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a matematické statistiky.
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Notation

Here, we give a list of the most often used symbols within this thesis.

δi ⋆ censoring indicator,

⋆ 0 for right-censored, 1 for exactly observed, 2 for left-
censored, 3 for interval-censored observations;

1 ⋆ vector of ones;

ϕ(e) ⋆ density of N (0, 1)

ϕ(e |µ, σ2) ⋆ density of N (µ, σ2)

ϕq(e |µ, Σ) ⋆ density of q-variate normal distribution with mean µ
and covariance matrix Σ

Φ(e) ⋆ cumulative distribution function of N (0, 1)

Φ(e |µ, σ2) ⋆ cumulative distribution function of N (µ, σ2)

⌊tL, tU⌋ ⋆ interval censored observation

⋆ according to the context, the interval might be closed,
half closed or open

∮ tU

tL

p(s) ds =

∫ tU

tL
p(s) ds if tL < tU

= p(tL) = p(tU ) if tL = tU

⋆ symbol used to write down the likelihood of the interval
censored data
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Preface

The accelerated failure time (AFT) model, the principal topic of this thesis
is a regression model used to analyze survival data. The term survival data
is usually used for data that measure the time to some event, not necessarily
death. Precisely, the event time will be considered a positive real valued
variable having a continuous distribution. In particular practical situations,
data on event times are obtained by following subjects in the study over
(calendar) time, recording the moments of the specified events of interest
and computing the time spans between the event and some initial - onset
time (e.g. enter to a study and disease progression, contagion by HIV virus
and onset of AIDS, tooth emergence and the time it is attacked by caries for
the first time).

A typical feature of survival data is the fact that the time to event is not
always observed completely and observations are imposed to censoring. Most
commonly, either the study is finished before all subjects involved encounter
the specified event or the subject leaves for some reasons the study before
encountering the event. In both situations, only the lower limit for the true
event time is known and we talk about right censoring (see Sections 1.2
and 1.4 for examples).

In many areas of medical research, the occurrence of the event of interest
can only be recorded at planned (or unplanned) visits. The exact event time
is then only known to happen between two examination times (visits) and
we encounter interval censoring. Typical examples are (a) time to caries
development; (b) time emergence of a tooth (Section 1.1); (c) time to HIV
seroconversion; (d) time to the onset of AIDS (Section 1.3). Indeed, in case
of a cavity or of emergence the event is often observed after some delay, say at
planned (or even unplanned) visits. Similarly, HIV seroconversion can only
be determined by regular or irregular laboratory assessments. However, the

xix
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event may also happen before the first examination (e.g. a decayed tooth
is detected already at the first dental examination) and we get a so called
left-censored observation or it may happen after the last examination result-
ing in a right-censored observation. Hence interval censoring is a natural
generalization of the commonly encountered right censoring.

Often not only the event time but also the time which specifies the origin
of the time scale for the event (the onset time) can only be recorded in the
same way as described in the previous paragraph. An example is the time to
caries development on a tooth where the time of tooth emergence constitutes
the onset time for caries (see Section 1.1). We then speak of doubly interval
censoring. We further formalize the notion of censoring in Chapter 2

Furthermore, the independence between the event times cannot always be
assumed thereby entering the area of multivariate survival data. The de-
pendence can be caused by very different factors. Although many methods
described in this thesis can be applied to any multivariate survival data the
dependencies in our applications are all result of some type of clustering :
emergence or caries times of several teeth of one child (Section 1.1), or pro-
gression free survival times of several patients within one hospital in a mul-
ticenter clinical trial (Section 1.4). Also recurrent infection times on one
patient (Section 1.2) can be considered to result in clustered data.

The ultimate goal of the research presented in this thesis was to develop the
AFT models which can be used to analyze multivariate survival data, possi-
bly under the presence of doubly interval censoring. The scale of complexity
considered in this thesis starts with interval censoring which can be handled
by all methods introduced here. Possible dependencies between the observa-
tions (multivariate survival data) are viewed as the next step on the scale of
complexity and finally, doubly interval censoring is regarded to be the final
level of complexity treated by this thesis and only some methods shown here
reached this final stage. With all the levels of complexity we strived for the
model with distributional assumptions as flexible as possible. Two slightly
different directions are followed in the thesis to address this issue. Both of
them use a Gaussian mixture as a building block to model an unknown dis-
tribution. Whereas the first and more extensively explored approach uses
the mixture with a higher number of fixed mixture components with mixture
weights estimated using a kind of penalized methodology the second tech-
nique uses a classical mixture with both the number as well as the weights,
locations and scales of the mixture components unknown.

Chapter 1 introduces several data sets that contain each survival data in-
volving one or more issues discussed above and that will be used throughout
the thesis to illustrate the developed methods. Terminology and notation
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used in the thesis are formalized in Chapter 2 together with an explanation
of some basic notions in the analysis of the survival data. The most popular
regression models for the survival data are introduced in Chapter 3.

In Chapter 4 we give the likelihood for interval and doubly-interval-censored
data and discuss briefly the difficulties encountered when using maximum-
likelihood methods in the context of (doubly) interval-censored data. Subse-
quently, we show how the Bayesian inference together with the Markov chain
Monte Carlo (MCMC) methodology can simplify the calculations.

Available methods for the analysis of interval-censored data will be reviewed
in Chapter 5 and one of the methods, namely the Bayesian proportional
hazards model with a piecewise constant baseline hazard function will be
applied to the analysis of the dental clustered doubly-interval-censored data.

In Chapter 6 we explain in detail how the classical and the penalized normal
mixtures can be used to specify unknown distributions in a flexible way.

The first AFT model presented in this thesis – the AFT model with an error
distribution being a normal mixture with a high number of fixed compo-
nents estimated using the penalized maximum-likelihood method – is shown
in Chapter 7. However only univariate interval-censored data can be handled
by this method. To move on to the area of multivariate or even doubly-
interval-censored survival data we found it more advantageous to use a Bay-
esian methodology rather than the more classical maximum-likelihood based
techniques. The Bayesian AFT model allowing for multivariate interval-
censored data and using a classical normal mixture with both unknown
number of mixture components as well as the mixture components them-
selves to specify the error distribution is presented in Chapter 8. Finally,
Chapters 9 and 10 show the Bayesian AFT models suitable for multivariate
doubly-interval-censored data that exploit a penalized normal mixture with
higher number of fixed components. For all methods described in this thesis,
software was written in the form of R (R Development Core Team, 2005)
packages called smoothSurv and bayesSurv downloadable from the Compre-
hensive R Archive Network at http://www.R-project.org. The software is
briefly described in Appendix C.
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Chapter 1
Motivating Data Sets

This chapter introduces the data sets which will be used throughout the the-
sis illustrating the developed techniques and showing their generality. Each
data set involves one or more specific features of interest here, discussed
briefly in the Preface. The Signal Tandmobielr data set introduced in Sec-
tion 1.1 involves clustered interval- and doubly-interval-censored dental ob-
servations. Section 1.2 describes a clinical trial with patients with a chronic
granulomatous disease where times of possibly recurrent infections were of
interest. At the same time, the time of the last infection is right-censored.
The Women’s Interagency HIV Study involved interval-censored data and is
described in Section 1.3. In Section 1.4, a multicenter clinical trial is de-
scribed which evaluated the effect of perioperative chemotherapy on disease
progression in early breast cancer patients where the heterogeneity accross
the centra plays an important role.

1.1 The Signal Tandmobielr study

The Signal Tandmobielr project is a longitudinal oral health study performed
in Flanders from 1996 to 2001. It involved 4 468 schoolchildren (2 315 boys
and 2 153 girls) born in 1989. Two stratification factors, i.e. geographical
location (5 provinces) and educational system (3 school systems) establishing
15 strata, were taken into account. The sample represented about 7% of the
corresponding Flemish population of school children. Detailed oral health
data at tooth and tooth-surface level (caries experience, gingivitis, etc.) were
annually collected by a team of 16 dentists whose examination method was
calibrated every six months. In addition, data on dietary and oral hygiene

3
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habits were collected using a questionnaire completed by the parents. Hence
the data set consists of a series of at most 6 longitudinal dental observations
and reported oral health habits. The details of the study design and research
methods have been described in detail by Vanobbergen et al. (2000).

Here, we concentrate on the emergence and caries times of permanent pre-
molars and molars (teeth κ + 4, κ + 5, κ+ 6, κ = 10, 20, 30, 40 in European
dental notation, see Figure 1.1). There is no doubt that an adequate knowl-
edge of timing and patterns of tooth emergence and/or caries attacks are
still essential for diagnosis and treatment planning in paediatric dentistry
and orthodontics. Additionally, the effect of certain prespecified factors (like
the caries status of the primary teeth – see Figure 1.2 for their notation, use
of fluoride supplements, brushing habits etc.) on the emergence or caries
processes are often of interest.

An interesting feature of this data set, though typical in dental applications, is
the fact that both emergence and onset of caries are only observable when the
child is examined (by a dentist). This leads to interval-censored emergence
times and to doubly-interval-censored times for caries (see also Figure 2.1).
Additionally, the teeth of a single mouth share common immeasurable or

Figure 1.1: European notation for the position of permanent teeth. Maxilla
= upper jaw, mandible = lower jaw. The first and the fourth quadrants are
at the right-hand side of the subject, the second and the third quandrats are
at the left-hand side of the subject.
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only roughly measured factors like genetical dispositions or dietary habits.
As a result, the emergence times or the times to caries of teeth in the same
mouth are related. Hence, when studying the emergence time or the time to
caries of several teeth, dependencies among the observations taken on a single
child must be taken into account. Analysis of the emergence time or time to
caries is reported in several sections of the thesis.

1.2 The Chronic Granulomatous Disease trial (CGD)

The Chronic Granulomatous Disease is a group of inherited rare disorders
of the immune function characterized by recurrent pyogenic infections which
may lead to death in childhood. There is evidence of a positive role of gamma
interferon in restoring the immune functions of the patients. For that reason,
a multicenter placebo-controlled randomized trial was conducted to study the
ability of gamma interferon to reduce the rate of serious infections.

Between October 1988 and March 1989, 128 patients (63 taking gamma inter-

Figure 1.2: European notation for the position of deciduous (primary) teeth.
The quadrants are numbered 5, 6, 7, 8. The fifth and the eight quadrants
are at the right-hand side of the subject, the sixth and the seventh quadrants
are at the left-hand side of the subject.
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feron, 65 taking placebo) with CGD were accrued by 13 hospitals in Europe
and the United States. The average follow-up time was 292 days, minimal
and maximal follow-up times, respectively were 91 and 432 days, respec-
tively. For each patient, times of initial and any recurrent serious infections
were recorded. There is a minimum of one and a maximum of eight recurrent
infection times per patient, with a total of 203 records.

Besides the gamma interferon there are other factors that may influence the
times between the infections. In the course of the study the following addi-
tional information was recorded for each patient:

• Age at time of study entry (mean 14.6 years, range from 1 to 44 years,
standard deviation 9.8 years);

• Gender: male (n = 104), female (n = 24);

• Pattern of inheritance: autosomal recessive (n = 42), X-linked (n =
86);

• Using corticosteroids at time of study entry: yes (n = 3), no (n = 125);

• Using prophylactic antibiotics at time of study entry: yes (n = 111),
no (n = 17);

• Category of the hospital: US – NIH (n = 26), US – other (n = 63),
Europe – Amsterdam (n = 19), Europe – other (n = 20).

The data can be found in Appendix D.2 of Fleming and Harrington (1991).

It is of interest here to set up a regression model with the time between the
two consecutive infections as response and mentioned factors as covariates.
It should be taken into account that the infection times of one patient cannot
be assumed to be independent. We address this issue in Section 8.8.

1.3 The Woman’s Interagency HIV Study (WIHS)

The Woman’s Interagency HIV Study comprises the cohort of 2 058 seropos-
itive women with a comparison cohort of 568 seronegative women being
exposed to a higher risk of HIV infection than the common U.S. popula-
tion. The study groups were enrolled between October 1994 and November
1995 through six clinical consortia at 23 sites throughout the United States.
Barkan et al. (1998) provide full details on the setup of the study. In this
thesis we concentrate only on the WIHS Oral Substudy involving 224 seropos-
itive AIDS-free (at baseline) women.

The women participating in the Oral Substudy were regularly (on average
every 7 months) examined for AIDS symptoms, the number of copies of
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the HIV RNA virus (viral load) and CD4 T-lymphocyte counts per ml of
blood. Additionally, the presence of one of the three oral lesion markers: oral
candidiasis, hairy leukoplakia and angular cheilitis was checked. The aver-
age follow-up time was 41 months and the maximal follow-up time was 84
months. For each woman, the time of seroconversion (HIV infection) was ex-
ternally estimated and assumed to be known. Clinical AIDS diagnoses were
self-reported in 73.5% of cases, presumptive or definite in 17.5%, and inde-
terminate in 9%; the case definition did not depend on CD4 T-lymphocytes.
For 66 women the onset of AIDS was interval-censored, while for 158 women
it was right-censored.

For HIV positive people, it is of interest to describe the distribution of the
time to the onset of an AIDS-related illness based on some measured quan-
tities. We examine in Section 7.6 how the classical predictors like viral load
and CD4 T-cells counts together with oral lesion markers can be used in de-
scribing this distribution.

1.4 Perioperative Chemotherapy in Early Breast
Cancer Patients (EBCP)

To investigate whether a short intensive course of perioperative chemotherapy
can change the course of early breast cancer compared to surgery alone, the
European Organization for Research and Treatment of Cancer (EORTC) con-
ducted a multicenter randomized clinical trial (EORTC Trial 10854). From
1986 to 1991, a total of 2 793 women with early breast cancer were random-
ized to receive either one perioperative course of an anthracycline-containing
chemotherapeutic regimen within 24 h after surgery (n = 1398) or surgery
alone (n = 1395). See Clahsen et al. (1996) for more details on the trial.

Patients were followed-up for several endpoints, however, we concentrate on
the progression-free survival (PFS) time. The mean follow-up time was 8.15
years with a maximum of 14.13 years. Other factors that may influence the
PFS time include:

• Category of the age of the patient: <40 years (n = 321), 40–50 years
(n = 796), >50 years (n = 1676);

• Type of surgery: mastectomy (n = 1231), breast-conserving surgery
(n = 1542), missing data for n = 20 patients;

• Category of the tumor size: <2 cm (n = 823), ≥2 cm (n = 1915),
missing data for n = 55 patients;
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• Pathological nodal status: negative (n = 1467), positive (n = 1303),
missing data for n = 23 patients;

• Presence of other disease: no (n = 2542), yes (n = 234), missing for
n = 19 patients.

The trial was conducted in 14 centra located in 5 geographical regions (the
Netherlands, Poland, France, South of Europe and South Africa). Figure 1.3
shows Kaplan-Meier estimates of PFS time survival functions for the treat-
ment and control group, separately for each center. Obviously, there is a huge
heterogeneity among the centra. Not only the overall proportion of PFS pa-
tients at fixed time points differs from center to center but also the effect of
treatment on PFS both quantitatively and qualitatively seems to vary accross
centra. Models that measure the effect of covariates and that allow modelling
heterogeneity between centra will be considered in Chapters 8 and 9.
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Figure 1.3: EBCP Data. Kaplan-Meier estimates of the PFS time distribu-
tion separately for each institution. Solid line: treatment arm, dotted-dashed
line: control arm.
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Chapter 2
Basic Notions

In this chapter we introduce some notation that will be used throughout the
thesis and explain more in detail some basic notions like types and mecha-
nisms of censoring considered.

2.1 Right, left and interval censoring

Let Ti,l, i = 1, . . . , N, l = 1, . . . , ni be the exact event time for the lth
observational unit of the ith cluster. It will be assumed throughout the thesis
that Ti,l is a nonnegative random variable with a continuous distribution with
some density pi,l(t) which might depend on a vector of covariates, e.g., xi,l =
(xi,l,1, . . . , xi,l,m)′. The time Ti,l can either be known exactly or in a coarsened
manner and is then called censored. Suppose first that knowing whether the
event occurred or not requires a detailed examination (visit to a dentist,
laboratory assessment) executed at pre-planned visits. Then it is only known
that the event time occurred after, say tLi,l, and before, say tUi,l. According to

the context, we either know tLi,l < Ti,l ≤ tUi,l, t
L
i,l ≤ Ti,l < tUi,l, t

L
i,l ≤ Ti,l ≤ tUi,l,

or tLi,l < Ti,l < tUi,l. Thus, the true event time Ti,l is known to lie in the interval

whose lower and upper limits are equal to tLi,l and tUi,l, respectively and the
observation is called interval-censored. Note that all methods presented in
Part II of the thesis lead to the same results irrespective of whether the
interval is closed, open or half open. To cover all these situations we will
write Ti,l ∈ ⌊tLi,l, tUi,l⌋.
With the same notation right-censored observations are obtained, i.e. by set-
ting tUi,l = ∞ and tLi,l equal to the time the subject was last seen before leaving
the study or before the study was terminated. Similarly, a left-censored ob-

11
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servation is obtained with tLi,l = 0 and tUi,l equal to the first time, the subject
was seen after the event. Finally, an exactly observed time ti,l is recorded
with tLi,l = tUi,l = ti,l. Below, a censoring indicator δi,l is used, which will be
equal to 0 for right-censored, 1 for exactly observed, 2 for left-censored and
3 for interval-censored observations, respectively.

2.2 Doubly interval censoring

Suppose that the event time Ti,l is obtained as the difference of two random
variables: Vi,l, here always called the failure time and Ui,l, here always called
the onset time, i.e. Ti,l = Vi,l − Ui,l. The pair Ui,l, Vi,l can be, for example,
the emergence time of a tooth and the onset time of caries of that tooth.
Doubly interval censoring is obtained in the situations when either Ui,l and/or
Vi,l are interval-censored and it is only known Ui,l ∈ ⌊uL

i,l, u
U
i,l⌋ and Vi,l ∈

⌊vL
i,l, v

U
i,l⌋. A scheme of a typical doubly-interval-censored observation is given

in Figure 2.1 and an example is given by the Signal Tandmobielr data of
Section 1.1 with Ui,l being the emergence time of the lth tooth of the ith
child and Vi,l being the time when the same tooth is attacked by caries for
the first time.

In the following, we omit the subscript (i, l) from all expressions if it is not
necessary to make an explicit distinction among different observations of one
data set or use only a single subscript i if we do not deal with multivariate
survival data.

6 6 6 6 6 6
Examinations: si,l,1 si,l,2 si,l,3 si,l,4 si,l,5 si,l,6

? ?

True onset time ui,l True failure time vi,l

-�
True event time ti,l

-�
Observed onset time ⌊uL

i,l, u
U
i,l⌋ -�

Observed failure time ⌊vL
i,l, v

U
i,l⌋

Figure 2.1: Doubly interval censoring. A scheme of a doubly-interval-censored
observation obtained by performing examinations to check the event status
at times si,l,1, . . . , si,l,6. The onset time is left-censored at time uU

i,l = si,l,1

(i.e. interval-censored in the interval ⌊uL
i,l, u

U
i,l⌋ = ⌊0, si,l,1⌋), the failure time

is interval-censored in the interval ⌊vL
i,l, v

U
i,l⌋ = ⌊si,l,5, si,l,6⌋.
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2.3 Density, survival, hazard and cumulative ha-
zard functions

A continuous distribution of an event time T is uniquely determined by its
density p(t). Equivalently, the distribution of T is determined by a non-
increasing right-continuous survival function S(t) defined as the probability
that T exceeds a value t in its range, i.e.

S(t) = Pr(T > t) =

∫ ∞

t

p(s) ds.

Another possibility is to specify the hazard function ℏ(t) which gives the
instantaneous rate at which an event occurs for an item that is still at risk
for the event at time t, i.e.

ℏ(t) = lim
∆t→0+

Pr(t ≤ T < t+ ∆t
∣∣T ≥ t)

∆t
= Pr

(
T ∈ Nt(dt) |T ≥ t

)
,

where

Nt(dt) = [t, t+ dt).

The density and the survival function can be computed from the hazard
function using the following relationships:

p(t) = ℏ(t) exp
{
−H(t)

}
,

S(t) = exp
{
−H(t)

}
,

where H(t) =
∫ t

0 ℏ(s) ds is the cumulative hazard function.

2.4 Independent noninformative censoring and sim-
plified likelihood

Throughout the thesis we will assume independent noninformative censoring
in the therminology of Kalbfleisch and Prentice (2002). In this section, we
explain this concept first in the framework of right-censored data and then
extend it to the area of interval-censored data. Finally, we introduce the term
of simplified likelihood and remark that it can be used for the inference with
censored data under the assumption of independent noninformative censor-
ing.
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2.4.1 Right-censored data

Kalbfleisch and Prentice (2002) introduce the concept of independent non-
informative censoring in the context of right-censored data in the following
way. Let C denote the random variable causing the censoring. That is, in-
stead of observing the event time T we only observe X = min(T, C) and
δ = I[T ≤ C].

Independent censoring

They call the censoring mechanism independent when the hazard which ap-
plies to the censored population is at each time point the same as the hazard
which applies would there have been no censoring. That is, the hazard func-
tions have to satisfy

Pr
(
T ∈ Nt(dt)

∣∣C ≥ t, T ≥ t
)

= Pr
(
T ∈ Nt(dt)

∣∣T ≥ t
)

(2.1)

for any t > 0. Note that independence of random variables T and C implies
that the condition (2.1) is satisfied. However, T and C are not necessarily
independent when the condition (2.1) is fulfilled.

Further, Kalbfleisch and MacKay (1979) proved that the condition (2.1) is
equivalent to so called constant-sum condition:

Pr
(
δ = 1

∣∣T ∈ Nt(dt)
)

+

∫ t

0
Pr
(
C ∈ Nx(dx), δ = 0

∣∣T ≥ x
)

= 1 (2.2)

for any t > 0, introduced by Williams and Lagakos (1977). The term
Pr
(
δ = 1

∣∣T ∈ Nt(dt)
)

could be interpreted as the probability that a sub-
ject who would fail at time t is actually observed to fail and the term
Pr
(
C ∈ Nx(dx), δ = 0

∣∣T ≥ x
)

has the meaning that a subject who survives
at least x time units is censored at time x. To relate the condition (2.2) to its
interval-censored version which will be introduced in the following section,
we rewrite it into the form:

Pr
(
δ = 1

∣∣T ∈ Nt(dt)
)
+

∫ t

0

Pr
(
C ∈ Nx(dx), T ∈ [x, ∞), δ = 0

)

Pr
(
T ∈ [x, ∞)

) = 1. (2.3)

Noninformative censoring

Kalbfleisch and Prentice (2002) further call the censoring mechanism nonin-
formative if the censoring random variable C does not depend on any pa-
rameters used to model the distribution of the event time T . In other words,
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with the independent noninformative censoring, the censoring procedure or
rules may depend arbitrarily during the course of the study on:

• previous event times of other subjects in the study;

• previous censoring times of other subjects in the study;

• random mechanisms external to the study;

• values of covariates possibly included in the model;

but must not contain any information on the parameters used to model the
event time.

The independent noninformative censoring includes type I censoring. In this
case, censoring can only happen at a pre-planned calendar time. This cen-
soring scheme has been used for the CGD data introduced in Section 1.2 and
for the EBCP data of Section 1.4.

2.4.2 Interval-censored data

Consider now the case of interval-censored data where the observed intervals
are generated by a triplet (TL, TU , T )′. That is, we observe an interval
⌊tL, tU⌋ if TL = tL, TU = tU and T ∈ ⌊TL, TU⌋. Note that since the
observed interval ⌊TL, TU⌋ must contain the event time T , the support of
the random vector (TL, TU , T )′ is equal to

{
(tL, tU , t) : 0 ≤ tL ≤ t ≤ tU ≤ ∞

}
.

Oller, Gómez, and Calle (2004) show that the interval-censored counterpart
of the constant-sum condition (2.3) is given by

∫∫

{
(tL, tU ): t∈⌊tL, tU ⌋

}

Pr
(
TL ∈ NtL(dtL), TU ∈ NtU (dtU ), T ∈ ⌊tL, tU⌋

)

Pr
(
T ∈ ⌊tL, tU⌋

) = 1 (2.4)

for all t > 0. Further, they introduce the term noninformative condition and
show that it is stronger than the constant-sum condition (2.4). It should be
pointed out that Oller et al. use the term “noninformative” in a different
context than Kalbfleisch and Prentice (2002) whose meaning of this word is
adopted in this thesis.

In summary, we will call the interval censoring independent if it satisfies
the constant-sum condition (2.4) and noninformative if the distribution of
censoring random variables TL and TU does not depend on the parameters
used to model the distribution of the event time T .
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A typical example of an independent noninformative interval censoring can
be found in the Signal Tandmobielr data (Section 1.1) and in the WIHS
data (Section 1.3). In both cases even a stronger condition of independence
of T and (TL, TU )′ is satisfied. Indeed, either dental examinations or check
ups of the AIDS status were performed at pre-planned time-points and thus
external to the studied event time. Note that interval censoring would not
be independent when the event induces an examination, namely when a child
visits the dentist because of a decayed tooth.

2.4.3 Simplified likelihood for interval-censored data

We explain in Chapter 4 that likelihood is the corner stone for the inference
on the event time T . Strictly speaking, with interval-censored data, the
likelihood contribution is given by the density of observables, i.e. by the
density of the vector (TL, TU )′ whose support is such that T ∈ ⌊TL, TU⌋
with probability one. That is, the likelihood contribution of the observed
⌊tL, tU⌋ is given by

Lfull = Pr
(
TL ∈ NtL(dtL), TU ∈ NtU (dtU ), T ∈ ⌊tL, tU⌋

)
.

However, it is shown in Oller et al. (2004) that under the assumption of
independent noninformative censoring, the likelihood contribution Lfull is
proportional to so called simplified likelihood contribution

L = Pr
(
T ∈ ⌊tL, tU⌋

)
,

where a possible randomness of TL and TU is ignored. Consequently, the
inference on the event time T can be based on this simplified likelihood.
In the remainder of the thesis, we will use the simplified likelihood for the
inference and omit the word ‘simplified’ for clarity.



Chapter 3
An Overview of Regression
Models for Survival Data

Two regression models dominate the survival analysis to describe the de-
pendence of the distribution of the event time T on covariates, say x =
(x1, . . . , xm)′: (a) the proportional hazards (PH) model and (b) the acceler-
ated failure time (AFT) model. In this chapter, we introduce these two mod-
els, compare them and show how they can be extended to handle multivariate
survival data. We also review these models for the analysis of right-censored
data however with an emphasis on the AFT model. For methods that allow
interval- or doubly-interval-censored data we refer to Chapter 5.

3.1 Proportional hazards model

This model, introduced by Cox (1972), specifies that, for a given covariate
vector x, the hazard function is expressed as the product of an unspecified
baseline hazard function ℏ0(t) and the exponential of a linear function of the
covariates, i.e.

ℏ(t |x) = ℏ0(t) exp(β′x). (3.1)

The regression parameter vector β is estimated by maximizing a partial like-
lihood (Cox, 1975) which treats ℏ0 as nuisance and does not estimate it.
However, when the baseline hazard ℏ0 is of interest as well, e.g. for predic-
tion purposes, its non-parametric estimate can be obtained using the method
of Breslow (1974). The survival function for an object with covariates x,

17
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S(· |x), is related to the baseline survival function S0 by the relationship

S(t |x) =
{
S0(t)

}exp(β′x)
.

An exhaustive treatment of the PH model and its extensions can be found,
e.g., in Therneau and Grambsch (2000) or Kalbfleisch and Prentice (2002,
Chapter 4). The software to fit the PH model using the method of maximal
partial likelihood together with possibilities to compute residuals, draw diag-
nostic plots or assess goodness of fit is available in most modern statistical
packages, e.g. function coxph in R/S-plus or procedure PHREG in SAS.

3.2 Accelerated failure time model

The accelerated failure time model is a useful, however less frequently used
alternative to the PH model. For this model, the effect of a covariate implies
on average an acceleration or deceleration of the event time. For a vector of
covariates x the effect is expressed by the parameter vector β in the following
way:

T = exp(β′x)T0,

where T0 is a baseline survival time. On the logarithmic scale, this model
becomes a simple linear regression model

log(T ) = β′x+ ε, (3.2)

with ε = log(T0). The hazard and survival functions of a subject with co-
variate vector x is related to the baseline hazard (ℏ0) and survival function
(S0) by the relationships

ℏ(t |x) = ℏ0

{
exp(−β′x) t

}
exp(−β′x), (3.3)

S(t |x) = S0

{
exp(−β′x) t

}
.

Usually one assumes that the error random variable ε has a density gε(ε)
from the location-scale family, i.e. gε(ε) = τ−1g∗ε

{
τ−1(ε − α)

}
, where g∗ε(·)

has location parameter = 0 and scale parameter = 1. The location parameter
α and the scale parameter τ have to be estimated from the data as well as
the regression parameter β.

A parametric AFT model assumes that g∗ε(·) is a density of a specific type
(e.g. Gaussian, logistic or Gumbel). In that case, the parameters α, τ and
β can easily be estimated using the method of maximum likelihood. How-
ever, the parametric assumptions affect evidently the shape and character
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of the resultant survival or hazard curves which, in the case of an incorrect
specification, is undesirable, especially when prediction is of interest.

On the other hand, semi-parametric procedures for the AFT model leave
the density gε(ε) unspecified and provide only the estimate of the regression
parameter vector β. In the past, primarily two semi-parametric methods for
the AFT model with right-censored data have been examined. The first one
is based on the generalization of the least squared method to censored data
first proposed by Miller (1976) and in a different manner by Buckley and
James (1979) giving their names to this approach. A slight modification of
the Buckley-James estimator and its asymptotic properties was given by Lai
and Ying (1991). However, a drawback of the Buckley-James method is that
it may fail to converge or may oscillate between several solutions.

The second approach is based on linear-rank-tests for censored data and was
developed by Prentice (1978), Gill (1980), and Louis (1981) in the case of
one covariate. Tsiatis (1990) extended the method to the multiple regression
context. The asymptotic equivalence of the Buckley-James method and the
linear-rank-test-based estimators has been pointed out by Ritov (1990). The
asymptotic properties of the linear-rank-test-based estimators were presented
in greatest generality by Ying (1993). In contrast to the partial likelihood
method for the PH model, the numerical aspect of the linear-rank-test-based
estimation of the regression parameters of the AFT model could be computa-
tionally cumbersome. Only recently, Jin et al. (2003) suggested an algorithm
to compute this estimate using a linear programming technique. They also
provide an S-plus function. Further, there seems to exist no non-parametric
method to estimate the baseline survival distribution like the method of Bres-
low (1974) for the PH model. Consequently, the semi-parametric procedures
cannot be used when prediction is of interest.

Only parametric AFT models have been implemented in major statistical
packages (functions survreg in R and SurvReg in S-plus and procedure
LIFEREG in SAS).

3.3 Accelerated failure time model versus propor-
tional hazards model

Both the PH as well as the AFT model make an explicit assumption about
the effect of covariates on the hazard function. The effect of covariates on
the hazard function in the PH model is given by (3.1), in the AFT model
by (3.3). The assumed different effect of a covariate on the baseline hazard for
the PH and AFT model is exemplified in Figure 3.1. It is seen that, like in the
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PH model, in the AFT model the effect of covariates on the baseline hazard
function is multiplicative, but additionally for the AFT model an acceleration
or deceleration of the time scale is seen. Also, in the AFT model the hazard
is increased for β < 0 whereas in the PH model for β > 0.

We point out (see Kalbfleisch and Prentice, 2002, Section 2.3.4) that the PH
model and the AFT model are equivalent if and only if the distribution of
the standardized error term ε∗ = τ−1(ε − α) in the AFT model (3.2) is the
Gumbel (extreme value distribution of a minimum), i.e. when

g∗ε(ε
∗) = exp

{
ε∗ − exp(ε∗)

}
.

In that case, the distribution of the baseline survival time T0 is Weibull and
the baseline hazard function ℏ0(t) has the form

ℏ0(t) = γ (λ t)γ−1,

where λ = exp(−α) and γ = τ−1.

Further, it is generally true that it is not always possible (e.g. due to lack
of knowledge) to include all relevant covariates in the model. One of the
advantages of the AFT model is that the regression parameters of the included
covariates do not change when other, important, covariates are omitted. Of
course, the neglected covariates have an impact on the distribution of the
error term ε in (3.2) hich is typically changed into one with larger variability.
Such change, however, is of no major importance (except that it influences
the precision with which the regression parameters of the included covariates
are estimated) when semi-parametric methods or methods with a flexible
distribution for ε are used. Unfortunately, a similar property does not hold
for the PH model, see Hougaard (1999) for a more detailed discussion.

The fact that only parametric AFT models are implemented in major statis-
tical packages, together with the computational difficulties associated with
the semi-parametric AFT model may have caused that the PH model became
far more popular in practice than the AFT model. See Nardi and Schemper
(2003) for comparison of the PH model and parametric AFT models. Though,
the property that the AFT model postulates a direct relationship between
failure time and covariates led Sir David Cox (see Reid, 1994) to remark that
“accelerated life models are in many ways more appealing” than the propor-
tional hazards model “because of their quite direct physical interpretation.”
Indeed, in the AFT model, the regression indicates directly how is the time
– a quantity being understandable also by non-statisticians – increased or
decreased. Whereas, in the PH model, the direct effect of regression is on the
hazard which might be more difficult to understand by practitioners.
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3.4 Regression models for multivariate survival data

Both the PH model and the AFT model can be extended to handle multi-
variate survival data. In this section, we briefly discuss one extension of the
PH model and concentrate mainly on the multivariate versions of the AFT
model that will serve as a basis for developments presented in this thesis.

3.4.1 Frailty proportional hazards model

For multivariate survival data, a common extension of the PH model includes
a cluster specific random effect Zi, called the shared frailty, in the expression
of the hazard function, i.e.

ℏ(t |xi,l, Zi) = ℏ0(t) Zi exp(β′xi,l). (3.4)

The frailty component Zi is most often assumed to have a parametric dis-
tribution such as a gamma or log-normal distribution. For more details, we
refer to Aalen (1994), Hougaard (2000) and Therneau and Grambsch (2000)
where also available software is described.

