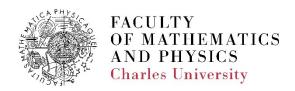
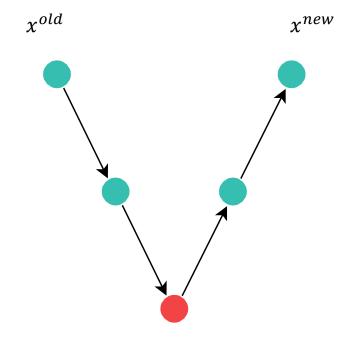
Stopping criteria for coarsest grid solver in multigrid V-cycle method

Petr Vacek, Erin Carson, Kirk M. Soodhalter
Charles University in Prague

10th Workshop Dresden-Prague on Numerical Analysis
Děčín, November 5, 2022

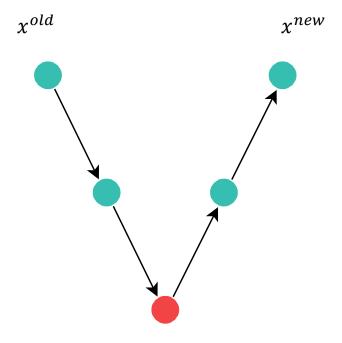


Find x: Ax = b.



smoothing

 few iterations of stationary iterative method (Jacobi, Gauss-Seidel) Find x: Ax = b.

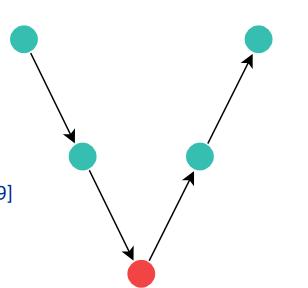


Find y_0 : $A_0 y_0 = f_0$.

Find x: Ax = b.

 χ^{old}

- smoothing
 - few iterations of stationary iterative method (Jacobi, Gauss-Seidel)
- <u>solving</u>
 - direct solver based on LU decomposition
 - iterative solver (Krylov subspace method) [Huber, 2019]
 - direct solver based on low rank approximation [Buttari et al., 2021]



 x^{new}

Find
$$y_0$$
: $A_0 y_0 = f_0$.
$$\tilde{y}_0 \approx y_0$$

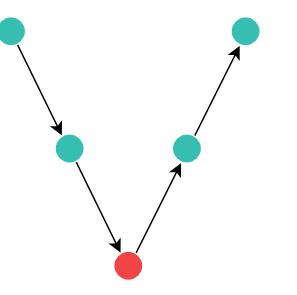
Find x: Ax = b.

 χ^{old}

smoothing

 few iterations of stationary iterative method (Jacobi, Gauss-Seidel)

- solving
 - direct solver based on LU decomposition
 - iterative solver (Krylov subspace method) [Huber, 2019]
 - direct solver based on low rank approximation [Buttari et al., 2021]



 x^{new}

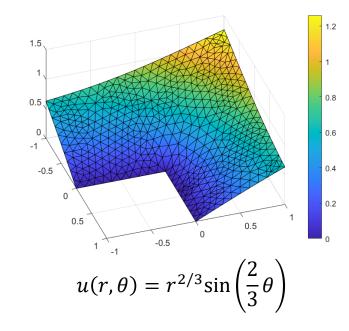
Find y_0 : $A_0 y_0 = f_0$. $\tilde{y}_0 \approx y_0$

Relative residual stopping criterion

$$\frac{\|f_0 - A_0 \tilde{y}_0\|}{\|f_0\|} \le tol$$

<u>Problem</u>

- 2D elliptic PDE, Poisson equation
- Find u: $-\Delta u = f$ in Ω , u = g on $\partial \Omega$.

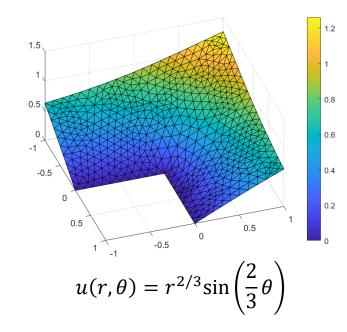


Problem

- 2D elliptic PDE, Poisson equation
- Find u: $-\Delta u = f$ in Ω , u = g on $\partial \Omega$.

