1-9
L,uuu = —(¢UL)/ + <bCUM + 7“,1 = of +

u(—1)=A,  u,(1)=0.
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Analysis

Analysis — Step 1

Lemma (Existence and Uniqueness)
For each 1. > 0 and « > 0 exists a unique solution u,,.

Proof.
Classical existence theory. O
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Analysis — Step 1

Lemma (Existence and Uniqueness)
For each 1. > 0 and « > 0 exists a unique solution u,,.

Proof.
Classical existence theory. O

Lemma (Boundedness)
The solution u,, is bounded uniformly with respect to . and .

Proof.
Barrier function and maximum principle. O
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Analysis — Step 2
Lemma

Fora > 2,0 > 0 arbitrary but fixed and p. < g, where g is
sufficiently small, we have

u,(x)=A+0 ) forxel0,6p].
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Analysis — Step 2

Lemma
Fora > 2,0 > 0 arbitrary but fixed and p. < g, where g is
sufficiently small, we have

u,(x)=A+0 ) forxel0,6p].

Proof. By scaling £ = x /1 we obtain in (—1,6 + 1) the scaled

problem
042a d . agy s Y| aff e
5 (gt + [ue®8+ (1 = )| i, = pdF + (1 - H)A,

UM(_1):a1a EIM(9+1):a2a
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Analysis — Step 2

Lemma
Fora > 2,0 > 0 arbitrary but fixed and p. < g, where g is
sufficiently small, we have

u,(x)=A+0 ) forxel0,6p].

Proof. By scaling £ = x /1 we obtain in (—1,6 + 1) the scaled
problem

0 (-0 .. - - -
a2 ~ o o P, _
h e <¢ag““> + [u e+ (1- )| b, = p*dF + (1 — ®)A,

UM(_1):a1a uu(9+1):a2a

— a singularly perturbed boundary value problem for o > 2.
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Analysis — Step 2

Proof cont.
Thus, for ¢ € [0, 6] the function &, matches the solution of the
problem

(1 - ®)ilp = pu*®F + (1 — D)A.
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Analysis — Step 2

Proof cont.
Thus, for ¢ € [0, 6] the function &, matches the solution of the
problem y » 5
(1 =)y = p*of + (1 — P)A.
Thus,

0,(6) = A+ O (u). =
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Analysis — Step 2

Proof cont.
Thus, for ¢ € [0, 6] the function &, matches the solution of the
problem y » 5
(1 =)y = p*of + (1 — P)A.
Thus,

Uy (x)=A+0(p). O
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Analysis — Step 2

10
10708
—e— -1
20
10 -@--0-15
—0— u=2
g —0— =25
=10 ~0-0=3
< —0— 0=4
—Hh— 0=6
107 -k o=8
,,,,,, u
10 4
-60 L L L L L L
10 6 -5 4 3 2 1
10 10 10 10 10 10
n

Fulfilment of the condition u,(0) ~ A for various values of o
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Analysis — Step 3

Proposition
Fora > 2 and i < ug, where g is sufficiently small, we have

Uu(x) — Al < Cp and |uj,(x)| < C for x € {9/,@, aTiz/ﬂ In uy] :
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Analysis — Step 3

Proposition
Fora > 2 and i < ug, where g is sufficiently small, we have

Uu(x) — Al < Cp and |uj,(x)| < C for x € {9/,@, %72/,4 In uy] :

Remark to Proposition The scaled differential equation

8 (0. . . . .
‘“a_za? <¢8£u#> n [u"‘¢0+ (1- cb)] b, = pdf+ (1 - )A

changes its behaviour at t = QT‘2| In 1| because

A _ a—2 TECHNISCHE
-8 =0(p2). W hiEE o
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Analysis — Step 3

Remark to Proposition, cont. In the interval [0, 5t] with
0 < 8 < 1, it can be analysed as boundary-value problem and

we obtain

where V is a layer term of the structure

t_
V() =0 <9Xp (‘m—mf—m)) -
M 2
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Analysis — Step 3

Remark to Proposition, cont. In the interval [0, 5t] with
0 < 8 < 1, it can be analysed as boundary-value problem and

we obtain

where V is a layer term of the structure

t_
V() =0 <9Xp (‘m—mf—m)) -
M 2

Thus, for ¢ e [0, At] with 0 < 3 < 8 < 1, we observe
u, — A= 0 (p?) if wis sufficiently small.
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Analysis — Step 3

Remark to Proposition, cont. In the interval [0, 5t] with
0 < 8 < 1, it can be analysed as boundary-value problem and
we obtain

Uy = A+ 0 (ue0=0%29) 1y,

where V is a layer term of the structure

t_
V() =0 <9Xp (‘m—mf—m)) -
H 2

Thus, for ¢ e [0, At] with 0 < 3 < 8 < 1, we observe
u, — A= 0 (p?) if pis sufficiently small. But the layer term W
dominates for larger £ and numerically we observe near £ =t

TECHNISCHE
only U = A =0 (u). W hiEE o
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Analysis — Step 3

Behaviour of |u, — A|in [0, u|Inp|] for o = 4
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Analysis — Step 4