Nevertheless, the model (3.4) is rather simple, e.g., in the analysis of a mul-
ticenter clinical trial only the center effect and not the center by treatment

PH model AFT model
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Figure 3.1: Effect of PH and AFT assumption on a hypothetical baseline
hazard function (solid line) for a univariate covariate x taking a value of 0.6
(dashed line) and 1.2 (dotted line) with regression parameter β = −0.5 for
the PH model and β = 0.5 for the AFT model.
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interaction can be controlled for. This drawback led to further developments
mimicking the classical linear mixed model of Laird and Ware (1982) by
assuming

ℏ(t |xi,l, bi) = ℏ0(t) exp(β′xi,l + b′izi,l), (3.5)

where zi,l = (zi,l,1, . . . , zi,l,q)
′ is an additional vector of covariates and bi

= (bi,1, . . . , bi,q)
′ is a cluster specific random effect which is again usually

assumed to follow a parametric distribution, most often multivariate normal.
Such model is considered, e.g., by Vaida and Xu (2000). Note that the
model (3.4) is a special case of (3.5) with zi,l ≡ 1 and Zi ≡ exp(bi).

Besides the fact that the frailty PH model is not, similarly as the basic PH
model, robust towards neglected covariates, it has another important draw-
back. Indeed, for most frailty distributions, the marginal hazard function
obtained from (3.4) by integrating out Zi is no more proportional with re-
spect to the covariates xi,l. Moreover, the form in which the covariate vector
xi,l modifies the marginal baseline hazard function depends on the assumed
frailty distribution. Consequently, the estimates of the regression parameters
β can be highly sensitive towards the choice of the frailty distribution; see
Hougaard (2000, Chapter 7) for more details.

3.4.2 Population averaged accelerated failure time model

A natural extension of the basic AFT model allowing for multivariate data,
breaks down the assumption of i.i.d. error terms ε in the model expres-
sion (3.2) by assuming

log(Ti,l) = β′xi,l + εi,l, i = 1, . . . ,N, l = 1, . . . , ni, (3.6)

with εi = (εi,1, . . . , εi,ni
)′, i = 1, . . . ,N being independent random vec-

tors, each with a multivariate density gε,i(εi). Such model is often called
population-averaged (PA) or marginal. When all clusters are of the same
size, i.e. when ni = n for all i, it is usually assumed that the random error
vectors εi, i = 1, . . . , N are i.i.d. with a multivariate density gε(ε). The
main disadvantages of the PA model is that the model is designed only to ac-
count for within-cluster dependencies and consequently structured modelling
of these dependencies is rather unnatural.

Early semi-parametric approaches to the population averaged AFT model
(3.6) with right-censored data are given by Lin and Wei (1992); Lee, Wei,
and Ying (1993) and are directed mainly towards the estimation of the re-
gression parameter β. They use the following estimation strategy. In the
first step, they ignore the correlation and estimate the regression coefficient
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β using one of the semi-parametric approaches for uncorrelated censored
data outlined in Section 3.2 (the Buckley-James estimator or censored data
linear-rank-test-based estimator). In the second step, they correct the stan-
dard errors of the estimate using a GEE approach (Liang and Zeger, 1986).
However, we can point out that ignoring the dependence in the estimation
step generally does not take full advantage of the information in the data
and is likely not to be efficient. For that reason, Pan and Kooperberg (1999)
suggest, in the case of bivariate survival data, i.e. ni = 2 for all i = 1, . . . ,N ,
methods that account already in the estimation step for the within-cluster
correlation. Briefly, their method iterates between (a) estimating the joint
bivariate distribution of (εi,1, εi,2)

′ using the bivariate log-spline density esti-
mate of Kooperberg (1998), (b) multiple imputation (Wei and Tanner, 1991)
of censored observations, (c) estimating the regression parameter β using
either ordinary or generalized least squares. Note that this procedure can
be considered as a generalization of the basic Buckley-James estimator, for
which in step (a) the Kaplan-Meier estimator of the survival distribution is
used while ignoring the correlation and in step (b) a simple imputation using
conditional expectations is employed.

Finally, Pan and Connett (2001) present an approach that, to some extent,
combines the methods of Lee et al. (1993) and Pan and Kooperberg (1999).
It iterates between (a) estimating the marginal distribution of εi,l using the
Kaplan-Meier estimate while ignoring the dependencies, (b) multiple imputa-
tion of censored observations, (c) GEE estimation of the regression parameter
β using a general working correlation matrix.

3.4.3 Cluster specific accelerated failure time model

Another extension of the AFT model for multivariate data adds, similarly as
the frailty PH model and analogously as the classical linear mixed model of
Laird and Ware (1982), cluster specific random effect vector bi = (bi,1, . . . , bi,q)

′

combined with a vector of covariates zi,l = (zi,l,1, . . . , zi,l,q)
′ into the model

expression, i.e.

log(Ti,l) = β′xi,l + b′izi,l + εi,l, i = 1, . . . ,N, l = 1, . . . , ni. (3.7)

The random effect vectors bi, i = 1, . . . ,N are assumed to be i.i.d. with
some (multivariate) density gb(b), the random error terms εi,l, i = 1, . . . ,N,
l = 1, . . . , ni are assumed to be i.i.d. with some density gε(ε) and independent
on the random effects. Besides the term cluster-specific (CS), the model (3.7)
is sometimes called conditional, since the distribution of the event time Ti,l

is modelled conditionally, given the cluster specific characteristic bi.
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In the literature, Pan and Louis (2000) and Pan and Connett (2001) consider
model (3.7) with a univariate random effect bi and zi,l ≡ 1 for all i and l.
The estimation procedure iterates between (a) estimating the distribution of
independent error terms εi,l using the Kaplan-Meier estimator, (b) multiple
imputation of censored times, (c) a Monte Carlo EM algorithm of Wei and
Tanner (1990) in Pan and Louis (2000) or restricted maximum likelihood in
Pan and Connett (2001) to estimate the regression parameter β.

Observe that in contrast to the frailty PH model, in the cluster-specific AFT
model the meaning of the regression parameters β is the same conditionally
given bi as well as marginally. Indeed, when the random effects bi, i =
1, . . . , N are integrated out from model (3.7), we obtain the model (3.6) with
the only change in the error distribution which is given as an appropriate
convolution.

3.4.4 Population averaged model versus cluster specific
model

When compared to the PA model, not only the CS model allows for struc-
tured modelling of within-cluster dependencies but is often preferred to it
due to clear decomposition of the sources of variability and more natural in-
terpretation of the regression parameters, see Lindsey and Lambert (1998)
and Lee and Nelder (2004) for more details.

However, in some sense, the PA model is more general in the following sense.
The CS model is specified hierarchically and always implies a particular PA
model when the random effects are integrated out. On the other hand, the
same PA model can correspond to several, very different CS models. More-
over, with the most common assumptions, i.e. when the error terms εi,l,
i = 1, . . . , N, l = 1, . . . , ni in the CS model are assumed to be i.i.d. the
random effects bi, i = 1, . . . , N in the CS model i.i.d. and independent on the
errors and the error term vectors εi, i = 1, . . . ,N in the PA model i.i.d., the
PA model leads to a more general covariance structure than the CS model. To
illustrate this, consider the CS model (3.7) with a random intercept only, i.e.
zi,l ≡ 1. Let var(εi,l) = σ2

ε and var(bi) = σ2
b , i = 1, . . . ,N . Such model implies

a covariance matrix for the log-event times vector
(
log(Ti,1), . . . , log(Ti,ni

)
)′

which is of the compound symmetry type, i.e.

var




log(Ti,1)
...

log(Ti,ni
)


 =




σ2
ε + σ2

b . . . σ2
b

...
. . .

...

σ2
b . . . σ2

ε + σ2
b


 .
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That is, the variance is necessarily the same for all observations within a clus-
ter and the correlation between the two observations is the same for all pairs
within a cluster. On the other hand, with the PA model (3.6) both the
variance and the correlation are allowed to vary across the cluster as usually
unstructured covariance matrix for the error terms vector εi and subsequently
also for the log-event times vector is assumed.
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Chapter 4
Frequentist and Bayesian
Inference

Both PH and AFT models determine a probabilistic mechanism that leads
to survival data. The mechanism depends further on a vector of unknown
parameters, denoted by θ, which represents the relevant information we wish
to pick up from the observed data. For example, for the AFT model (3.2),
the θ vector is equal to (α,β′, τ)′ and the probabilistic mechanism is given
by equation (3.2) together with the specification of the density of the error
term ε. The assumed probabilistic mechanism together with the observed
data determines the likelihood function, L(θ), which is the corner stone to
draw the inference about the unknown parameter vector θ.

Two major paradigms exist in statistics of how to use the likelihood in or-
der to draw the inference about θ, namely the frequentist and the Bayesian
paradigms. In the classical frequentist point of view, the data are assumed
to be a random sample generated by the random mechanism controlled by
θ, which is unknown but fixed. Several methods exist to estimate the true
value of the parameter θ, maximum likelihood (ML) being one of the most
popular ones. The estimator, θ̂, maximizes the likelihood function over a set
Θ of admissible θ values – the parameter space. Hypotheses about the pa-
rameter vector θ can be tested and accuracy of the estimates can be assessed
by calculation of the confidence intervals. See, e.g., Cox and Hinkley (1974,
Chapter 9) or Lehmann and Casella (1998, Chapter 6) for more details on
ML estimation.

In Bayesian statistics, both the data and the parameter vector θ are treated
as random variables. Besides the probabilistic model to generate the data,
a prior distribution p(θ) must be specified for the model parameters. Infer-
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ence is then based on the posterior distribution p(θ |data) of the parameters
given the data which is calculated using Bayes’ rule:

p(θ |data) =
L(θ) p(θ)∫

Θ L(θ∗) p(θ∗) dθ∗
∝ L(θ) p(θ). (4.1)

As point estimate of θ, the posterior expectation, median or mode can be
used. The uncertainty about the model parameters can be expressed using
credible intervals constructed using the quantiles of the posterior distribution
(see Section 4.6 for more details). For an extensive introduction into the area
of Bayesian statistics, see, e.g., Carlin and Louis (2000); Gelman et al. (2004).

4.1 Likelihood for interval-censored data

We saw that the likelihood plays a principal role in drawing inference about
unknown model parameters. In this section, we discuss the general form of the
likelihood, first for univariate interval-censored and doubly-interval-censored
data. The multivariate case will be discussed in the following section.

In this section, let Ti, i = 1, . . . ,N be a set of independent event times each
with a density pi(t; θ). For instance, for AFT model (3.2) density pi(t; θ) is
given by

pi(t; θ) = (τ t)−1 g∗ε
{
τ−1(log t− α− β′xi)

}
,

where xi is a covariate vector for the ith observation.

4.1.1 Interval-censored data

Let ⌊tLi , tUi ⌋ be observed intervals and δi corresponding censoring indicators
with the same convention as in Section 2.1. Let the corresponding survival
functions be denoted by Si(t; θ). The likelihood L(θ) is then the product of
individual likelihood contributions Li(θ), i.e. L(θ) =

∏N
i=1 Li(θ), where

Li(θ) =






∫∞
tLi
pi(s; θ) ds = Si(t

L
i ; θ), δi = 0,

pi(ti; θ), δi = 1,
∫ tUi
0 pi(s; θ) ds =

{
1 − Si(t

U ; θ)
}
, δi = 2,

∫ tUi
tLi
pi(s; θ) ds =

{
Si(t

L
i ; θ) − Si(t

U
i ; θ)

}
, δi = 3.

This can be briefly written as

Li(θ) =

∮ tUi

tLi

pi(s; θ) ds (4.2)
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if we make use of the notation

∮ τU

τL

p(s) ds =






∫ τU

τL

p(s) ds, if τL < τU

p(τL) = p(τU ), if τL = τU ,

(4.3)

i.e. the integral disappears whenever the event time is exactly observed.
Note that already for simple interval-censored data, the likelihood involves
integration of the density.

4.1.2 Doubly-interval-censored data

Let ⌊uL
i , u

U
i ⌋, i = 1, . . . , N be observed intervals for the onset time Ui and

⌊vL
i , v

U
i ⌋ observed intervals for the failure time Vi in the sense of Section 2.2.

It is tempting to transform observations into single intervals of the form
⌊tLi , tUi ⌋ = ⌊vL

i − uU
i , v

U
i − uL

i ⌋ and then to use methods for simple interval-
censored data with the likelihood (4.2). However, as pointed out by De Grut-
tola and Lagakos (1989), this approach would be only valid if the onset time Ui

is uniformly distributed and independent of the event time Ti.

To write a likelihood contribution of each observation in the general case
a bivariate density of an event and onset times must be considered. Let
qi(t, u; θ) be a density of the random vector (Ti, Ui)

′, i = 1, . . . ,N . The like-
lihood contribution of the ith observation is then given by a double integral
of the form

Li(θ) =

∮ uU
i

uL
i

{∮ vU
i −u

vL
i −u

qi(t, u; θ) dt
}
du. (4.4)

Note that whenever either the onset time Ui and/or the failure time Vi are
exactly observed either both or one integrals disappear in the formula (4.4).

In most practical situations it can be assumed that, given the parameter
vector θ, the onset and the event time are independent, i.e.

qi(t, u; θ) = pi(t; θ) p
U
i (u; θ). (4.5)

In the rest of this thesis we shall make use of assumption (4.5). The likelihood
contribution of the ith subject can then be rewritten as

Li(θ) =

∮ uU
i

uL
i

{∮ vU
i −u

vL
i −u

pi(t; θ) dt
}
pU

i (u; θ) du. (4.6)
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4.2 Likelihood for multivariate (doubly) interval-cen-
sored data

In the case of multivariate event times Ti,l, i = 1, . . . ,N , l = 1, . . . , ni, ob-
served as intervals ⌊tLi,l, tUi,l⌋, the likelihood contribution of the ith cluster
equals

Li(θ) =

∮ tUi,1

tLi,1

· · ·
∮ tUi,ni

tLi,ni

pi(t1, . . . , tni
; θ) dtni

· · · dt1, (4.7)

where pi(t1, . . . , tni
; θ) is the density of (Ti,1, . . . , Ti,ni

)′ implied by the as-
sumed model.

When population averaged AFT model introduced in Section 3.4.2 is as-
sumed, pi(t1, . . . , tni

; θ) equals

pi(t1, . . . , tni
; θ) =

gε,i

{
log(t1) − β′xi,1, . . . , log(tni

) − β′xi,ni

}

t1 · · · tni

. (4.8)

In the case of the cluster-specific AFT model described in Section 3.4.3, the
density pi(t1, . . . , tni

; θ) becomes

pi(t1, . . . , tni
; θ) =

∫

Rq

[ ni∏

l=1

gε

{
log(tl) − β′xi,l − b′izi,l

}

tl

]
gb(bi) dbi. (4.9)

For doubly-interval-censored data, under assumption (4.5), the likelihood
contribution of the ith cluster is obtained by an appropriate multivariate
modification of the expression (4.6).

4.3 Bayesian data augmentation

The computation of the likelihood for interval- and doubly-interval-censored
data is rather involved. The complexity even increases when multivariate sur-
vival data are introduced. Indeed, the maximum likelihood method involves
multivariate integration combined with the optimization of the likelihood
which becomes quickly intractable even for simple models.

On the other hand, in Bayesian statistics, where the unknown parameter
vector θ is assumed to be random and its posterior distribution p(θ |data) is
used for inference, we are completely free to augment the vector of unknowns
by arbitrary auxiliary variables, let say ψ. Inference can then equally be
based on the joint posterior distribution p(θ, ψ |data). Indeed, all (marginal)
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posterior characteristics of θ (mean, median, credible intervals) are the same
regardless whether they are computed from p(θ |data) or p(θ, ψ |data) since

p(θ |data) =

∫
p(θ, ψ |data) dψ.

In the case of censored data, matters simplify considerably if the unknown
true event times ti are explicitely considered to make a part of the vector
of unknowns, i.e. ψ = (ti : i = 1, . . . ,N, ti is censored)′. Assume now
that all observations are censored. In this situation, it is obvious that ψ
(uncensored augmented data) conveys more precise information about the
model parameter θ than the censored data which implies

p(θ |ψ, data) = p(θ |ψ).

The joint posterior distribution of θ and ψ then equals

p(θ, ψ |data) = p(θ |ψ, data) p(ψ |data) = p(θ |ψ) p(ψ |data). (4.10)

The two terms on the right hand side of formula (4.10) are now easily com-
puted. Indeed, p(θ |ψ) is the posterior distribution of θ if the uncensored
data were available, i.e.

p(θ |ψ) ∝ Laugm(θ) p(θ),

where the likelihood Laugm of the uncensored augmented data is simply

Laugm(θ) =
N∏

i=1

pi(ti; θ).

The second term of the right hand side of formula (4.10), p(ψ |data), is under
the assumption of independent noninformative censoring proportional to the
product of indicator functions:

p(ψ |data) ∝
N∏

i=1

I
{
ti ∈ ⌊tLi , tUi ⌋

}
.

A similar procedure can be applied for doubly-censored data. In that case,
both true onset times ui and true event times ti i = 1, . . . ,N are augmented
into the vector of unknowns. The situation where only the part of the data
is censored is analogous, only with some change in notation. Finally, in the
case of multivariate survival data and cluster specific models, the integrals of
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the form (4.9) can easily be avoided by augmenting the vector of unknowns
by the values of the random effects bi, i = 1, . . . ,N .

The idea of data augmentation was first introduced in the context of the EM
algorithm (Dempster, Laird, and Rubin, 1977) and formalized in the context
of Bayesian computation by Tanner and Wong (1987). For more complex
models with censored data, this technique constitutes a highly appealing
alternative to difficult maximum likelihood estimation. Moreover, it is quite
natural to include the true event times or the values of latent random effects
in the set of unknowns. For these reasons, most of the models developed in
this thesis make use of the Bayesian estimation with augmented true event
times.

4.4 Hierarchical specification of the model

In Bayesian statistics, the prior distribution p(θ) and the model assumed to
generate the data, represented by the likelihood L(θ) = p(data |θ), are usu-
ally specified in a hierarchical manner. Firstly, remember that the parameter
vector θ contains not only the parameters in a classical sense but also all
remaining latent factors like random effects or augmented times. Crudely,
the vector θ can usually be splitted into two parts θ = (ψ′, φ′)′ where ψ
refers to the latent factors and φ to the parameters in a classical sense. The
specification of the Bayesian model then proceeds in the following steps:

1. Data Model step specifies the likelihood function

L(θ) = p(data |θ) = p(data |ψ, φ)

and is actually equivalent to the frequentist specification of the model.

2. Latent Process Model step specifies

p(ψ |φ),

i.e. the distribution of the latent factors, possibly given the classical
parameters φ.

3. Parameter Model (Prior) specifies the prior distribution for the clas-
sical parameters φ, i.e. it specifies

p(φ).

Often, the components of φ are assumed to be a priori independent and
if no external information is available are assigned vague but proper
prior distributions.
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The overall prior distribution is then given by

p(θ) ∝ p(ψ |φ) × p(φ),

and the posterior distribution is obtained using the relationship (4.1) as

p(θ |data) ∝ L(θ) × p(θ)

∝ p(data |ψ, φ) × p(ψ |φ) × p(φ), (4.11)

i.e. it is proportional to the product of the distributions specified in the above
three steps.

The hierarchical structure of more complex hierarchical models is usually best
expressed using so called directed acyclic graphs (DAG) where each model
quantity is represented by the node drawn as a circle for unknowns and
drawn as a squared box for observed or fixed quantities (data, covariates).
Solid arrows are used to represent stochastic dependencies and dashed arrows
deterministic dependencies between the nodes. A simple DAG which only
distinguishes among the data, latent quantities ψ and classical parameters φ
and which corresponds to the expression (4.11) is shown in Figure 4.1.

Further, it is assumed that given its parents, each node is conditionally in-
dependent on all its grandparents, i.e. schematically

p(child |parents, grandparents) = p(child |parents).

The posterior distribution of the hierarchical model is then proportional, anal-
ogously to the relationship (4.11), to the product of all conditional distribu-
tions of the type p(child |parents) times the product of the prior distributions
for the nodes of the first generation (i.e. having no parents).

Illustration 4.1. Linear mixed model. As an illustration, consider a classi-
cal normal linear mixed model with data = {yi, . . . ,yN} being a realization

data

ψ

φ

Figure 4.1: Directed acyclic graph – general scheme.
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of independent random vectors Y i, i = 1, . . . ,N , each of length n which in
a frequentist sense can be specified as

Y i = Xiβ + Zibi + εi, i = 1, . . . , n,

bi
i.i.d.∼ Nq(0, D), εi

i.i.d.∼ Nn(0, Σ),

where Xi, Zi, i = 1, . . . , N are fixed covariate matrices. For the sake of the
Bayesian modelling, the vector θ = (ψ′, φ′)′ is given by

ψ = (b′1, . . . , b
′
N )′, φ =

(
β′, vec(D), vec(Σ)

)′
.

The whole model can be represented by the DAG shown in Figure 4.2. The
above mentioned three steps in the model building proceeds as follows. The
Data Model is given by a normal likelihood

L(θ) = p(data |θ) = p(data |ψ, φ) =
N∏

i=1

ϕn(yi |β′xi + b′izi, Σ).

The Latent Process Model is determined by the normal distribution of the
random effects, i.e.

p(ψ |φ) =
N∏

i=1

ϕq(bi |0, D).

Finally, some prior distributions p(β), p(D), p(Σ) are assigned to the param-
eters of the main interest, i.e. to β, D, Σ and

p(φ) = p(β) × p(D) × p(Σ).

yi

XiZibi

D Σ β

i
=

1,
..
.,
N

Figure 4.2: Directed acyclic graph for the linear mixed model.
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4.5 Markov chain Monte Carlo

In previous sections, we stated that the inference in the Bayesian approach
is based on the posterior distribution p(θ |data) which is obtained using the
Bayes’ formula (4.1) and is proportional to the product of the likelihood and
the prior distribution. We also saw that difficult likelihood evaluations can be
avoided by the introduction of a set of suitable auxiliary variables (augmented
data). What needs to be discussed is how the posterior distribution can be
computed and how to determine posterior summaries about θ. Most quan-
tities related to the posterior summarization (posterior moments, quantiles,
highest posterior density regions etc.) involve computation of the posterior
expectation of some function G(θ), i.e. computation of

E
{
G(θ)

∣∣ data
}

=

∫

Θ
G(θ) p(θ |data) dθ =

∫
Θ G(θ)L(θ) p(θ) dθ∫

Θ L(θ) p(θ) dθ
. (4.12)

The integration in the expression (4.12) is usually high-dimensional and only
rarely analytically tractable in realistic practical situations.

Markov chain Monte Carlo (MCMC) methods avoid the explicit evaluations
of integrals. Instead, we construct a Markov chain with state space Θ whose
stationary distribution is equal to p(θ |data). After a sufficient number of
burn-in iterations the current draws follow the stationary distribution, i.e.
the posterior distribution of interest. We keep a sample of θ values, let say
θ(1), . . . ,θ(M) and approximate the posterior expectation (4.12) by

GM =
1

M

M∑

m=1

G(θ(m)). (4.13)

The ergodic theorem implies that, under mild conditions, GM converges al-
most surely to E

{
G(θ)

∣∣ data
}

as M → ∞ (see, e.g., Billingsley, 1995, Section
24).

Many methods are available to construct the Markov chains with desired
properties. The most often used are the Metropolis-Hastings algorithm (Me-
tropolis et al., 1953; Hastings, 1970) and the Gibbs algorithm (Geman and
Geman, 1984; Gelfand and Smith, 1990). Both of them, often properly ded-
icated will be used extensively throughout this thesis. A comprehensive in-
troduction into the area of the MCMC can be found, e.g., in Geyer (1992);
Tierney (1994); Besag et al. (1995). More details can be obtained from several
books, e.g., Gilks, Richardson, and Spiegelhalter (1996); Gamerman (1997);
Chen, Shao, and Ibrahim (2000); Robert and Casella (2004).
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4.6 Credible regions and Bayesian p-values

With a frequentist approach, confidence intervals or regions and p-values
are used to summarize the estimates and the inference for θ – parameter of
interest. In Bayesian statistics, the role of the confidence regions is played
by the credible regions and p-values are replaced by the Bayesian p-values.
In this section, we briefly discuss their construction.

4.6.1 Credible regions

For a given α ∈ (0, 1), the 100(1 − α)% credible region Θα for a parameter
of interest θ is defined using the conditional distribution θ |data (posterior
distribution of θ) as

Pr
(
θ ∈ Θα

∣∣ data
)

= 1 − α. (4.14)

Equal-tail credible interval

Suppose first, the parameter of interest θ is univariate. The credible region
Θα can then be obtained by setting Θα = (θL

α , θ
U
α ), such that

Pr
(
θ ≤ θL

α

∣∣ data
)

= Pr
(
θ ≥ θU

α

∣∣ data
)

= α/2.

Such an interval is easily constructed when a sample from the posterior distri-
bution of θ (obtained, e.g., using the MCMC technique) is available. Indeed,
θL
α and θU

α are 100(α/2)% and 100(1 − α/2)%, respectively, quantiles of the
posterior distribution θ |data and from the MCMC output they can be esti-
mated using the sample quantiles.

Simultaneous credible bands

For the case the parameter of interest, θ = (θ1, . . . , θq), is multivariate and
we wish to calculate simultaneous probability statements, Besag et al. (1995,
p. 30) suggest to compute simultaneous credible bands. In that case, Θα

equals
Θα = (θL

1,αuni
, θU

1,αuni
) × · · · × (θL

q,αuni
, θU

q,αuni
). (4.15)

That is, Θα is given as a product of univariate equal-tail credible intervals of
the same univariate level αuni (typically αuni ≥ α). As shown by Besag et al.
(1995), the simultaneous credible bands can easily be computed when the
sample from the posterior distribution is available as only order statistics for
each univariate sample are needed. From the computational point of view,
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the most intensive part in computation of the simultaneous credible band is to
sort the univariate samples. However, when simultaneous credible bands for
different values of α are required this must be done only once. This property
is advantageously used when computing the simultaneous Bayesian p-values
(see Section 4.6.2).

As pointed by Held (2004), due to the fact the simultaneous credible band
is by construction restricted to be hyperrectangular, it can cover a huge area
actually not supported by the posterior distribution. Obviously, this problem
becomes more severe when a high posterior correlation exists between the
components of the vector θ.

Highest posterior density region

An alternative to the credible intervals and simultaneous credible bands is
given by the highest posterior density (HPD) region. In that case, Θα is
obtained by requiring (4.14) and additionally

p(θ1 |data) > p(θ2 |data) for all θ1 ∈ Θα, θ2 /∈ Θα.

Note that in the univariate case and for unimodal posterior densities p(θ |data),
the HPD region becomes an interval. However, it is clear that in contrast to
the equal-tail credible interval or the simultaneous credible band the compu-
tation of the HPD region is much more complicated even when the sample
from the posterior distribution is already available.

4.6.2 Bayesian p-values

The Bayesian counterpart of the p-value for the hypothesis H0 : θ = θ0

(typically θ0 is a vector of zeros) – the Bayesian p-value – can be defined as
1 minus the content of the credible region which just covers θ0, i.e.

p = 1 − min
{
α : θ0 ∈ Θα

}
. (4.16)

In the univariate case, a two-sided Bayesian p-value based on the equal-tail
credible interval is computed quite easily once the sample from the posterior
distribution is available since (4.16) can be expressed as

p = 2min
{
Pr(θ ≤ θ0 | data), Pr(θ ≥ θ0 | data)

}
, (4.17)

and Pr(θ ≤ θ0 | data), Pr(θ ≥ θ0 | data) can be estimated as a proportion of
the sample being higher or lower, respectively, than the point of interest θ0.
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In the multivariate case, a two-sided simultaneous Bayesian p-value based on
the simultaneous credible band can be obtained by calculating the simultane-
ous credible bands Θα on various levels α and determining the smallest level,
such that θ0 ∈ Θα, i.e. by direct usage of the expression (4.16).

To compute the Bayesian p-value based on the HPD region, the expression
(4.16) takes the form

p = Pr
{
θ : p(θ |data) ≤ p(θ0 |data)

∣∣ data
}
. (4.18)

An MCMC estimate of (4.18) can easily be obtained when p(θ |data) (any
proportionality constants may be ignored) can efficiently be evaluated. Often,
this is not the case however. Nevertheless, a technique how to overcome the
problem of unknown or difficult to evaluate p(θ |data) using its estimate
based on Rao-Blackwellization is given by Held (2004).

Mainly for computational reasons, we report in this thesis, if not stated oth-
erwise, univariately equal-tail credible intervals and corresponding Bayesian
p-values of the type (4.17) and multivariately simultaneous credible regions
(4.15) and corresponding simultaneous Bayesian p-values computed using
an iterative procedure to evaluate (4.16).



Chapter 5
An Overview of Methods for
Interval-Censored Data

For right-censored data, a variety of methods (non-, semi- and fully para-
metric) have been developed. Further, commercial software is available to
support these techniques. In contrast, for interval-censored data and mul-
tivariate (doubly-)interval-censored data commercial software is much more
limited and only parametric approaches seem to be available for regression
models besides of course the user-written programs. Further, until recently
only few methods were available. That is why, in practice, modelling with
interval-censored data is often mimicked by methods developed for right-
censored data. For this, the interval needs to be replaced by an exact time or
right-censored time. The most common assumption is that the event occurred
at the midpoint of the interval. However, applying methods for right-censored
data on these artificial fixed points can lead to biased and misleading results
and the correctness of such approach depends strongly on the underlying dis-
tribution of the event times, see e.g., Rücker and Messerer (1988); Law and
Brookmeyer (1992); Odell, Anderson, and D’Agostino (1992); Dorey, Little,
and Schenker (1993).

In Section 5.1, we first review appropriate frequentist methods to deal with
(doubly-)interval-censored data and link them to the corresponding (classical)
method for right-censored data. We start with the estimation of the survival
distribution, proceed to the two-sample tests for the survival distributions,
continue with the proportional hazards and accelerated failure time models
and end up with the remark on the problem of interval-censored covariates.
Whenever feasible, we mention computational aspects of described methods
applicable for R, Splus and SAS.

39
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With suitable semi-parametric approaches, both PH and AFT models can be
used not only for the estimation of the effect of covariates but also for both
estimation of the baseline survival distribution or comparison of two or more
samples. With the Bayesian approach, it is moreover relatively easy to set
up and estimate the models for multivariate (doubly-)interval-censored data.
We will illustrate this on the analysis of the Signal Tandmobielr data using
a semi-parametric Bayesian PH model in Section 5.2. As we are interested
mainly in the AFT model, we give also an overview of available Bayesian de-
velopments for this model in Section 5.3. We end this chapter by highlighting
our motivations for the further developments presented in this thesis.

5.1 Frequentist methods

5.1.1 Estimation of the survival function

In the case of simple i.i.d. survival data, often the aim is to estimate the
survival function. When only categorical covariates are involved, the survival
function can be estimated for each unique combination of covariate values
and could be used to check the fitted regression model.

For right-censored data, the classical non-parametric maximum-likelihood
estimate (NPMLE) of the survival function is given by Kaplan and Meier
(1958). For interval-censored data Peto (1973) first proposed the NPMLE
and used the constrained Newton-Raphson method to compute it. Nowa-
days, the NPMLE of the survival function based on the interval-censored
data is known as the Turnbull’s estimate (see Turnbull, 1976) who suggested
a so called iterative self-consistency algorithm, which is, in fact, an EM-like
(Dempster et al., 1977) algorithm. An improved version of the maximization
algorithm which utilizes standard convex optimization technique was given
by Gentleman and Geyer (1994) who also discussed the unicity of the esti-
mate. For computation, a valuable alternative, the iterative convex minorant
algorithm, was suggested by Groeneboom and Wellner (1992). Finally, strong
consistency of the Turnbull’s estimate has been proved under rather general
assumptions by Yu, Li, and Wong (2000). The asymptotic distributional
behaviour of the Turnbull’s estimator for some special cases has been estab-
lished by Yu et al. (1998) and Huang (1999). An extension of the NPMLE
of the survival function for bivariate interval-censored data is discussed, e.g.,
by Bogaerts and Lesaffre (2004).

Several numerical algorithms to compute the non-parametric estimate of the
survival function of the interval-censored data are implemented in Vandal’s
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and Gentleman’s R package Icens downloadable from the Comprehensive R
Archive Network (CRAN) or in the S-plus function kaplanMeier.

A valuable alternative to non-parametric procedures is obtained by smooth-
ing the survival or equivalently the density function or the hazard function. In
most practical situations, it can be assumed that the event-times are contin-
uously distributed, and we even get more realistic, not step-wise, estimates.
One such method, applicable directly also to interval-censored data is given
by Kooperberg and Stone (1992) who smooth the density using splines. They
also provide software in the form of the R package logspline downloadable
from CRAN or the S-plus library splinelib downloadable from StatLib.
Splines for the smoothing the hazard function are exploited by the approach
of Rosenberg (1995).

Illustration 5.1. Signal Tandmobielr study. As an illustration, we com-
puted both the non-parametric estimate of Turnbull (1976) and the smooth
estimate of Kooperberg and Stone (1992) of the cumulative distribution func-
tions (cdf) for the emergence of the right mandibular permanent first pre-
molar, separately for boys and girls based on the Signal Tandmobielr data
introduced in Section 1.1. The cdf function giving the proportion of children
with the emerged tooth is called in this context the emergence curve and is
preferred in this situation to the survival curve. The estimates are plotted in
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Figure 5.1: Signal Tandmobielr study: Cumulative distribution functions of
emergence for right mandibular permanent first premolar, separately for girls
and boys. Non-parametric estimate of Turnbull (solid line), smooth estimate
of Kooperberg and Stone (dashed line).
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Figure 5.1. Due to rather high sample size in each group (more than 2 000),
the non-parametric estimate is almost the same as the smooth estimate, es-
pecially for boys. From the plots it is seen that the emergence for girls is
somewhat fastened when compared to boys.

Doubly-interval-censored data

Non-parametric estimation of the survival curve based on doubly-interval-
censored data was first considered by De Gruttola and Lagakos (1989) who
make use of discretization of data and generalization of the self-consistency
algorithm of Turnbull (1976). The authors estimate simultaneously the onset
and the event distributions by treating them as bivariate data. However, they
point out that the large number of parameters resulting from discretization,
especially if time is grouped too coarsely may cause identifiability problems.
This gave rise to several two-step approaches. First, the distribution of the on-
set time is separately estimated and second, the estimated onset distribution
is used as an input for estimation of the distribution of the event time. Bac-
chetti (1990); Bacchetti and Jewell (1991) assume piece-wise constant hazard
and use penalized maximum-likelihood method to estimate the levels of the
hazard on each interval. The roughness penalty in the likelihood prevents the
method from identifiability problems reported by De Gruttola and Lagakos
(1989). The original proposal of De Gruttola and Lagakos (1989) motivates
the two-step approaches of Gómez and Lagakos (1994); Sun (1995). Finally,
Gómez and Calle (1999) present an extension of the technique of Gómez and
Lagakos (1994) which does not require discretization of the data.