Discretization

- Galerkin FEM continuous piecewise linear functions
- uniform refinement 4 levels
- number of DOFs
 - coarsest level 22 849
 - finest level 1 477 281

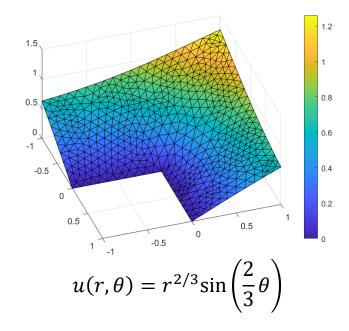


Problem

- 2D elliptic PDE, Poisson equation
- Find u: $-\Delta u = f$ in Ω , u = g on $\partial \Omega$.

Discretization

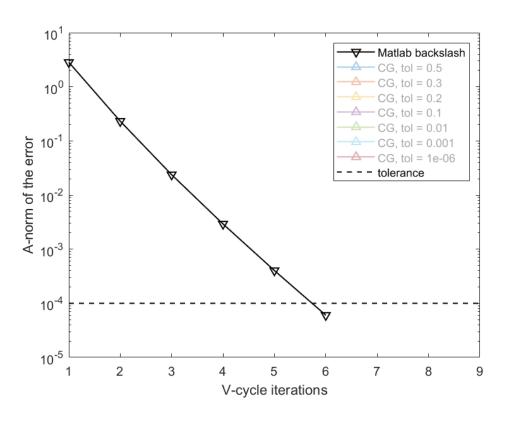
- Galerkin FEM continuous piecewise linear functions
- uniform refinement 4 levels
- number of DOFs
 - coarsest level 22 849
 - finest level 1 477 281

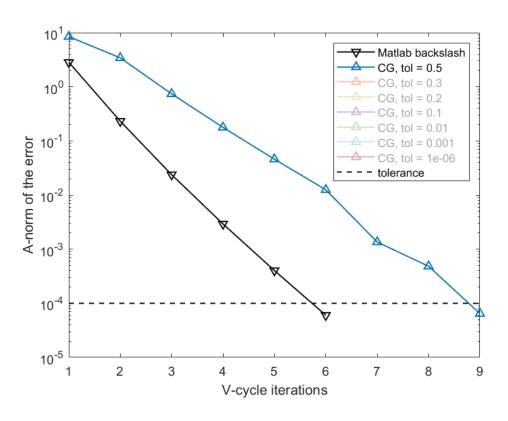


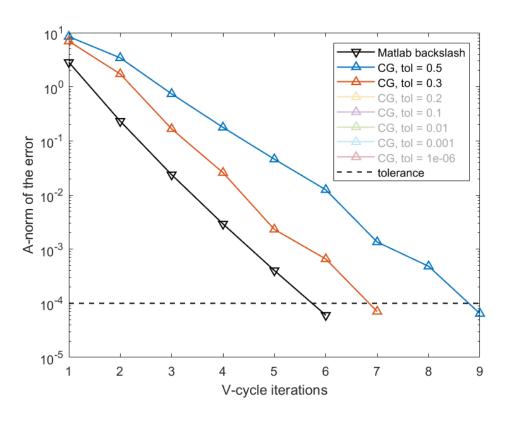
V-cycle method

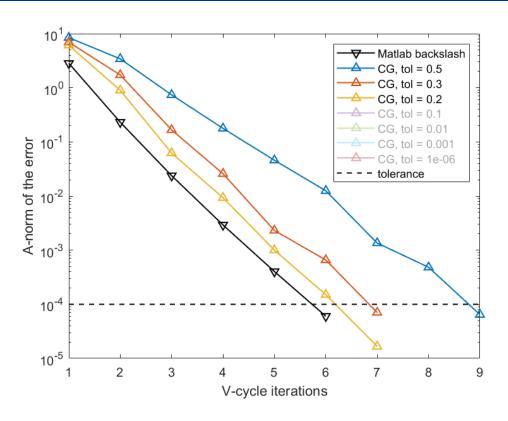
- 4 levels
- smoothing damped Jacobi method ($\omega = 2/3$)
- zero initial approximation

