On the stabilization method for chemotaxis system

Shahin Heydari, Charles University, Prague Petr Knobloch, Charles University, Prague Thomas Wick, Leibniz University, Hannover

10th Dresden-Prague Workshop on Numerical Analysis , 4-5 November 2022

Contents

- * Stabilization methods
- * AFC stabilization methods on chemotaxis system of equation
- Positivity preservation and discrete maximum principle(DMP)
- Numerical simulation
- * Outlook

$$\mathcal{L} \mathbf{u} := -\varepsilon \Delta u + \mathbf{b} \cdot \nabla u + c\mathbf{u} = f \qquad \text{in} \qquad \Omega, \qquad (1)$$

$$\mathbf{u} = \mathbf{u}_b \qquad \text{on} \qquad \partial \Omega,$$

- $\Omega \subset \mathbb{R}^d$, d = 2, 3, ...,
- $\varepsilon > 0$, constant,
- $\mathbf{b} \in W^{1,\infty}(\Omega)^d$,
- $c \in L^{\infty}(\Omega)$,
- $f \in L^2(\Omega)$,
- $u_b \in H^{1/2}(\partial\Omega)$,
- $c \frac{1}{2} div \mathbf{b} \geqslant 0$

Convection-dominate

If $\varepsilon \ll |\mathbf{b}|$ convection dominates the diffusion and causes narrow layer or spurious oscillation

- Mesh adaptation on layers
- Coarse mesh+modifications of a standard discretization
 - * special discretization of the convective term (Upwinding method)
 - * introduction of additional terms (stabilization)¹
 Weak formulation: Find $u \in H^1(\Omega)$ such that u = u

$$a(u,v) = (f,v) \quad \forall v \in H_0^1(\Omega), a(u,v) = \varepsilon(\nabla u, \nabla v) + (\mathbf{b} \cdot \nabla u, v) + (c u, v),$$
 (2)

Galekin FEM: Find $u_h \in W_h \subset H^1(\Omega)$ such that $u_h = u_{bh} \in W_h$ on $\partial \Omega$ and

$$a(u_h, v_h) = (f, v_h) \qquad \forall \ v_h \in V_h = W_h \cap H_0^1(\Omega)$$

Stabilized FEM: Find $u_h \in W_h$ such that $u_h = u_{bh}$ on $\partial \Omega$ and

$$a(u_h, v_h) + \sum s_K(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h,$$

¹ Brooks, Hughes (1982); Hughes, Franca, Hulbert (1989); Franca, Frey, Hughes (1992); Franca, do Carmo (1989); Becker, Braack(2004); Burman, Hansbo (2004); Burman, Ern, CMAME (2002); Burman, Ern (2005); Volker, Knobloch, CMAME (2007).

- Mesh adaptation on layers
- Coarse mesh+modifications of a standard discretization
 - * special discretization of the convective term (Upwinding method)
 - * introduction of additional terms (stabilization)¹ Weak formulation: Find $u \in H^1(\Omega)$ such that $u = u_b$ on $\partial \Omega$:

$$\begin{aligned}
a(u,v) &= (f,v) & \forall v \in H_0^1(\Omega), \\
a(u,v) &= \varepsilon(\nabla u, \nabla v) + (\mathbf{b} \cdot \nabla u, v) + (c u, v),
\end{aligned} \tag{2}$$

Galekin FEM: Find $u_h \in W_h \subset H^1(\Omega)$ such that $u_h = u_{bh} \in W_h$ on $\partial \Omega$ and

$$a(u_h, v_h) = (f, v_h) \qquad \forall \ v_h \in V_h = W_h \cap H_0^1(\Omega)$$

Stabilized FEM: Find $u_h \in W_h$ such that $u_h = u_{bh}$ on $\partial \Omega$ and

$$a(u_h, v_h) + \sum s_K(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h,$$

Brooks, Hughes (1982); Hughes, Franca, Hulbert (1989); Franca, Frey, Hughes (1992); Franca, do Carmo (1989); Becker, Braack(2004); Burman, Hansbo (2004); Burman, Ern, CMAME (2002); Burman, Ern (2005); Volker, Knobloch, CMAME (2007).