5.1.2 Comparison of two survival distributions

If the data can be divided in two (or more) groups, e.g. boys and girls, one
could compare the distributions of the event times in these two groups. For
right-censored data, many non-parametric tests for comparing two survival
curves are available, e.g. the log-rank test (Mantel, 1966), the Gehan general-
ization of the Wilcoxon test (Gehan, 1965), the Peto-Prentice generalization
of the Wilcoxon test (Peto and Peto, 1972; Prentice, 1978) and the weighted
Kaplan-Meier statistic of Pepe and Fleming (1989, 1991) which with unit
weights is equal to the difference of means of the two survival distributions.

The Gehan-Wilcoxon test has been adopted to interval-censored data by
Mantel (1967), while the interval-censored version of the Peto-Prentice-Wil-
coxon test is presented by Self and Grossman (1986). The log-rank test for
interval-censored data is given by Finkelstein (1986). Further, Petroni and
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Wolfe (1994) discuss the weighted Kaplan-Meier statistic in the context of
interval-censoring. The performance of above mentioned two-sample tests
for interval-censored data is in detail studied and compared by Pan (1999a).
Furthermore, Fay (1996, 1999) derived a general class of linear-rank tests
for interval-censored data which covers, as special cases, the Wilcoxon-based
tests. Finally, Fay and Shih (1998) present a class of tests called distribu-
tion permutation tests which besides the Wilcoxon-based tests covers also
an improved version of the weighted Kaplan-Meier test. Splus programs to
perform some distribution permutation tests are given by Gómez, Calle, and
Oller (2004, Section 4.4) and can be downloaded from

http://www-eio.upc.es/grass.

Regrettably, the asymptotic properties of the above methods assume the
grouped continuous model, which implies that the status of each subject is
checked at the same timepoints (in the study time scale) whose number is
fixed or that observed intervals are grouped in such a way. For example,
for the Signal Tandmobielr study this would mean that the emergence sta-
tus of the teeth was checked at prespecified ages, the same for all children.
Obviously, such setting is too restrictive in many practical situations. For
instance, in the above example, each child was checked by a dentist-examiner
on a prespecified day of the year, irrespective of his or her age.

The grouped continuous model assumption is necessary to be able to apply
the standard maximum likelihood theory to interval-censored data measured
on a continuous scale without making any parametric assumptions. Only
recently, Fang, Sun, and Lee (2002) developed a test statistic, based on the
weighted Kaplan-Meier statistic of Pepe and Fleming (1989) that does not re-
quire the grouped continuous model assumption. Finally, Pan (2000b) offers
two-sample test procedures obtained by combining standard right-censored
tests and multiple imputation that allows, in contrast to single (e.g. mid-
point) imputation mentioned at the beginning of this chapter, to draw ap-
propriately the statistical inference.

Illustration 5.2. Signal Tandmobielr study. The emergence curves of the
right mandibular permanent first premolar for boys and girls shown in Fig-
ure 5.1 were compared using the Wilcoxon-based, log-rank and Fay’s and
Shih’s version of the difference in means tests. Not surprisingly, for all these
tests, the p-value is practically equal to zero. The values of the test statis-
tics, their mean and variance under the null hypothesis and the standardized
value, which can asymptotically be compared to the quantile of the standard
Gaussian distribution, are shown in Table 5.1.
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Table 5.1: Signal Tandmobielr study: Two-sample tests comparing the emer-
gence of the permanent right mandibular first premolar (tooth 44) for boys
and girls.

Test Standardized

Test Statistic Mean Variance Test Statistic

Gehan-Wilcoxon 554 812 0 2 865 333 000 10.365

Peto-Prentice-Wilcoxon 140.607 −37.634 284.255 10.572

Log-rank 212.316 −53.663 675.251 10.236

Difference in means 264.095 −76.486 1 102.340 10.258

5.1.3 Proportional hazards model

To extend the PH model to interval-censored data, basically four types of
approaches can be found in the literature. Firstly, the baseline hazard ℏ0 can
be parametrically specified and standard maximum likelihood theory applied
to estimate all the parameters. However, the parametric assumptions can
cause bias in inference if incorrectly specified and especially with heavily
censored data it is general difficult to assess them.

The second class of methods makes use of a combination of multiple imputa-
tion (see Rubin, 1987; Wei and Tanner, 1991) and methods for right-censored
data represented by works of Satten (1996); Satten, Datta, and Williamson
(1998); Goggins et al. (1998); Pan (2000a). A disadvantage of these methods
is, however, that they are highly computationally demanding and the fact
that the procedures they use to impute missing data have a relatively ad hoc
nature.

The third approach, suggested by Finkelstein (1986), Pan (1999b), and Goet-
ghebeur and Ryan (2000) resembles most the original method of Cox (1972)
combined with that of Breslow (1974). Indeed, in all three papers the baseline
hazard ℏ0 is estimated non-parametrically on top of estimating the regres-
sion coefficients. Whereas the method of Finkelstein relies on the grouped
data assumption, Goetghebeur and Ryan developed an EM-type procedure
that relaxes that assumption. Moreover, the approach of Goetghebeur and
Ryan seems to be the only one that reduces to a standard Cox model when
interval-censoring reduces to right-censoring. Finally, the approach of Pan
extends the iterative convex minorant method mentioned in Section 5.1.1 into
the context of the PH model. His approach is also implemented as R package
intcox.

Finally, methods that smoothly estimate ℏ0 are a trade-off between para-
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metric modelling that allows for a straightforward maximum likelihood es-
timation of the parameters and semi-parametric models with a completely
unspecified baseline hazard ℏ0. Kooperberg and Clarkson (1997) suggest to
use regression splines to express the logarithm of ℏ0, while Joly et al. (1998)
employ monotone splines (Ramsay, 1988) directly for the baseline hazard ℏ0.
Betensky et al. (1999) use local likelihood smoothing to model the baseline
hazard, firstly without covariates. Extension of their method into the regres-
sion setting is given by Betensky et al. (2002). Recently, Cai and Betensky
(2003) propose to use penalized linear spline for the baseline hazard function.

A nice feature of these methods is that predictive survival and hazard curves
are directly available and moreover, they are smooth rather than step-wise
as in the case of semi-parametric estimation. The software for the approach
of Kooperberg and Clarkson (1997) is included in the previously mentioned
R package logspline or S-plus library splinelib.

Doubly-interval-censored data

One of the first approaches to the PH model with doubly-interval-censored
data is given by Kim, De Gruttola, and Lagakos (1993) who, under the as-
sumption of the grouped data, directly generalize the one-sample results of
De Gruttola and Lagakos (1989). However, their method is highly compu-
tationally intensive. For the situation when only the onset time is interval-
censored however the failure time is only right-censored or exactly observed,
alternatives are offered by Goggins, Finkelstein, and Zaslavsky (1999); Sun,
Liao, and Pagano (1999); Pan (2001).

5.1.4 Accelerated failure time model

A parametric AFT model estimated using the maximum likelihood method
can be used with interval-censored data as well. It is also implemented in ma-
jor statistical packages (functions survreg in R and SurvReg in Splus, pro-
cedure LIFEREG in SAS). On the other hand, semi-parametric methods which
are not straightforward even with right-censored data are only with consider-
able difficulties extended to the interval-censored data, see Rabinowitz, Tsi-
atis, and Aragon (1995); Betensky, Rabinowitz, and Tsiatis (2001). Though,
both approaches are practically applicable only with low-dimensional covari-
ate vectors x and as well as for right-censored data there exists no non-
parametric method to estimate the baseline survival distribution implying
that the semi-parametric procedures cannot be used when prediction is of
interest.
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More promising alternatives are the methods that make use of multiple impu-
tation and/or smoothing. Indeed, approaches of Pan and Kooperberg (1999);
Pan and Louis (2000); Pan and Connett (2001) introduced in Sections 3.4.2
and 3.4.3 could relatively easily be extended to handle also (multivariate)
interval-censored or even doubly-interval-censored data. However, it can be
computationally demanding, especially with doubly-interval-censored data,
to perform integration of the form (4.4) in the optimization of the likelihood.

5.1.5 Interval-censored covariates

Up to now, we concentrated on the problem of interval-censored response.
In the regression context, it is however possible in practice, that we have to
face the problem of interval-censored covariate. Such problem is considered,
for example, by Gómez, Espinal, and Lagakos (2003) who studied, in the
framework of an HIV/AIDS clinical trial, the association between waiting
time between indinavir failure and enrolment (covariate) and subsequent viral
load (response).

However, we will not consider problems of this type in this thesis. Recent
developments in this field can be found, e.g., in Topp and Gómez (2004);
Langohr, Gómez, and Muga (2004); Calle and Gómez (2005).

5.2 Bayesian proportional hazards model: An illus-
tration

For an extensive overview of the Bayesian methods for the proportional haz-
ards model we refer the reader to the book of Ibrahim, Chen, and Sinha
(2001). Here, only the analysis based on the PH model, published as Komárek
et al. (2005), will be presented and that of doubly-interval-censored data from
the Signal Tandmobielr study. Actually, the main purpose of this section is
to illustrate typical features of a Bayesian analysis and show how it can be
used to answer rather complex questions.

In Section 5.2.1, we formulate the research question and outline the problems
related to this question. Section 5.2.2 presents a frequentist Cox’s PH regres-
sion model using midpoints of the observed intervals as if they were exact
observations, to compare our Bayesian approach to a more commonly used,
however incorrect, approach. In Section 5.2.3, the Bayesian model suggested
by Härkänen, Virtanen, and Arjas (2000) and modified for our purposes is
explained and results are presented in Section 5.2.4. We finalize this part by
a discussion.
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5.2.1 Signal Tandmobielr study: Research question and
related data characteristics

In this section we will tackle the following research question: Does fluoride-
intake at a young age have a protective effect on caries in permanent teeth?
Our analyses will be limited to caries experience of the four permanent first
molars (teeth number 16, 26, 36, 46 in Figure 1.1).

The data suggest that the use of fluoride reduces caries experience in pri-
mary teeth, see Vanobbergen et al. (2001) and that fluoride-intake delays the
emergence of the permanent teeth, see Leroy et al. (2003a). The latter result
raises the question whether the fluoride-intake only reduces the time at risk
or whether it has also a direct protective effect on caries experience.

Unfortunately, fluoride-intake in children cannot be measured accurately. In-
deed, fluoride-intake can come from: (1) fluoride supplements (systemic),
(2) accidental ingestion of toothpaste or (3) tap water. Further, the intake
from these sources can be recorded only crudely. Therefore it was decided
to measure fluoride-intake by the degree of fluorosis on some reference teeth.
Fluorosis is the most common side-effect of fluoride-intake and appears as
white spots on the enamel of teeth. For this analysis, a child was considered
fluoride-positive (covariate fluor = 1) if there were white spots on at least two
permanent maxillary incisors during the fourth year of the study or during
both the fifth and sixth year of the study.

The prevalence of fluorosis was relatively low (480 children, 10.8%). In our
analysis, 480 fluorosis children and 960 randomly selected fluorosis-free chil-
dren are included. Case-control subsampling was done to reduce computation
time. To check that it did not destroy the stratification, we constructed a
5 × 3 × 2 contingency table with factors province, school system and whether
the child is in the subsample or not (subsample). A classical p-value of 0.13
was obtained for the significance of the interaction of the third factor with
the other two using a likelihood-ratio test in a log-linear model, implying that
the stratification is similar in the used and the discarded subsamples.

The prevalence of caries experience at the age of 12 was negligible (at most
1.4%) for all permanent teeth except for the first molars (teeth used in the
analysis). For these teeth the prevalence was 25.8% in children with fluorosis
compared to 29.4% in fluorosis-free children, with prevalence of 23.3% and
27.7% for boys, and 27.9% and 31.2% for girls, respectively. Thus, at first
sight the impact of fluoride-intake seems to be minor. However, since the
emergence of permanent teeth might be delayed by fluoride-intake, evaluating
the impact of fluoride-intake should take into account the time at risk for
caries. Hence, in our analysis the response will be the time between emergence
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and the onset of caries development. Remember that both tooth emergence
and onset of caries development are interval-censored, implying a doubly-
interval-censored response. See Figure 2.1 for a graphical illustration of a
possible evolution of a particular tooth.

At the onset of the study about 86% of the permanent first molars had already
emerged. The severity of this censoring will affect the efficiency with which
the effect of fluoride-intake can be estimated. We tried two strategies to
improve the efficiency of our estimation procedure. Firstly, we included in
our analysis the emergence times of teeth 14, 24, 34, 44, 12, 22, 33, 43 all
of which had emerged in more than 60% of cases during the course of the
study. By incorporating information on these teeth and using the association
between teeth of the same subject (via the concept of “the birth time of
dentition”, see next section), it was attempted to better estimate the true
emergence time of the permanent first molars. Secondly, emergence times
from a Finnish longitudinal data set (Virtanen, 2001), involving 235 boys
and 223 girls born in 1980–1981 with follow-up from 6 to 18 years, were
added to our Flemish data. For these Finnish data almost all 28 permanent
teeth emerged during the study period.

Our research question is not uncommon in dentistry, but cannot be addressed
within any classical statistical package. For our analysis, we have used
the software package BITE (Härkänen, 2003), based on a semi-parametric
Bayesian survival model developed by Härkänen et al. (2000).

5.2.2 Proportional hazards modelling using midpoints

A standard frequentist Cox’s PH model introduced in Section 3.1 could be
applied, replacing interval-censored observations by the midpoints of the ob-
served intervals and treating the resulting data as right-censored observations.
In this way, we analyzed time to caries development for the four permanent
first molars. For our analysis, the left-censored emergence times were first
assumed to be interval-censored with a lower limit for emergence of 5 years,
which is practically the youngest age for the emergence of these teeth (Nanda,
1960). Possible dependencies between the four teeth of the same child can be
taken into account, for example by inclusion of a gamma–frailty component
in the PH model as explained in Section 3.4.1.

Based on preliminary Bayesian modelling, we do not distinguish between
opposite teeth in the same jaw and assume so called horizontal symmetry.
However, we do make a distinction between maxillary (upper) and mandibu-
lar (lower) teeth and also between teeth in different positions (of a quadrant)
in the mouth.



5.2. BAYESIAN PROPORTIONAL HAZARDS MODEL: AN ILLUSTRATION 49

Table 5.2: Signal Tandmobielr study. Naive PH models for the effect of
fluorosis on caries on permanent first molars. Hazard ratios (95% confidence
intervals (CI)) between a fluorosis and fluorosis-free group of children while
controlling for gender and jaw.

Model WITHOUT frailties Model WITH frailties

Group Estimate 95% CI Estimate 95% CI

Boys, maxilla 0.787 (0.541, 1.032) 0.704 (0.204, 1.204)

Boys, mandible 0.733 (0.532, 0.934) 0.613 (0.231, 0.995)

Girls, maxilla 0.871 (0.698, 1.044) 0.892 (0.610, 1.174)

Girls, mandible 0.812 (0.670, 0.953) 0.776 (0.559, 0.993)

For comparison purposes, we present the same PH model as the one shown in
Section 5.2.3 but analyzed by Bayesian methods. Hence, the hazard for the
time to caries of the lth tooth of the ith child depends on the tooth position,
fluor and gender of the child (0 = boy, 1 = girl). More specifically:

ℏ(t|toothl, genderi, fluori) = ℏ0(t) · Zi · exp(β′xi,l), (5.1)

i = 1, . . . , N, l = 16, 26, 36, 46, where ℏ0(t) is an unspecified baseline haz-
ard function, β = (β1, . . . , β5)

′, and xi,l = (fluori, genderi, toothl, fluori ×
genderi, fluori × toothl)

′. The covariate “tooth” is a dummy variable that
distinguishes teeth on different positions in the mouth (apart from horizontal
symmetry). The term Zi is either one, corresponding to a model without
frailties, or a gamma distributed frailty term.

Estimates of hazard ratios between the fluorosis and fluorosis-free group con-
trolling for gender and jaw are shown in Table 5.2. As seen, incorrectly
ignoring dependencies between the responses of one child by using a model
without frailties artificially decreases the size of the confidence interval. Al-
though both models conclude that the effect of fluorosis on the development
of caries on the permanent first molars is at the borderline of 5% signifi-
cance (Table 5.2), the results are not reliable. As pointed on page 39, the
correctness of the midpoint imputation depends strongly on the underlying
distribution of the event times. For that reason, a more sophisticated analysis
is needed.
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5.2.3 The Bayesian survival model for doubly-interval-cen-
sored data

The non-parametric Bayesian intensity model of Härkänen et al. (2000) pro-
vides a flexible tool for analyzing multivariate survival data. Further, a soft-
ware package written in C, called BITE and downloadable from

http://www.rni.helsinki.fi/~tth

together with scripts used to perform all analyses presented here, makes the
analysis feasible in practice.

Model for emergence

Let Ui,l be the (unknown) age at which tooth l of child i emerged. The hazard
for emergence of tooth l of the ith child at time t is

λ
(e)
i,l (t) = ℏ

(e)(t− ηi|toothl, genderi) × I[ηi < t ≤ Ui,l]. (5.2)

The dependence between emergence times of one child is accounted for by
using a subject-specific variable ηi called birth time of dentition. This is
a latent variable which represents the common time marking the onset of
the tooth eruption process and hereby “explains” the positive correlation
between eruption times Ui,l within a subject. Note that ηi is always less than
the first emergence time of the permanent teeth. The intensity of emergence
for a particular child is zero before that time, expressed by the indicator
I[ηi < t ≤ Ui,l]. The hazard function ℏ

(e)(·|toothl, genderi) is defined as
piece-wise constant for estimation purposes.

Model for caries experience

Let Vi,l be the age at which the lth tooth of child i developed caries. The
hazard for the caries process is given by

λ
(c)
i,l (t) = Zi × ℏ

(c)(t− Ui,l|toothl, genderi, fluori) × I[Ui,l < t ≤ Vi,l], (5.3)

where the variable Zi is an unknown subject-specific frailty coefficient mod-
ulating the hazard function. Again, we assume in (5.3) that h is piece-wise
constant. We call the difference Vi,l − Ui,l the time-to-caries.

The covariate “fluor” will be used in two ways. Firstly, for each combination
of values of fluor, gender and tooth a piece-wise constant hazard function is
specified and fitted. Secondly, the term ℏ

(c)(·|toothl, genderi, fluori) in (5.3)
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is replaced by ℏ
(c)
0 (·)× exp(β′xi,l), with β and xi,l being the same as in (5.1),

thus assuming a PH model for caries experience whilst retaining a piece-wise

constant baseline hazard function ℏ
(c)
0 (·).

Remarks

Our statistical model will involve the above two measurement models. Hence
the possible dependencies among times of interest are taken into account
by involving two types of subject-specific parameters, ηi and Zi. The first
subject-specific parameter ηi is included in the model for the emergence and
will shift the hazard function in time, whereas the frailty Zi recognizes that
the teeth of one child can be more sensitive to caries than the corresponding
teeth of another child, reflecting different dietary behavior, brushing habits,
etc.

Priors for baseline hazard functions

In BITE the working assumption is that hazard functions are piece-wise con-
stant. Further, for the emergence hazard functions ℏ

(e)(·|toothl, genderi) the
first level of the piece-wise constant and the increment levels are assigned
gamma prior distributions. This will ensure a priori an increasing hazard
function for emergence. In the case of caries experience, the first level of the
piece-wise constant hazard function ℏ

(c)(·|toothl, genderi, fluori) in the non-

parametric model and ℏ
(c)
0 (·) in the PH model, say h0, is assigned a gamma

prior distribution. Further, the level hm of the mth interval has, conditional
on the previous levels h0, . . . , hm−1, a Gamma(α, α/hm−1) prior distribution.
This gives a priori E[hm|hm−1, . . . , h0] = hm−1 and assures that there is no
built-in prior assumption of trend in the hazard rate. Finally, the prior for the
jump points of each piece-wise constant function is a homogeneous Poisson
process, as suggested by Arjas and Gasbarra (1994). Because jump points
are assumed to be random and not fixed, the posterior predictive hazard
functions will be smooth, rather than piece-wise constant.

Priors for the random effect terms

The prior distribution for the birth time of dentition ηi illustrates how we
have combined the Flemish data and the Finnish data, and how the timing
of emergence of the Finnish data is included in our analysis. We assume that
the shapes of the emergence hazard functions f for Finland and Flanders are
the same, but we do allow for a shift in emergence times by assuming different
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means for the birth time of dentition in the two countries. More precisely,
the prior distribution of ηi is assumed normal N (ξ0, τ

−2) for a Finnish child
and normal N (ξ1, τ

−2) for a Flemish child.

The Bayesian approach allows us to include the dentist’s knowledge on the
problem at hand by assigning to the parameters ξ0 and ξ1 independent normal
prior distributions with mean 5.2 years and standard deviation 1 year. Both
the normal distribution as well as the choice of the prior means and standard
deviation of the hyperparameters ξ0 and ξ1 are motivated by the results found
in the literature on the earliest emergence of permanent teeth, see Nanda
(1960) or more recently Parner et al. (2001). This reflects the dentist’s belief
that permanent teeth on average emerge slightly after 5 years of age. The
parameter τ2 is assigned a Gamma(2, 2) prior distribution.

The individual frailties Zi in the model for caries are a priori assumed to be
conditional on the hyper-parameter φ, independent and identically gamma
distributed with both shape and inverse scale equal to that hyper-parameter.
The hyper-parameter itself is then given a Gamma(2, 2) prior distribution.
Sensitivity of the results with respect to the choice of parameters for priors
of hyperparameters ξ0, ξ1, τ and φ will be discussed in Section 5.2.4.

Treatment of censored data

Left- and interval-censoring are treated by Bayesian data augmentation in-
troduced in Section 4.3. Additionally, the left-censored emergence times of all
teeth are changed into interval-censored emergence times with a lower limit
equal to 4 years, implying that less internal information is used here than
previously with the frequentist PH model where the limit was 5 years. In
the case that both emergence and caries development were observed within
one observational interval we force sampled values of the MCMC to satisfy
Vi,l > Ui,l.

Bayes inference on model components

The posterior distributions based on the model with prior assumptions de-
scribed in the previous paragraphs are minor modifications of those derived in
Härkänen et al. (2000). Our Bayesian model is complex and requires the use
of Markov Chain Monte Carlo sampling techniques outlined in Section 4.5.
The software package BITE (Härkänen, 2003), based on the Metropolis-
Hastings algorithm (Metropolis et al., 1953; Hastings, 1970), was used to
sample from the posterior distributions. Further, BITE employs the re-
versible jump approach of Green (1995) to sample piece-wise constant hazard
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functions. We carried out two runs, each with 20 000 iterations of burn-in
followed by 14 000 iterations with a 1:4 thinning to obtain a sample from the
posterior distribution. We used the Gelman and Rubin (1992) test to check
for convergence.

5.2.4 Results

A non-parametric model with Flemish and Finnish data

To evaluate the effect of fluoride-intake on the development of caries on the
permanent first molars we have calculated the posterior expectations of haz-
ard ratios

ℏ
(c)(t|tooth, gender,fluorosis)

ℏ
(c)(t|tooth, gender,fluorosis-free)

.

These hazard ratios together with their 95% equal tail point-wise credible
intervals can be found in Figure 5.2. The PH assumption with respect to
covariate fluor seems to be satisfied since credible intervals in all cases cover
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Figure 5.2: Signal Tandmobielr study. Bayesian non-parametric model based
on Flemish and Finnish Data. Posterior means of the hazard ratios between
the fluorosis groups (solid line), 95% point-wise equal tail probability region
(dashed line).
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Table 5.3: Signal Tandmobielr study. Bayesian PH models for the effect of
fluorosis on caries on permanent first molars. Hazard ratios (95% equal-tail
credible intervals (CI)) between fluorosis groups while controlling for gender
and jaw for models fitted using both Flemish and Finnish data and Flemish
data only.

Flemish and Finnish data Flemish data only

Posterior Posterior

Group mean 95% CI mean 95% CI

Boys, maxilla 0.674 (0.492, 1.010) 0.651 (0.463, 0.960)

Boys, mandible 0.572 (0.414, 0.850) 0.549 (0.386, 0.779)

Girls, maxilla 0.991 (0.721, 1.364) 1.002 (0.698, 1.333)

Girls, mandible 0.840 (0.608, 1.136) 0.844 (0.602, 1.135)

a horizontal line. In three cases, this horizontal line is close to the dotted-
dashed line y = 1 implying no effect of fluoride-intake on caries development.
A positive effect of fluoride intake seems to be present only for mandibular
permanent first molars in boys. There are also no deviations from the PH
assumption with respect to gender and tooth (plots are not shown). This
allowed us to assume for the caries model a PH effect of the three covariates,
possibly including some interaction terms. By this semi-parametric assump-
tion it was hoped to see more clearly the effect of fluoride-intake on caries
experience.

A proportional hazards model with Flemish and Finnish data

For reasons stated in the previous paragraph, we have fitted a model where
the caries hazard function (5.3) was changed into

λ
(c)
i,l (t) = Zi × ℏ

(c)
0 (t) × exp(β′xi,l) × I[Ui,l < t ≤ Vi,l], (5.4)

where xi,l and β are the same as in (5.1). The additional β-parameters were
given a N (0, 102) prior. However, the hazard function for emergence is still
defined by (5.2). Posterior expectations of the hazard ratios between the
fluorosis groups while controlling for the other covariates are given in the left
part of Table 5.3.

The PH analysis for caries gives similar conclusions to the previous non-
parametric analysis. A positive effect of fluoride-intake is now seen for the
mandibular permanent first molars of boys and has a borderline positive
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Table 5.4: Signal Tandmobielr study. Bayesian models with Flemish and
Finnish Data. Posterior means and 95% equal-tail credible intervals for the
hyperparameters µ0 – conditional expectation of ηi for Finland, µ1 – condi-
tional expectation of ηi for Flanders, τ−2 – conditional variance of ηi, φ

−1 –
conditional variance of frailties Zi (top of the Table). Means of the posterior
predictive distributions and 95% equal tail posterior predictive intervals for
the birth time of dentition ηi in Finland and Flanders, respectively, and for
the frailty term Zi (bottom of the Table).

Posterior mean (95% credible interval)

Hyperparameter Non-parametric model Cox regression model

µ0 5.47 (5.40, 5.54) 5.45 (5.38, 5.52)

µ1 5.69 (5.64, 5.73) 5.68 (5.64, 5.73)

τ−2 0.48 (0.45, 0.52) 0.49 (0.45, 0.52)

φ−1 3.85 (3.57, 4.17) 3.94 (3.58, 4.28)

Posterior predictive mean (95% posterior predictive interval)

Parameter Non-parametric model Cox regression model

ηi (Finland) 5.48 (4.12, 6.79) 5.45 (4.05, 6.84)

ηi (Flanders) 5.69 (4.33, 7.09) 5.69 (4.34, 7.01)

Zi 1.02 (10−6, 6.90) 0.95 (10−6, 6.45)

effect for the maxillary permanent first molars of boys. However, no effect of
fluoride intake was seen for girls.

Remark concerning hyperparameters

The posterior expectations and 95% equal-tail credible intervals of the hyper-
parameters related to the birth times of dentition ηi and frailties Zi are given
in the upper part of Table 5.4. The non-parametric model and PH model for
caries give similar results.

We now state our conclusions concerning the emergence process in Flanders
and Finland. The emergence process starts slightly earlier in Finland (by ap-
prox. 0.2 years) than in Flanders, as is seen by the difference in the posterior
expectations of the means of birth time of dentition. The MCMC output for
the hyperparameters can also be used to estimate properties of the predic-
tive distributions of birth time of dentition and frailties. Their means and
95% equal-tail posterior predictive intervals are shown in the bottom part of
Table 5.4, which shows that the average of Finnish birth time of dentition is
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close to 5.5 years of age, slightly higher than the prior expectation but close
to the value obtained by Härkänen et al. (2000) on another Finnish data set.
The 95% posterior predictive intervals show that the actual moment of birth
time of dentition varies between about 4 and 7 years of age. Finally, the 95%
posterior predictive interval of Zi shows a clear heterogeneity in the frailty
for caries experience.

Sensitivity analysis

Firstly, the model (5.4) was fitted using Flemish data only, to see how influ-
ential was inclusion of the Finnish data. As seen in Table 5.3, the hazard
ratios changed only slightly. The same was true for the remaining parameters.
Moreover, the Finnish data improved only slightly the precision with which
the emergence of the first permanent molars was estimated. This is seen in
Figure 5.3 which shows a comparison of 95% pointwise equal tail credible re-
gions for the emergence hazard functions of the permanent first molars based
on the analysis with both data sets and the Flemish data set only. Though,

Boy, maxilla 6 Boy, mandible 6

Girl, maxilla 6 Girl, mandible 6

0

0

0

0

0

0

0

0

22

22

44

44

66

66

88

88

1
0

10

1
0

10

1
0

10

1
0

10

1212

1212

55

55

1
5

1
5

1
5

1
5

Time since birth time of dentition (years)Time since birth time of dentition (years)

Time since birth time of dentition (years)Time since birth time of dentition (years)

H
a
za

rd
fu

n
ct

io
n

H
a
za

rd
fu

n
ct

io
n

H
a
za

rd
fu

n
ct

io
n

H
a
za

rd
fu

n
ct

io
n

Figure 5.3: Signal Tandmobielr study. Bayesian PH models. Posterior
means of the emergence hazard functions ℏ

(e)(·|tooth, gender) for the per-
manent first molars together with their 95% pointwise equal tail probability
regions. Comparison of the posterior mean with (solid line) and without
additional Finnish data (dashed line), respectively together with 95% prob.
regions (dotted-dashed line, dotted line respectively).
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the credible regions are somewhat narrower when both databases are used.

To see how the behavior of the parameter estimates changes when informative
priors for the hyperparameters are modified we have fitted the proportional
hazards model with Flemish data only, using different choices of priors for
the hyperparameters. Specifically, we used normal distributions N (3, 2),
N (4, 1), N (5.2, 1), N (6, 1) as a priors for the expectation ξ0 of birth time of
dentition ηi. The standard deviation of the normal prior with mean 3 years
was increased so as to cover realistic emergence times of permanent teeth.
We used Gamma(0.1, 0.1), Gamma(2, 2), and Gamma(10, 10) distributions
as priors for the precision τ of the variance of the birth time of dentition and
for the precision φ of frailties Zi. All other parameters were given flat priors
and there is thus no reason to modify them.

Posterior means and 95% equal-tail credible intervals for hazard ratios be-
tween the fluorosis and fluorosis-free groups for different choices of the prior
distributions are shown in Figure 5.4, which shows that the influence of the
choice of the prior distribution is not strong.
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Figure 5.4: Sensitivity Analysis. Evolution of posterior mean and 95% cred-
ible intervals for the hazard ratios between the fluorosis and fluorosis-free
groups with changing prior distributions for hyperparameters τ, φ and ξ0.
Prior patters number 1, 5 and 9 use N (3, 2) prior for ξ0, patterns number 2,
6 and 10 use N (4, 1) prior for ξ0, patterns number 3, 7 and 11 use N (5.2, 1)
prior for ξ0 and patterns number 4, 8 and 12 use N (6, 1) prior for ξ0.
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We argue that our other assumptions are not strong. Indeed, we assume that
the distributions of the birth time of dentition differ between Finnish and
Flemish populations only in their means. Moreover, as indicated above, the
Finnish data had only a slight impact on the results for the Flemish data.
Further, the baseline hazards were estimated non-parametrically. Finally,
different choices for the priors of the hyperparameters led to similar results
as discussed above.

5.2.5 Discussion

The model presented here allows for the analysis of survival data in dental
research where (doubly-)interval-censored data and dependencies between ob-
servations (e.g. between teeth in the same mouth) are common. Our specific
application is to a typical dental research question, i.e. whether fluoride-
intake has a protective effect for caries. The results show that the protective
effect of fluoride-ingestion is not convincing. We observed a positive effect
only for mandibular teeth of boys. This agrees with current guidelines for
the use of fluoride in caries prevention, where only the topical application
(e.g. fluoride in tooth paste) is considered to be essential (Oulis, Raadal, and
Martens, 2000).

We acknowledge that our analyses could have been more refined if the amount
of left- and right censoring was less, for instance if the study had started
approximately one year earlier and ended in high school. This would make our
analyses less dependent on prior assumptions. Yet these prior assumptions
are simply a reflection of basic dental knowledge and it would be a waste
not to use them. Moreover, to our knowledge the Signal Tandmobielr study
is possibly the largest longitudinal study executed with such great detail on
dental aspects.

This section has illustrated the usefulness of the Bayesian approach. Firstly,
it was possible to incorporate prior information and to relax the paramet-
ric assumptions often made in survival analysis with interval-censored data.
Secondly, even rather complex models could be specified for doubly-interval-
censored data. However, we have to admit that this approach is computa-
tionally demanding. On a Pentium IV 2 GHz PC with 512 MB RAM one
BITE run took about 5 days to converge. However, in an epidemiological
analysis where there is correlation among the subjects, where the response
and/or the covariates are (right-, left- or interval-) censored and when we
wish to avoid parametric assumptions we doubt any classical approach will
suffice.
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5.3 Bayesian accelerated failure time model

Most contributions to the AFT model in the Bayesian literature work ex-
plicitely only with right-censored data. However, using the idea of Bayesian
data augmentation (Section 4.3) they can all be quite easily extended to
handle also interval-censored data. Additionally, actually all papers dealing
with the Bayesian AFT model use a Bayesian non-parametric approach (see
Walker et al., 1999 or the book Ghosh and Ramamoorthi, 2003) for the dis-
tributional parts of the AFT model. In this section, we give a brief overview.

Firstly, Christensen and Johnson (1988) and Johnson and Christensen (1989)
consider the basic univariate AFT model (3.2) and use a Dirichlet process
prior (Ferguson, 1973, 1974) for the underlying baseline survival distribution,
i.e. the distribution of exp(ε). In the former paper, only a semi-Bayesian ap-
proach is used, whereas the latter paper presents a fully Bayesian analysis
however, with uncensored data only. The authors state that “The analysis
becomes totally intractable when there are censored observations.” Addi-
tionally, as discussed in Johnson and Christensen (1989), difficulties might
arise due to the discrete nature of a Dirichlet process (the baseline survival
distribution is discrete with probability one if it is assigned the Dirichlet pro-
cess prior). An improvement is presented by Kuo and Mallick (1997) who
consider a Dirichlet processes mixture (Lo, 1984) for either ε or exp(ε).

Subsequently, Walker and Mallick (1999) suggest to use a diffuse, finite Pólya
tree prior distribution described in Lavine (1992, 1994) and Mauldin, Sud-
derth, and Williams (1992) for the error term ε in the AFT model (3.2). The
main advantages of the Pólya tree prior distribution are (1) it can assign
probability one to the set of continuous distribution, (2) it is easy to con-
straint the resulting error term ε to have the median (or any other quantile)
rather than the mean equal to zero (or any other fixed number) such that
also the regression quantiles can be modelled, of which the median regression
is the most important case. Additionally, Walker and Mallick (1999) break
down the i.i.d. assumption of the error terms and assume also the population
averaged AFT model (3.6).