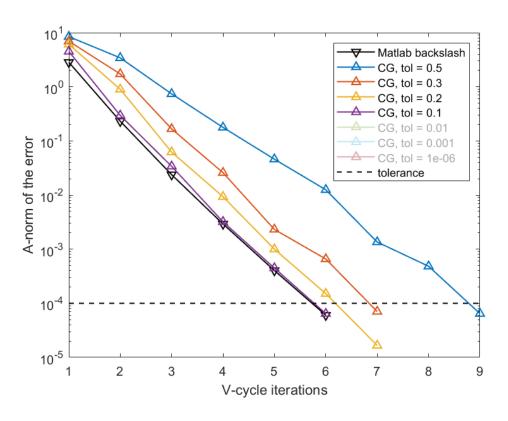
number of smoothing iterations			
level	pre	post	
4	3	3	
3	4	4	
2	5	5	

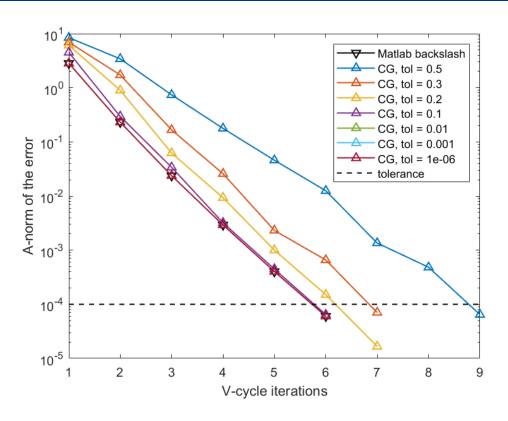


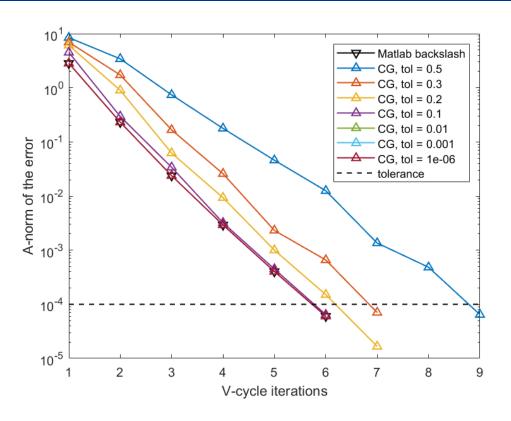


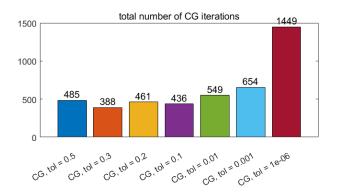


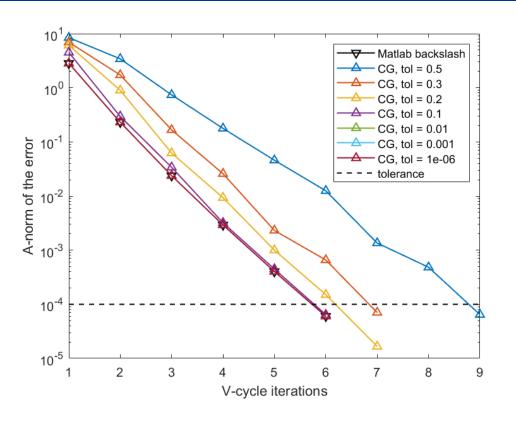


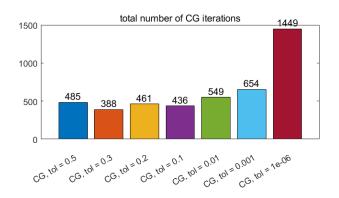


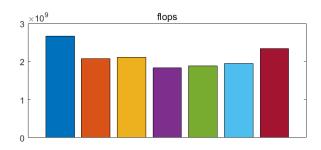


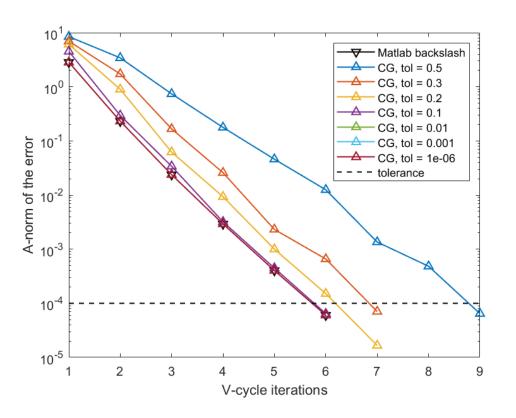


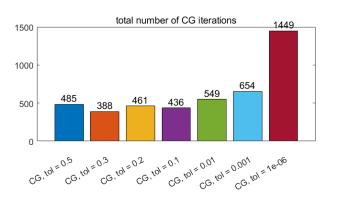


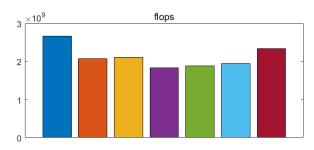












- Can we analytically describe how the relative tolerance affects the rate of convergence?
- Can we define a stopping criterion which would yield that the computed approximation is close to the one computed by V-cycle with exact solver and we do the fewest number of coarse grid iterations?

Delay in convergence rate after one V-cycle

Setting

- exact arithmetic
- A symmetric positive definite matrix
- V-cycle method, $R_j = P_j^T$, $A_j = P_j^T A P_j$
- V-cycle with exact solver converges

Delay in convergence rate after one V-cycle

<u>Setting</u>

- exact arithmetic
- A symmetric positive definite matrix
- V-cycle method, $R_j = P_j^T$, $A_j = P_j^T A P_j$
- V-cycle with exact solver converges

Theorem

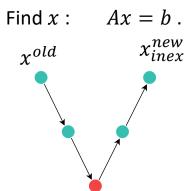
Let x_{ex}^{new} be the approximation computed by V-cycle with exact solver. Given $\gamma \in (0,1)$, let x_{inex}^{new} be an approximation computed by V-cycle with inexact solver, which is stopped when

 $\|y_0 - \tilde{y}_0\|_{A_0} \le \underline{\gamma} \cdot \|x - x^{old}\|_A.$

Then

$$\frac{\|x - x_{inex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} \le \frac{\|x - x_{ex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} + \gamma,$$