- Mesh adaptation on layers
- Coarse mesh+modifications of a standard discretization
 - * special discretization of the convective term (Upwinding method)
 - * introduction of additional terms (stabilization)¹ Weak formulation: Find $u \in H^1(\Omega)$ such that $u = u_b$ on $\partial \Omega$:

$$\begin{aligned}
a(u,v) &= (f,v) & \forall v \in H_0^1(\Omega), \\
a(u,v) &= \varepsilon(\nabla u, \nabla v) + (\mathbf{b} \cdot \nabla u, v) + (\varepsilon u, v),
\end{aligned} \tag{2}$$

Galekin FEM: Find $u_h \in W_h \subset H^1(\Omega)$ such that $u_h = u_{bh} \in W_h$ on $\partial \Omega$ and

$$a(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h = W_h \cap H_0^1(\Omega).$$

Stabilized FEM: Find $u_h \in W_h$ such that $u_h = u_{bh}$ on $\partial \Omega$ and

 $a(u_h, v_h) + \sum s_K(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h,$

¹ Brooks, Hughes (1982); Hughes, Franca, Hulbert (1989); Franca, Frey, Hughes (1992); Franca, do Carmo (1989); Becker, Braack(2004); Burman, Hansbo (2004); Burman, Ern, CMAME (2002); Burman, Ern (2005); Volker, Knobloch, CMAME (2007).

- Mesh adaptation on layers
- Coarse mesh+modifications of a standard discretization
 - * special discretization of the convective term (Upwinding method)
 - * introduction of additional terms (stabilization)¹ Weak formulation: Find $u \in H^1(\Omega)$ such that $u = u_b$ on $\partial \Omega$:

$$\begin{aligned}
a(u,v) &= (f,v) & \forall v \in H_0^1(\Omega), \\
a(u,v) &= \varepsilon(\nabla u, \nabla v) + (\mathbf{b} \cdot \nabla u, v) + (c u, v),
\end{aligned} \tag{2}$$

Galekin FEM: Find $u_h \in W_h \subset H^1(\Omega)$ such that $u_h = u_{bh} \in W_h$ on $\partial \Omega$ and

$$a(u_h, v_h) = (f, v_h) \quad \forall v_h \in V_h = W_h \cap H_0^1(\Omega).$$

Stabilized FEM: Find $u_h \in W_h$ such that $u_h = u_{bh}$ on $\partial \Omega$ and

$$a(u_h, v_h) + \sum_{K \in \mathscr{T}_h} \tau_K \, s_K(u_h, v_h) = (f, v_h) \qquad \forall \, v_h \in V_h,$$

Brooks, Hughes (1982); Hughes, Franca, Hulbert (1989); Franca, Frey, Hughes (1992); Franca, do Carmo (1989); Becker, Braack(2004); Burman, Hansbo (2004); Burman, Ern, CMAME (2002); Burman, Ern (2005); Volker, Knobloch, CMAME (2007).

Stabilization methods

AFC stabilization methods on chemotaxis system of equation

Numerical simulation

Outlook

* manipulations at algebraic level (AFC schemes)²
Aim: manipulate the algebraic system in such a way that
the solution satisfies DMP and layers are not smeared.

²Kuzmin et al. (2001–now); Barrenechea, Volker, Knobloch, IMAJNA (2015); Barrenechea, Volker, Knobloch, SINUM (2016); Barrenechea, Volker, Knobloch, M3AS (2017).

AFC stabilization methods on chemotaxis system of equation Numerical simulation Outlook

Cross-diffusion cancer invasion model: 1,2,3

$$\begin{split} \frac{\partial u}{\partial t} &= \mu u (1-u) - \chi \nabla \cdot (u \nabla c), \quad x \in \Omega \times [0, I], \\ \frac{\partial c}{\partial t} &= -pc, & x \in \Omega \times [0, I], \\ \frac{\partial p}{\partial t} &= \varepsilon^{-1} (uc - p), & x \in \Omega \times [0, I], \\ \frac{\partial u}{\partial n} &= 0, & x \in \partial \Omega \times [0, I], \end{split}$$

u = u(x, t): the concentration of invasive cells c = c(x, t): the concentration of healthy tissue p = p(x, t): protease

¹ Fuest, H, Knobloch, Lankeit, and Wick: Global existence of classical solutions and numerical simulations of a cancer invasion model. Preprint, arXiv:2205.08168, 2022.