Successive approaches to the Bayesian non-parametric AFT concentrate on
the median regression. Namely, Kottas and Gelfand (2001) suggest to use the
Dirichlet process mixture of either unimodal parametric densities or unimodal
step functions for the distribution of the error term ε in the basic AFT
model (3.2). Another median regression AFT model is given by Hanson and
Johnson (2002) who use a mixture of Pólya trees centered about a standard,
parametric family of probability distributions as a prior for the error term ε.

Finally, Hanson and Johnson (2004) consider a mixture of Dirichlet processes
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introduced by Antoniak (1974) (which is distinct from the Dirichlet process
mixture used by Kuo and Mallick, 1997 or Kottas and Gelfand, 2001) as the
prior for the error term ε in the basic AFT model (3.2). They also consider
explicitely the interval-censored data.

The area of multivariate survival data modelled by the mean of the Bayesian
AFT model seems to be almost unexplored. Except the work Walker and
Mallick (1999) we are not aware of any other contribution. Moreover, the
structured modelling of dependencies by the mean of the cluster specific AFT
model introduced in Section 3.4.3 seems to be absent at all in the literature.

5.4 Concluding remarks

In this chapter and in Chapter 3 we came across with two fundamental re-
gression models for the survival data. We mentioned that the most frequently
used PH model has several drawbacks so that in many practical situations
it is worthy to consider alternatives of which the AFT model is an appeal-
ing one. We pointed out that the AFT model whose distributional parts
are parametrically specified can relatively easily be estimated even using the
method of maximum-likelihood. However, especially for prediction purposes,
it is important to avoid incorrectly specified parametric models since due
to the censoring any parametric assumption is very difficult to check with
survival data. For that reason, one aims for methods that leave the distri-
butional parts of the model either completely unspecified or specify them in
a flexible way. For the PH model, the partial likelihood due Cox (1975) is
available for this purpose. Unfortunately, no similar concept exists for the
AFT model. Several frequentist semi-parametric methods were reviewed in
Sections 3.2, 3.4.2, 3.4.3, and 5.1.4. Nevertheless, we saw that, especially
with interval censoring, or let alone doubly interval censoring, most of them
become computationally intractable in practical situations. Moreover, with
multivariate data, the situation becomes even more complex.

On the other hand, the Bayesian approach together with data augmenta-
tion offer an appealing alternative allowing to formulate and also estimate
realistically complex models even with multivariate and/or (doubly-)interval-
censored data. We have illustrated this issue on the Bayesian semi-parametric
PH model in Section 5.2. In Section 5.3, we have subsequently reviewed exist-
ing semi-parametric approaches to the AFT model. However, we mentioned
that most of them were primarily developed to handle only univariate data.
Nevertheless, many survival problems lead to the analysis of the multivariate
data.



Concluding Remarks to Part I and
Introduction to Part II

We have introduced two versions of the AFT model - the population-averaged
and the cluster-specific model that can be used to analyze the multivariate
survival data. We have also mentioned that, especially for the cluster-specific
AFT model (3.7), with unspecified distributional parts of the model, there is
almost no methodology developed in the literature.

In this thesis, we aim to present the methods to handle both the population-
averaged AFT model (3.6) and the cluster-specific AFT model (3.7) under
the presence of multivariate and/or (doubly-)interval-censored data. At the
same time, we want to minimize the parametric assumptions concerning the
distributional parts of the model as much as possible. One possibility to
reach this target is to use smoothing methods for the unknown distributional
parts. In the literature, more often the baseline hazard function is smoothed
(Section 5.1.3: Kooperberg and Clarkson, 1997; Joly et al., 1998; Betensky
et al., 1999; Section 5.2: Härkänen et al., 2000; Komárek et al., 2005).

However, with the AFT model, it is quite natural to use a flexible smooth
expression for the density, either of the error term ε and/or the random effects
b. For example, for the bivariate population-averaged AFT model, Pan and
Kooperberg (1999) use this idea in combination with the multiple imputation
(see Section 3.4.2).

In principal, the methods presented in Part II of this thesis will be built on
the same basis as that of Pan and Kooperberg (1999). Whereas they express
the logarithm of the unknown density using the splines and use numerical
integration to evaluate and optimize the likelihood we will model directly the
density using a linear combination of suitable basis parametric functions and
simplify thus the likelihood evaluation (see Section 6.2.4). In contrast to Pan
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and Kooperberg (1999) we also exploit another strategy to determine the
number of the basis functions. Whereas they choose the optimal number of
basis functions using a criterion like AIC (Akaike, 1974) we will either take
an overspecified number of the basis functions and prevent identifiability
problems and overfitting the data using a penalty term (Chapters 7, 9, 10)
or estimate the number of the basis functions simultaneously with the other
model parameters (Chapter 8).

Further, we will show that for univariate survival data we are able, even un-
der the interval-censoring to use maximum-likelihood based methods without
the need for multiple imputation (Chapter 7). With the introduction of mul-
tivariate and doubly-interval-censored data we avoid multiple imputation by
switching to the Bayesian approach (Chapters 8, 9, 10) which is more advan-
tageous in such situation as was explained in Chapter 4.



Part II

Accelerated Failure Time
Models with Flexible

Distributional Assumptions





Chapter 6
Mixtures as Flexible Models for
Unknown Distributions

We aim to develop the accelerated failure time models with flexibly specified
distributional parts. We have already sketched that we wish to use flexible,
yet smooth expressions for densities involved in the specification of these
distributional parts. In this chapter, let g(y) (g(y)) denote an unknown
density of some generic univariate random variable Y (random vector Y ). We
outline two similar, though conceptually different, methods to approximate
g(y) or g(y) in a flexible and smooth way, namely

1. The classical mixture approach;

2. An approach based on penalized smoothing.

We introduce the classical mixture approach in Section 6.1. In Section 6.2, the
penalized smoothing approach exploiting B-splines will be given. In Section
6.3, we replace the B-splines by normal densities and introduce the penalized
normal mixture. Finally, we compare the classical and penalized normal
mixture in Section 6.4.

6.1 Classical normal mixture

6.1.1 From general finite mixture to normal mixture

To model unknown distributional shapes finite mixture distributions have
been advocated by, e.g., Titterington, Smith, and Makov (1985, Section 2.2)
as appealing semi-parametric structures. Using a finite mixture the density

65



66 CHAPTER 6. MIXTURES AS FLEXIBLE MODELS

g(y) is modelled in the following way:

g(y) = g(y |θ) =

K∑

j=1

wjgj(y), (6.1)

where gj , j = 1, . . . ,K are known densities and θ = (K, w1, . . . , wK)′ is
the vector of unknown parameters. Namely, K is the number of mixture
components, and wj , j = 1, . . . ,K are unknown weights satisfying wj > 0,
j = 1, . . . ,K and

∑
j wj = 1. In general, the number of mixture components,

K, is assumed unknown, however, due to difficulties outlined further in the
text, estimation of K is often separated from estimation of the remaining
parameters, especially when using maximum-likelihood based methods.

Further, it is often assumed that the mixture components, gj, j = 1, . . . ,K
have a common parametric form g̃ and each mixture component depends on
an unknown vector of parameters ηj, j = 1, . . . ,K. Expression (6.1) changes
then into

g(y) = g(y |θ) =
K∑

j=1

wj g̃(y |ηj), (6.2)

where θ = (K, w1, . . . , wK , η
′
1, . . . ,η

′
K)′. A frequently used particular form

of (6.2) is a normal mixture where g̃(y |ηj) equals ϕ(y |µj , Σj), a density of
the (multivariate) normal distribution with mean µj and covariance matrix
Σj . For instance, Verbeke and Lesaffre (1996) use a mixture of multivariate
normal distributions with Σj = Σ for all j to model a distribution of the
random effects in the linear mixed model.

In this thesis, we use the classical normal mixture only in a univariate context,
i.e. to express an unknown univariate density g(y) as

g(y) = g(y |θ) =

K∑

j=1

wjϕ(y |µj, σ
2
j ). (6.3)

In this case, the vector θ equals

θ = (K, w1, . . . , wK , µ1, . . . , µK , σ
2
1, . . . , σ

2
K)′. (6.4)

Figure 6.1 illustrates how two- or four-component, even homoscedastic, nor-
mal mixtures can be used to obtain densities of different shapes.

6.1.2 Estimation of mixture parameters

Let θ be a vector given by the expression (6.4) and containing all unknown
parameters of model (6.3). Suppose first that an i.i.d. sample y1, . . . , yn
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from a density g(y |θ) is available to estimate the unknown parameter vec-
tor θ. Maximum-likelihood based methods pose two main difficulties when
estimating θ:

1. When K, the number of mixture components is unknown, one of the
basic regularity conditions for the validity of the classical maximum-
likelihood theory is violated. Namely, the parameter space does not
have a fixed dimension. Indeed, the number of unknowns (number of
unknown mixture weights, means and variances) is one of the unknowns.
See, e.g., Titterington et al. (1985, Section 1.2.2) for a detailed discus-
sion of this difficulty.

2. For a fixed K ≥ 2, the likelihood becomes unbounded resulting in non-
existence of the maximum-likelihood estimate when one of the mixture
means, say µ1, is equal to one of the observations yi, i = 1, . . . , n and
when the corresponding mixture variance, σ2

1 , converges to zero. See,
e.g., McLachlan and Basford (1988, Section 2.1) for more details.

In classical frequentist approach, the first problem is tackled by consecutive
fitting of several models with different numbers of mixture components and
choosing the best one using some criterion, e.g., Akaike’s information cri-
terion (Akaike, 1974). To avoid the second problem, homoscedastic normal
mixtures, i.e. with σ2

j = σ2 for all j are used leading to a bounded likelihood.

  

  

µ1µ1

µ1µ1

µ2µ2

µ2µ2

µ3 µ4

Figure 6.1: Several densities expressed as two- or four-component ho-
moscedastic normal mixtures.
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Bayesian methodology, on the other hand, offers a unified framework to esti-
mate both the number of mixture components K and heteroscedastic normal
mixtures in the same way as any other unknown parameters, i.e. using proper
posterior summaries. A breakthrough in Bayesian analysis of models with
a parameter space of varying dimension is the introduction of the reversible
jump Markov chain Monte Carlo (RJMCMC) algorithm by Green (1995)
which allows to explore a joint posterior distribution of the whole parameter
vector θ from model (6.3), including the number of mixture components K.
Explicit application of the RJMCMC algorithm to normal mixtures is then
described by Richardson and Green (1997).

The fact that the likelihood is unbounded for heteroscedastic normal mix-
tures leads to an improper posterior distribution in the Bayesian setting when
a fully non-informative prior distribution is used for the variances of the mix-
ture components (mixture variances), i.e. when p(σ2

1 , . . . , σ
2
K) ∝ ∏

j σ
−2
j .

However, the problem is solved by using a slightly informative prior distribu-
tion for the mixture variances. For instance, replacing

∏
j σ

−2
j by a product

of inverse gamma distributions with parameters h1 and h2 where h1 = h2 =
0.001 or h1 = 1, h2 = 0.005, the classical vague priors, is already sufficient
to prevent that the mixture variances will tend to zero causing an infinite
likelihood.

We use a classical normal mixture model (6.3) for the density of the error
distribution in the cluster-specific AFT model in Chapter 8. To avoid diffi-
culties with the maximum-likelihood estimation outlined above and for other
reasons (see Sections 4.1 and 4.2) only Bayesian methodology will be con-
sidered here. In Chapter 8 we also discuss the RJMCMC algorithm and the
issue of the prior distribution for mixture variances in more detail.

6.2 Penalized B-splines

6.2.1 Introduction to B-splines

Different types of smoothing are routinely used in various places of modern
statistics to express an unknown (smooth) function. Most often, either regres-
sion surfaces or densities are smoothed; see, e.g., Fahrmeir and Tutz (2001,
Chapter 5) and Hastie, Tibshirani, and Friedman (2001) for an overview.

In this thesis, we concentrate on smoothing based on splines. For simplicity,
we consider the univariate case first. The unknown function g(y) (density
in our case) is expressed as a linear combination (mixture) of suitable basis
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spline functions B1(y), . . . , BK(y), i.e.

g(y) = g(y |θ) =

K∑

j=1

wjBj(y), (6.5)

where θ = w = (w1, . . . , wK)′. Expression (6.5) is similar to (6.3) introduced
in the previous section. Note however that in contrast to normal densities in
(6.3), the basis spline functions Bj(y), j = 1, . . . ,K are always fully specified,
including their location and scale, and the number of basis splines, K, is
always fixed beforehand. The only quantities that have to be estimated are
the spline coefficients (mixture weights) w.

So called B-splines (de Boor, 1978; Dierckx, 1993) form, for their numerical
stability and simplicity, a suitable system of basis spline functions. Their
use in statistics was promoted especially by Eilers and Marx (1996). The B-
spline is a piecewise polynomial function. To fully specify the B-spline basis,

µ1

µ1

µ2

µ2

µ3

µ3

µ4

µ4

µ5

µ5

µ6

µ6

µ7

µ7

µ8

µ8

µ9

µ9

µ10

µ10

µ11

µ11

µ12

Figure 6.2: Basis B-splines of degree d = 1 (upper panel) and degree d = 2
(lower panel).
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B1(y), . . . , BK(y), we have to determine

1. Degree d of the polynomial pieces;

2. A set of values (knots) µ1 ≤ · · · ≤ µd+1 < · · · < µK+1 ≤ · · · ≤ µK+d+1

such that the interval (µ1, µK+d+1) covers the domain of the function
g(y) we wish to express using the B-splines.

Given that, the value of each basis B-spline can easily be computed at an ar-
bitrary point y ∈ R (see de Boor, 1978). Figure 6.2 shows a basis of linear
(d = 1) and quadratic (d = 2) B-splines with K = 9. It can be found that
the jth basis B-spline of degree d

1. Consists of d+ 1 polynomial pieces;

2. Is only positive on the interval (µj, µj+d+1);

3. Has continuous derivatives up to order d− 1;

4. Except on boundaries it overlaps with 2d polynomial pieces of its neigh-
bors.

µ1µ1

µ1µ1

µ3µ3

µ3µ3

µ5µ5

µ5µ5

µ7µ7

µ7µ7

µ9µ9

µ9µ9

µ11µ11

µ11µ11

µ13µ13

µ13µ13

Figure 6.3: Several functions expressed as linear combinations of cubic B-
splines with K = 9 and equidistant set of knots.
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Furthermore, for all y ∈ (µ1, µK+d+1) the basis B-splines sum up to one,
i.e.

∑K
j=1Bj(y) = 1. Finally, Dierckx (1993) gives simple recursive formulas

to compute derivatives or integrals of the function g(y) expressed by (6.5).
Figure 6.3 illustrates that B-spline mixture can result in functions of various
shapes.

6.2.2 Penalized smoothing

Choosing the optimal number and position of knots is generally a complex
task in the area of spline smoothing. Too many knots leads to overfitting the
data; too few knots leads to underfitting and inaccuracy. O’Sullivan (1986,
1988) proposed to take a relatively large number of knots and to restrict the
flexibility of the fitted curve by putting a penalty on the second derivative.

In the context of B-splines, Eilers and Marx (1996) suggested

1. To use a large number of equidistant knots covering the domain of the
function g(y) one wishes to smooth;

2. To estimate the spline coefficients using the method of penalized maxi-
mum-likelihood. Further, they propose to base the penalty on squared
finite higher-order differences between adjacent spline coefficients wj .

They call their method as penalized B-spline, or P-spline smoothing. Eilers
and Marx (1996) use the P-splines primarily to smooth regression surfaces
although they propose also a methodology, based on the Poisson generalized
linear model (GLM), for smooth estimation of the density with the i.i.d. data.
We sketch this method in Section 6.2.4.

The strategy of several further developments (Chapters 7, 9, 10) in this thesis
is based on the ideas of Eilers and Marx (1996), modified and adapted to
regression modelling with censored data. Namely,

1. For reasons stated in Section 6.3 we replace the basis B-splines by nor-
mal densities with a common variance;

2. We base the penalty term on squared finite higher-order differences
between appropriate transformations of the adjacent spline coefficients
wj, see Section 7.2.2 for a motivation;

3. More complex models in Chapters 9 and 10 will be estimated using
the Bayesian methodology using the prior distributions inspired by the
penalty term used in the penalized maximum-likelihood applications;
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4. We will not use the Poisson GLM-based density estimation, see Sec-
tion 6.2.4 for the reasons why.

In agreement with Eilers and Marx (1996) we use a set of equidistant knots
in all penalized-based developments.

6.2.3 B-splines in the survival analysis

General splines have been suggested at several places in the survival literature
to model flexibly either the (log-)density/(log-)hazard function or the effect
of covariates replacing a linear predictor by a spline function. See the discus-
sion section of Abrahamowicz, Ciampi, and Ramsay (1992), the introductory
section of Kooperberg, Stone, and Truong (1995) or Chapter 5 of Therneau
and Grambsch (2000) for an overview.

More specifically, B-splines have been used by Rosenberg (1995) who uses
their cubic variant to express the baseline hazard function in the Cox’s PH
model. He choses the optimal number of knots according to Akaike’s in-
formation criterion (Akaike, 1974) while placing the knots to the quantiles
of uncensored observations. An approach based on the penalized maximum-
likelihood is given by Joly, Commenges, and Letenneur (1998) who use mono-
tone splines (close relatives of the B-splines introduced by Ramsay, 1988) to
model the baseline hazard function, in the Cox’s PH model as well. Tutz
and Binder (2004) and Kauermann (2005b) use B-splines to extend the basic
Cox’s PH model by allowing for time-varying regression parameters.

Recently, Lambert and Eilers (2005) use a Bayesian version of penalized B-
splines to model both the baseline hazard and the effect of covariates in the
Cox’s PH model in an actuarial way. To our best knowledge, we are not aware
of any approach where the B-splines would be used to model the density of
the survival times.

6.2.4 B-splines as models for densities

The function g(y |θ) expressed by (6.5) can serve as a model for the density
of a continuous distribution with domain (µ1, µK+d+1) provided

g(y |θ) ≥ 0 for all y ∈ (µ1, µK+d+1), (6.6)
∫ µK+d+1

µ1

g(y |θ) dy = 1. (6.7)
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Condition (6.6) is satisfied if we require all the spline coefficients to be posi-
tive, i.e.

wj > 0, j = 1, . . . ,K. (6.8)

Constraint (6.7) can easily be avoided when we change the expression (6.5)
for g(y |θ) into

g(y |θ) = Q−1
K∑

j=1

wj Bj(y), (6.9)

Q =

∫ µK+d+1

µ1

{ K∑

j=1

wjBj(y)
}
dy

The constant Q can easily be computed using the formulas given by Dierckx
(1993, Section 1.3). For example, in the case of coincident boundary knots
(i.e. µ1 = · · ·µd+1 and µK+1 = · · · = µK+d+1) the constant Q equals

Q =
1

d+ 1

K∑

j=1

wj (µj+d+1 − µj).

We show in Section 6.3.2 how to avoid also the inequality constraints (6.8).

A somewhat different approach to estimate a density function using B-splines
has been suggested in Eilers and Marx (1996, Section 8), namely by smooth-
ing a histogram. They divide the range of the data into a large number K of
bins, each of length h, and let the midpoints of the bins to define the knots
µ1, . . . , µK . The raw continuous data, y1, . . . , yn are changed into counts
n1, . . . , nK such that nj, j = 1, . . . ,K equals the number of raw observations
yi, i = 1, . . . , n with µj − h/2 ≤ yi < µj + h/2. The counts n1, . . . , nK con-
stitute a histogram. They assume that each of these counts follows a Poisson
distribution with expectation E(n1), . . . ,E(nK), respectively. A smoothed
histogram is obtained by expressing the Poisson log-expectations as the B-
spline, namely

log
{
E(nj)

}
=

K∑

k=1

wk Bk(µj), j = 1, . . . ,K.

The corresponding smooth density of the original continuous data is then
given by

g(y |θ) = Q−1 exp
{ K∑

k=1

wk Bk(y)
}
,
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where Q is an appropriate proportionality constant. Eilers and Marx (1996)
argue that the use of penalized maximum-likelihood estimation provides sta-
ble and useful results and does not lead to any pathological results resulting
from discretization of the data.

For our developments in the context of the AFT model, we believe that the
approach with the density directly expressed as a mixture of B-splines is more
advantageous since it leads to a simpler likelihood evaluation. Remember that
with censored observations the likelihood involves evaluation of integrals of
the assumed density (see Section 4.1 and 4.2). With the density (6.9) these
integrals are simply mixtures of integrated basis B-splines whose computation
only involves integration of polynomials. Nevertheless, usage of the smoothed
histogram approach in the censored data regression context is presented by
Lambert and Eilers (2005).

6.2.5 B-splines for multivariate smoothing

The concept of B-splines can be extended to the multivariate setting, to
smooth (estimate) a function g(y) of several variables. For example the
bivariate case is achieved by replacing the formula (6.5) by

g(y) = g(y1, y2) = g(y |θ) =

K1∑

j1=1

K2∑

j2=1

wj1, j2 B1, j1(y1)B2, j2(y2),

where B1, j1, j1 = 1, . . . ,K1 is a set of basis B-splines of degree d defined by
knots µ1, 1, . . . , µ1, K1+d+1, B2, j2 , j2 = 1, . . . ,K2 a set of basis B-splines of
degree d defined by a generally different set of knots µ2, 1, . . . , µ2, K2+d+1,
and θ = (w1,1, . . . , wK1,K2)

′. Namely, g(y |θ) is expressed as a Kronecker
product of univariate B-splines and this idea can be extended also to higher
dimensions.

6.3 Penalized normal mixture

6.3.1 From B-spline to normal density

Using the B-spline expression (6.5) to model a survival density has one draw-
back. Namely, the support of the resulting density g(y |θ) is always bounded
and equal to the interval (µ1, µK+d+1). However, most continuous survival
distributions are thought of as having a support of (0, ∞) on the time scale
and the real line on the log-scale. While in practice this might not constitute
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any difficulty, in theory it might be more comfortable to approximate a den-
sity having an infinite support. Remember also that we aim to approximate
densities of either the error distribution in the AFT model or the distribution
of the random effects in the same model. This implies that it might be quite
difficult in some settings to find a proper range of the density for the error
terms and/or random effects as both distributions are seen from the data
only indirectly. However, one can easily find that the basis B-spline of degree
d is very close to the density of the standard normal distribution in the sense
of the following proposition.

Proposition 6.1. Let Bd(y) be a basis B-spline of degree d defined on the
grid of d+ 2 equidistant knots

µd
1 = −δ d+ 1

2
, . . . , µd

d+2 = δ
d+ 1

2
,

with δ = µd
j+1 − µd

j , j = 1, . . . , d+ 1 equal to
√

12/(d + 1). Let

Bd
st(y) =

√
d+ 1

12
Bd(y), y ∈ R

be a standardized basis B-spline of degree d. Then

lim
d→∞

Bd
st(y) = ϕ(y) uniformly for all y ∈ R,

where ϕ denotes a density of a standard normal distribution.

Proof. We give only main ideas of the proof. All technical details can be
found in Unser, Aldroubi, and Eden (1992).

Firstly, an arbitrary basis B-spline of degree d is proportional to the density of
a sum of d+1 independent uniformly distributed random variables. Properly
standardized basis B-spline, Bd

st(y), is then equal to a density of a zero mean,
unit variance random variable given as a sum of d+1 independent uniformly
distributed random variables. The proposition is then achieved using the
central limit theorem (see, e.g., Billingsley, 1995, Section 27).

The property outlined in Proposition 6.1 is illustrated in Figure 6.4. More-
over, the convergence is rather fast. Indeed, the standardized cubic basis
B-spline is already quite close to the standard normal density.

This reasoning led us to replace the basis B-splines in the expression (6.5)
by normal densities whose means are equal to the knots and whose variance
is equal to a common value σ2

0. In accordance with the idea of penalized
B-splines (see Section 6.2.2), we use a larger number of equidistant knots
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Figure 6.4: Standardized basis B-splines of degree 0 to 8 (solid line) compared
to a standard normal density (dashed line).
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chosen beforehand. Additionally, as explained in Section 6.3.3, we always
use an odd number of knots symmetric around the middle knot. For this
reason, the number of mixture components will be indicated by 2K + 1 and
the knots – means denoted by µ−K , . . . , µ0, . . . , µK . Namely, the unknown
function g(y) (density) is approximated by

g(y) = g(y |θ) =

K∑

j=−K

wj ϕ(y |µj , σ
2
0), (6.10)

where θ = (w−K , . . . , wK)′. The basis standard deviation, σ0, is chosen
beforehand as well as the knots. For its choice we adopted the value 2δ/3,
where δ = µj+1 − µj , j = −K, . . . ,K − 1 is the distance between the two
consecutive knots – means. The motivation for this choice is provided by
an attempt to keep a correspondence with the cubic B-splines. Remember,
the basis cubic B-spline covers an interval of length 4δ. The same is nearly
true for the normal density with the variance (2δ/3)2 if we admit that the
N (µ, σ2) density is practically zero outside the interval (µ− 3σ, µ+ 3σ). In
this context, we will call (6.10) penalized normal mixture.

6.3.2 Transformation of mixture weights

To ensure that the function g(y |θ) given by (6.10) is a density of some
continuous distribution, we have to impose constraints analogous to (6.8)
and (6.9) upon the mixture weights w = (w−K , . . . , wK)′. Namely, they have
to satisfy

wj > 0, j = −K, . . . ,K, (6.11)

K∑

j=−K

wj = 1. (6.12)

To avoid constrained estimation, one can use an alternative parametrization
based on transformed mixture weights a = (a−K , . . . , aK)′

aj(w) = log
(wj

w0

)
, j = −K, . . . ,K, (6.13)

Inversely, the original weights w are computed from the transformed weights
a by

wj(a) =
exp(aj)∑K

k=−K exp(ak)
, j = −K, . . . ,K. (6.14)

Instead of estimating the constrained weights w, the vector a−0 of uncon-
strained transformed weights, except a0 which is fixed to zero, is estimated.
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Note that the weights w(a) expressed by (6.14) automatically satisfy both
(6.11) and (6.12). Further, an arbitrary mixture component can be chosen to
be the reference one having a corresponding a coefficient fixed to zero without
any impact on the results. However, for notational convenience, without loss
of generality, we will assume that a0 = 0.

6.3.3 Penalized normal mixture for distributions with an ar-
bitrary location and scale

Let Y be a random variable with a density g(y) with

E(Y ) = α, var(Y ) = τ2.

To be able to use the same grid of knots – means µ−K , . . . , µK for distributions
with an arbitrary location α and scale τ we incorporate these two parameters
in the expression (6.10) for the unknown density g(y), i.e., the density g(y)
will be approximated by

g(y) = g(y |θ) = τ−1
K∑

j=−K

wj(a)ϕ
(y − α

τ

∣∣∣µj , σ
2
0

)
, (6.15)

where θ = (a−K , . . . , aK , α, τ)
′. In other words, the density of the standard-

ized random variable Y ∗ = τ−1(Y − α) is approximated by

g∗(y∗ |θ∗) =

K∑

j=−K

wj(a)ϕ
(
y∗
∣∣∣µj, σ

2
0

)
,

where θ∗ = (a−K , . . . , aK)′. The intercept α and the scale τ will be estimated
simultaneously with the transformed mixture weights a.

With expression (6.15), the knots µ−K , . . . , µK have to cover a high proba-
bility region of the zero-mean, unit-variance distribution. In most practical
situations, the choice with µ−K equal to a value between −6 and −4.5 and
µK equal to a value between 4.5 and 6 provides the range of the knots broad
enough. Furthermore, a distance δ of 0.3 between two consecutive knots is
small enough to approximate most smooth densities. As an illustration, we
computed the L2-distance between the standard normal density and its best
approximation using a penalized mixture (6.15) with µ−K = −6, µK = 6,
different choices of δ = µj+1 − µj, and σ0 = 2δ/3. This distance is equal to
0.00570 for δ = 1 (K = 6), and drops to 0.00104 for δ = 0.75 (K = 8). When
plotted, the penalized mixture (6.15) is indistinguishable from the normal
density at δ = 0.75. Further, for δ equal to 0.5 (K = 12), 0.4 (K = 15), 0.3
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(K = 20), 0.2 (K = 30), and 0.1 (K = 60) we obtain distances of 0.00031,
0.00022, 0.00017, 0.00014, and 0.00012, respectively. Clearly, for δ = 0.3 the
penalized mixture and the normal density are quite close.

6.3.4 Multivariate smoothing

In Section 6.2.5 we discussed how the Kronecker product of univariate B-
splines can be used to model unknown multivariate functions. The same idea
can be used also with the penalized normal mixture. In this thesis, we use the
multivariate penalized normal mixture only in the bivariate setting which will
be discussed now. Extensions to higher dimensions are obvious, only with
more complex notation.

Firstly, we note that the bivariate basis formed of the Kronecker product of
univariate normal densities is actually the basis formed of bivariate normal
densities with diagonal covariance matrices. Indeed, for arbitrary y1 ∈ R and
y2 ∈ R

ϕ(y1 |µ1, σ
2
1)ϕ(y2 |µ2, σ

2
2) = ϕ2(y1, y2 |µ, Σ),

where ϕ2(· |µ, Σ) is a density of N2(µ, Σ) with µ = (µ1, µ2)
′ and Σ =

diag(σ2
1 , σ

2
2).

Analogously to the univariate formula (6.10), the unknown bivariate density
g(y1, y2) = g(y) is expressed by

g(y) = g(y |θ) =

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2 ϕ(y |µ(j1,j2), Σ), (6.16)

where µ(j1,j2) = (µ1,j1, µ2,j2)
′, j1 = −K1, . . . ,K1, j2 = −K2, . . . ,K2 is a fixed

fine grid of knots, Σ = diag(σ2
1 , σ

2
2) is a fixed basis covariance matrix (the

same for all mixture components) and W = (wj1,j2), j1 = −K1, . . . ,K1,
j2 = −K2, . . . ,K2 a matrix of unknown mixture weights satisfying

wj1,j2 > 0, j1 = −K1, . . . ,K1, j2 = −K2, . . . ,K2 (6.17)

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2 = 1. (6.18)

The vector θ of unknown parameters contains the elements of the matrix W.
Similarly to Section 6.3.2, the constraints (6.17) and (6.18) are avoided by
the reparametrization of the weight matrix W into the matrix A = (aj1,j2),
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j1 = −K1, . . . ,K1, j2 = −K2, . . . ,K2 of transformed weights by

aj1,j2(W) = log
(wj1,j2

w0,0

)
, j1 = −K1, . . . ,K1,

wj1,j2(A) =
exp(aj1,j2)

K1∑
k1=−K1

K2∑
k2=−K2

exp(ak1,k2)

, j2 = −K2, . . . ,K2. (6.19)

For notational convenience and without loss of generality, the mixture com-
ponent (0, 0) is chosen to be the baseline with a0,0 = 0.

Moments of the bivariate penalized normal mixture

It is useful to stress that although all bivariate normal components in (6.16)
are uncorrelated the covariance matrix of the random vector (Y1, Y2)

′ with the
density g(y) = g(y |θ) defined by (6.16) is, except for a special combination
of mixture weights, not diagonal. Namely,

E(Y1) =

K1∑

j1=−K1

wj1+µ1,j1, E(Y2) =

K2∑

j2=−K2

w+j2µ2,j2,

var(Y1) = σ2
1 +

K1∑

j1=−K1

wj1+

{
µ1,j1 − E(Y1)

}2
,

var(Y2) = σ2
2 +

K2∑

j2=−K2

w+j2

{
µ2,j2 − E(Y2)

}2
,

cov(Y1, Y2) =

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2

{
µ1,j1 − E(Y1)

}{
µ2,j2 − E(Y2)

}
,

where subscript + means summation over the range of the corresponding
index.

Bivariate penalized normal mixture for distributions with an arbitrary
location and scale

Analogously to Section 6.3.3 we introduce here an extra intercept parameter
vector α = (α1, α2)

′ and an extra scale parameter vector τ = (τ1, τ2)
′ to
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allow for modelling the bivariate densities of a random vector Y = (Y1, Y2)
′

with a general location and scales, i.e. with

E(Y1) = α1, var(Y1) = τ2
1 ,

E(Y2) = α2, var(Y2) = τ2
2 .

As before, the same values of the extreme knots µ1,−K1, µ1,K1, µ2,−K2, µ1,K2

and the basis standard deviations σ1, σ2 can be used for distributions with
different location and scale.

Namely the bivariate density g(y) of a general distribution will be approxi-
mated by

g(y) = g(y |θ) = (6.20)

(τ1τ2)
−1

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2(A)ϕ2

(y1 − α1

τ1
,
y2 − α2

τ2

∣∣∣µ(j1,j2), Σ
)
,

where θ = (a−K1,−K2, . . . , aK1,K2, α1, α2, τ1, τ2)
′. In other words, the den-

sity of the standardized random vector

Y ∗ =

(
Y ∗

1

Y ∗
2

)
=

(
τ−1
1 0

0 τ−1
2

) (
Y1 − α1

Y2 − α2

)

is approximated by

g∗(y∗ |θ∗) =

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2(A)ϕ(y∗ |µ(j1,j2), Σ), (6.21)

where the vector θ∗ contains only the elements of the matrix A of transformed
weights. The same guidelines as in the univariate case (Section 6.3.3) will be
applied for the choice of the grid points and the basis standard deviations,
i.e. both µ1,−K1, . . . , µ1,K1 and µ2,−K2, . . . , µ2,K2 being the univariate grids of
equidistant knots with the distance between the two knots equal to δ ≈ 0.3,
with the minimal knot lying between −6 and −4.5, the maximal knot lying
between 4.5 and 6 and basis standard deviations equal σ1 = σ2 = 2δ/3.

6.4 Classical versus penalized normal mixture

We finalize this chapter by an explicit comparison of the classical normal
mixture and penalized normal mixture.
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• With the penalized normal mixture, invariably a relatively large but
fixed number of mixture components is needed and the smoothness of
the resulting smoothed distribution is optimized via a penalty term.
On the other hand, with the classical mixture, often a small number
of mixture components is sufficient but, the number of components
have to be estimated which might cause some difficulties as outlined in
Section 6.1.2;

• The fine grid of fixed knots in the penalized mixture approach prevents
inaccuracy in the estimate of the unknown density, while the penaliza-
tion inhibits overfitting. In contrast, in the case of a classical mixture,
the means and the standard deviations of the mixture components must
be estimated;

• In order to use a standard grid of knots we have included explicitely
the intercept and scale parameters in the model specification when us-
ing the penalized approach. This is not desirable with the classical
mixture approach as both the overall intercept and the overall scale
are implicitely defined by the mixture components means and standard
deviations;

• Extension of the univariate smoothing into the multivariate smoothing
is conceptually simple with the penalized approach as was shown in
Section 6.3.4 using the Kronecker product of the basis functions. In
higher dimensions, there are only some computational difficulties aris-
ing from the fact that the number of unknown parameters increases
exponentially with the dimension.