$$\|x_{ex}^{new} - x_{inex}^{new}\|_{A} \le \gamma \cdot \|x - x^{old}\|_{A}.$$



Delay in convergence rate after one V-cycle

Proof inspired by [van den Eshof and Sleijpen, 2004], [McCormick et al., 2020].

$$x_{inex}^{new} = x_{ex}^{new} - \left(\prod_{j=0}^{J-1} (I_{J-j} - M_{J-j} A_{J-j}) P_{J-j-1}^{J-j}\right) (y_0 - \tilde{y}_0)$$

Delay in convergence rate after n V-cycles

Theorem

Let $x_{ex}^{(n)}$ be the approximation computed after n V-cycles with exact solver. Assume that the covergence rate of V-cycle with exact solver is bounded by $\rho \in (0,1)$, i.e.,

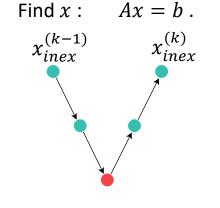
$$\frac{\|x - x_{ex}^{new}\|_A}{\|x - x^{old}\|_A} \le \rho \qquad \forall x^{old}.$$

Given $\gamma \in (0,1)$ and let $x_{inex}^{(n)}$ be an approximation computed after n V-cycles with inexact solver, which is for all $k=1,\dots,n$, stopped when

$$\|y_0^{(k)} - \tilde{y}_0^{(k)}\|_{A_0} \le \gamma \cdot \|x - x_{inex}^{(k-1)}\|_{A}$$
.

Then

$$\begin{aligned} \left\| x - x_{inex}^{(n)} \right\|_{A} &\leq (\rho + \gamma)^{n} \left\| x - x^{(0)} \right\|_{A} , \\ \left\| x_{ex}^{(n)} - x_{inex}^{(n)} \right\|_{A} &\leq \left((\rho + \gamma)^{n} - \rho^{n} \right) \left\| x - x^{(0)} \right\|_{A} . \end{aligned}$$



Find
$$y_0^{(k)}$$
: $A_0 y_0^{(k)} = f_0^{(k)}$,
$$\tilde{y}_0^{(k)} \approx y_0^{(k)}.$$

Instead of $\|y_0 - \tilde{y}_0\|_{A_0} \leq \gamma \cdot \|x - x^{old}\|_A$, use estimates $\|y_0 - \tilde{y}_0\|_{A_0} \leq \alpha$ and $\beta \leq \|x - x^{old}\|_A$ and stop the solver when $\alpha \leq \gamma \cdot \beta$.