²H. Knobloch, and Wick: On the AFC stabilization of an evolutionary cross-diffusion cancer invasion model(In Progress, 2022.)

 $^{^{3}}$ Fuest, H: A cross-diffusion system modelling rivaling gangs: global existence of bounded solutions and numerical evidence for total separation (In progress, 2022.)

$$\left(M + \theta \Delta t A^{n+1,c}\right) \mathbf{c}_{k}^{n+1} = \left(M - (1-\theta)\Delta t A^{n,c}\right) \mathbf{c}^{n}, \tag{3}$$

$$\left(\left(1 + \varepsilon^{-1}\theta \Delta t\right)M\right) \mathbf{p}_{k}^{n+1} = \left(\left(1 - \varepsilon^{-1}(1-\theta)\Delta t\right)M\right) \mathbf{p}^{n}$$

$$+ \varepsilon^{-1}\Delta t \left(\theta F^{n+1,p} + (1-\theta)F^{n,p}\right), \tag{4}$$

$$\left(M + \theta \Delta t A^{n+1,u}\right) \mathbf{u}_k^{n+1} = \left(M - (1-\theta) \Delta t A^{n,u}\right) \mathbf{u}^n \tag{5}$$

$$\mathbf{c}_k^{n+1} = \left(c_{j,k}^{n+1}\right)_{j=1,\dots,M}^T, \mathbf{p}_k^{n+1} = \left(p_{j,k}^{n+1}\right)_{j=1,\dots,M}^T \text{ and } \mathbf{u}_k^{n+1} = \left(u_{j,k}^{n+1}\right)_{j=1,\dots,M}^T \text{ denote the vector of unknowns at time } t^{n+1} \text{ and iteration } k, k = 1, 2, \dots,$$

Outlook

$$\begin{split} M_{ij} &= \int_{\mathcal{T}_h} \phi_i(x) \phi_j(x) dx, \\ A^{n+1,c} &= \int_{\mathcal{T}_h} \phi_i(x) \phi_j(x) p_{h,k-1}^{n+1} dx, \\ A^{n,c} &= \int_{\mathcal{T}_h} \phi_i(x) \phi_j(x) p_h^n dx, \\ F^{n+1,p} &= \int_{\mathcal{T}_h} \phi_i(x) u_{h,k-1}^{n+1} c_{h,k}^{n+1} dx, \\ F^{n,p} &= \int_{\mathcal{T}_h} \phi_i(x) u_h^n c_h^n dx, \\ A^{n+1,u} &= -\mu \int_{\mathcal{T}_h} \phi_i(x) \phi_j(x) (1 - u_{h,k-1}^{n+1}) dx - \chi \int_{\mathcal{T}_h} \phi_i(x) \nabla c_{h,k}^{n+1} \cdot \nabla \phi_j(x) dx \end{split}$$

 $A^{n,u} = -\mu \int_{\mathcal{D}_n} \phi_i(x) \phi_j(x) (1 - u_h^n) dx - \chi \int_{\mathcal{D}_n} \phi_i(x) \nabla c_h^n \cdot \nabla \phi_j(x) dx.$

$$M_L = (m_{ij}^L)_{j=1,\dots,M}^{i=1,\dots,M}$$
 with entries $m_{ij}^L = 0$, $\forall i \neq j$ and $m_{ii}^L = \sum_{i=1}^M m_{ij}^c$

 $D^{n+1,u}=(d_{ij}^{n+1,u})_{j=1,\ldots,M}^{i=1,\ldots,M}$ possesing the entries

$$d_{ij}^{n+1,u} = -\max\{a_{ij}^{n+1,u},0,a_{ji}^{n+1,u}\} \ orall \ i
eq j, \ d_{ij}^{n+1,u} = -\sum_{i
eq i} d_{ij}^{n+1,u}.$$