Extension of the classical mixture approach into higher dimensions is
relatively easy with a fixed number of mixture components however
is not straightforward when the number of mixture components have
to be estimated simultaneously with the remaining parameters. Even
with the Bayesian approach and the reversible jump MCMC algorithm
mentioned in Section 6.1.2 the multivariate extensions are still an area
of active research, see Dellaportas and Papageorgiou (2006) for recent
developments.



Chapter 7
Maximum Likelihood Penalized
AFT Model

In this chapter, we present the AFT model for the case of independent obser-
vations. The error distribution of the model will be based on the penalized
normal mixture (Section 6.3) and penalized maximum-likelihood estimation.
The basic version of this approach is given by Komárek, Lesaffre, and Hilton
(2005) and an extension allowing also modelling the dependence of the scale
parameter on the covariates can be found in Lesaffre, Komárek, and Declerck
(2005).

In Section 7.1, we describe the model in detail. In Section 7.2, we show how
the model parameters are estimated using the penalized maximum-likelihood
method. Section 7.3 describes the inferential procedures. In Section 7.4, com-
putation of predictive survival or hazard functions and predictive densities
is discussed. Section 7.5 gives the results of a simulation study that evalu-
ates the performance of the method. The proposed method is applied to the
analysis of the WIHS data in Section 7.6 and to the analysis of the Signal
Tandmobielr data in Section 7.7. We finalize the chapter by a discussion in
Section 7.8.

7.1 Model

Let Ti, i = 1, . . . , N be independent event times observed as intervals ⌊tLi , tUi ⌋
and δi be the corresponding censoring indicator with the same convention as
in Section 2.1. Let yL

i = log(tLi ) and yU
i = log(tUi ). Further, let xi =

(xi,1, . . . , xi,m)′ be a vector of covariates associated with the ith subject. The

83
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effect of covariates on the event time Ti will be specified using the basic AFT
model introduced in Section 3.2, i.e.

log(Ti) = β′xi + εi, i = 1, . . . ,N, (7.1)

where β = (β1, . . . , βm)′ is a vector of unknown regression parameters and
ε1, . . . , εN are i.i.d. error random variables with the density gε(ε).

7.1.1 Model for the error density

The density gε(ε) of the error term will be expressed using the penalized
normal mixture (6.15), i.e.

gε(ε) = τ−1
K∑

j=−K

wj(a)ϕ
(ε− α

τ

∣∣∣µj, σ
2
0

)
, (7.2)

where µ−K , . . . , µK is a set of fixed equidistant knots, σ0 fixed basis standard
deviation, α unknown intercept and τ unknown scale parameter. Finally,
w = (w−K , . . . , wK)′ are unknown mixture weights and a = (a−K , . . . , aK)′

their transformations obtained using the relationship (6.13).

Let ε∗1, . . . , ε
∗
N be standardized error terms, i.e. having the density

g∗ε(ε
∗) =

K∑

j=−K

wj(a)ϕ(ε∗ |µj , σ
2
0). (7.3)

Keeping the intercept α and the scale τ identifiable requires that the first
two moments of the density (7.3) be fixed, i.e.,

E(ε∗i ) =

K∑

j=−K

wj(a)µj = 0, var(ε∗i ) =

K∑

j=−K

wj(a) (µ2
j + σ2

0) = 1. (7.4)

Due to the fact that
∑K

j=−K wj(a)σ2
0 = σ2

0, the variance constraint can be

rewritten into the form
∑K

j=−K wj(a)µ2
j = 1 − σ2

0 . It is then easily seen
that the basis standard deviation σ0 must be smaller than 1 to be able to
satisfy this constraint. Finally, the two equality constraints (7.4) can be
avoided if two coefficients, say, a−1 and a1, are expressed as functions of
the remaining non-baseline coefficients, denoted together as a vector d =
(a−K , . . . , a−2, a2, . . . , aK)′:

ak(d) = log
{
ω0,k +

∑

j 6∈{−1,0,1}

ωj,k exp(aj)
}
, k = −1, 1, (7.5)
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with

ωj,−1 = − µj − µ1

µ−1 − µ1
· 1 − σ2

0 + µ1µj

1 − σ2
0 + µ1µ−1

,

ωj,1 = −ωj,−1 ·
µ−1

µ1
− µj

µ1
, j = −K, . . . ,−2, 0, 2, . . . ,K.

7.1.2 Scale regression

In most regression models, it is conventionally assumed that the covariates
influence the mean, but it is presumed that it will not influence the scale
parameter. With hindsight, this is simply one model choice and in many
cases it may be untenable. Recently, there is interest in joint mean-covariance
models in the context of longitudinal studies (Pourahmadi, 1999; Pan and
MacKenzie, 2003). Our AFT model (7.1) with the error density (7.2) can
be generalized in the same direction yielding the mean-scale penalized AFT
model. With this generalization, we allow the scale parameter τ to vary
across individuals. Moreover, for the ith individual, the scale parameter τi
will depend on a vector of covariates, say zi = (zi,1, . . . , zi,ms)

′, as

τi ≡ τ(zi) = exp(γ ′zi), (7.6)

where γ = (γ1, . . . , γms)
′ is a vector of unknown parameters. Note, that the

covariate vector zi usually contains the intercept term, i.e. zi,1 = 1 for all i.
In that case, the original AFT model (7.1) with the error density (7.2) and
the common scale parameter τ can be written as the mean-scale AFT model
with zi = 1 for all i and τ = exp(γ1).

All parameters in the model (transformed mixture coefficients d; regression
parameters vector β; intercept α; and log-scale log(τ) or scale-regression
parameters vector γ) are estimated by means of a penalized maximum-
likelihood method. In the next section, we construct the penalized log-
likelihood function which consists of an ordinary log-likelihood and a dif-
ference penalty for the transformed spline coefficients. The penalized log-
likelihood is subsequently maximized to obtain the estimates, see Appendix A
for practical aspects of the optimization of the penalized log-likelihood.

7.2 Penalized maximum-likelihood

7.2.1 Penalized log-likelihood

Let θ be the vector of all unknown parameters to be estimated, i.e., θ =
(α,β′,γ ′, a−K , . . . , a−2, a2, . . . , aK)′. Let ℓi(θ) = log

{
Li(θ)

}
, i = 1, . . . ,N
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denote the ordinary log-likelihood contribution of the ith observation based
on model (7.1) with error density (7.2), i.e., using the results of Section 4.1.1
and the convention (4.3),

Li(θ) = τ−1
i

∮ tUi

tLi

t−1g∗ε

{
log(t) − α− β′xi

τi

}
dt

∝ τ−1
i

∮ yU
i

yL
i

g∗ε

(y − α− β′xi

τi

)
dy

= τ−1
i

K∑

j=−K

wj(a)

∮ yU
i

yL
i

ϕ
(y − α− β′xi

τi

∣∣∣µj, σ
2
0

)
dy

The proportionality constant is equal to tLi = tUi for exactly observed event
times (δi = 1) and equal to 1 for all remaining observations (δi = 0, 2, 3).
For the purpose of maximum-likelihood based estimation, this constant can
be ignored so for notational convenience we will assume that this constant
equals one. Finally, let ℓ(θ) =

∑N
i=1 ℓi(θ) be the ordinary log-likelihood of

the whole data set.

As usual with censored data, the likelihood evaluation involves integration.
With our model, however, this does not cause any considerable difficulties
irrespective of the type of censoring (left-, right-, interval-). Indeed, all in-
tegrals involved in the computation of the likelihood are normal cumulative
distribution functions, which can be easily and efficiently evaluated.

To construct the penalized log-likelihood function ℓP (θ;λ), we subtract a pe-
nalty term q(a;λ) based on the transformed mixture coefficients a from ℓ(θ),
i.e.,

ℓP (θ;λ) = ℓ(θ) − q(a;λ), (7.7)

where λ is a fixed tuning parameter that controls the smoothness of the
fitted error distribution and inhibits identifiability problems due to over-
parametrization. For a given (reasonable) λ, Eilers and Marx (1996) pro-
posed to base the penalty on squared higher-order finite differences of the
coefficients of adjacent B-splines, and they used second-order difference in
their examples. We base our penalty on squared finite differences of order s
of the transformed coefficients of adjacent mixture components:

q(a;λ) =
λ

2

K∑

j=−K+m

{
∆saj

}2
(7.8)

=
λ

2
a′ P′

sPs a,
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where ∆1aj = aj − aj−1, ∆saj = ∆s−1aj − ∆s−1aj−1, s = 1, . . . , and Ps

is a (2K + 1 − s) × (2K + 1) difference operator matrix. According to our
experience, s = 2 or s = 3 is sufficient to obtain a smooth estimate of the
density. However, in our context the choice s = 3 has another interesting
justification, as explained in Section 7.2.2 and will be used in all applications
presented in this thesis.

7.2.2 Remarks on the penalty function

There are two reasons why we penalize the transformed mixture coefficients
a instead of the original coefficients w and why we prefer the penalty of order
s = 3.

First, the penalty based on a distinguishes between areas of the density where
there are few datapoints (i.e., where the coefficients w are close to zero) and
areas where there are many datapoints (i.e., where the coefficients w are well
above zero); the penalty based on w cannot distinguish between these areas.
For example,

for w̆ = (0.001, 0.002, 0.001, 0.996)′ ,

w̃ = (0.201, 0.202, 0.201, 0.396)′

we have ă = (−6.904,−6.211,−6.904, 0)′ ,

ã = (−0.678,−0.673,−0.678, 0)′

and (∆2w̆3)
2 = 0.000004 = (∆2w̃3)

2,

while (∆2ă3)
2 = 1.92 ≫ 0.000099 = (∆2ã3)

2.

Indeed, in the areas with a sufficient amount of data, the estimated shape
of the error distribution is mostly driven by the data themselves, whereas
in the data-poor areas the shape of the fitted error distribution is inter- or
extrapolated from the data-rich areas according to the flexibility allowed by
the penalty term.

Second, the penalty of the third order (s = 3) based on transformed mix-
ture coefficients a has an interesting property which can serve as a basis for
an empirical test of normality (see Section 7.2.3). A basis for this property
is given by the following proposition which is proved in Appendix A.

Proposition 7.1. Let for K ∈ N

µK = {µK
j =

j

K
, j = −K2, . . . ,K2}

= {−K, −K +
1

K
, . . . ,− 1

K
, 0,

1

K
, . . . ,K − 1

K
, K}
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be a sequence of knots. Let for a ∈ R
2K2+1 a discrete distribution on µK be

given by
Pr(µK = µK

j |a) = exp(aj).

Let aK minimizes
∑K2

j=−K2+3

{
∆3aj

}2
under the constraints

∑K2

j=−K2
Pr(µK = µK

j |a) = 1, (7.9)

E(µK |a) = 0,

var(µK |a) = 1 − σ2
0 for σ0 ∈ (0, 1) fixed.

Let

gK(y) =

K2∑

j=−K2

Pr(µK = µK
j |aK)ϕ(y |µK

j , σ
2
0), y ∈ R.

Then for all y ∈ R

lim
K→∞

gK(y) = ϕ(y).

The empirical normality test is obtained using the following consideration.
Suppose that for fixedK we have 2K2+1 knots −K, −K+ 1

K
, . . . , − 1

K
, 0, 1

K
,

. . . , K − 1
K
, K. Suppose further that we maximize the penalized log-

likelihood (7.7) for λ → ∞. This is equivalent (in the limit) to minimizing
the penalty term (7.8) under the constraints (7.4). For fixed K, let g∗ε,K be
the fitted standardized error density arising from the above-mentioned op-
timization problem. Using Proposition 7.1 with wj(a) = Pr(µK = µK

j |a),

j = −K2, . . . ,K2 we get that limK→∞ g∗ε,K(ε∗) = ϕ(ε∗) for all ε∗ ∈ R. In
practice, the set of knots and the basis standard deviation recommended
in Sections 6.3.1 and 6.3.3 (e.g., knots from −6 to 6 by 0.3 and σ0 = 0.2)
give already rise to a fitted standardized error density g∗ε,K practically in-
distinguishable from the normal density, ϕ, when only the penalty term is
minimized. This property does not hold for the order s 6= 3 of the penalty or
when the penalty is based on the original mixture coefficients w.

7.2.3 Selecting the smoothing parameter

In the area of density estimation, methods for selecting the smoothing param-
eter, λ, that rely on cross–validation are often used. The standard modified
maximum-likelihood cross–validation score that we are attempting to mini-
mize is

CV(λ) = −
N∑

i=1

ℓi(θ̂
(−i)

),
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where θ̂ is the penalized maximum likelihood estimate (MLE) of θ and θ̂
(−i)

the penalized MLE based on the sample excluding the ith observation. How-
ever, computation and optimization of the cross–validation score is extremely
computationally intensive in our case. In a similar context, O’Sullivan (1988)
suggested a one-step Newton-Raphson approximation combined with a first-
order Taylor series approximation. Applying his method in our setting results
in an approximate cross-validation score given by

CV(λ) = −
{ n∑

i=1

ℓi(θ̂) − trace
(
Ĥ

−1
Î
)}
, (7.10)

where

Ĥ = −∂
2ℓP (θ̂)

∂θ∂θT
, Î = − ∂2ℓ(θ̂)

∂θ∂θT
.

We denote trace(Ĥ−1
Î) by df(λ) and call it the effective degrees of freedom or

the effective dimension of the model since it necessarily plays the same role
as the effective dimension of a linear smoother (Hastie and Tibshirani, 1990).
Depending on a chosen order s of the differences in the penalty, the degrees
of freedom decreases in λ from dim(β) + 2 + (2K + 1− 3) for λ = 0 (i.e., the
ordinary log-likelihood) to dim(β) + 2 + (s − 3) for λ → ∞ and s ≥ 3 (i.e.,
the penalized log-likelihood). For example, when K = 20, µj+1 − µj = 0.3,
σ0 = 0.2 and s = 3, penalized likelihood estimation as λ → ∞ depends
effectively on 2K+1−s = 38 fewer parameters than does ordinary likelihood
estimation.

Further, minimizing the expression (7.10) is essentially the same as maximiz-
ing Akaike’s information criterion AIC(λ) = ℓ(θ̂)−df(λ) (Akaike, 1974). This
can be a valuable way to compare different models and assess the importance
of covariate contributions (see an example in Section 7.6).

In accompanying R programs (see Appendix C), a grid search using user-
defined values λ∗1, . . . , λ

∗
L (in our applications we used values λ∗1 = e2, λ∗2 =

e1, . . . , λ∗L = e−9) is used to find the optimal AIC. Since the log-likelihood is
of the order O(N), using a factor of Nλ∗l /2 in the penalty term (7.8) instead
of λ/2 allows one to use approximately the same grid for datasets of different
sizes while also maintaining the proportional importance of the penalty term
in the penalized log-likelihood at the same level.

The result immediately following Proposition 7.1 further implies that with
a sufficiently dense set of knots, we can check the normality of the error term.
When the optimal value of the tuning parameter λ becomes large the error
density of the model can be considered to be normal.
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Linear mixed model interpretation

Recently, Wand (2003) or Kauermann (2005a) pointed out the strong link
between penalized maximum-likelihood estimation and linear mixed mod-
els which can be used for selection of the smoothing parameter. The idea,
which underlies also the pseudo-variance estimate in Section 7.3.1 and the
full Bayesian developments in Chapters 9 and 10, is the following. The co-
efficient vector a is considered to be a vector of random effects having the
normal distribution

a ∼ N
(
0, λ−1 (P′

sPs)
−
)
,

where (P′
sPs)

− is the generalized inverse of P
′
sPs. Smoothing parameter λ

then determines (together with the fixed matrix Ps) the variability of the
“random effects” a. Penalized likelihood (7.7) can then be interpreted as
the likelihood of the mixed effects model with normal random effects a. The
optimal λ value is obtained as the maximum-likelihood or more frequently
as the restricted maximum-likelihood estimate of the inverse variance com-
ponent in such constructed mixed effects model. See, e.g., Cai and Betensky
(2003) or Kauermann (2005b) for practical applications of this approach.

7.3 Inference based on the maximum likelihood pe-
nalized AFT model

With standard maximum-likelihood method the score vector (the first deriva-
tive of the log-likelihood) has a zero mean when its expectation is computed
under the true parameter vector. Under a mild regularity conditions, it is
then possible to prove that the MLE is an unbiased estimate. However, in-
troduction of the penalty term with λ > 0 leads to the penalized score vector
(the first derivative of the penalized log-likelihood) having a mean different
from zero when its expectation is computed under the true parameter vector.
Consequently, the penalized MLE θ̂ is a biased estimator and its standard
errors may not be very informative when that bias is high. However, there
are two possibilities for drawing accurate inferences based on penalized MLE.

7.3.1 Pseudo-variance

Wahba (1983) described a pseudo-Bayesian technique for generating confi-
dence bands around the cross-validated smoothing spline. O’Sullivan (1988)
used this technique in the penalized ML framework and his approach can
be adopted also here. Basically, the penalized log-likelihood ℓP is viewed
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as a “posterior” log-density for the parameter θ and the penalty term as
a “prior” negative log-density of that parameter. Then, the second order
Taylor series expansion of the “posterior” log-density around its mode θ̂ leads
to

ℓP (θ) ≈ ℓP (θ̂) − 1

2
(θ − θ̂)T Ĥ(θ − θ̂).

Finally the Gaussian approximation gives “posterior” normal distribution for
θ with covariance matrix

v̂arP (θ̂) = Ĥ
−1. (7.11)

We call this estimate of the variance of the penalized MLE θ̂ the “pseudo-
variance estimate.”

7.3.2 Asymptotic variance

More formal inference is possible under the following assumptions. Firstly, we
assume independent noninformative censoring. Secondly, as the sample size
N increases, the knots (both number and positions) and the basis standard
deviation remain fixed. Let θT be the true parameter value of θ, assuming it
exists. To get asymptotically unbiased estimates we have to either keep the
value of the smoothing parameter λ constant as N → ∞ or let it increase
at a rate lower than N (i.e., λ = λN and limN→∞ λN/N = 0). Under
these conditions, the penalty part of the penalized log-likelihood reduces its
importance relative to the log-likelihood part as N → ∞ (i.e., as the sample
size N increases, the smoothness of the fitted error distribution is determined
to greater extent by the data and to a lesser extent by the penalty). Then,
in combination with standard maximum likelihood arguments, for arbitrary
ξ > 0 the penalized MLE θ̂ satisfies PrθT

(
|θ̂ − θT | < ξ

)
→ 1. Using the

same arguments as in Gray (1992), one can further show that
√
N
(
θ̂ − θT

)

is asymptotically normal with mean 0 and covariance matrix limN→∞(N W)
where the matrix W can be consistently estimated by

v̂arA(θ̂) = Ĥ
−1

Î Ĥ
−1, (7.12)

which we call the “asymptotic variance estimate.” As pointed out by Gray
(1992), the asymptotic distribution of θ̂ remains the same if the smoothing

parameters λN are replaced by estimates satisfying λ̂N/λN
Pr→ 1.

7.3.3 The pseudo-variance versus the asymptotic variance

In various applications, the pseudo-variance estimate (7.11) has been shown
to be useful. When smoothing a spline curve g(t), Wahba (1983) showed
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it yielded pointwise confidence intervals ĝ(t) ± z
√

v̂arP {ĝ(t)}, where z is
a quantile of the normal distribution, that have good frequentist coverage
properties. Verweij and Van Houwelingen (1994) used it in the context of
penalized likelihood estimation in Cox regression; they called the square
roots of its diagonal elements “pseudo-standard errors.” Joly, Commenges,
and Letenneur (1998) exploited this technique to get confidence bands on the
hazard function smoothed using M-splines. In contrast, for the asymptotic
variance estimate (7.12) there is no guarantee that for finite samples its mid-
dle matrix Î is positive semidefinite. Based on our experience, this problem is
not rare. Finally, according to our simulations the pseudo-variance estimate

(7.11) yields confidence intervals β̂ ± z

√
v̂arP (β̂) for regression parameters

with better coverage properties than the corresponding confidence intervals
based on the asymptotic estimate (7.12).

7.3.4 Remarks

We have assumed in this section that the true parameter vector θT exists.
This does not have to be true. In particular, true a coefficients may fail to
exist when the true error distribution is not a mixture of the normal densities
determined by the choice of knots and the standard deviation σ0. However, if
the distance between two consecutive knots is small enough, we argue that the
penalized mixture of the normal densities can approximate every continuous
distribution sufficiently well, see Dalal and Hall (1983) or O’Hagan (1994, Sec.
6.47), that the assumption on the existence of the true parameter vector θT

is not restrictive at all. Loosely speaking, combining this with the asymptotic
arguments given in Section 7.3.2 implies that by increasing the sample size,
the estimated coefficients a will yield an estimated density which is close to
the true error density.

7.4 Predictive survival and hazard curves and pre-
dictive densities

The penalized AFT model has actually a parametric nature given the weights
w−K , . . . , wK in (7.2) are known. This makes it easy to compute predictive
survival curves or predictive hazards or densities for a given combination of
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covariates, say xnew and znew. The predictive survival function is given by

S(t | xnew, znew) = (7.13)

1 −
K∑

j=−K

wj(a)Φ

{
log(t) − α− β′xnew

τ(znew)

∣∣∣∣ µj , σ
2
0

}
.

The predictive density is computed by

p(t | xnew, znew) = (7.14)

{
t τ(znew)

}−1
K∑

j=−K

wj(a)ϕ

{
log(t) − α− β′xnew

τ(znew)

∣∣∣∣ µj, σ
2
0

}
,

and finally the predictive hazard is obtained from the above quantities as

ℏ(t | xnew, znew) =
p(t | xnew, znew)

S(t | xnew, znew)
. (7.15)

In practice, all unknown parameters are replaced by their penalized maximum-
likelihood estimates.

7.5 Simulation study

To see how the proposed method performs, we carried out a simulation study.
‘True’ uncensored data were generated according to model (7.1) with error
density (7.2). Two covariates, i.e. xi = (xi,1, xi,2)

′ were included in the
model and the values of the parameters were the following: α = 1.6, τ = 1.4
and β = (−0.8, 0.4)′. The covariate xi,1 was binary taking a value of 1 with
probability 0.4 and covariate xi,2 was generated according to the extreme
value distribution of a minimum, with location 8.5 and scale 1. The model
attempts to mimic an AFT model used for the dataset presented in Section 7.6
with xi,1 playing the role of the covariate lesion and xi,2 being distributed
as log2(1 + CD4 count). Time to the event T is expressed in months. The
standardized error term ε∗ was generated from a standard normal distribution
N (0, 1), from a standardized extreme value distribution, and from a mixture
of two normal distributions 0.4N (−1.4, 0.82) + 0.6N (0.93, 0.82). Samples of
sizes 50, 100, 300, and 600 were generated. Each simulation involved 100
replications.

For each uncensored dataset we created four censored datasets that were then
used to compute the estimates: a dataset with (1) approximately 20% right-
censored and 80% uncensored observations (light RC); (2) approximately 20%
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right and 80% interval-censored observations (light R+IC); (3) approximately
60% right and 40% uncensored observations (heavy RC); (4) approximately
60% right and 40% interval-censored observations (heavy R+IC). The censor-
ing was created by simulating consecutive ‘visit times’ for each subject in the
dataset. Times of the first ‘visits’ were drawn from N (7, 1) distribution. Fur-
ther, times between each consecutive ‘visits’ were simulated from N (6, 0.52).
This approach reflects the idea that subjects in our Oral Substudy were seen
for the first time about 7 months after the onset of the parent study and
then approximately every 6 months for several years. At each visit, subjects
were withdrawn (censored) according to a prespecified percentage (between
0.4% and 0.7% for light censoring and between 4.0% and 5.0% for heavy
censoring) creating right-censored observations provided that the uncensored
event time Ti was greater than the visit time at which the subject was with-
drawn. To obtain interval-censored observations, we took the ‘visit’ interval
that contained the uncensored event time Ti.

For comparison, estimates for each dataset were computed using our smoothed
procedure and using two parametric models: an AFT model on the log scale
with a correctly specified error distribution (normal, extreme value or mixture
of normals, respectively) and a log-normal AFT model. For the smoothing
procedure, the third order penalty, equidistant knots with a distance of 0.3
between consecutive knots, and the basis standard deviation of 0.2 were used.

Selected results of the simulation are given in Appendix B, Section B.1.
Namely, Tables B.1 – B.6 show the results for the regression parameters.
It is seen that, in most cases, our smoothed procedure performs better than
the incorrectly specified log-normal AFT model and often only but slightly
worse than the correctly specified parametric AFT model. Additionally, when
our smoothing approach is used, the error distribution is reproduced rather
satisfactory as can be seen in Figures B.1 – B.3. This property is quite
important especially when the estimated model is to be used for prediction
purposes. Further, it is seen that even for small samples the performance of
our smoothing procedure is quite similar to the performance of a parametric
AFT model with a correctly specified error distribution.

7.6 Example: WIHS data – interval censoring

In Section 1.2, we introduced the study comprising the cohort of seroposi-
tive women and the cohort of seronegative women with an increased risk of
HIV infection. In this section, we concentrate on the data set collected in
the framework of the Oral Substudy involving 224 seropositive AIDS-free (at
baseline) women. We explore how the distribution of the time between the
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Table 7.1: WIHS Data. Akaike’s information criterion, degrees of freedom,
the optimal log(λ/N) for the fitted models.

Model AIC df log(λ/N)

(1) lesion −262.39 3.2 2

(2) lvload −256.16 3.4 2

(3) lcd4 −256.94 3.4 2

(4) lesion + lvload −255.63 4.4 2

(5) lesion + lcd4 −253.19 8.9 −7

(6) lvload + lcd4 −253.45 8.4 −6

(7) lesion + lvload + lcd4 −250.01 10.0 −7

baseline measurement and the onset of an AIDS-related illness can be ex-
plained using classical predictors which are the number of copies of the HIV
RNA virus and the count of CD4 T-cells per ml of blood. Additionally, we
examine whether presence of one of the three lesion markers, oral candidiasis,
hairy leukoplakia and angular cheilitis, is useful, possibly together with one
or both laboratory predictors, in describing the distribution of the residual
time to onset of AIDS.

For the purpose of modelling, the three lesion markers were summarized in
one binary covariate, lesion, equal to one if at least one of the above men-
tioned three lesion markers was present. Further, the laboratory predictors
entered the models in an transformed way, classically used in the HIV re-
search. Namely, the covariate lvload is equal to log10(1 + viral load) and the
covariate lcd4 equals log2(1 + CD4 count). All three covariates are moder-
ately to strongly associated with one another since, as AIDS progresses, viral
load increases, CD4 count falls, and oral lesions occur more frequently. In
our sample, for women with lesion = 0 and 1, respectively, the median lvload
was 3.60 and 4.23 (Mann-Whitney p-value, 0.001), There was also a moder-
ate negative correlation of −0.46 between lcd4 and lvload. These associations
have to be taken into account when interpreting the results.

As a response, we used the time in months between the baseline visit, defined
as the first visit at which the lesion markers were collected by dental profes-
sionals, and the onset of an AIDS-related illness. As mentioned in Section
1.3, the response time is right-censored for 158 women and interval-censored
for 66 women with the average length of the observed interval equal to 7
months.
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7.6.1 Fitted models

To obtain the results shown below, we used a sequence of 41 equidistant
knots from −6 to 6 with a distance of 0.3 between each pair. The basis
standard deviation was 0.2 and the third order difference was used in the
penalty. Different models were compared using Akaike’s information criterion
and claims concerning the significance of the parameters were based on Wald’s
tests using the pseudo-variance estimate (7.11). Summary of the fitted models
is shown in Tables 7.1 and 7.2.

If used alone (model (1)) the effect of lesion on the time to onset of AIDS is
statistically significant (p = 0.018) and the estimated time is exp(−0.87) ≈
0.42 times shorter for women with lesion = 1 than women with lesion = 0.
According to the AIC values for models (2) and (3), the transformed CD4
count and viral load are equally good predictors of the time to onset of AIDS.
Addition of the lesion marker (models (4) and (5)) improves the model with
lcd4 considerably but improves the model with lvload only slightly. Finally,
some additional improvement is gained by considering the model with all
three predictors (model (7)).

7.6.2 Predictive survival and hazard curves, predictive den-
sities

Figure 7.1 shows predictive survival and hazard curves and predictive densi-
ties for women with lesion = 0 and lesion = 1 based on the simplest model
lesion and on the most complex model considered lesion + lvload + lcd4. The
predictive survival curves based on the model lesion are further overlaid with
the nonparametric estimate of Turnbull (1976) in each group. The two es-
timates are quite close to each other, illustrating the semiparametric nature
of our approach. However, our procedure gives smooth estimates of the sur-
vival curves and moreover enables quantification of the difference in survival
between the two groups. Notice further that due to the fact that the hazard
is obtained as a ratio of the density and the survival function, which rela-
tively slowly varies from one, only a slight difference is observed between the
predictive density and the hazard.

Further, we point out that the predictive densities for models where lcd4
was not involved are very close to the log-normal density. This is not sur-
prising since the optimal tuning parameter λ for these models was equal to
224 · exp(2), essentially a value of infinity in this practical situation and thus
implying that the fitted error distributions are close to the normal distribu-
tion, as discussed in Section 7.2.3. On the other hand, models where lcd4 was
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Table 7.2: WIHS Data. Estimates of the regression parameters (standard
error; p-value) for the fitted models.

Model lesion logvload logcd4

(1) lesion −0.87

(0.37; 0.018)

(2) lvload −0.76

(0.19; < 0.001)

(3) lcd4 0.44

(0.11; < 0.001)

(4) lesion + lvload −0.62 −0.70

(0.36; 0.080) (0.19; < 0.001)

(5) lesion + lcd4 −0.78 0.39

(0.26; 0.003) (0.07; < 0.001)

(6) lvload + lcd4 −0.39 0.38

(0.14; 0.004) (0.06; < 0.001)

(7) lesion + lvload + −0.60 −0.30 0.39

+ lcd4 (0.23; 0.008) (0.11; 0.005) (0.05; < 0.001)

used in combination with other covariates gave much lower optimal tuning
parameters λ, implying also non-normal error densities. This is seen on the
right-hand side of Figure 7.1. The phenomenon could indicate presence of
a risk-group mixture in the data or absence of another important predictor.
Indeed, a factor that could play an important role is antiretroviral therapy,
which might have been used by some women in our sample. However, this
factor requires modelling time–dependent covariates, which cannot be done
with our model.

7.6.3 Conclusions

In conclusion, the time to AIDS onset in this study population is notably
shorter in women with oral lesions. Further, this marker improves the pre-
diction of that time based on any of the classical indicators (CD4 count and
viral load). When interpreting these findings, one must bear in mind that only
a limited number of WIHS women opted to participate in the Oral Substudy,
the source of the dental data. Thus they may differ in unknown ways from the
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Figure 7.1: WIHS Data. Predicted survival curves, hazard curves and densi-
ties for women with lesion = 1 (dotted-dashed line) vs. women with lesion = 0
(solid line) based on models lesion (left part) and lesion + lvload + lcd4 (right
part). Predictive curves for the latter model control for a median value of
lvload = 3.875 and a median value of lcd4 = 8.735. Predictive survival curves
for model lesion are further compared to the nonparametric estimate of Turn-
bull (1976) in each group.
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Table 7.3: Signal Tandmobielr study. Description of fitted models.

Models with constant scale

gender x = (gender)

dmf x = (dmf)

gender + dmf x = (gender, dmf)′

gender ∗ dmf x = (gender, dmf, gender × dmf)′

Mean-scale models

gender ∗ dmf/scale(dmf) x = (gender, dmf, gender × dmf)′

z = (dmf)

gender ∗ dmf/scale(gender ∗ dmf) x = (gender, dmf, gender × dmf)′

z = (gender, dmf, gender × dmf)′

overall set. Nonetheless, our findings are consistent with those of others who
have evaluated oral lesions as predictors of AIDS onset and they illustrate
use of our method in the area of AIDS research. Our method restricts us to
analysis of baseline covariates. Although this is a very widely applicable spe-
cial case, extension of the method to accommodate time-dependent covariates
would allow more complex relationships between outcomes and covariates.

7.7 Example: Signal Tandmobielr study – interval-
censored data

In paediatric dentistry and orthodontics, adequate knowledge of timing and
patterns of tooth emergence is useful for diagnosis and treatment planning.
This motivates an example in this section where we fit the distribution of
emergence times of permanent maxillary right premolars (teeth 14 and 15 in
Figure 1.1) based on the data from the Signal Tandmobielr study introduced
in Section 1.1.

It is anticipated, that the distribution of emergence times of a particular
tooth is different for boys and girls. See Figure 5.1 and Table 5.1 where
the emergence distributions for boys and girls are compared for tooth 44.
However, a similar phenomenon is observed also for other teeth, 14 and 15
included. For that reason, we used the covariate gender (0 for boys and 1 for
girls) in our models. Additionally, it was of dental interest to check whether
the distribution of the emergence time of a permanent tooth changes when
the primary predecessor of the permanent tooth experienced caries or not.
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Table 7.4: Signal Tandmobielr study. Akaike’s information criteria for dif-
ferent models.

Model Tooth 14 Tooth 15

gender −5 532.59 −4 551.57

dmf −5 538.03 −4 549.93

gender + dmf −5 494.51 −4 526.85

gender ∗ dmf −5 491.47 −4 522.76

gender ∗ dmf/scale(dmf) −5 468.61 −4 506.66

gender ∗ dmf/scale(gender ∗ dmf) −5 467.67 −4 507.59

For this, we included a binarised dmf score pertaining to the predecessor as
a covariate, dmf = 1 if the primary predecessor of that permanent tooth was
recorded as decayed, or missing due to caries, or filled and 0 otherwise.

As response, for a particular child, we consider the age of emergence of a par-
ticular permanent tooth (14 or 15), recorded in years. Due to the design of
the study (annual planned examinations), the response variable is interval-
censored with intervals of length equal to approximately 1 year. It should
be stressed that in this section, the two teeth will be analyzed separately,
i.e. ignoring their possible correlation. In Section 7.8, we indicate how the
correlation between teeth can be incorporated in the analysis. For a better
fit, we shifted the time origin of the AFT model to 5 years of age which
is clinically minimal emergence time for the permanent teeth (see, e.g., Ek-
strand, Christiansen, and Christiansen, 2003). Namely, we replaced Ti by
Ti − 5 in the AFT model specification (7.1). Similarly as in Section 7.6, we
used a sequence of 41 equidistant knots from −6 to 6 with a distance of 0.3
between each pair. The basis standard deviation was 0.2 and the third order
difference was used in the penalty.