Lemma
Assume the previous proposition holds true. For a > 2 and

w < po, where pyq is sufficiently small, we have

o —
2

U (x) = Al < Cp'™ in 2l 2L

where € > 0 is arbitrarily small.
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Analysis — Step 4

Lemma
Assume the previous proposition holds true. For a > 2 and

w < po, where pyq is sufficiently small, we have

— . o —
() =A< Cu' ™ in | = 2uiinl, S Lpin g

where € > 0 is arbitrarily small.
Proof. Idea: Consider the differential problem as initial value

problem for w = gﬁn 2 and use initial values gained by the

proposition.
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Analysis — Step 4

Lemma
Assume the previous proposition holds true. For a > 2 and

w < po, where pyq is sufficiently small, we have

— . o —
() =A< Cu' ™ in | = 2uiinl, S Lpin g

where € > 0 is arbitrarily small.
Proof. Idea: Consider the differential problem as initial value

problem for w = gﬁn 2 and use initial values gained by the

proposition. Then, bounds on the growth of W give the result.
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Analysis

Analysis — Step 2-4 combined

Remark
Numerically we observe the slightly better result

oa—2 oa—1
Uu(x) = Al < Cu forx € | ——plInpl, —5—plInpl}.
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Analysis — Step 2-4 combined

Remark
Numerically we observe the slightly better result

oa—2 oa—1
Uu(x) = Al < Cu forx € | ——plInpl, —5—plInpl}.

Corollary
From the previous steps we obtain for x € [0, %5 1u| In ]

|u(x) = Uu(X)] < |u(x) = u(0)] + |uu(x) — Al < Cp' <

where € can be made arbitrarily small.
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Analysis — Step 5

Lemma
Ifa > 2 and u < pg where pyg is sufficiently small, then follows
that

(U= u)(X)| < Cu' == i [xc, 1],

where xx = (o — 1)u|Inu|/2.
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Analysis — Step 5
Lemma
Ifa > 2 and u < pg where pyg is sufficiently small, then follows

that
(u—uu)(x)| < Cu'™® in [, 1],

where xx = (o — 1)u|Inu|/2.

Proof. The difference w := u — u,, suffices in the interval (x, 1]
the boundary value problem (recall Lu = —u" + cu = f)

1- 2
Lw = (U, — A) + ;(1 — ®)u, =: h(x),

ped
w(xK) = O (;ﬂ—é) . w(1)=0.
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Analysis — Step 5
Lemma
Ifa > 2 and u < pg where pyg is sufficiently small, then follows
that
(U= u)(X)| < Cu' == i [xc, 1],
where xx = (o — 1)u|Inu|/2.

Proof. The difference w := u — u,, suffices in the interval (x, 1]
the boundary value problem (recall Lu = —u" + cu = f)
1-¢ 2
Lw = T (u, — A)+ ;(1 — ®)u, =: h(x),
wixe) =0 (1), w(1)=0.

Using a Green'’s function representation of w,
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Analysis — Step 5
Lemma
Ifa > 2 and u < pg where pyg is sufficiently small, then follows

that
(U= u )l < Cu'™= i [xi, 1],
where xx = (o — 1)u|Inu|/2.
Proof. The difference w := u — u,, suffices in the interval (x, 1]
the boundary value problem (recall Lu = —u" + cu = f)
1-0 2
Lw = T (u, — A)+ ;(1 — ®)u, =: h(x),
wixe) =0 (1), w(1)=0.

Using a Green’s function representation of w, bounds on
G(x,t) and Gi(x, t), Bﬁfv“g'fz'é.%%%
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Analysis — Step 5
Lemma
Ifa > 2 and u < pg where pyg is sufficiently small, then follows

that
(u—uu)(x)| < Cu'™® in [, 1],

where xx = (o — 1)u|Inu|/2.

Proof. The difference w := u — u,, suffices in the interval (x, 1]

the boundary value problem (recall Lu = —u" + cu = f)
1—-o 2

_ o g I
Lw = TS (uy A)+M(1 ®)u, =: h(x),

wixe) =0 (1), w(1)=0.
Using a Green'’s function representation of w, bounds on

G(x,t) and Gi(x,t), h being small due to aﬁfygggﬁt&;
1 — (1) < Cexp(—2t/u) we are done.
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-u [|inQ
lu-u, I

Convergence of u,, to u for various values of «.

TECHNISCHE
@ UNIVERSITAT
DRESDEN M



The End

Open questions:
@ How to prove the proposition?
@ Can the convergence result |u — u,| < Cu'~¢ be improved
to |u— u,| < Cuflnp|?
@ Is there a simpler proof? = Better understanding of the
behaviour of the method is needed.

@ Extension to more than one dimension and more
complicated domains.
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The End

Open questions:
@ How to prove the proposition?
@ Can the convergence result |u — u,| < Cu'~¢ be improved
to |u— u,| < Cuflnp|?
@ Is there a simpler proof? = Better understanding of the
behaviour of the method is needed.

@ Extension to more than one dimension and more
complicated domains.

Thank you for your attention.
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