Then the equation for u can be rewritten as follow:

$$\left[M_L + \theta \Delta t \tilde{A}^{n+1,u}\right] \mathbf{u}_k^{n+1} = \left[M_L - (1-\theta)\Delta t \tilde{A}^{n,u}\right] \mathbf{u}^n.$$
 (6)

 $\tilde{A}^{n+1,u} = A^{n+1,u} + D^{n+1,u}$ and $\tilde{A}^{n,u} = A^{n,u} + D^{n,u}$

$$\begin{split} M_L &= (m_{ij}^L)_{j=1,\dots,M}^{i=1,\dots,M} \text{ with entries } m_{ij}^L = 0, \quad \forall \ i \neq j \text{ and } m_{ii}^L = \sum_{i=1}^M m_{ij}^c, \\ D^{n+1,u} &= (d_{ij}^{n+1,u})_{j=1,\dots,M}^{i=1,\dots,M} \text{ possesing the entries} \\ d_{ij}^{n+1,u} &= -\max\{a_{ij}^{n+1,u},0,a_{ji}^{n+1,u}\} \ \forall \ i \neq j, \\ d_{ii}^{n+1,u} &= -\sum_{i \neq i} d_{ij}^{n+1,u}. \end{split}$$

Then the equation for *u* can be rewritten as follow:

$$\left[M_L + \theta \Delta t \tilde{A}^{n+1,u}\right] \mathbf{u}_k^{n+1} = \left[M_L - (1-\theta)\Delta t \tilde{A}^{n,u}\right] \mathbf{u}^n.$$
 (6)

$$\tilde{A}^{n+1,u} = A^{n+1,u} + D^{n+1,u}$$
 and $\tilde{A}^{n,u} = A^{n,u} + D^{n,u}$.

Positivity-preservation of low-order scheme (6)³: Let us set $\theta = 1$ and choose Δt such that

$$M_L \mathbb{I}_M + \Delta t \tilde{A}^{n+1,u} \mathbb{I}_M \geqslant 0, \qquad m_i - \Delta t \tilde{A}^{n,u} \geqslant 0, \quad i = 1,...,M.$$

Since $\tilde{A}^{n+1,u}$ and $\tilde{A}^{n,u}$ are of non-negative type, then the matrix $B=M_L+\Delta t \tilde{A}^{n+1,u}$ is strictly diagonally dominant and hence it is non-singular, which implies that B is an M-matrix. Thus $B^{-1}\geqslant 0$. On the other hand $K=M_L-\Delta t \tilde{A}^{n,u}\geqslant 0$. This immediately implies that the method is positivity-preserving, i.e,

$$\mathbf{u}^n \geqslant 0 \Rightarrow \mathbf{u}^{n+1} \geqslant 0$$
.

³Barrenechea, Volker , Knobloch :Finite element methods respecting the discrete maximum principle for convection-diffusion equations, arXiv preprint arXiv:2204.07480, 2022.

by subtracting (6) and (5):

$$f_{ij}^{u} = m_{ij}(u_{i}^{n+1} - u_{j}^{n+1}) - m_{ij}(u_{i}^{n} - u_{j}^{n})$$

$$- \theta \Delta t d_{ij}^{n+1,u}(u_{i}^{n+1} - u_{j}^{n+1}) - (1 - \theta) \Delta t d_{ij,u}^{n}(u_{i}^{n} - u_{j}^{n}) = -f_{ji}^{u},$$

$$F^{u} = \sum_{i \neq j} \bar{f}_{ij}^{u}$$

where

$$\bar{f}_{ij}^u = \alpha_{ij}^u f_{ij}^u$$

10th Dresden-Prague Workshop on Numerical Analysis

Outlook

Compute the \tilde{u} from (6) and determine the flux limiter α_{ii}^u as ⁴:

$$\begin{split} P_i^+ &= \sum_{i \neq j} \max\{0, f_{ij}^u\}, \ \ P_i^- &= \sum_{i \neq j} \min\{0, f_{ij}^u\}, \\ Q_i^+ &= \max\{0, \max_{j \in S(i)} (\tilde{u}_j - \tilde{u}_i)\}, \ \ Q_i^- &= \min\{0, \min_{j \in S(i)} (\tilde{u}_j - \tilde{u}_i)\}, \\ R_i^+ &= \min\left\{1, \frac{m_i Q_i^+}{P_i^+}\right\}, \ \ R_i^- &= \min\left\{1, \frac{m_i Q_i^-}{P_i^-}\right\} \\ \alpha_{ij}^u &= \begin{cases} \min\{R_i^+, R_j^-\}, & \text{if } f_{ij}^u > 0 \\ \min\{R_i^-, R_j^+\}, & \text{otherwise}, \end{cases}, \ \alpha_{ij}^u \in [0, 1], \ \alpha_{ij}^u = \alpha_{ji}^u \\ \bar{f}_{ij}^u &= \alpha_{ij}^u f_{ij}^u, \end{split}$$

Then the high-order schme of (6) reads:

$$\left[M_L + \theta \Delta t \tilde{A}^{n+1,u}\right] \mathbf{u}_k^{n+1} = \left[M_L - (1-\theta)\Delta t \tilde{A}^{n,u}\right] \mathbf{u}^n + F^u.$$

⁴S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of computational physics, 31(3):335ä362, 1979.

Numerical simulation Outlook

Compute the \tilde{u} from (6) and determine the flux limiter α_{ii}^u as ⁴:

$$\begin{split} P_i^+ &= \sum_{i \neq j} \max\{0, f_{ij}^u\}, \ \ P_i^- &= \sum_{i \neq j} \min\{0, f_{ij}^u\}, \\ Q_i^+ &= \max\{0, \max_{j \in S(i)} (\tilde{u}_j - \tilde{u}_i)\}, \ \ Q_i^- &= \min\{0, \min_{j \in S(i)} (\tilde{u}_j - \tilde{u}_i)\}, \\ R_i^+ &= \min\left\{1, \frac{m_i Q_i^+}{P_i^+}\right\}, \ \ R_i^- &= \min\left\{1, \frac{m_i Q_i^-}{P_i^-}\right\} \\ \alpha_{ij}^u &= \begin{cases} \min\{R_i^+, R_j^-\}, & \text{if } f_{ij}^u > 0 \\ \min\{R_i^-, R_j^+\}, & \text{otherwise} \end{cases}, \ \alpha_{ij}^u \in [0, 1], \ \alpha_{ij}^u = \alpha_{ji}^u \\ \bar{f}_{ij}^u &= \alpha_{ij}^u f_{ij}^u, \end{split}$$

Then the high-order schme of (6) reads:

$$\left[M_{L}+\theta\Delta t\tilde{A}^{n+1,u}\right]\mathbf{u}_{k}^{n+1}=\left[M_{L}-(1-\theta)\Delta t\tilde{A}^{n,u}\right]\mathbf{u}^{n}+F^{u}. \quad (7)$$

⁴S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of computational physics, 31(3):335â362, 1979.

$$M_L \tilde{u}^{n+1} = \left[M_L - (1 - \theta) \Delta t \tilde{A}^{n,u} \right] \mathbf{u}^n, \tag{8}$$

$$M_L \bar{u}^{n+1} = M_L \tilde{u}^{n+1} + F^u, \tag{9}$$

$$\left[M_L + \theta \Delta t \tilde{A}^{n+1,u}\right] \mathbf{u}_k^{n+1} = M_L \bar{u}, \tag{10}$$

positivity-preservation of high-order scheme (7):

- * let $u^n \geqslant 0$ and $\Delta t < \frac{m_i}{(1-\theta)l_{ii}}$, M_L is diagonal matrix with positive diagonal entries, then $\tilde{u} \geqslant 0$,
- * the limiter are determined in such a way that $\bar{u} \geqslant 0$,
- * $M_L \geqslant 0$ and $\tilde{A}^{n+1,u}$ is of nonnegative type, then the matrix $B = \left[M_L + \theta \Delta t \tilde{A}^{n+1,u} \right]$ is strictly diagonally dominant and non-singular, so it is a M-matix, therefore $u^{n+1} \geqslant 0$.