7.7.1 Fitted models

We fitted four penalized AFT models with constant scale parameter and two
mean-scale penalized AFT models. The fitted models are described in Table
7.3 and AIC’s for these models are given in Table 7.4. The model selection
was based on the AIC.

Firstly, the model with the interaction term gender ∗ dmf seems to fit the
data best and the interaction term cannot be omitted. Secondly, the models
where the scale parameter τ depends on covariates give a considerably better
fit. For tooth 15, only dmf included in the scale covariate vector leads to the
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Table 7.5: Signal Tandmobielr study. Estimates (standard errors) for the
models gender ∗ dmf/scale(dmf).

Parameter Tooth 14 Tooth 15

α 1.7734 (0.0073) 1.9143 (0.0091)

β(gender) −0.0931 (0.0099) −0.0803 (0.0110)

β(dmf) −0.0990 (0.0116) −0.0773 (0.0125)

β(gender ∗ dmf) 0.0401 (0.0166) 0.0473 (0.0172)

γ1 −1.5613 (0.0219) −1.6121 (0.0351)

γ(dmf) 0.2144 (0.0307) 0.2415 (0.0399)

best AIC. For tooth 14, the model with the scale depending only on dmf can
be improved by inclusion of gender and its interaction with dmf however the
improvement is minor. These findings lead us to conclude that the model that
describes satisfactory well the data while being kept as simple as possible is
the model gender ∗ dmf/scale(dmf). The estimates for this model are given
in Table 7.5. It is seen that dmf = 1 accelerates the emergence for both
genders and also increases the variability of the emergence distribution.

7.7.2 Predictive emergence and hazard curves

For our data, predictive emergence curves (cumulative distribution func-
tions), which are prefered in this case to survival curves, based on the model
gender ∗ dmf/scale(dmf) are shown in Figure 7.2 and predictive hazards
in Figure 7.3. Further, Figure 7.2 shows also the non-parametric estimates of
Turnbull (1976) computed separately for each combination of covariates. It
is seen that model-based emergence curves agree with the non-parametric es-
timates indicating the goodness-of-fit of our model. Further, the figures show
that the difference between children with dmf = 0 and dmf = 1 is higher
for boys than for girls and that the emergence process for boys is indeed
postponed compared to girls.

Non-decreasing predictive hazard curves reflect the nature of the problem at
hand. Indeed, it can be expected that, provided the tooth of a child has not
emerged yet, the probability that the tooth will emerge increases with age.
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Table 7.6: Signal Tandmobielr study. Estimates (standard errors) for the
models gender, dmf and gender + dmf.

Parameter Model gender or dmf Model gender + dmf

Tooth 14

β(gender) −0.0740 (0.0080) −0.0766 (0.0081)

β(dmf) −0.0729 (0.0086) −0.0741 (0.0085)

Tooth 15

β(gender) −0.0564 (0.0085) −0.0594 (0.0087)

β(dmf) −0.0613 (0.0089) −0.0628 (0.0090)

7.7.3 Comparison of emergence distributions between dif-
ferent groups

While the model gender ∗ dmf/scale(dmf) gives a parsimonious description of
emergence distributions for different groups of children and serves as a solid
basis for prediction as was shown in the previous section, it is not suitable to
provide simple p-values for a comparison of emergence distributions between
e.g. boys and girls. Due to the fact that an interaction term gender ∗ dmf
appeared to be significantly important, we could only provide a p-value for
a multiple comparison of the four groups (girls with dmf = 1 and 0 and boys
with dmf = 1 and 0).

To simply compare two distributions, while averaging the effect of other co-
variates, the basic AFT model with a univariate covariate x (i.e. either the
model gender or the model dmf) can be used together with a significance test
for the group parameter. Additionally, it is possible to perform a test that
compares two groups while controling for additional confounding variables
(e.g. comparison of boys and girls while controling for dmf or vice versa). To
do that, we perform significance tests of β parameters in the model gender
+ dmf.

The estimates of regression parameters β together with their standard errors,
derived from the formula (7.11), in mentioned models are given in Table 7.4.
The Wald tests of significance for each β parameter all yield p-values lower
than 0.0001, which confirm the findings obtained previously that there is
indeed a significant difference in emergence distributions of studied teeth
between boys and girls and also between the group of children with dmf = 0
and dmf = 1. The difference remains both marginally (irrespective of value
of dmf or irrespective of value of gender, respectively) and while controling
for the other covariate.
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The issue of the robustness of the AFT model against the omitted covariates,
discussed in Section 3.3, is further illustrated in Table 7.4. The effect of
gender remains almost unchanged in both models, gender and gender + dmf,
and an analogous conclusion holds also for the effect of dmf.

7.7.4 Conclusions

It has been shown that the emergence process of teeth 14 and 15 is signifi-
cantly different between boys and girls and that the caries experience status
of a primary predecessor, expressed by the dmf score, has a significant effect
on the timing of emergence of permanent successors.

Predictive emergence curves have been drawn that can be used for diagnosis
and treatment planning in paediatric dentistry. Further, it was found that
the acceleration effect of caries experience on a primary predecessor on the
timing of emergence of its successor was stronger for boys than for girls.

7.8 Discussion

In this chapter, we have suggested a method useful for fitting the linear re-
gression model for independent censored observations while avoiding overly
restrictive parametric assumptions on the error distribution. Most classically,
the logarithmic transformation of the response leads to the well known AFT
model. However, other transformations of the response leading to its poten-
tial range covering the whole real line are also possible. The density of the
error distribution is specified in a semi-parametric way as a mixture of the
overspecified number of normal densities with fixed means – knots and given
common standard deviation. Mixture coefficients are estimated using the
penalized maximum-likelihood method. Such model specifications allow flex-
ibility with respect to the resulting error distribution yet retain tractability
such that data carrying censoring of several types, especially interval censor-
ing, can be handled naturally.

The method of this chapter could generally be extended to handle also mul-
tivariate survival data. Namely, the population averaged AFT model (see
Section 3.4.2) with a multivariate error distribution specified as a multivari-
ate penalized mixture (see Section 6.3.4) could be used. Or alternatively,
the cluster specific AFT model (see Section 3.4.3) with an error distribution
given as a penalized mixture and random effects distribution specified either
parametrically or as a (multivariate) penalized mixture could be considered.
However, as outlined in Sections 4.2 and 4.3, the computation and let alone
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optimization of the (penalized) likelihood is practically intractable. For this
reason, we switch to fully Bayesian approaches using the MCMC methodol-
ogy.



Chapter 8
Bayesian Normal Mixture
Cluster-Specific AFT Model

In this chapter we present a cluster-specific AFT model (see Section 3.4.3)
with a flexible error distribution. This model, introduced by Komárek and
Lesaffre (2006a), allows us to analyze also data sets where not necessary all
observations are independent. For example, we will be able to analyze jointly
several teeth from the Signal Tandmobielr study, analyze the CGD data
where the times to recurrent infections are involved or to analyze the data
from the multicenter studies like EBCP data. The approach presented here
uses the classical normal mixture (see Section 6.1) to express the error density
in the AFT model. For the random effects we use a parametric (multivari-
ate) normal distribution. The full Bayesian approach with the Markov chain
Monte Carlo methodology will be used for the inference.

In Section 8.1, we specify the cluster-specific AFT model and the distribu-
tional assumptions we use in this chapter. In Section 8.2, we specify the
model from the Bayesian perspective and derive the corresponding posterior
distribution. Details of the Markov chain Monte Carlo methodology to sam-
ple from the posterior distribution are given in Section 8.3. In Section 8.4, we
show how the survival distributions for specific combinations of covariates can
be estimated. Further, in Section 8.5, we give the estimates of the individual
random effects that could be used, for example, for the discrimination. The
performance of the method is evaluated using the simulation study in Section
8.6. The method is applied to the analysis of the interval-censored emergence
times of 8 permanent teeth in Section 8.7, to the recurrent events analysis
in Section 8.8 and to the analysis of the breast cancer multicenter study in
Section 8.9. The chapter is finalized by the discussion in Section 8.10.

107
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8.1 Model

Let Ti,l, i = 1, . . . , N , l = 1, . . . , ni be the lth event time in the ith cluster or
the lth recurrent event on the ith subject in the study. Let Ti,l be observed
as an interval ⌊tLi,l, tUi,l⌋. Let logarithmic transformations of the event and

observed event times be Yi,l = log(Ti,l), y
L
i,l = log(tLi,l), y

U
i,l = log(tUi,l). We will

assume that the random vectors T 1, . . . ,TN , where T i = (Ti,1, . . . , Ti,ni
)′,

i = 1, . . . , N are independent. However, the components of each T i are not
necessarily independent.

To model the effect of covariates on the event time we use the cluster-specific
AFT model (3.7), i.e.

log(Ti,l) = Yi,l = β′xi,l + b′izi,l + εi,l, i = 1, . . . ,N, l = 1, . . . , ni, (8.1)

where β = (β1, . . . , βm)′ is the unknown regression coefficient vector, xi,l the
covariate vector for fixed effects, bi = (bi,1, . . . , bi,q)

′, i = 1, . . . ,N are the
random effect vectors with the density gb(b) causing the possible correlation
for the components of Y i = (Yi,1, . . . , Yi,ni

)′. Further, zi,l is the covariate
vector for random effects and εi,l are independent and identically distributed
random variables with the density gε(ε). Along the lines of Gelman et al.
(2004, Chapter 15) we use the terms ‘fixed’ and ‘random’ effects throughout
the thesis even in a Bayesian context where all unknown parameters are
treated as random quantities.

For recurrent events, usually zi,l = 1 for all i and l and bi = bi,1 expresses
an individual-specific deviation from an overall mean log-event time which
is not explained by fixed effects covariates (see the analysis of CGD data
in Section 8.8). For clustered data, the vector zi,l may define further sub-
clusters (as in the analysis of the Signal Tandmobielr data in Section 8.7)
allowing for a higher dependence of observations within sub-clusters given by
common values of appropriate components of the vector bi while keeping the
dependence also across the sub-clusters through the correlation between the
components of bi. In multicenter clinical trials where the aim is to evaluate
an effect of some treatment (e.g. the EBCP data analyzed in Section 8.9), the
vector zi,l might be equal to (1, treatmenti,l)

′ allowing that both a baseline
value of the expected event time and a treatment effect can vary across centra.
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8.1.1 Distributional assumptions

The density gε(ε) of the error term εi,l in model (8.1) is specified in a flexible
way as a classical normal mixture (6.3), i.e.

gε(ε) =

K∑

j=1

wjϕ(y |µj, σ
2
j ), (8.2)

where K is the unknown number of mixture components and further, w =
(w1, . . . , wK)′ are unknown mixture weights, µ = (µ1, . . . , µK)′ unknown mix-
ture means and σ2 = (σ2

1 , . . . , σ
2
K)′ unknown mixture variances.

We have already mentioned in Section 6.1.2 that a heteroscedastic mixture
(8.2) leads to the likelihood which is unbounded if the parameter space for
variances is unconstrained. In a full Bayesian analysis, this difficulty is solved
by using an appropriate prior distribution for the variances which plays the
role of constraints. We discuss this issue in full detail in Section 8.2.1.

For the random effects bi, we take a suitable parametric distribution, namely
the multivariate normal distribution, see Section 8.2.2 for details. The fact
that we put more emphasis on a correct specification of the distribution of
the error term εi,l than on a specification of the distribution of random effects
bi is driven by the following reasoning.

For an AFT model, the regression parameters β express the effect of covari-
ates (xi,l) both conditionally (given bi) and marginally (after integrating bi

out). Both interpretations do not change when different distributional as-
sumptions are made on bi. Further, with a correctly specified distribution of
εi,l the conditional model is always correctly specified. However, when the
distribution of εi,l is incorrect neither conditional nor marginal models are
specified correctly. Further, Keiding, Andersen, and Klein (1997) showed that
for univariate (single-spell) Weibull AFT model the regression parameters are
robust against the misspecification of the random effects distribution. This
finding, also for non-Weibull models is further supported by the empirical re-
sults of Lambert et al. (2004). Finally, Verbeke and Lesaffre (1997) showed,
in the context of normal linear mixed model with uncensored data, that the
maximum-likelihood estimates of the regression parameters are unaffected by
the misspecified random effects distribution.

Of course, in situations in which the variability of the random effects consid-
erably exceeds the variability of the error term it becomes more important
to specify correctly the distribution of the random effects rather than the
distribution of the error term. However, in all applications presented in this
chapter this is not the case.
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8.1.2 Likelihood

The likelihood contribution of the ith cluster can be derived from expressions
(4.7) and (4.9). Namely,

Li =

∫

Rq

{ ni∏

l=1

∮ yU
i,l

yL
i,l

gε(yl − β′xi,l − b′izi,l) dyl

}
gb(bi) dbi. (8.3)

It might be useful to stress again that due to multivariate integration in the
likelihood (8.3), it is rather cumbersome to use maximum-likelihood based
methods for the cluster-specific AFT model with interval-censored observa-
tions even with gε(ε) and gb(b) being parametrically specified. Mainly for
this reason, the full Bayesian approach will be exploited.

8.2 Bayesian hierarchical model

The Bayesian specification of the model continues by specification of the prior
distributions for all unknown parameters, denoted by θ. We assume a cluster-
specific AFT model (8.1) with a hierarchical structure graphically represented
by a directed acyclic graph (DAG) given in Figure 8.1. As explained in
Section 4.4, the joint prior distribution of θ is then given by the product of
the conditional distributions of the nodes pertaining to unobserved quantities
given their parents, namely

p(θ) ∝
N∏

i=1

[
ni∏

l=1

{
p
(
ti,l
∣∣ β, bi, εi,l

)
× p

(
εi,l
∣∣ µ, σ2, ri,l

)
× p

(
ri,l
∣∣K, w

)}
×

p
(
bi

∣∣ γ, D
)
]
× (8.4)

p
(
µ
∣∣K) × p

(
σ2
∣∣K, η) × p

(
η
)
× p

(
w
∣∣K) × p

(
K
)
×

p
(
β
)
× p

(
γ
)
× p

(
D
)
.

For clarity, we omitted all fixed hyperparameters and fixed covariates in the
expression (8.4). As the DAG indicates, the unknown parameters can be
split into two parts connected only through the node of the true event times.
The conditional distribution for this node is simply a Dirac (degenerated)
distribution driven by the AFT model (8.1), i.e.

p(ti,l | β, bi, εi,l) = I[log(ti,l) = β′xi,l + b′izi,l + εi,l],

i = 1, . . . ,N, l = 1, . . . , ni.
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In the subsequent sections, we explain all the multiplicands of expression (8.4)
and also the meaning of the newly introduced parameters ri,l, i = 1, . . . ,N ,
l = 1, . . . , ni, γ, D, and η.

8.2.1 Prior specification of the error part

The prior conditional distributions pertaining to the error part of the model
are inspired by the work of Richardson and Green (1997) (with some change
in notation) who studied Bayesian estimation of the normal mixtures in the
context of i.i.d. data. That is, they did not consider covariates or censoring.

To improve the computation of the posterior distribution, it is useful to as-
sume that εi,l, i = 1, . . . , N, l = 1, . . . , ni come from a heterogeneous popula-
tion consisting of groups j = 1, 2, . . . ,K of sizes proportional to the mixture
weights wj and introduce latent allocation variables ri,l denoting the label of
the group from which each random error variable εi,l is drawn. By this we are
introducing here the Bayesian implementation of the data augmentation al-
gorithm (see Section 4.3). Together with distributional assumption (8.2) this

Error part Regression part

η

K

w β γ D

µ σ2 ri,l

εi,l xi,l zi,l bi

ti,l censoringi,l

tLi,l tUi,l l
=

1,
..
.,
n

i

i
=

1,
..
.,
N

Figure 8.1: Directed acyclic graph for the Bayesian normal mixture cluster-
specific AFT model.
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leads to the following conditional distributions appearing in the prior (8.4):

Pr(ri,l = j |K, w) = wj , j ∈ {1, . . . ,K},
p(εi,l | µ, σ2, ri,l) = ϕ(εi,l |µri,l

, σ2
ri,l

) i = 1, . . . ,N, l = 1, . . . , ni.

For the number of mixture components, K, we experimented with

1. a Poisson distribution with mean equal to a fixed hyper-parameter λ
truncated at some prespecified (relatively large) value Kmax and trun-
cated zero, i.e.

Pr(K = k) =
{Kmax∑

j=1

λj

j!

}−1 λk

k!
, k = 1, . . . ,Kmax;

2. a uniform distribution on {1, . . . ,Kmax}, i.e.

Pr(K = k) =
1

Kmax
, k = 1, . . . ,Kmax.

The prior for the mixture weightsw is taken to be a symmetricK-dimensional
Dirichlet with prior ‘sample size’ equal to K δ, i.e.

p(w |K) =
Γ(K δ)
{
Γ(δ)

}K

K∏

j=1

wδ−1
j ,

where δ is a fixed hyperparameter.

Further, the mixture means µj and variances σ2
j , j = 1, . . . ,K are a priori

all drawn independently with normal N (ξ, κ) and inverse-gamma IG(ζ, η)
priors respectively, i.e.

p(µ |K) =
K∏

j=1

ϕ(µj | ξ, κ), (8.5)

p(σ2 |K, η) =

K∏

j=1

{
ηζ

Γ(ζ)
(σ2

j )
−(ζ+1) exp

(
− η

σ2
j

)}
, (8.6)

where ξ, κ and ζ are fixed hyperparameters. As in Richardson and Green
(1997) we let the hyperparameter η follow a gamma distribution with fixed
shape parameter h1 and fixed rate parameter h2, i.e.

p(η) =
hh1

2

Γ(h1)
ηh1−1 exp(−h2η).
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A rationale for this construction is given in Section 8.2.3.

Since the error model is invariant to permutations of labels j = 1, . . . ,K,
the joint prior distribution of a vector µ is restricted to the set {µ : µ1 <
· · · < µK} for identifiability reasons, see Stephens (2000) or Jasra, Holmes,
and Stephens (2005) for other approaches to establish identifiability. The
joint prior distribution of the mixture means and variances is thus K! times
the products (8.5) and (8.6), restricted to above mentioned set of increasing
means.

8.2.2 Prior specification of the regression part

The regression part of the model has the structure of a classical Bayesian
linear mixed model (see, e.g., Gelman et al., 2004, Chapter 5). Let X be
a (
∑N

i=1 ni)×m matrix with vectors x′
1,1, . . . ,x

′
N,nN

as rows. Similarly, let Z

be a (
∑N

i=1 ni) × q matrix with vectors z′1,1, . . . ,z
′
N,nN

as rows. Further, we
will assume that the matrix (X,Z) is of full column rank (m + q). In other
words, covariates included in xi,l are not included in zi,l and vice versa.
This gives rise to hierarchical centering which in general results in a better
behavior of the MCMC algorithm (Gelfand, Sahu, and Carlin, 1995). Finally,
since gε(ε) does not have zero mean we do not allow a column of ones in the
matrix X to avoid identifiability problems.

The prior distribution for each regression coefficient βj , j = 1, . . . ,m is as-
sumed to be N (νβ,j, ψβ,j), and the βj are assumed to be a priori independent,
i.e.

p(β) =
m∏

j=1

ϕ(βj | νβ,j , ψβ,j).

The vectors νβ = (νβ,1, . . . , νβ,m)′ and ψβ = (ψβ,1, . . . , ψβ,m)′ are fixed hy-
perparameters.

As already mentioned in Section 8.1.1, the (prior) distribution for the random
effect vector bi, i = 1, . . . , N is assumed to be (multivariate) normal with
a prior mean γ and a prior covariance matrix D, i.e.

p(bi | γ, D) = ϕq(bi |γ, D), (8.7)

where γ = (γ1, . . . , γq)
′.

The prior distribution for each γj, j = 1, . . . , q is N (νγ,j, ψγ,j), independently
for j = 1, . . . , q, i.e.

p(γ) =

q∏

j=1

ϕ(γj | νγ,j , ψγ,j).
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The vectors νγ = (νγ,1, . . . , νγ,q)
′ and ψγ = (ψγ,1, . . . , ψγ,q)

′ are fixed. Special
care is needed when the random intercept is included in the model (i.e. when
Z contains a column of ones, let say its first column). Hierarchical centering
cannot be applied in this case since the overall intercept is given by the mean
of the mixture (8.2). For that reason, γ1 is fixed to zero (or equivalently,
νγ,1 = 0, ψγ,1 = 0).

The prior distribution for the covariance matrix D of random effects is as-
sumed to be an inverse-Wishart with fixed degrees of freedom df and a fixed
scale matrix S, i.e.

p(D) =

{
2

df q

2 π
q(q−1)

4

q∏

j=1

Γ
(df + 1 + j

2

)}−1

× (8.8)

|S| df
2 |D|− df+q+1

2 exp
{
−1

2
trace(SD

−1)
}
.

In the special case of a univariate random effect (q = 1), we use d instead
of D and s instead of S in the notation. Note that in that case, the inverse-
Wishart distribution is the same as the inverse-gamma distribution with the
shape parameter equal to df/2 and the scale parameter equal to s/2.

Further, in the situation of q = 1, we considered alternatively (see Section 8.8)
also the use of a uniform prior for standard deviation of the random effect
which is often considered to be a better choice (see Gelman et al., 2004, pp.
136, 390 or Gelman, 2006), i.e. a priori

p(
√
d) =

1√
s
I[0 < d < s], (8.9)

for a large value of s. On the original variance scale the prior (8.9) transforms
into

p(d) =
1

2
√
s d

I[0 < d < s],

which is formally a truncated inverse-gamma distribution with the shape
parameter equal to −1/2 and the scale parameter equal to zero.

8.2.3 Weak prior information

In this problem, we have opted for specifying weak prior information on the
parameters of interest. When a priori information is available, our prior
assumptions could be appropriately modified.

For the regression part of the model, we use non-informative, however proper
distributions, that is, the prior variances of regression parameters β (ψβ)
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and γ (ψγ) are chosen such that the posterior variance of the regression
parameters is at least 100 times lower (which must be checked from the
results). Prior hyperparameters for the covariance matrix D giving a weak
prior information correspond to choices of df = q−1+c and S = diag(c, . . . , c)
with c being a small positive number.

In the error part of the model, it is not possible to be fully non-informative,
i.e. to use priors p(µ, σ2 |K) ∝ 1 ×∏K

j=1 σ
−2
j and to obtain proper poste-

rior distributions (Diebolt and Robert, 1994; Roeder and Wasserman, 1997).
Richardson and Green (1997) offer, in the context of i.i.d. observations, for
say e1, . . . , eN , the following alternative: A rather flat prior N (ξ, κ) for each
µj is achieved by letting ξ equal to ē = N−1

∑N
i=1 ei and setting κ equal to

a multiple of R2, where R = max(ei)−min(ei). They point out that it might
be restrictive to suppose that knowledge of the range or variability of the data
implies much about the size of each single σ2

j and therefore introduced an ad-
ditional hierarchical level by allowing η to follow a gamma distribution with
parameters h1 and h2. They recommend taking ζ > 1 > h1 to express the be-
lief that the σ2

j are similar which is necessary to avoid a problem of unbounded
likelihood, without being informative about their absolute size. Finally, they
suggest setting the parameter h2 to a small multiple of 1/R2. Here, the resid-
uals yi,l−β′xi,l−b′izi,l play the role of the observations ei. A rough estimate
of their location and scale can be obtained through a maximum-likelihood fit
of the AFT model, even without random effects (the scale of residuals can
only increase), with an explicitly included intercept and scale parameters in
the model. This can be done using standard software packages as R, Splus,
SAS. The estimated intercept from this model can then be used instead of ē
and a multiple of the estimated scale parameter instead of R.

8.2.4 Posterior distribution

As we indicated in Section 4.4, the joint posterior distribution, p(θ | data), is
proportional to the product of all DAG conditional distributions, i.e.

p
(
θ
∣∣ data

)
∝ p
(
θ
)
×

N∏

i=1

ni∏

l=1

p
(
tLi,l, t

U
i,l

∣∣ ti,l, censoringi,l

)
, (8.10)

where p(θ) is given by (8.4) and p(tLi,l, t
U
i,l |ti,l, censoringi,l) is discussed below.

A box called censoringi,l in the DAG represents a realization of the random
variable(s) causing the censoring of the (i, l)th event time. Note, that under
the assumption of independent noninformative censoring (see Section 2.4)
there is no need to specify a measurement model for the censoring mechanism
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since it only acts as a multiplicative constant in the posterior. After omitting
subscripts i, l for clarity, the expression of p(tL, tU | t, censoring) is rather
obvious for most censoring mechanisms.

For example with interval censoring resulting from checking the survival sta-
tus at (random) times C = {c0, . . . , cS+1}, where c0 = 0, cS+1 = ∞ we obtain
a Dirac density

p(tL = cs, t
U = cs+1 | t, C) = I

{
t ∈ ⌊cs, cs+1⌋

}
, s = 0, . . . , S.

With standard right-censoring driven by the (random) censoring time C = c,
the following Dirac densities are obtained

p(tL = tU = t | t, c) = I[t ≤ c],

p(tL = t, tU = ∞ | t, c) = I[t > c].

8.3 Markov chain Monte Carlo

Inference is based on a sample from the posterior distribution obtained using
the MCMC methodology (see Section 4.5). The parameters of the error part
of the model are updated using the combination of the reversible jump MCMC
algorithm of Green (1995) and a conventional Gibbs algorithm (Geman and
Geman, 1984). For the remaining parameters of the model, each iteration of
the MCMC is conducted using the Gibbs sampler. Both the reversible jump
MCMC algorithm and the full conditional distributions needed to implement
the Gibbs sampler are discussed below.

8.3.1 Update of the error part of the model

Details on how to implement the update of the parameters of the error part
of the model are given in Richardson and Green (1997). Their guidelines,
now based on residuals εi,l = yi,l−β′xi,l−b′izi,l, can be immediately applied.
We give only a brief summary and for details we refer therein.

Six move types are suggested by Richardson and Green (1997), namely

(i) Updating the mixture weights w while keeping K fixed;

(ii) Updating the mixture means µ and variances σ2 while keeping K fixed;

(iii) Updating the allocation parameters ri,l, i = 1, . . . ,N , l = 1, . . . , ni;

(iv) Updating the variance-hyperparameter η;
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(v) Split-combine move, i.e. splitting one mixture component into two, or
combining two into one;

(vi) Birth-death move, i.e. the birth or death of an empty mixture compo-
nent.

In our context, due to the regression and the presence of censored data, we
add one more move type, i.e.
(vii) Updating the residuals εi,l, i = 1, . . . ,N , l = 1, . . . , ni.

Note that only move types (v) and (vi) change the dimension of the parameter
vector by changing K to K−1 or K+1 and are performed using the reversible
jump MCMC algorithm. The moves (i)–(iv) and the move (vii) are performed
by sampling from the full conditional distributions given below.

Full conditional for mixture weights w

The full conditional distribution for the mixture weights is Dirichlet with
parameters δ +Nj , j = 1, . . . ,K, i.e.

p(w | · · · ) =
Γ(Kδ + n)

∏K
j=1 Γ(δ +Nj)

K∏

j=1

w
δ+Nj−1
j ,

where n =
∑N

i=1 ni is the total sample size and Nj , j = 1, . . . ,K is the
number of observations currently allocated in the jth mixture component,
i.e.

Nj =

N∑

i=1

ni∑

l=1

I[ri,l = j], j = 1, . . . ,K.

Full conditional for mixture means

The full conditional for each mixture mean is normal with the mean and
variance

E(µj | · · · ) =

σ−2
j

∑
(i,l): ri,l=j

εi,l + κ−1ξ

σ−2
j Nj + κ−1

, j = 1, . . . ,K,

var(µj | · · · ) =
1

σ−2
j Nj + κ−1

, j = 1, . . . ,K.



118 CHAPTER 8. BAYESIAN NORMAL MIXTURE CS AFT MODEL

Note that due to the ordering constraint µ1 < · · · < µK , the full conditional
only generates a proposal which is accepted provided it does not break this
ordering.

Full conditional for mixture variances

The full conditional for each mixture variance is an inverse gamma distribu-
tion

σ2
j | · · · ∼ I-Gamma

{
ζ +

Nj

2
, η +

1

2

∑

(i,l): ri,l=j

(εi,l − µj)
2
}
.

Full conditional for the allocation variables

The full conditional for each allocation variable ri,l, i = 1, . . . ,N , l = 1, . . . , ni

is discrete with

Pr(ri,l = j | · · · ) ∝ wj

σj
exp
{
−(εi,l − µj)

2

2σ2
j

}
, j ∈ {1, . . . ,K}.

Full conditional for the variance-hyperparameter

The full conditional for the variance hyperparameter η is a gamma distribu-
tion

η | · · · ∼ Gamma(h1 +K ζ, h2 +
K∑

j=1

σ−2
j ).

Split-combine move

To perform the split-combine move, firstly a random choice is made whether
to try to perform the split or combine move, namely, given K, the probability
of attempting the split move is πsplit

K and the probability of attempting the

combine move is πcombine
K = 1 − πsplit

K . Obviously, πsplit
1 = 1 and πsplit

Kmax
= 0.

Otherwise we use πsplit
K = πcombine

K = 0.5, K = 2, . . . ,Kmax − 1.

When the combine move is attempted the new mixture with K − 1 compo-
nents is proposed as follows:

1. Choose at random a pair of mixture components (j1, j2) such that for
the current values of the mixture means holds

µj1 < µj2 and there is no other µj in the interval [µj1, µj2 ]; (8.11)
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2. Propose a new mixture component by merging the j1th and the j2th
component. Label this new component by j∗. Set the weight, mean and
variance of the new component such that its 0th, 1st and 2nd moments
are the same as those of the combination of the merged components,
i.e.

wj∗ = wj1 + wj2,

µj∗ =
wj1µj1 + wj2µj2

wj∗
, (8.12)

σ2
j∗ =

wj1(µ
2
j1

+ σ2
j1

) + wj2(µ
2
j2

+ σ2
j2

)

wj∗
− µ2

j∗.

3. Propose new values for the allocation variables ri,l, i = 1, . . . ,N , l =
1, . . . , ni that were equal to j1 or to j2, i.e. set such allocation variables
equal to j∗.

4. Accept the proposed mixture with K − 1 components with the proba-
bility

Prcombine
accept = min

{
1, A−1

sc (K − 1)
}
,

where the acceptance ratio Asc(K − 1) is discussed below. If not ac-
cepted keep the current K-component mixture.

The split move must be reversible in the sense described in Green (1995) to
the combine move. Namely it consists of the following steps:

1. Choose at random a component j∗ which is proposed to be splitted;

2. Propose two new mixture components, labeled j1 and j2. To keep
reversibility, set their weights, means and variances such that the equa-
tion (8.12). This can be done by sampling a three-dimensional auxiliary
random vector u = (u1, u2, u3)

′ from some distribution with a density
pu(u) and setting

wj1 = wj∗u1, wj2 = wj∗(1 − u1),

µj1 = µj∗ − u2σj∗

√
wj2

wj1

, µj2 = µj∗ + u2σj∗

√
wj1

wj2

, (8.13)

σ2
j1

= u3(1 − u2
2)σ

2
j∗
wj∗

wj1

, σ2
j2

= (1 − u3)(1 − u2
2)σ

2
j∗
wj∗

wj2

.

Check whether the condition (8.11) holds. If not, reject directly the
split-proposal otherwise continue;
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3. Propose new values (either j1 or j2) for these allocation variables ri,l,
i = 1, . . . , N , l = 1, . . . , ni that were equal to j∗. This is done randomly
with

Pralloc(ri,l = j1) ∝
wj1

σj1

exp
{
−(εi,l − µj1)

2

2σ2
j1

}
,

Pralloc(ri,l = j2) ∝
wj2

σj2

exp
{
−(εi,l − µj2)

2

2σ2
j2

}
.

4. Accept the proposed mixture with K + 1 components with the proba-
bility

Prsplit
accept = min

{
1, Asc(K)

}
,

see below for the expression of the acceptance ratio Asc(K). If not
accepted keep the current K-component mixture.

The acceptance ratio Asc(K) has the following general structure:

Asc(K) = [posterior ratio] × [proposal ratio](K) × [Jacobian].

The individual components of the above product have the following meaning.

[posterior ratio] =
p(θj1,j2 | data)

p(θj∗ | data)
,

where the posterior density p(· |data) is given by (8.10). Further, θj1,j2 refers
to the parameter vector pertaining to the proposal in the case of the split
move and to the current values of parameters in the case of the combine move.
Similarly, θj∗ refers to the current parameter vector in the case of the split
move and to the proposal in the case of the combine move. The proposal
ratio is given by

[proposal ratio](K) =
πcombine

K+1

πsplit
K pu(u)

∏
(i,l): ri,l=j∗

Pralloc(ri,l)
.

Finally, the Jacobian refers to the transformation (8.13) from (wj∗ , µj∗ , σ
2
j∗,

u1, u2, u3)
′ to (wj1 , wj2 , µj1, µj2, σ

2
j1
, σ2

j2
)′, i.e.

[Jacobian] =

∣∣∣∣
wj∗ σ

2
j1
σ2

j2
(µj2 − µj1)

σ2
j∗ u2 (1 − u2

2)u3 (1 − u3)

∣∣∣∣

What leaves to be discussed is the choice of the density pu(u) of the auxiliary
random vector u used to generate the proposal in the split move. Richardson
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and Green (1997) suggest to generate u1, u2 and u3 independently from the
following beta distributions:

u1 ∼ Beta(2, 2), u2 ∼ Beta(2, 2), u3 ∼ Beta(1, 1).

Note that at each iteration of the MCMC a new auxiliary vector u is gen-
erated also independently on the previous iteration. Brooks, Giudici, and
Roberts (2003) showed that some improvement of the MCMC sampling can
be achieved by allowing (a) a correlation between the components of u; (b)
a serial correlation between the auxiliary vectors u generated at successive
iterations of the MCMC. In our practical applications (Sections 8.7, 8.8 and
8.9) we exploited their methodology as well.

Birth-death move

Similarly as in the split-combine move, it is randomly chosen whether the
birth or the death move will be attempted. If the current number of mixture
components is K, the birth move is attempted with the probability πbirth

K and
the death move with the probability πdeath

K = 1 − πbirth
K . Analogously to the

probabilities of the split and combine moves we use πbirth
1 = 1, πbirth

Kmax
= 0

and πbirth
K = πbirth

K = 0.5, K = 2, . . . ,Kmax − 1.