Then

$$\frac{\|x - x_{inex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} \le \frac{\|x - x_{ex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} + \gamma.$$

Instead of $\|y_0 - \tilde{y}_0\|_{A_0} \leq \gamma \cdot \|x - x^{old}\|_A$, use estimates $\|y_0 - \tilde{y}_0\|_{A_0} \leq \alpha$ and $\beta \leq \|x - x^{old}\|_A$ and stop the solver when $\alpha \leq \gamma \cdot \beta$.

Then

$$\frac{\|x - x_{inex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} \le \frac{\|x - x_{ex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} + \gamma.$$

1. Residual based

$$||y_0 - \tilde{y}_0||_{A_0} \le \sqrt{||A_0^{-1}||} \cdot ||f_0 - A_0 \tilde{y}_0|| = \alpha$$

$$\beta = \frac{1}{\sqrt{||A||}} \cdot ||b - Ax^{old}|| \le ||x - x^{old}||_A$$

Stop the solver when

$$||f_0 - A_0 \tilde{y}_0|| \le \frac{\gamma}{\sqrt{||A_0^{-1}|| \cdot ||A||}} \cdot ||b - Ax^{old}||.$$

Instead of $\|y_0 - \tilde{y}_0\|_{A_0} \leq \gamma \cdot \|x - x^{old}\|_A$, use estimates $\|y_0 - \tilde{y}_0\|_{A_0} \leq \alpha$ and $\beta \leq \|x - x^{old}\|_A$ and stop the solver when $\alpha \leq \gamma \cdot \beta$.

Then

$$\frac{\|x - x_{inex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} \le \frac{\|x - x_{ex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} + \gamma.$$

2. Relative residual

$$||y_0 - \tilde{y}_0||_{A_0} \le \sqrt{||A_0^{-1}||} \cdot ||f_0 - A_0 \tilde{y}_0|| = \alpha$$

$$\beta = \frac{1}{\sqrt{||A||} \cdot T(P, S)} \cdot ||f_0|| \le ||x - x^{old}||_A$$

Stop the solver when

$$\frac{\|f_0 - A_0 \tilde{y}_0\|}{\|f_0\|} \le \frac{\gamma}{\sqrt{\|A_0^{-1}\| \cdot \|A\|} \cdot T(P, S)} = tol$$

Instead of $\|y_0 - \tilde{y}_0\|_{A_0} \leq \gamma \cdot \|x - x^{old}\|_A$, use estimates $\|y_0 - \tilde{y}_0\|_{A_0} \leq \alpha$ and $\beta \leq \|x - x^{old}\|_A$ and stop the solver when $\alpha \leq \gamma \cdot \beta$.

Then

$$\frac{\|x - x_{inex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} \le \frac{\|x - x_{ex}^{new}\|_{A}}{\|x - x^{old}\|_{A}} + \gamma.$$

3. Multilevel error estimate + CG estimate (ML + CG)

$$\|y_0 - \tilde{y}_0\|_{A_0} \le \theta_{CG}(\tilde{y}_0) = \alpha$$

$$\beta = \eta_{ML}(x^{old}) \le ||x - x^{old}||_A$$

Stop the solver when

$$\theta_{CG}(\tilde{y}_0) \leq \gamma \cdot \eta_{ML}(x^{old})$$

Meurant, Papež and Tichý, Accurate error estimation in CG, Numerical Algorithms, Numerical Algorithms, Volume 88, pp. 1337-1359, 2021.

Rüde, Mathematical and computational techniques for multilevel adaptive methods, SIAM, Philadelphia, PA, 1993.