Numerical simulation Outlook

DMP:

If we simplify (6) as

$$Bu^{n+1} = Ku^n$$
,

where $B, K \in \mathbb{R}^{M \times M}$ and $u^{n+1}, u^n \in \mathbb{R}^M$. Assuming that

$$B^{-1} \geqslant 0$$
, $K \geqslant 0$, $B\mathbb{I}_M \geqslant K\mathbb{I}_M$,

one obtains with $N_1 = (\max u^n)^+, N_2 = (\min u^n)^-$

$$u^{n+1} = B^{-1} K u^n \leqslant N_1 B^{-1} K \mathbb{I}_M \leqslant N_1 B^{-1} B \mathbb{I}_M = N_1 \mathbb{I}_M,$$

$$u^{n+1} = B^{-1} K u^n \geqslant N_2 B^{-1} K \mathbb{I}_M \geqslant N_2 B^{-1} B \mathbb{I}_M = N_2 \mathbb{I}_M,$$

i.e.,

$$(\min u^n)^- \leqslant u_i^{n+1} \leqslant (\max u^n)^+.$$

Algorithm

- Step 1: initialize at time t = 0 with $\mathbf{c}^0 = c(x,0), \mathbf{p}^0 = p(x,0)$ and $\mathbf{u}^0 = u(x,0),$
- Step 2: for $n \ge 1$ (time step number index) first set $\mathbf{c}_0^{n+1} = \mathbf{c}^n, \mathbf{p}_0^{n+1} = \mathbf{p}^n$ and $\mathbf{u}_0^{n+1} = \mathbf{u}^n$, for $k \ge 1$ (fixed-point iteration index)
 - (a) determine \mathbf{c}_k^{n+1} using (3),
 - (b) determine \mathbf{p}_k^{n+1} using (4),
 - (c) (1.) compute $\tilde{\mathbf{u}}_k^{n+1}$

$$\left[M_L + \theta \Delta t \tilde{A}^{n+1,u}\right] \tilde{\mathbf{u}}_k^{n+1} = \left[M_L - (1-\theta)\Delta t \tilde{A}^{n,u}\right] \mathbf{u}^n.$$

- (2.) compute α_{ij}^u using $\tilde{\mathbf{u}}_k^{n+1}$,
- (3.) set $\mathbf{u}_k^{n+1} = \tilde{\mathbf{u}}_k^{n+1}$ or $\mathbf{u}_k^{n+1} = \mathbf{u}_{k-1}^{n+1}$ to compute F^u explicitly or implicitly, respectively.
- (4.) determine \mathbf{u}_k^{n+1} from

$$\left[M_L + \theta \Delta t \tilde{A}^{n+1,u}\right] \mathbf{u}_k^{n+1} = \left[M_L - (1-\theta)\Delta t \tilde{A}^{n,u}\right] \mathbf{u}^n + F^u.$$

Step3: if
$$\left\{\|\mathbf{c}_{k}^{n+1} - \mathbf{c}_{k-1}^{n+1}\|_{\ell^{2}}, \|\mathbf{p}_{k}^{n+1} - \mathbf{p}_{k-1}^{n+1}\|_{\ell^{2}}, \|\mathbf{u}_{k}^{n+1} - \mathbf{u}_{k-1}^{n+1}\|_{\ell^{2}}\right\} < ToI = 10^{-8} \text{ stop and set}$$

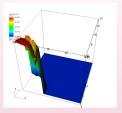
$$\mathbf{u}^{n+1} = \mathbf{u}_{k}^{n+1}, \mathbf{c}^{n+1} = \mathbf{c}_{k}^{n+1}, \mathbf{p}^{n+1} = \mathbf{p}_{k}^{n+1}.$$

and go back to step 2 (proceed to next time point).