When the birth move is attempted the new mixture with K+1 components
is proposed in the following steps:

1. Sample the weight, mean and the variance for the new component from
the following distributions:

wj∗ ∼ Beta(1, K),

µj∗ ∼ N (ξ, κ), (8.14)

σ2
j∗ ∼ I-Gamma(ζ, η).

Note that the expectation of the new weight is equal to 1/(K + 1), i.e.
a reciprocal of the number of components in the proposed mixture;

2. In the proposed mixture, rescale the weights such that they, together
with the new weight wj∗, sum to one, i.e. the weights of the proposed
mixture are w′

1, . . . , w
′
K , wj∗ with

w′
j = wj(1 − wj∗), j = 1, . . . ,K. (8.15)

3. Accept the proposed mixture with K + 1 components with the proba-
bility

Prbirth
accept = min

{
1, Abd(K)

}
,
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see below for the form of the acceptance ratio Abd(K). If not accepted,
keep the current K-component mixture.

When it is chosen to propose the death move, the new mixture with K − 1
components is proposed in the follwoing way

1. Check whether there are any empty mixture components, i.e. the com-
ponents for which Nj =

∑
i,l I[ri,l = j] is equal to zero. If not the death

move is directly rejected;

2. Choose randomly an empty mixture component. Let j∗ be the label of
this component;

3. In the proposed (K−1)-component mixture, delete the j∗th component
and rescale the remaining weights such that they sum to one, i.e. the
proposed mixture has the weights w′

j , j = 1, . . . ,K, j 6= j∗.

w′
j =

wj

1 − wj∗
, j = 1, . . . ,K, j 6= j∗;

4. Accept the proposed mixture with K − 1 components with the proba-
bility

Prdeath
accept = min

{
1, A−1

bd (K − 1)
}
,

where the acceptance ratio A−1
bd (K − 1) is given below. If not accepted

keep the current K-component mixture.

Analogous to the split-combine move, the acceptance ratio Abd(K) has the
general structure

Abd(K) = [posterior ratio] × [proposal ratio](K) × [Jacobian],

where

[posterior ratio] =
p(θ+ | data)

p(θ− | data)
.

The vector θ+ refers to the set of the parameters containing the proposed
mixture in the case of the birth move and the set of the current parameter
values in the case of the death move. Similarly, the vector θ− refers to the
set of the current parameter values in the case of the birth move and to the
set of parameters contaning the proposed mixture in the case of the death
move. Further, the proposal ratio is given by

[proposal ratio](K) =
πdeath

K+1

πbirth
K pprop(wj∗ , µj∗ , σ2

j∗)
,
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where pprop(wj∗ , µj∗ , σ
2
j∗) is the density of the proposal step given by (8.14),

i.e.

pprop(wj∗, µj∗, σ
2
j∗) =

{
K (1 − wj∗)

K−1
}
× ϕ(µj∗ | ξ, κ) ×

{
ηζ

Γ(ζ)
(σ2

j∗)
−(ζ+1) exp

(
− η

σ2
j∗

)}
.

Finally, the Jacobian refers to the transformation (8.15), i.e.

[Jacobian] = (1 − wj∗)
K .

Updating the residuals

The update of the residuals εi,l, i = 1, . . . ,N , l = 1, . . . , ni is fully determin-
istic provided the (i, l)th residual correspond to an uncensored observation
ti,l = tLi,l = tUi,l. In such case, the update of εi,l consists of using the AFT
expression (8.1) with the current values of the parameters, i.e. the updated
εi,l is equal to log(ti,l) − β′xi,l − b′izi,l.

When the residual εi,l corresponds to the censored observation with an ob-
served interval ⌊tLi,l, tUi,l⌋ its update consists of sampling from the full condi-
tional distribution of εi,l which appears to be a truncated normal distribution,

namely N (µri,l
, σ2

ri,l
) truncated on

⌊
log(tLi,l)−β′xi,l−b′izi,l, log(tUi,l)−β′xi,l−

b′izi,l

⌋
.

8.3.2 Update of the regression part of the model

The regression part of the model is updated by sampling from the full con-
ditional distribution of each parameter or a set of parameters.

Full conditional for the fixed effects β

Let β(S) be an arbitrary sub-vector of vector β, and xi,l(S) the corresponding
sub-vectors of covariate vectors xi,l, and further let xi,l(−S) be their com-
plementary sub-vectors. Similarly, let further νβ(S) and ψβ(S) be appro-
priate sub-vectors of hyperparameters νβ and ψβ, respectively. Finally, let
Ψβ(S) = diag(ψβ(S)). Then

β(S) | · · · ∼ N
(
E(β(S) | · · · ), var(β(S) | · · · )

)
,
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with

E(β(S) | · · · ) = var(β(S) | · · · )×
{
Ψ−1

β(S)νβ(S) +

N∑

i=1

ni∑

l=1

σ−2
ri,l
xi,l(S)e

(F )
i,l(S)

}
,

var(β(S) | · · · ) =
(
Ψ−1

β(S) +

N∑

i=1

ni∑

l=1

σ−2
ri,l
xi,l(S)x

′
i,l(S)

)−1
,

where e
(F )
i,l(S) = log(ti,l) − µri,l

− β′
(−S)xi,l(−S) − b′izi,l.

Full conditional for the means of random effects γ

There is no loss of generality to assume that γ = (γ ′
(S),γ

′
(−S))

′. Further, let
bi(S), bi(−S), νγ(S), ψγ(S) the corresponding sub-vectors or complementary
sub-vectors of indicated quantities and Ψγ(S) = diag(ψγ(S)). Furthermore,
let the inversion of the matrix D be decomposed in the following way

D
−1 =

(
V(S) V(S,−S)

V
′
(S,−S) V(−S)

)
,

then

γ(S) | · · · ∼ N
(
E(γ(S) | · · · ), var(γ(S) | · · · )

)
,

with

E(γ(S) | · · · ) = var(γ(S) | · · · )×
{

Ψ−1
γ(S)νγ(S) + V(S)

N∑

i=1

bi(S) + V(S,−S)

N∑

i=1

(
bi(−S) − γ(−S)

)}
,

var(γ(S) | · · · ) =
(
Ψ−1

γ(S) + N V(S)

)−1
,

Full conditional for the random effects bi

For the random effects vectors bi :

bi | · · · ∼ N
(
E(bi | · · · ), var(bi | · · · )

)
, i = 1, . . . ,N,
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with

E(bi | · · · ) = var(bi | · · · )×
[
D
−1γ +

ni∑

l=1

σ−2
ri,l
zi,l

{
log(ti,l) − µri,l

− β′xi,l

}]
,

var(bi | · · · ) =
(
D
−1 +

ni∑

l=1

σ−2
ri,l
zi,lz

′
i,l

)−1
.

Full conditional for the covariance matrix of random effects D

Finally, D | · · · is an inverse-Wishart distribution with degrees of freedom
equal to df +N and a scale matrix equal to

S +

N∑

i=1

(bi − γ)(bi − γ)′.

8.4 Bayesian estimates of the survival distribution

Simple posterior median or mean are suitable overall estimates for the com-
ponents of the parameter vector θ. To characterize a survival distribution
underlying the data we also need an estimate for the survival and hazard func-
tion or for the survival density or the density of the error term in the AFT
model. All these quantities are functions with an expression that depends on
the parameter vector θ. In the Bayesian statistics they are estimated by the
mean of (posterior) predictive quantities to be discussed in this section.

8.4.1 Predictive survival and hazard curves and predictive
survival densities

For a specific value of covariates, say xnew and znew, the predictive survival
function is given by

S(t | data, xnew, znew) =

∫
S(t | θ, data, xnew, znew) p(θ | data) dθ

for any t > 0. Further, once the parameter vector θ is known the data do
not bring any additional information and hence

S(t | θ, data, xnew, znew) = S(t | θ, xnew, znew).
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Additionally, analogously to Section 7.4, the quantity S(t | θ, xnew, znew) is
expressed using the model parameters as

S(t |θ, xnew, znew) = 1−
K∑

j=1

wjΦ
{
log(t)−β′xnew − b′znew

∣∣µj, σ
2
j

}
. (8.16)

The MCMC estimate of the predictive survival function is then given, using
the expression (4.13):

Ŝ(t | data, xnew, znew) =
1

M

M∑

m=1

S(t | θ(m), xnew, znew), (8.17)

where θ(m), m = 1, . . . ,M is the MCMC sample from the posterior (predic-
tive) distribution. All components of θ(m) are directly available except b(m).
These must be additionally sampled from Nq(γ

(m), D
(m)).

Analogously, predictive hazard curves and predictive survival densities are
obtained using the relationship

p(t | θ, xnew, znew) = t−1
K∑

j=1

wjϕ
{
log(t)− β′xnew − b′znew

∣∣ µj, σ
2
j

}
(8.18)

for the survival density and the relationship

ℏ(t | θ, xnew, znew) =
p(t | θ, xnew, znew)

S(t | θ, xnew, znew)
(8.19)

for the hazard.

8.4.2 Predictive error densities

Averaging the error density (8.2) across the MCMC run, conditionally on
fixed values of K, gives a Bayesian predictive error density estimate of the
mixture with K components, i.e. an estimate of

E
{
gε(e)

∣∣ K, data
}

=

∫

ΘK

gε(e) p(θ | K, data) dθ, e ∈ R, (8.20)

where the domain of integration, ΘK , is the subset of the overall parameter
space pertaining to mixtures with a fixed number K of the mixture compo-
nents.

Averaging further across values of K gives an estimate of

E
{
gε(e)

∣∣ data
}

=

∫
gε(e) p(θ | data) dθ, e ∈ R, (8.21)

the overall Bayesian predictive density estimate of the error distribution.
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8.5 Bayesian estimates of the individual random
effects

In some situations, for example when discrimination between clusters is of
interest, an estimate of the individual random effects must be provided. In
the Bayesian statistics, their estimates are given by some characteristic of the
posterior distribution, for instance by the posterior mean E(bi |data). The
precision of the estimate can be evaluated using the credible interval.

When using the MCMC to draw the sample from the posterior distribution,
we estimate each individual random effect vector bi by the average of the
sampled values, i.e.

b̂i =
1

M

M∑

m=1

b
(m)
i ,

where M is the number of MCMC iterations and b
(m)
i the value of bi sampled

at the mth iteration. The credible interval is obtained by taking sample
quantiles from the MCMC sample.

8.6 Simulation study

A simulation study was carried out to explore the performance of the pro-
posed method. The setting mimics a study with clustered data where a con-
tinuous covariate as well as a dichotomous covariate might influence the dis-
tribution of the event time. At the same time there might be an overall
heterogeneity between clusters present as well as a possible interaction be-
tween the cluster effect and the effect of the dichotomous covariate. The
factual setting used to generate the ‘true’ data was motivated by the results
of the WIHS analysis presented in Section 7.6.

Namely, ‘true’ uncensored data were generated according to the model

log(Ti,l) = 1.5 + β xi,l + bi,1 + bi,2 zi,l + εi,l, i = 1, . . . ,N, l = 1, . . . , ni,

where

β = 0.4, (bi,1, bi,2)
′ ∼ N2

(
(0, γ)′,D

)
,

γ = −0.8, var(bi,1) = 0.52, var(bi,2) = 0.12,

corr(bi,1, bi,2) = 0.4.

The covariate xi,l was generated according to the extreme-value distribution
of a minimum, with location equal to 8.5 and scale equal to 1 inspired more
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or less by the log2(1 + CD4 count) covariate in the WIHS data set. The
covariate zi,l was binary taking a value of 1 with probability equal to 0.4.
The error term εi,l was generated from a standard normal distribution, from
a Cauchy distribution, from a Student t2 distribution, from a standardized
extreme value distribution, and from a normal mixture 0.4N1(−2.000, 0.25)+
0.6N1(1.333, 0.36), respectively. Two sample sizes were considered: (1) N =
50, ni = 5 for all i (small sample size) and (2) N = 100, ni = 10 for all i
(large sample size). Each simulation involved 100 replications.

All event times were interval-censored by simulating 120 consecutive ‘as-
sessment times’ for each ‘patient’ in the dataset (the first assessment time
was drawn from N (7, 1), times between each consecutive assessments from
N (6, 0.25)). At each assessment, between 0.2% and 0.6% randomly selected
patients were withdrawn from the study resulting in approximately 15% of
right-censored observations. For each dataset, the estimates were computed
using the Bayesian normal mixture cluster-specific AFT model, using the
Bayesian cluster-specific model with a normal error and using the maximum-
likelihood AFT model with a normal error and ignoring the random effects
structure.

Appendix B, Section B.2 gives selected results of the simulation. Average
estimates of the regression parameters, their standard and mean squared
errors are given in Tables B.7 and B.8. The results related to the covariance
matrix D of the random effects are given in Tables B.9 – B.11. It is seen
that, in most cases, the Bayesian mixture approach performs better than
the incorrectly specified models. A large difference in favour of the Bayesian
mixture model is seen in the case of a normal mixture or Cauchy for the error
distribution.

Additionally, when the Bayesian mixture approach is used, also the error
distribution and consequently also the hazard or survival functions are repro-
duced closely which is not always the case when the Bayesian normal model
is used. See Figures B.4 – B.9.

8.7 Example: Signal Tandmobielr study – clus-
tered interval-censored data

In Section 7.7 we analyzed separately the emergence times of teeth 14 and
15. In this section, we extend this analysis by inclusion of all permanent pre-
molars, i.e. teeth 14, 15, 24, 25, 34, 35, 44, 45 in Figure 1.1 and additionally,
all eight teeth will be analyzed jointly. This allows not only to answer the
question what the impact of different covariates on the emergence time is but
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also the question concerning the relationship between the emergence times of
different teeth. A random sample of 500 boys and 500 girls will be used for
the inference.

The response variable Ti,l, i = 1, . . . , 1 000, l = 1, . . . , 8, refers to the age of
emergence of the lth permanent premolar of the ith child. As indicated in
Sections 1.1 and 7.7 the response variable is interval-censored with intervals
of length equal to approximately 1 year. For reasons stated in Section 7.7 we
shifted the time origin of the AFT model to 5 years of age, i.e. by replacing
Ti,l by Ti,l − 5 in the model (8.1).

Further, Leroy et al. (2003b) have shown that there is horizontal symmetry
with respect to emergence, i.e. the same emergence distribution can be as-
sumed at horizontally symmetric positions (e.g., for teeth 14 and 24). In
model (8.1), this leads to the random effect vector

bi = (bi,1, . . . , bi,4)
′ with zi,l = (1, man4i,l, max5i,l, man5i,l)

′,

where man4i,l,max5i,l,man5i,l, respectively are dummies for the mandibular
first premolars (teeth 34, 44), maxillary second premolars (teeth 15, 25) and
mandibular second premolars (teeth 35, 45), respectively. With this model
specification, apart of the random variation given by the error term εi,l, the
terms

b∗i,max4 = bi,1, b∗i,man4 = bi,1 + bi,2,

b∗i,max5 = bi,1 + bi,3, b∗i,man5 = bi,1 + bi,4

determine how the log-emergence time of a pair of horizontally symmetric
teeth of a single child differ from the population average. As fixed effects
we used gender ≡ girl, dmf, interaction between gender and dmf, and all
two-way interaction terms between gender, dmf and dummies for the pairs of
horizontal symmetric teeth, i.e.

xi,l = (genderi, dmfi,l, genderi ∗ dmfi,l,

genderi ∗ man4i,l, genderi ∗ max5i,l, genderi ∗ man5i,l,

dmfi,l ∗ man4i,l, dmfi,l ∗ max5i,l, dmfi,l ∗ man5i,l)
′.

See Section 7.7 for the definition of the covariate dmf.

For the inference we sampled two chains, each of length 20 000 with 1:3 thin-
ning which took about 27 hours on a Pentium IV 2 GHz PC with 512 MB
RAM. The first 1 500 iterations of each chain were discarded. Convergence
was evaluated by the method of Gelman and Rubin (1992).
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Table 8.1: Signal Tandmobielr study. Posterior medians, 95% equal-tail
credible intervals for the effect of different covariates and error variance.

Posterior Posterior

Effect median 95% CI median 95% CI

Maxilla 4 Maxilla 5

intercept 1.7566 (1.7338, 1.7822) 1.9001 (1.8729, 1.9283)

gender −0.0680 (−0.1003, −0.0368) −0.0504 (−0.0844, −0.0163)

dmf −0.0457 (−0.0631, −0.0284) −0.0317 (−0.0500, −0.0135)

Mandible 4 Mandible 5

intercept 1.7242 (1.7019, 1.7484) 1.9060 (1.8805, 1.9323)

gender −0.0668 (−0.0972, −0.0375) −0.0654 (−0.0965, −0.0323)

dmf −0.0201 (−0.0378, −0.0032) −0.0090 (−0.0283, 0.0098)

Effect Posterior median 95% CI

All teeth

gender ∗ dmf 0.0105 (−0.0073, 0.0279)

log(scale) log(σ) −2.2580 (−2.3111, −2.1721)

error scale σ 0.1046 (0.0992, 0.1139)

8.7.1 Prior distribution

The initial maximum-likelihood AFT model, for each tooth separately, with
a normal error distribution and without random effects estimated the inter-
cept as 1.8 and scale as 0.25. According to the suggestions of Section 8.2.3
we used the following values of hyperparameters: ξ = 1.8, κ = (3 · 0.25)2,
ζ = 2, h1 = 0.2, h2 = 0.1, δ = 1. For the number of mixture components, K,
a truncated Poisson prior with λ = 5 reflecting our prior belief that the error
distribution is skewed and Kmax = 30 was used. All β and γ parameters were
assigned a spread N (0, 100) prior. For the covariance matrix D of random
effects we used an inverse Wishart prior with df = 4. Though, due to the
fact that 1 000 clusters are involved in the data set, even a higher value could
be used with a negligible impact on results. Prior scale matrix S was equal
to diag(0.002) (corresponding to inverse-gamma(df, 0.001) in the univariate
case).
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Table 8.2: Signal Tandmobielr study. Posterior medians, 95% equal-tail
credible intervals and Bayesian two-sided p-values for the effect of dmf > 0
for the two genders and different teeth.

Tooth Gender Post. median 95% CI p-value

Maxilla 4 Girl −0.0352 (−0.0522, −0.0185) < 0.001

Boy −0.0457 (−0.0631, −0.0284) < 0.001

Maxilla 5 Girl −0.0212 (−0.0390, −0.0035) 0.019

Boy −0.0317 (−0.0500, −0.0135) < 0.001

Mandible 4 Girl −0.0098 (−0.0267, 0.0070) 0.255

Boy −0.0201 (−0.0378, −0.0032) 0.021

Mandible 5 Girl 0.0015 (−0.0162, 0.0193) 0.870

Boy −0.0090 (−0.0283, 0.0098) 0.353

8.7.2 Results for the regression and error parameters

The effect of different covariates on the emergence, separately for each tooth is
given in Table 8.1. The results in Table 8.1 were obtained as MCMC summary
for proper combinations of model parameters. For example, the intercept
effect for the maxillary teeth 4 equals the error mean α =

∑K
j=1wjµj. For the

maxillary teeth 5, the intercept effect equals α+γ(max5) where γ(max5) is the
mean of the random effect bi,3. The intercept effects for the remainig teeth are
defined in an analogous manner. The effect of gender in Table 8.1 is defined
as β(gender) for the maxillary teeth 4, β(gender) + β(gender ∗ max5) for the
maxillary teeth 5 and analogously for the remaining teeth. Finally, the effect
of dmf is given by β(dmf) for the maxillary teeth 4, by β(dmf)+β(dmf∗max5)
for the maxillary teeth 5 and analogously for remaining teeth. The error scale
refers to the summary for the standard deviation σ of the error distribution,

i.e. σ =
√∑K

j=1wj(µ
2
j + σ2

j ) − α2. The row labeled as log(scale) refers to

the summary for log(σ).

Most of the quantities in Table 8.1 are comparable to the results of the
earlier analysis (see Section 7.7) given in Table 7.5. Remember however that
in Section 7.7 we analyzed separately only one maxillary tooth 4 (14) and one
maxillary tooth 5 (15). Furthermore, in contrast to the recent analysis we
allowed the dependence of the error variance on the covariates in Section 7.7.

In this analysis, the main interest lies in the effect of dmf on emergence. This
can be evaluated from Table 8.2 that shows posterior summary statistics for
the effect of dmf (appropriate linear combinations of β parameters) for boys
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Table 8.3: Signal Tandmobielr study. Posterior medians, 95% equal-tail
credible intervals for variances and correlations between tooth-specific linear
combinations of random effects.

Parameter Posterior median 95% CI

sd(b∗i,max4) 0.204 (0.192, 0.218)

sd(b∗i,man4) 0.198 (0.186, 0.211)

sd(b∗i,max5) 0.205 (0.190, 0.221)

sd(b∗i,man5) 0.202 (0.187, 0.218)

corr(b∗max4, b
∗

man4) 0.887 (0.856, 0.914)

corr(b∗max4, b
∗

max5) 0.914 (0.887, 0.938)

corr(b∗max4, b
∗

man5) 0.842 (0.804, 0.874)

corr(b∗man4, b
∗

max5) 0.793 (0.749, 0.832)

corr(b∗man4, b
∗

man5) 0.895 (0.864, 0.923)

corr(b∗max5, b
∗

man5) 0.847 (0.810, 0.880)

and girls and the four pairs of horizontally symmetric teeth. It is seen that
caries on the primary predecessor accelerates significantly the emergence of
the permanent successor in the case of maxillary teeth. For the mandibular
teeth, a slight effect is observed only for the first premolar on boys. Addi-
tionally, besides the effect of dmf the emergence process for girls is ahead of
boys.

8.7.3 Inter-teeth relationship

Further, Table 8.3 shows posterior summary statistics for standard deviations
and correlations of above defined tooth-specific linear combinations b∗i,max4,
b∗i,man4, b

∗
i,max5, b

∗
i,man5 of random effects bi,1, . . . , bi,4. It shows how the child

effect is important and how the different teeth in one mouth are strongly
correlated. The posterior medians of all standard deviations in Table 8.3
are all about 0.2 which is approximately two times higher than the posterior
median of the standard deviation of the error distribution which was equal
to 0.1. Posterior medians of all correlation parameters lie between 0.79 and
0.91.

8.7.4 Predictive emergence and hazard curves

Predictive emergence curves (predictive cumulative distribution functions)
computed using an approach described in Section 8.4.1 are shown in Fig-
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Figure 8.2: Signal Tandmobielr study. Posterior predictive emergence
curves. Solid line: dmf = 1, dotted-dashed line: dmf = 0.
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Figure 8.3: Signal Tandmobielr study. Posterior predictive hazard curves.
Solid line: dmf = 1, dotted-dashed line: dmf = 0.
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Figure 8.4: Signal Tandmobielr study. Posterior predictive error density.
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ure 8.2. In agreement with the results discussed in Section 8.7.2 almost
negligible difference is observed between the predictive emergence curves for
dmf > 0 and dmf = 0 for mandibular teeth. The same is true for the pre-
dictive hazard functions of emergence shown in Figure 8.3. As expected (see
Section 7.7.2 for the reasons why) the predictive hazard functions are all
increasing.

8.7.5 Predictive error density

In our sample, the number of mixture components K ranged from 2 to 24
while mixtures withK ∈ {6, 7, 8} occupied each more than 10% of the sample,
with the highest frequency for K = 7 (11.2%). Mixtures with K ≥ 17 took
each less than 1.5% of the sample. Apparently, the model did not suffer from
the technical restriction given by Kmax = 30.

Figure 8.4 further shows both the overall estimate of the predictive error
density (8.21) and the conditional (given K) estimate of the predictive error
density (8.20). It is seen that the mixtures with the most frequent numbers
of components are all almost the same.

8.7.6 Conclusions

This section showed an analysis of clustered data where moreover closer de-
pendence between some observations within the cluster could be assumed.
Since in Section 7.7 we have shown on the similar analysis of the same data
set that the error variance might depend on covariates the model presented
in this section might be improved if we allow to depend the variances of
the mixture components determining the error distribution on covariates as
well. However, in the current mixture setting such extension is not trivial
and requires further research.

8.8 Example: CGD data – recurrent events analy-
sis

The chronic granulomatous disease (CGD) trial has been introduced in Sec-
tion 1.2. The response variable Ti,l is a time to the lth (recurrent) infection
on the ith patient, i = 1, . . . , 128, l = 1, . . . , ni, 1 ≤ ni ≤ 8. So that a patient
represents a cluster and the infection times the individual observations.

The problem of recurrent events in this data set was discussed by several au-
thors in the literature. Among others, Therneau and Hamilton (1997) used
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Figure 8.5: CGD data. Scaled histograms of sampled standard deviations of
the random effect bi for different prior distributions.
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the CGD data to illustrate several approaches for recurrent event analysis
based on the Cox’s PH model. Vaida and Xu (2000) used this dataset to il-
lustrate the PH model with random effects. They specify the hazard function
for the (i, l)th event as

ℏ(t |xi,l, zi,l, bi) = ℏ0(t) exp(β′xi,l + b′izi,l),

where ℏ0 is a baseline hazard function, β regression parameters vector for
‘fixed’ effects, x a covariate vector of ‘fixed’ effects, bi a random effect vector
and zi,l corresponding covariates, see also Section 3.4.1. They use a normal
distribution for bi.

In this section we present an analysis of the CGD data using the Bayesian CS
normal mixture AFT model that could be considered as an AFT counterpart
of the random effects PH model of Vaida and Xu (2000). In the model
formula (8.1) a univariate random effect bi is used with zi,l ≡ 1. As fixed
effects covariates we used the same covariates as Vaida and Xu (2000), namely
the xi,l vector equals

xi,l = (trtmti, inheri, agei, cortici, prophyi, genderi,

hcatUSotheri, hcatEUAmsteri, hcatEUotheri)
′,

where trtmt equals 1 for the gamma inferon group and equals 0 for the placebo
group, inher equals 1 for patients with the autosomal recessive and equals 0
for patients with X-linked pattern of inheritance, age is the age of the patient
in years, cortic equals 1 if the corticosteroids are used and equals 0 otherwise,
prophy equals 1 if the prophylactic antibiotics are used and equals 0 otherwise,
gender equals to 1 for females and equals 0 for males and finally hcatUSother,
hcatEUAmster, and hcatEUother are dummies for the hospital categories US–
other, EU-Amsterdam, and EU-other, respectively.

For the inference we sampled two chains, each of length 60 000 with 1:6 thin-
ning which took about 5 minutes on a Pentium IV 2 GHz PC with 512 MB
RAM. The first 30 000 iterations of each chain were discarded. The conver-
gence was evaluated by a critical examination of the trace and autocorrelation
plots and using the method of Gelman and Rubin (1992).

8.8.1 Prior distribution

The initial maximum-likelihood AFT model with a normal error distribution
and without random effects gave an estimate of the intercept equal to 3.66
and a scale equal to 1.69. Along the suggestions made in Section 8.2.3 we
used the following values of hyperparameters: ξ = 3.66, κ = 25 ≈ (3 · 1.69)2,
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ζ = 2, h1 = 0.2, h2 = 0.1, δ = 1. For the number of mixture components, K,
a truncated Poisson prior with λ = 5 reflecting our prior belief that the error
distribution is skewed and Kmax = 30 was used. Prior means of all regression
parameters were equal to 0 and their prior variances to 1 000.

For the variance d of the random effect we tried either an inverse-gamma I-
Gamma(0.001, 0.001) prior (df = 0.002, s = 0.002 in the terms of the inverse-
Wishart distribution) or a uniform Unif(0,

√
s) prior on

√
d with

√
s = 100,

50, 10. As discussed in Gelman (2006, Sections 2.2 and 4.3), with the I-
Gamma(ǫ, ǫ) prior the inference might become very sensitive to the choices
of ǫ. This is not the case of the uniform distribution on

√
d where the choice of

the range of the uniform distribution has practically no impact on the results
(provided the upper limit of the uniform distribution is not chosen too small).
In Figure 8.5, we show scaled histograms of sampled values of

√
d for above

mentioned prior distributions. It is seen that the inverse-gamma prior leads
to a high posterior probability mass close to zero. The phenomenon driven by
the prior distribution which has a peak close to zero. On the other hand, with
the uniform prior on

√
d, the posterior distribution is clearly separated from

zero with the region of the support obviously driven by the data. Moreover,
in agreement with the findings of Gelman (2006), the posterior distribution
is practically the same irrespective the choice of the range of the uniform
prior. The results presented below will be based on Unif(0, 100) prior on

√
d

(practically the same results were obtained also with the remaining uniform
priors on

√
d).

8.8.2 Effect of covariates on the time to infection

Table 8.4 shows posterior summary statistics for the effect of the included
covariates on the distribution of the time to infection. Reported Bayesian
p-value is simultaneous in the case of the covariate hospital category. It is
seen that the effect of gamma interferon is highly significant increasing the
time to the infection by the factor of exp(1.273) = 3.57. The effect of the
pattern of inheritance is slightly not-significant on a conventional 5% level.
On the other hand, the increase of age by 1 year increases significantly the
infection free time by the factor of exp(0.047) = 1.05. Further, the use of
corticosteroids should be avoided as it decreases significantly the infection
free time by the factor of exp(−2.767) = 0.06 whereas the use of prophy-
lactic antibiotics increases significantly the infection free time by the factor
of exp(1.191) = 3.29. The infection free time is further significantly higher
for females, being exp(1.476) = 4.38 times higher than in the case of males.
Finally, the effect of the hospital category is slightly not significant however
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Table 8.4: CGD data. Posterior medians, 95% equal-tail credible intervals
and Bayesian two-sided (simultaneous) p-values for the effect of covariates.

Posterior

Parameter median 95% CI

Treatment group p = 0.001

gamma interferon 1.273 (0.437, 2.195)

Pattern of inheritance p = 0.067

autosomal recessive −0.914 (−1.829, 0.071)

Age p = 0.022

0.047 (0.007, 0.092)

Use of corticosteroids p = 0.038

yes −2.767 (−5.727, −0.161)

Use of prophylactic antibiotics p = 0.023

yes 1.191 (0.150, 2.330)

Gender p = 0.042

female 1.476 (0.050, 3.111)

Hospital category p = 0.065

US – other 0.461 (−0.481, 1.451)

Europe – Amsterdam 1.729 (0.183, 3.377)

Europe – other 1.268 (0.017, 2.637)

Table 8.5: CGD data. Posterior medians and 95% equal-tail credible inter-
vals for the moments of the error distribution and standard deviation of the
random effects.

Posterior

Parameter median 95% CI

Moments of the error distribution

Intercept α 4.088 (2.532, 5.527)

Error scale σ 2.495 (1.399, 4.083)

Standard deviation of the random effects

sd(bi) 0.748 (0.183, 1.395)
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8.8. EXAMPLE: CGD DATA – RECURRENT EVENTS ANALYSIS 143

the posterior median suggests the best results are obtained in the hospitals
of category Europe – Amsterdam whereas the worst results in the hospital
category US – NIH.

Although the parameters of the AFT model are not directly comparable to
the parameters of the PH model, we can compare at least the direction of
the relationship obtained here and by Vaida and Xu (2000) who used the PH
model. Care must be taken as Vaida and Xu (2000) use different 0-1 coding of
dichotomous variables than we do. However, we conclude that the directions
of the relationships between the covariates and the time to infection found
by the AFT model is the same compared to the findings obtained using the
PH model.

The effect of the treatment (gamma interferon) is seen also in Figure 8.6
where we plot predictive survival and hazard curves for males and females
taking either gamma interferon or placebo. Remaining covariates were fixed
either to their mean or the most common value.
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Figure 8.8: CGD data. Posterior means and 95% equal-tail credible intervals
for individual random effects. Patients are sorted according to the number
of records in the data set.
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8.8.3 Predictive error density and variability of random ef-
fects

Posterior summary statistics for the moments of the error distribution, com-
puted in the same way as indicated in Section 8.7.2, and for the standard
deviation of the random effects are given in Table 8.5.

The estimate of the error density is given in Figure 8.7. In this case, also
mixtures with a high number of components were quite highly represented in
the sample. For a clarity, the conditional estimates of the error density (given
K) are plotted only for chosen values of K. Higher number of components
is needed firstly because of clear skewness of the error density and secondly
because of somewhat higher probability mass in the right tail of the density.

8.8.4 Estimates of individual random effects

Figure 8.8 shows posterior means and 95% equal-tail posterior credible in-
tervals for the values of individual random effects bi, i = 1, . . . , 128. For
the purpose of plotting, the patients were sorted according to the number of
records they have in the data set. Since there are no big differences in the
follow-up times for different patients, less records in the data set generally
implies longer infection-free periods. Indeed, for the patients with only one
recorded infection time practically all estimated individual random effects lie
above zero, the mean for bi. Furthermore, there can be observed a decreasing
trend in the estimated individual random effects as the number of recorded
infection times increases.

8.8.5 Conclusions

In this section we have shown how the Bayesian normal mixture CS AFT
model can be used to analyse recurrent events data. It might be useful
to include the covariate number of infections in the model. However, such
covariate would be time-dependent and it is not possible to include covariates
of this type in any model where the (baseline) survival distribution is modelled
via density and not hazard function.

8.9 Example: EBCP data – multicenter study

In Section 1.4 we have introduced a multicenter randomized clinical trial
aiming to evaluate the effect of perioperative chemotherapy given besides
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the surgery on the progression-free survival (PFS) time compared to surgery
alone for early breast cancer patients while controlling for several baseline
covariates.

In Figure 1.3 we have indicated there possibly exists heterogeneity between
centra with respect to the PFS distribution. Additionally, there is some
evidence for the heterogeneity with respect to the treatment effect. In this
section, we perform an analysis using the Bayesian normal mixture cluster-
specific AFT model that addresses all these issues.

The cluster is represented by the center, i.e. i = 1, . . . , 14, within the ith
center ni patients were involved in the trial with 25 ≤ ni ≤ 902. As response
Ti,l, i = 1, . . . , 14, l = 1, . . . , ni we use the PFS time in days of the lth patient
treated by the ith center.

To allow for the baseline heterogeneity across centra and also for the hetero-
geneity with respect to the treatment effect we include a bivariate random
effect bi = (bi,1, bi,2)

′ in the CS AFT model (8.1). The covariate vector zi,l

for the random effects has the form

zi,l = (1, trtmtGroupi,l)
′,

where trtmtGroupi,l equals one if the (i, l)th patient underwent surgery alone
and equals zero if she additionally got the course of perioperative chemother-
apy.