Efficiency of stopping criteria

$$Ef = \frac{\frac{\|x_{ex}^{new} - x_{inex}^{new}\|_{A}}{\|x - x^{old}\|_{A}}}{\gamma}$$

Efficiency of stopping criteria

$$Ef = \frac{\frac{\|x_{ex}^{new} - x_{inex}^{new}\|_{A}}{\|x - x^{old}\|_{A}}}{\gamma}$$

Estimated efficiency for our numerical experiment		
Criterion with A-norms of the errors	0.95	
1. Residual based	0.024	
2. Relative residual	0.00076	
3. ML + CG estimate	0.26	

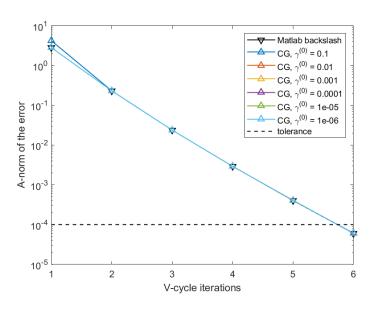
$$\left\| x_{ex}^{(n)} - x_{inex}^{(n)} \right\|_{A} \le \left((\rho + \gamma)^{n} - \rho^{n} \right) \left\| x - x^{(0)} \right\|_{A}$$

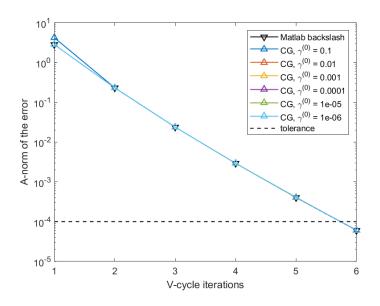
Choose initial $\gamma^{(0)}$ and N.

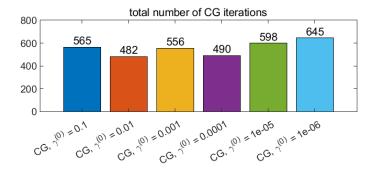
In each iteration:

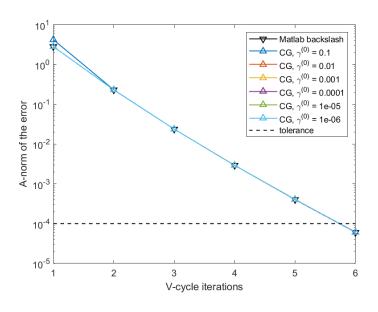
$$hopprox ilde{
ho}^{(k)}=rac{\eta_{ML}^{(k-1)}}{\eta_{ML}^{(k-2)}}$$

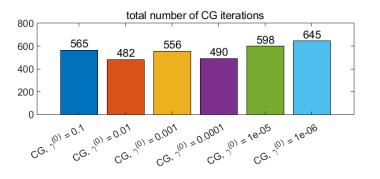
$$\gamma^{(k)} = \left((2)^{\frac{1}{N}} - 1 \right) \tilde{\rho}^{(k)}$$



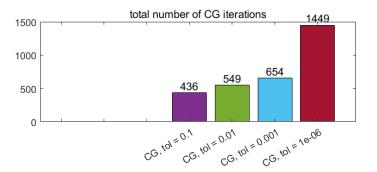


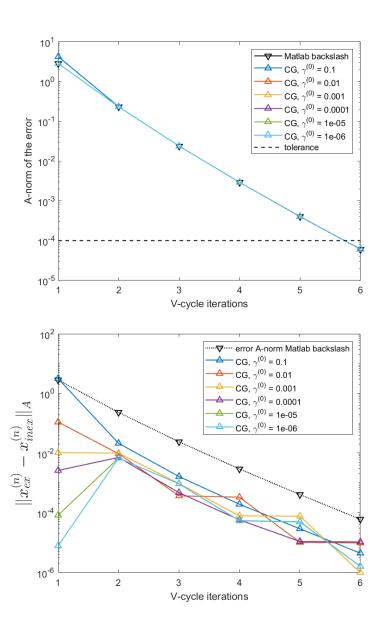


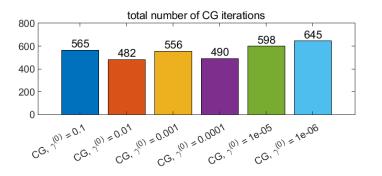




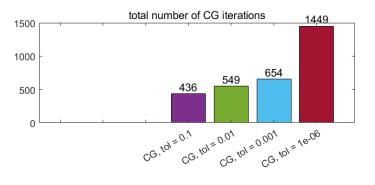
Relative tolerance







Relative tolerance



Thank you for your attention