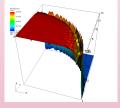
Step 4 : else set

$$\begin{split} \mathbf{c}_{h,k}^{n+1} &= \beta \mathbf{c}_{h,k}^{n+1} + (1-\beta) \mathbf{c}_{h,k-1}^{n+1}, \\ \mathbf{p}_{h,k}^{n+1} &= \beta \mathbf{p}_{h,k}^{n+1} + (1-\beta) \mathbf{p}_{h,k-1}^{n+1}, \\ \mathbf{u}_{h,k}^{n+1} &= \beta \mathbf{u}_{h,k}^{n+1} + (1-\beta) \mathbf{u}_{h,k-1}^{n+1}, \end{split}$$

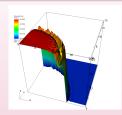
for some $\beta \in [0,1]$ and go to (a) and increment $k \mapsto k+1$ (next fixed-point iteration), here we set $\beta = 0.5$.



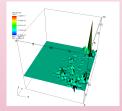
(a) t = 10



(c) t=30

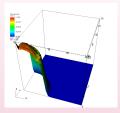


(b) t=20

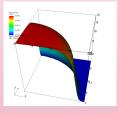


(d) t=40

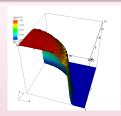
Figure: Cancer density, Galerkin method, $\mu=1$ and $\chi=1$ Crank-Nicolson method



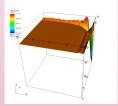
(a) t = 10



(c) t=30

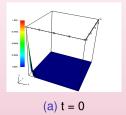


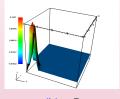
(b) t=20



(d) t = 40

Figure: Cancer density, AFC method, $\mu=1$ and $\chi=1$ Crank-Nicolson method

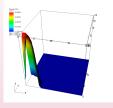




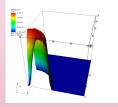
(b) t=5

Figure: Cancer density, Galerkin method, $\mu = 0.001$ and $\chi = 1$ Crank-Nicolson method $\theta = 0.5$ with $\Delta t = 1$, 20×20 mesh, Q_1 .

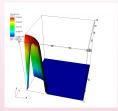
10th Dresden-Prague Workshop on Numerical Analysis



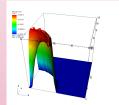
(a)
$$t = 10$$



(c) t=30



(b) t=20



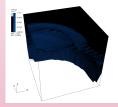
(d) t=40

Figure: Cancer density, AFC method, $\mu=$ 0.001 and $\chi=$ 1 Crank-Nicolson method

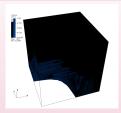
Table: The convergece of AFC scheme, $\mu=1$ and $\chi=1$ Crank-Nicolson method $\theta=0.5$

Δt	u _k ⁿ⁺¹	c _k ⁿ⁺¹	\mathbf{p}_k^{n+1}
0.5	0.9588	0.0998	0.0956
0.25	0.9636	0.0986	0.0957
0.125	0.9695	0.0984	0.0967
0.0625	0.9725	0.0976	0.0964
0.0313	0.9741	0.0967	0.0958

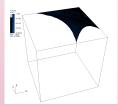
(a) t = 5



(c) t=25



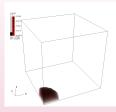
(b) t=15



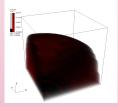
(d) t=35

Figure: Healthy tissue density, AFC method, $\mu=1$ and $\chi=1$ Crank-Nicolson

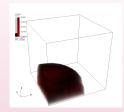
Outlook



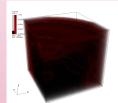
(a)
$$t = 5$$



(c) t=25



(b) t=15



(d) t = 35

Figure: Cancer cell density, AFC method, $\mu = 1$ and $\chi = 1$ Crank-Nicolson method

Outlook

- Existence of solutions of a FE-FCT scheme for chemotaxis system ^{5,6}
- Derive a posteriori error estimation
- * Apply AFC method on fluid-structure interaction (FSI) problem
- * Space-time method + AFC on FSI

[†]On the solvability of the nonlinear problems in an algebraically stabilized finite element method for evolutionary transport-dominated equations, V. John, P. Knobloch, P. Korsmeier, 2020.

^eExistence of solutions of a finite element flux-corrected-transport scheme, Volker ,Knobloch, 2021.

