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Consider an elliptic differential equation of second order given
by

Lu = f in Ω, u = g on ∂Ω.

for a given geometry Ω ⊂ Rn, n = 1,2,3.
Here Ω might be some complicated subset or manifold
embedded in Rn. A straightforward numerical approach to solve
this problem numerically requires an appropriately chosen
mesh of the domain Ω. For complicated domains the task of
finding a suitable mesh becomes challenging and is one of the
most time consuming parts in computational engineering.
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An alternative is to embed the problem into a larger, but simpler
domain Ω̂ and modify the differential equation.
The approach we want to use is called diffuse-domain
approximation. It describes the domain Ω implicitly, using a
phase-field function Φ, given by

Φ(x) =
1
2

(
1− tanh

(
r(x)

µ

))
.

Here 0 < µ� 1 is a small parameter and r(x) the
signed-distance function measuring the distance between x
and ∂Ω.
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Let us assume the simple problem Lu = −∆u + cu = f in Ω
with c ≥ γ ≥ 0 and u = g on ∂Ω. Moreover, assume all data to
be smooth.
Then the diffuse domain approximation is given by

Lµuµ = −∇ · (Φ∇uµ) + Φcuµ+
1− Φ

µα
uµ = Φf +

1− Φ

µα
g in Ω̂,

uµ = g on ∂Ω̂,

where the data c, f and g are smoothly extended to Ω̂. Here
α > 2 is an additional parameter enforcing the boundary
conditions.
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Examples – Ion Channel in Cell Surface

Work done by group of A. Voigt, IWR TU Dresden

7 phase fields used to describe diffuse domain
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Examples – Ion Channel in Cell Surface

Work done by group of A. Voigt, IWR TU Dresden

Computed displacement



Introduction Analysis The End

Examples

Examples – Structure of Bones

Work done by group of A. Voigt, IWR TU Dresden

Phase field function generated from tomography data
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Work done by group of A. Voigt, IWR TU Dresden

Solution component of elasticity equations
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Examples – Navier-Stokes Equations

Work done by group of A. Voigt, IWR TU Dresden



Introduction Analysis The End

Examples

Examples – Navier-Stokes Equations
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Examples – Sliding Raindrop

Work done by group of A. Voigt, IWR TU Dresden
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Thus the method seems to work quite fine.

But can convergence be proven?
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We consider the following one-dimensional model problem

Lu := −u′′ + cu = f in Ω = (0,1)

u(0) = A, u(1) = 0,

and apply the diffuse-domain approach only to the left
boundary condition. We set Ω̂ = (−1,1).
Then the appropriate phase-field function Φ is given by

Φ(x) =
1
2

(
1− tanh

(
−x
µ

))
=

1
1 + exp(−2x

µ )
.
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Thus, our diffuse-domain approach reads

Lµuµ := −(Φu′µ)′ + Φcuµ +
1− Φ

µα
uµ = Φf +

1− Φ

µα
A in Ω̂

uµ(−1) = A, uµ(1) = 0.
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Analysis – Step 1

Lemma (Existence and Uniqueness)
For each µ > 0 and α > 0 exists a unique solution uµ.

Proof.
Classical existence theory.

Lemma (Boundedness)
The solution uµ is bounded uniformly with respect to µ and α.

Proof.
Barrier function and maximum principle.
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Analysis – Step 2

Lemma
For α > 2, θ > 0 arbitrary but fixed and µ < µ0, where µ0 is
sufficiently small, we have

uµ(x) = A +O (µα) for x ∈ [0, θµ].

Proof. By scaling ξ = x/µ we obtain in (−1, θ + 1) the scaled
problem

−µα−2 ∂

∂ξ

(
Φ̃
∂

∂ξ
ũµ

)
+
[
µαΦ̃c̃ + (1− Φ̃)

]
ũµ = µαΦ̃f̃ + (1− Φ̃)A,

ũµ(−1) = α1, ũµ(θ + 1) = α2,

— a singularly perturbed boundary value problem for α > 2.
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Analysis – Step 2

Proof cont.
Thus, for ξ ∈ [0, θ] the function ũµ matches the solution of the
problem

(1− Φ̃)ũ0 = µαΦ̃f̃ + (1− Φ̃)A.

Thus,

ũµ(ξ) = A +O (µα) .
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Analysis – Step 2
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Analysis – Step 3
Proposition
For α > 2 and µ < µ0, where µ0 is sufficiently small, we have

|uµ(x)− A| ≤ Cµ and |u′µ(x)| ≤ C for x ∈
[
θµ,

α− 2
2

µ| lnµ|
]
.

Remark to Proposition The scaled differential equation

−µα−2 ∂

∂ξ

(
Φ̃
∂

∂ξ
ũµ

)
+
[
µαΦ̃c̃ + (1− Φ̃)

]
ũµ = µαΦ̃f̃ + (1− Φ̃)A

changes its behaviour at t = α−2
2 | lnµ| because

1− Φ̃(t) = O
(
µα−2

)
.
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Analysis – Step 3

Remark to Proposition, cont. In the interval [θ, βt ] with
0 < β < 1, it can be analysed as boundary-value problem and
we obtain

uµ = A +O
(
µα(1−β)+2β

)
+ Ψ,

where Ψ is a layer term of the structure

Ψ(ξ) = O

(
exp

(
− t − ξ

µ
(α−2)(1−β)

2

))
.

Thus, for ξ ∈ [θ, β̃t ] with 0 < β̃ < β < 1, we observe
uµ − A = O

(
µ2) if µ is sufficiently small. But the layer term Ψ

dominates for larger ξ and numerically we observe near ξ = t
only uµ − A = O (µ).
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Analysis – Step 3
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Analysis – Step 4

Lemma
Assume the previous proposition holds true. For α > 2 and
µ < µ0, where µ0 is sufficiently small, we have

|uµ(x)− A| ≤ Cµ1−ε in
[
α− 2

2
µ| lnµ|, α− 1

2
µ| lnµ|

]
,

where ε > 0 is arbitrarily small.
Proof. Idea: Consider the differential problem as initial value
problem for ŵ =

ûµ−A
µ2| lnµ|2 and use initial values gained by the

proposition. Then, bounds on the growth of ŵ give the result.
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Analysis – Step 2-4 combined

Remark
Numerically we observe the slightly better result

|uµ(x)− A| ≤ Cµ for x ∈
[
α− 2

2
µ| lnµ|, α− 1

2
µ| lnµ|

]
.

Corollary
From the previous steps we obtain for x ∈

[
0, α−1

2 µ| lnµ|
]

|u(x)− uµ(x)| ≤ |u(x)− u(0)|+ |uµ(x)− A| ≤ Cµ1−ε

where ε can be made arbitrarily small.
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Analysis – Step 5
Lemma
If α > 2 and µ < µ0 where µ0 is sufficiently small, then follows
that

|(u − uµ)(x)| ≤ Cµ1−ε in [xk ,1] ,

where xk = (α− 1)µ| lnµ|/2.

Proof. The difference w := u − uµ suffices in the interval (xk ,1]
the boundary value problem (recall Lu = −u′′ + cu = f )

Lw =
1− Φ

µαΦ
(uµ − A) +

2
µ

(1− Φ)u′µ =: h(x),

w(xk ) = O
(
µ1−ε

)
, w(1) = 0.

Using a Green’s function representation of w , bounds on
G(x , t) and Gt (x , t), h being small due to
1− Φ(t) ≤ C exp(−2t/µ) we are done.
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Open questions:
How to prove the proposition?
Can the convergence result |u − uµ| ≤ Cµ1−ε be improved
to |u − uµ| ≤ Cµ| lnµ|?
Is there a simpler proof? ⇒ Better understanding of the
behaviour of the method is needed.
Extension to more than one dimension and more
complicated domains.

Thank you for your attention.
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