Additionally, as fixed effects we include all baseline factors mentioned in
Section 1.4 in the model. Namely, the covariate vector xi,l in the model (8.1)
equals

xi,l = (ageMidi,l, ageOldi,l, tySui,l, tumSizi,l, nodSti,l, otDisi,l,

regionNLi, regionPLi, regionSEi, regionSAi)
′,

where ageMid and ageOld are dummies for the age groups 40–50 years and
older than 50 years, respectively with the group younger than 40 years as
the baseline, tySu being equal to 1 for the breast-conserving surgery and
equal to 0 for mastectomy, tumSiz being equal to 1 for the tumors of size
≥ 2cm and equal to 0 for tumors of size < 2cm, nodSt being equal to 1 for
the positive and equal to 0 for the negative pathological nodal status, otDis
being equal to 1 if there was another disease present and equal to 0 otherwise.
Finally, covariates regionNL, regionPL, regionSE, regionSA are dummies for the
geographical location of the center with France as the baseline.

Since the covariate region is categorical and center-specific it should be pos-
sible to reveal, at least partially, the regional structure of the centra from
the estimates of their individual random effects bi,1, i = 1, . . . , 14 when we
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omit the covariate region from the model. To show this, we fitted additionally
a model where all dummies for the region were omitted from the covariate
vector x (model without region).

For the inference we sampled two chains, each of length 200 000 with 1:5 thin-
ning which took about 32 hours on a Pentium IV 2 GHz PC with 512 MB
RAM. The first 150 000 iterations of each chain were discarded. The conver-
gence was evaluated by a critical examination of the trace and autocorrelation
plots and using the method of Gelman and Rubin (1992).

8.9.1 Prior distribution

The initial maximum-likelihood AFT model, without random effects gave
the estimate of the intercept equal to 9.43 and the estimate of the error scale
equal to 1.73. As the prior mean for the mixture components, ξ, we have
taken zero to show that the posterior for the mixture means manages to shift
from slightly misspecified location. To set up the remaining hyperparameters
we followed closely the guidelines given in Section 8.2.3, namely κ = 40 which
is slightly higher than (3 · 1.73)2, ζ = 2, h1 = 0.2, h2 = 0.1, δ = 1. For the
number of mixture components, K, we used a truncated Poisson distribution
prior with λ = 5 and Kmax = 30. Both γ2 (mean of the random effects bi,2)
as well as all β regression parameters were assigned a spread N (0, 100) prior.
The covariance matrix D of the random effects got an inverse Wishart prior
with df = 2 and S = diag(0.002).

8.9.2 Effect of covariates on PFS time

The effect of considered covariates, in both models with included or excluded
covariate region, on the progression-free survival time can be evaluated from
Table 8.6 where we report posterior medians, 95% equal-tail credible intervals
and Bayesian p-values (simultaneous for categorical covariates with more than
2 levels) for the β and γ parameters.

It is seen that the results for the model with region included are almost the
same as these in the model with region excluded. This is in agreement with
the general property of the AFT model mentioned in Section 3.3 that the re-
gression parameters for included covariates do not change when an important
factor is omitted from the model. If we base our conclusions on the model
with region included then we see that, after adjustment for the remaining
covariates, surgery alone decreases the time to the cancer progression by the
factor of exp(−0.173) = 0.84 compared to the surgery given together with
the perioperative chemotherapy. However the difference is not significant at
conventional 5% level.
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Table 8.6: Early breast cancer patients data. Posterior medians, 95% equal-
tail credible intervals and Bayesian two-sided (simultaneous) p-values for the
effect of covariates.

Model with region Model without region

Poster. Poster.

Parameter median 95% CI median 95% CI

Treatment group p = 0.070 p = 0.086

surgery alone −0.173 (−0.350, 0.016) −0.166 (−0.342, 0.026)

Age p = 0.005 p = 0.003

40–50 years 0.417 (0.140, 0.695) 0.429 (0.154, 0.715)

> 50 years 0.260 (0.002, 0.520) 0.295 (0.036, 0.558)

Type of surgery p = 0.056 p = 0.029

breast conserving 0.174 (−0.005, 0.357) 0.197 (0.021, 0.379)

Tumor size p < 0.001 p < 0.001

≥ 2cm −0.494 (−0.686, −0.306) −0.507 (−0.697, −0.314)

Nodal status p < 0.001 p < 0.001

positive −0.653 (−0.819, −0.488) −0.657 (−0.822, −0.490)

Other disease p = 0.008 p = 0.008

present −0.385 (−0.666, −0.099) −0.394 (−0.683, −0.102)

Region p = 0.033

the Netherlands −0.512 (−0.878, −0.068)

Poland 0.119 (−0.394, 0.663)

South Europe −0.450 (−0.857, −0.038)

South Africa −0.864 (−1.343, −0.371)

Further, the prognosis for the cancer progression is the most optimistic in
the middle age group 40 – 50 years where the time to the progression of
the disease is increased by the factor of exp(0.417) = 1.52 compared to the
youngest group <40 years. In the oldest group >50 years the time to the
disease progression is still increased, by the factor of exp(0.260) = 1.30,
compared to the youngest group. The estimates for the effect of age further
suggests a non-linear relationship between the age and log-progression-free
survival time.

The effect of the type of surgery on the disease progression is slightly not
significant at 5% level when basing the inference on the model with region.
However the posterior median of the β parameter for this covariate suggest
that breast conserving surgery increases the time to the cancer progression by
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Table 8.7: Early breast cancer patients data. Posterior medians and 95%
equal-tail credible intervals for the moments of the error distribution and
variance components of the random effects.

Model with region Model without region

Poster. Poster.

Parameter median 95% CI median 95% CI

Moments of the error distribution

Intercept α 9.453 (8.983, 9.853) 9.229 (8.822, 9.796)

Error scale σ 1.741 (1.600, 1.859) 1.749 (1.597, 2.376)

Variance components of the random effects

sd(bi,1) 0.126 (0.026, 0.392) 0.348 (0.192, 0.616)

sd(bi,2) 0.060 (0.020, 0.228) 0.085 (0.023, 0.275)

corr(bi,1, bi,2) −0.071 (−0.988, 0.973) −0.842 (−0.995, 0.978)

the factor of exp(0.174) = 1.20 when compared to mastectomy. The effect of
remaining patient-specific covariates is highly significant and in the direction
expected from the clinical point of view. Namely, the tumor of size ≥2 cm
decreases the time to the cancer progression by the factor of exp(−0.494) =
0.61 compared to the smaller tumors of size <2 cm. A positive pathological
nodal status decreases drastically the time to the cancer progression by the
factor of exp(−0.653) = 0.52 compared to the negative result. The presence
of other related disease decreases the PFS time by the factor of exp(−0.385) =
0.68.

Finally, a significant effect of the geographical region on the PFS time is seen.
The best performing region is found to be Poland, followed by France, South
Europe and the Netherlands. The region which performs the worst is then
South Africa.

Relatively small effect of the perioperative therapy compared to surgery alone
is also seen from the posterior predictive survival curves shown in Figure 8.9
and drawn for region = France and two typical combinations of covariates.

8.9.3 Predictive error density and variance components of
random effects

Posterior summary statistics for the moments of the error distribution and
the variance components of the random effects are given in Table 8.7. The
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Figure 8.9: Early breast cancer patients data. Predictive survival curves
based on the model with region for region = France, and two typical com-
binations of covariates: (1) breast conserving surgery, tumor size ≥2 cm,
negative nodal status and no other associated disease (9.79% of the sam-
ple), (2) mastectomy, tumor size ≥2 cm, positive nodal status and no other
associated disease (13.88% of the sample).
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moments of the error distribution are computed in the same way as indicated
in Section 8.7.2. It is seen that although there is heterogeneity between
centra, the within-center variability given by the variance of the error dis-
tribution is much higher than the between-centra variability given by the
variance of the random effects. Furthermore, as expected, the variability of
the random intercept term bi,1 increased considerably when we omitted the
covariate region.

According to the posterior median there exists very low negative correlation
between the overall center level and the treatment × center interaction in
the model with region and relatively high negative correlation in the model
with region excluded. However, in both cases the 95% equal-tail credible
interval covers almost the whole range (−1, 1) of possible values for ̺ forcing
us to conclude that almost nothing can be said about the random effects
correlation ̺, probably due to the fact that effectively only a sample of size
14 is used to estimate this correlation. The reason for quite huge difference
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Figure 8.10: Early breast cancer patients data. Scaled histograms for sampled
corr(bi,1, bi,2).
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Figure 8.11: Early breast cancer patients data. Posterior predictive error
densities.
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in the posterior median for ̺ in the two models can be found in Figure 8.10
where we show scaled histograms of sampled values of ̺, i.e. estimates of the
posterior density of ̺. It is seen that the posterior density has, in both cases,
a ‘U’ shape, while putting somewhat more mass on negative values in the
case of the model without region.

In the sample, mostly error densities with a low number of mixture compo-
nents were presented. Namely, in the model with region, 90.68% of the sample
was formed by a one-component density, 7.07% of the sample was formed by
a two-component mixture, 1.50% of the sample contained a three-component
mixtures and mixtures with more than 3 components were all represented in
only 0.75% of the sample. In the model with omitted covariate region the
proportion of densities with at least two components quite logically increased,
namely one-component density is now represented only in 74.40% of the sam-
ple, two-component mixtures in 22.13% of the sample and three-component
mixtures in 1.73% of the sample. Mixtures with more than 3 components
are still quite rare, being all together represented only in 1.74% of the sam-
ple. The estimates of the error density (both uncondionally and conditionally
given the number of mixture components) are given in Figure 8.11.

8.9.4 Estimates of individual random effects

Estimates of individual random effects that could serve to discriminate the
centra are given in Figure 8.12. To be able to compare directly the models
with and without covariate region the plots related to the random intercept
bi,1 take into account also the overall intercept α (mean of the error distri-
bution) and in the case of the model with region also the appropriate main
effect of region (β(regionNL), β(regionPL), β(regionSE), and β(regionSA) re-
spectively). It is seen that the estimates of individual random intercepts in
the model without region managed quite nicely to capture also the region
effect, of course for the price of decreased precision of the estimates.

8.9.5 Conclusions

In this section, we have shown an analysis of a typical multicenter clinical trial
with heterogeneity with respect to the overall center effect as well as center ×
treatment interaction. Among others we have further shown how the center-
specific random effects may capture the effect of an omitted center-specific
covariate.
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Figure 8.12: Early breast cancer patients data. Posterior means and 95%
equal-tail credible intervals for individual random effects. Random intercepts
are further shifted by an overall intercept α and in the model with region also
by a corresponding region main effect β(region).
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8.10 Discussion

In this chapter, we have proposed a Bayesian cluster-specific accelerated fail-
ure time model whose error distribution is modelled in a flexible way as a finite
normal mixture. An advantage of the full Bayesian approach is the fact that
a general random effect vector can be easily included in the model. Subse-
quently, the effect of covariates can be evaluated jointly with the association
among clustered responses. Further, interval-, right-, or left-censored data
are easy to handle and finally, the MCMC sampling-based implementation of
the model offers a straightforward way to obtain credible intervals of model
parameters as well as predictive survival or hazard curves.

Observe that the Bayesian approach is used here mainly for technical con-
venience. Indeed, in practice likelihood (8.3) is hardly tractable using the
maximum-likelihood method. On the other hand, the Bayesian estimation
using the MCMC does not pose any real difficulties. Further, since all our
prior distributions are non-informative (or close to, cfr. variance parameters)
and we use (on a proper scale) more or less posterior modes as point estimates
the classical maximum-likelihood estimation would lead to almost the same
results.

The proposed methodology aims to contribute to the area of semi-parametric
modelling of correlated and at the same time interval-censored data. Fur-
thermore, our approach allows to bring in a structure into the dependencies
between observations in one cluster. For instance, in multicenter studies, the
vector zi,l = (1, treatmenti,l)

′ in the model formula (8.1) allows to consider
not only the random center effect but also a random center-by-treatment
interaction which can sometimes be substantial.

Unfortunately, our approach cannot handle time-dependent covariates. How-
ever, the same is true for any model where the distribution of the response is
specified by the density and not by the hazard function. To include also the
time-dependent covariates, usually the Cox’s proportional hazards model is
used. For example, Kooperberg and Clarkson (1997); Betensky et al. (1999);
Goetghebeur and Ryan (2000) consider independent interval-censored data.
Vaida and Xu (2000) offer an approach based on the proportional hazards
linear mixed model with right-censored data.

Finally, our approach can be quite easily extended along the lines presented
in Chapters 9 and 10 to handle also doubly-interval-censored data, i.e. the
data where the response is given as the difference of two interval-censored
observations.



Chapter 9
Bayesian Penalized Mixture
Cluster-Specific AFT Model

This chapter continues with the developments in the framework of the cluster-
specific AFT model. However, to model unknown distributional shapes a pe-
nalized normal mixture introduced in Section 6.3 will be exploited instead of
the classical normal mixture that was used in Chapter 8. Furthermore, we
directly describe a model for doubly-interval-censored data although it can
also be used with interval- or right-censored data. This approach, introduced
by Komárek and Lesaffre (2006b), will allow us to analyze the caries times
in the Signal Tandmobielr study.

The cluster-specific AFT model for doubly-interval-censored data is spec-
ified in Section 9.1. In Section 9.2, we specify the prior distributions of
all model parameters and derive their posterior distribution. Markov chain
Monte Carlo methodology for the model of this chapter is described in Sec-
tion 9.3. Estimation of the survival distribution and of the individual random
effects is described in Sections 9.4 and 9.5, respectively. Results of the simu-
lation study aiming to evaluate the performance of the proposed method are
shown in Section 9.6. Section 9.7 presents the analysis of doubly-interval-
censored caries times of the four permanent first molars. The analysis of the
breast cancer multicenter study is given in Section 9.8. Discussion finalizes
the chapter in Section 9.9.
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9.1 Model

Let
∑N

i=1 ni observational units be divided into N clusters, the ith one of
size ni. Let Ui,l and Vi,l, i = 1, . . . ,N, l = 1, . . . , ni denote the true chrono-
logical onset and failure time, respectively and Ti,l = Vi,l −Ui,l the true event
time. With doubly interval censoring, it is only known that Ui,l occurred
within an interval of time ⌊uL

i,l, u
U
i,l⌋, where uL

i,l ≤ uU
i,l. Similarly, the fail-

ure time Vi,l is only known to lie in an interval ⌊vL
i,l, v

U
i,l⌋, with vL

i,l ≤ vU
i,l,

i = 1, . . . , N, l = 1, . . . , ni. As in the whole thesis, it is assumed that ob-
served intervals result from an independent noninformative censoring process
(see Section 2.4). Further, as indicated in Section 4.1.2, we will assume that,
given the model parameters, the true event time Ti,l is independent of the
true onset time Ui,l for all i and l. Below, we discuss this issue further.

To account for possible dependencies of different individuals within a cluster,
the cluster-specific random effects di = (di,1, . . . , di,qd

)′ and bi = (bi,1, . . . ,
bi,qb

)′ are introduced and incorporated in the cluster-specific AFT model for
doubly-interval-censored data:

log(Ui,l) = δ′xu
i,l + d′iz

u
i,l + ζi,l, (9.1)

log(Vi,l − Ui,l) = log(Ti,l) = β′xt
i,l + b′iz

t
i,l + εi,l, (9.2)

i = 1, . . . ,N, l = 1, . . . , ni,

where δ = (δ1, . . . , δmu)′ and β = (β1, . . . , βmt)
′ are unknown regression

parameter vectors, zu
i,l is the covariate vector for random effects influencing

the distribution of the onset time, zt
i,l the covariate vector for random effects

influencing the distribution of the event time and similary, xu
i,l is the covariate

vector for fixed effects having possibly an impact on the onset time and xt
i,l the

covariate vector for fixed effects having possibly an impact on the event time.
The error terms ζi,l, i = 1, . . . ,N , l = 1, . . . , ni are i.i.d. random variables
with some density gζ(ζ). Analogously, the error terms εi,l, i = 1, . . . ,N,
l = 1, . . . , ni are i.i.d. random variables with density gε(ε). The random
effects di, i = 1, . . . , N and bi, i = 1, . . . ,N , respectively are assumed to be
i.i.d. with a density gd(d) and gb(b), respectively. Furthermore we assume
that εi1,l1, ζi2,l2, bi3 and di4 are independent for all i1, i2, i3, i4 and l1, l2.
This assumption implies that, given the model parameters and the random
effects bi and di, Ui,l and Ti,l are independent for each i and l and the
vectors U i = (Ui,1, . . . , Ui,ni

)′ and T i = (Ti,1, . . . , Ti,ni
)′ are independent for

each i. Furthermore, for example in the context of the Signal Tandmobielr

application (see Section 9.7) where Ui,l and Ti,l are the emergence time and
the time to caries, respectively, for the lth tooth of the ith child, it also
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implies the following decomposition

(a) Whether a child is an early or late emerger is independent of whether
a child is more or less sensitive against caries (independence of di and
bi);

(b) Whether a specific tooth emerges early or late is independent of whether
that tooth is more or less sensitive against caries (independence of ζi,l
and εi,l).

9.1.1 Distributional assumptions

To finalize the specification of the measurement model we have to specify the
densities gζ , gε of the random errors and the densities gd, gb of the random
effects. According to the dimensionality of the problem, we distinguish two
situations.

Model U

In the case of univariate densities, i.e. for the densities gζ and gε and for
the densities gd and gb if the corresponding random effects are univariate (in
which case we will use the notation di = (di,1) ≡ di and/or bi = (bi,1) ≡ bi),
a penalized normal mixture as introduced in Section 6.3 will be used.

That is, a generic density g(y) of a random variable Y (substitute ζi,l, εi,l,
di or bi) is modelled as a location-and-scale transformed weighted sum of
normal densities over a fixed fine grid of knots µ = (µ−K , . . . , µK)′ centered
around µ0 = 0. The means of the normal components are equal to the knots
and their variances are all equal and fixed to σ2, i.e.

g(y) = τ−1
K∑

j=−K

wj(a)ϕ
(y − α

τ

∣∣∣µj , σ
2
)
, (9.3)

where the unknown intercept term α and the unknown scale parameter τ have
to be estimated as well as the vector a = (a−K , . . . , aK)′ of the transformed
weights. See (6.14) for the relationship between a and w = (w−K , . . . , wK)′.

Model M

In the case when a random effect vector di or bi is multivariate it is assumed,
analogously to Chapter 8 that it follows a multivariate normal distribution.
This choice is driven mainly by computational convenience. Note however,
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that the densities gζ and gε are still modelled using the penalized normal
mixture (9.3). Finally, the same reasoning as in Section 8.1.1 can be used
to explain why we put more emphasis on a correct specification of the error
distribution.

For notational convenience and clarity of the exposition we will assume that
in Model U, both random effects are univariate (qd = qb = 1) whereas in Model
M, both random effects are multivariate (qd > 1 and qb > 1). However, in
practical situations both cases can be mixed. For example the distribution of
the univariate di can be specified as a penalized normal mixture (9.3) whereas
for the multivariate bi a multivariate normal distribution can be used.

9.1.2 Likelihood

Denoting p a generic density, the likelihood contribution of the ith cluster is
given by

Li =

∫

R
qd

∫

R
qb

{ ni∏

l=1

∮ uU
i,l

uL
i,l

∮ vU
i,l
−ui,l

vL
i,l
−ui,l

p(ti,l, bi, ui,l, di) dti,l dui,l

}
dbi ddi

=

∫

R
qd

∫

R
qb

{ ni∏

l=1

∮ uU
i,l

uL
i,l

∮ vU
i,l
−ui,l

vL
i,l
−ui,l

p(ti,l | bi, ui,l, di) p(bi |ui,l, di)

p(ui,l |di) p(di) dti,l dui,l

}
dbi ddi (9.4)

=

∫

R
qd

∫

R
qb

[
ni∏

l=1

∮ uU
i,l

uL
i,l

{∮ vU
i,l
−ui,l

vL
i,l
−ui,l

p(ti,l | bi) dti,l

}
p(ui,l |di) dui,l

]

p(bi) p(di) dbi ddi,

where

p(ti,l | bi) = t−1
i,l gε

{
log(ti,l) − b′izt

i,l − β′xt
i,l

}

p(ui,l |di) = u−1
i,l gζ

{
log(ui,l) − d′izu

i,l − δ′xu
i,l

}

are modelled using the expression (9.3) for gε and gζ .

Further, in the Model U, p(bi) = gb(bi) and p(di) = gd(di) are penalized
normal mixtures (9.3). Since it is not possible to distinguish between the
intercept terms of the error and the random effect the intercepts α = αd for
gd and α = αb for gb are fixed to zero for identifiability reasons. In the case
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of the Model M, the densities p(bi) = gb(bi) and p(di) = gd(di) are densities
of an appropriate multivariate normal distribution (see also Section 9.2.3).

The method of penalized maximum-likelihood, suggested in Chapter 7, is
computationally quite demanding for likelihood (9.4). Instead, a Bayesian
approach together with MCMC methodology will be used here to avoid ex-
plicit integration and optimization.

9.2 Bayesian hierarchical model

To specify the model from a Bayesian point of view, prior distributions for
all unknown parameters have to be given. For our model we assume a hi-
erarchical structure described by a directed acyclic graph (DAG). The DAG
for Model U where the distributions of the univariate random effects and the
error terms are estimated using the penalized mixture is given in Figure 9.1.
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N

Figure 9.1: Directed acyclic graph for the Bayesian penalized mixture cluster-
specific AFT model with univariate random effects (Model U ).
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The DAG for Model M with multivariate normal random effects and error
terms expressed using the penalized mixture is given in Figure 9.2.

For Model U, the joint prior distribution of the total parameter vector θ is
given by

p(θ) ∝
N∏

i=1

[
ni∏

l=1

{
p
(
vi,l

∣∣ ui,l, ti,l
)
× p

(
ti,l
∣∣ β, bi, εi,l

)
× p

(
ui,l

∣∣ δ, di, ζi,l
)
×

p
(
εi,l
∣∣ Gε, r

ε
i,l

)
× p

(
ζi,l
∣∣ Gζ , r

ζ
i,l

)
× p

(
rε
i,l

∣∣ Gε

)
× p

(
rζ
i,l

∣∣ Gζ

)}
×

p
(
bi
∣∣ Gb, r

b
i

)
× p

(
di

∣∣ Gd, r
d
i

)
× p

(
rb
i

∣∣ Gb

)
× p

(
rd
i

∣∣ Gd

)
]
× (9.5)

p
(
Gε

)
× p

(
Gζ

)
× p

(
Gb

)
× p

(
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)
× p

(
δ
)
× p

(
β
)
.
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Figure 9.2: Directed acyclic graph for the Bayesian penalized mixture cluster-
specific AFT model with multivariate normal random effects (Model M ).
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The node Gε refers to the set {σε, µε, αε, τ ε, wε, aε, λε} which contains
the parameters of formulas (9.3) and (6.14) and a smoothing parameter λε

which will be further discussed in Section 9.2.1. The sets Gζ , Gb, Gd are
defined in an analogous manner. Further, let G be a generic symbol for its
subscriped counterpart (i.e. for Gε, Gζ , Gb, Gd) and let y be a generic symbol
for εi,l, ζi,l, bi, or di, i = 1, . . . , N, l = 1, . . . , ni, respectively. The sub-DAG for
the generic Y random variable is shown in Figure 9.3 and the corresponding
DAG conditional distributions are discussed in Sections 9.2.1 and 9.2.2.

In the case of Model M, the joint prior distribution is given by

p(θ) ∝
N∏

i=1

[
ni∏

l=1

{
p
(
vi,l

∣∣ ui,l, ti,l
)
× p

(
ti,l
∣∣ β, bi, εi,l

)
× p

(
ui,l

∣∣ δ, di, ζi,l
)
×

p
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∣∣ Gε, r

ε
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∣∣ Gζ
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×

p
(
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)
× p

(
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)
]
× (9.6)
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Figure 9.3: Directed acyclic graph for the penalized mixture.
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where γd and Dd are the mean and the covariance matrix for the random
effect vectors di and γb and Db are the mean and the covariance matrix for
the random effect vectors bi. These parameters will be discussed in detail in
Section 9.2.3.

All the multiplicands of expressions (9.5) and (9.6) will be discussed in detail
in the following sections.

9.2.1 Prior distribution for G
The prior distribution of a generic node G whose structure is given in Fig-
ure 9.3 equals

p(G) ∝ p(a |λ) p(λ) p(α) p(τ).

Prior for transformed mixture weights

Although often the grid length (2K + 1) is of moderate size it results in
a rather large number of unknown a parameters. To avoid overfitting of
the data and identifiability problems, a restriction on the a parameters is
needed. In Chapter 7 we added a penalty term for the transformed weights
to the log-likelihood for this purpose. This penalty term can be interpreted
as an informative log-prior distribution (e.g., Silverman, 1985, Section 6).
Therefore the prior distribution p(a |λ) is defined as the exponential of the
penalty term used in Chapter 7, i.e.

p(a | λ) ∝ exp
{
−λ

2

K∑

j=−K+s

(
∆s aj

)2}

= exp
{
−λ

2
a′ P′

Pa
}
, (9.7)

where ∆s denotes a difference operator of order s and P the corresponding
difference operator matrix. The hyperparameter λ controls the smoothness
of the resulting density g(y).

Expression (9.7) is that of a multivariate normal density with zero mean and

covariance matrix λ−1
(
P
′
P
)−

, where
(
P
′
P
)−

denotes a generalized inverse of
the matrix P

′
P. This distribution is known as a Gaussian Markov random

field (GMRF) and is extensively used in spatial statistics. Although the
distribution (9.7) is improper (the matrix P

′
P has a deficiency of s in its

rank) the resulting posterior distribution is proper as soon as there is some
informative data available, see Besag et al. (1995).
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As a consequence of the findings discussed in Section 7.2, prior distribution
(9.7) favours smooth estimates of the estimated densities (gε, gζ , gb or gd).
Due to the correspondence of the prior (9.7) with the penalty term in the
penalized maximum-likelihood approach we will call the mixture model (9.3)
with this prior a penalized mixture.

Prior for the smoothing parameter

The smoothing hyperparameter λ can be interpreted as a component of the
prior precision of the transformed weights a. See Section 7.2.3 for the ap-
proaches to determine the optimal value of λ in the context of penalized
maximum-likelihood estimation. For our full Bayesian inference, the un-
known smoothing parameter λ is considered stochastic and is estimated si-
multaneously with all the remaining parameters of the model. Therefore, here
a hyperprior has been assigned to λ, i.e. a highly dispersed Gamma(hλ,1, hλ,2)
prior, i.e.

p(λ) =
h

hλ,1

λ,2

Γ(hλ,1)
λhλ,1−1 exp

(
−hλ,2 λ

)
,

where hλ,1 is the fixed shape parameter and hλ,2 the fixed rate parameter.
A dispersed gamma distribution is obtained for instance with hλ,1 = hλ,2 =
0.001 or hλ,1 = 1, hλ,2 = 0.005.

Prior for the mixture intercept

Finally, in the case when the intercept term α is not fixed to zero (intercept
of error distributions), a highly dispersed normal distribution has been taken
for p(α), i.e.

p(α) = ϕ(α | να, ψα),

where να is the fixed prior mean and ψα is the fixed large prior variance.

Prior for the mixture scale

For the precision τ−2 we have taken a highly dispersed Gamma(hτ,1, hτ,2)
distribution, see above the paragraph on the prior for the smoothing param-
eter. Alternatively a uniform distribution on τ (formally a truncated gamma
distribution for τ−2 with hτ,1 = −1/2 and hτ,2 = 0) which is sometimes pre-
ferred for hierarchical models (Gelman et al., 2004, pp. 136, 390) could be
taken.
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9.2.2 Prior distribution for the generic node Y

To specify the prior distribution of generic Y (εi,l, ζi,l, i = 1, . . . ,N , l =
1, . . . , ni in Models U and M and bi, di, i = 1, . . . ,N in Model U ) we intro-
duce, analogously to Section 8.2.1, a latent allocation variable r taking values
in {−K, . . . ,K}. Actually, data augmentation (Tanner and Wong, 1987) is
introduced which simplifies the MCMC procedure. The DAG conditional
distribution p(y | G, r) is simply a normal distribution:

p(y | G, r) = p(y |σ, µ, α, τ, r) = ϕ
(
y |α + τ µr, (τ σ)2

)
.

Further, p(r | G) = p(r |w) is given by

Pr
(
r = j

∣∣ w
)

= wj, j ∈ {−K, . . . ,K}.

Had the latent allocation variable r not been introduced we would have had
to work with the conditional distribution p(y | G) = p(y |σ, µ, α, τ, w) which
is a normal mixture given by the formula (9.3).

9.2.3 Prior distribution for multivariate random effects in
Model M

As was mentioned in Section 9.1.1, the multivariate random effects bi and
di, i = 1, . . . , N in Model M are assumed to be a priori normally distributed.
That is, the densities p(bi |γb, Db) and p(di |γd, Dd) in the expression (9.6)
are

p(bi |γb, Db) = ϕqb
(bi |γb, Db), p(di |γd, Dd) = ϕqd

(di |γd, Dd),

where γb = (γb,1, . . . , γb,qb
)′ is the prior mean of the random effects bi, γd =

(γd,1, . . . , γd,qd
)′ the prior mean of the random effects di, Db is the prior

covariance matrix of the random effects bi and Dd is the prior covariance
matrix of the random effects di.

Both prior random effect means γb and γd as well as random effect covariance
matrices Db and Dd are further assigned hyperpriors. These hyperpriors are
chosen analogously to Section 8.2.2. That is, the prior distribution for each
γb,j , j = 1, . . . , qb and γd,j∗, j

∗ = 1, . . . , qd, respectively is N (νγb,j, ψγb,j)
and N (νγd,j∗, ψγd,j∗), respectively, independently for j = 1, . . . , qb and j∗ =
1, . . . , qd, i.e.

p(γb) p(γd) =
{ qb∏

j=1

ϕ(γb,j | νγb,j, ψγb,j)
}

×
{ qd∏

j∗=1

ϕ(γd,j∗ | νγd,j∗, ψγd,j∗)
}
.
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The vectors νγb
= (νγb,1, . . . , νγb,qb

)′, νγd
= (νγd,1, . . . , νγd,qd

)′, ψγb
= (ψγb,1,

. . . , ψγb,qb
)′, and ψγd

= (ψγd,1, . . . , ψγd,qd
)′ are fixed hyperparameters. Special

care is needed when the random intercept is included in the model. If for
example zt

i,l,1 ≡ 1, i = 1, . . . , N , l = 1, . . . , ni, then for identifiability reasons
γb,1 must be fixed to zero (or equivalently, νγb,1 = 0, ψγb,1 = 0) as the overall
intercept is given by the intercept αε of the error terms εi,l.

The prior distributions for the covariance matrices Db and Dd are inverse-
Wishart with fixed degrees of freedom dfb and dfd, respectively and fixed
scale matrices Sb and Sd, respectively. See formula (8.8) for the expression of
the corresponding density.

9.2.4 Prior distribution for the regression parameters

The prior specification for the regression parameters β and δ is analogous
to Section 8.2.2. Firstly, also here, we use the hierarchical centering. That
is, the covariates included in xt

i,l or xu
i,l, respectively are not included in zt

i,l

or zu
i,l, respectively and vice versa. Further, the covariate vectors xt

i,l and
xu

i,l, respectively never contain an intercept term since the overall intercept

are already included in the model in the form of the parameters αε and αζ ,
respectively.

The prior distribution for each regression coefficient βj , j = 1, . . . ,mt and
δj∗ , j

∗ = 1, . . . ,mu is N (νβ,j, ψβ,j) and N (νδ,j∗, ψβ,j∗), respectively, inde-
pendently for j = 1, . . . ,mt and j∗ = 1, . . . ,mu, i.e.

p(β) p(δ) =
{mt∏

j=1

ϕ(βj | νβ,j, ψβ,j)
}

×
{ mu∏

j∗=1

ϕ(δj∗ | νδ,j∗, ψδ,j∗)
}
.

The vectors νβ = (νβ,1, . . . , νβ,mt
)′, νδ = (νδ,1, . . . , νδ,mt

)′, ψβ = (ψβ,1,. . . ,
ψβ,mt

)′, and ψδ = (ψδ,1, . . . , ψδ,mt
)′ are fixed hyperparameters.

9.2.5 Prior distribution for the time variables

The terms p(vi,l |ui,l, ti,l), p(ti,l | β, bi, εi,l) and p(ui,l | δ, di, ζi,l) appearing
in the expressions (9.5) and (9.6) are all Dirac (degenerated) densities driven
by the AFT models (9.1) and (9.2). Namely:

p(vi,l |ui,l, ti,l) = I[vi,l = ui,l + ti,l],

p(ui,l | δ, di, ζi,l) = I[log(ui,l) = δ′xu
i,l + d′iz

u
i,l + ζi,l],

p(ti,l |β, bi, εi,l) = I[log(ti,l) = β′xt
i,l + b′iz

t
i,l + εi,l],

i = 1, . . . ,N, l = 1, . . . , ni.
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9.2.6 Posterior distribution

The product of all DAG conditional distributions determines the joint pos-
terior distribution p(θ |data), i.e.

p(θ |data) ∝ p(θ) ×
N∏

i=1

ni∏

l=1

{
p
(
uL

i,l, u
U
i,l

∣∣ ui,l, censoringi,l

)
×

p
(
vL
i,l, v

U
i,l

∣∣ vi,l, censoringi,l

)}
,

where p(θ) is given by (9.5) for Model U and by (9.6) for Model M, respec-
tively. Further, the terms p

(
uL

i,l, u
U
i,l

∣∣ ui,l, censoringi,l

)
and p

(
vL
i,l, v

U
i,l

∣∣ vi,l,

censoringi,l

)
, where censoringi,l represents a realization of the random vari-

able(s) causing the censoring of the (i, l)th onset and failure time, are the
same as in Section 8.2.4, with an obvious change in notation.

9.3 Markov chain Monte Carlo

As indicated in Section 4.5 we base the inference on a sample from the pos-
terior distribution obtained using MCMC methods. Here, Gibbs sampling
(Geman and Geman, 1984; Gelfand and Smith, 1990) was chosen necessi-
tating to sample from all full conditional distributions of blocks of model
parameters. Below, the full conditional distributions are discussed.

9.3.1 Updating the parameters related to the penalized
mixture G

Let yi∗ , i
∗ = 1, . . . , n be the current values of the appropriate generic nodes

y and ri∗ , i
∗ = 1, . . . , n corresponding latent allocation variables. That is,

• For Gε we have {yi∗ : i∗ = 1, . . . , n} = {εi,l : i = 1, . . . ,N, l =
1, . . . , ni}, {ri∗ : i∗ = 1, . . . , n} = {rε

i,l : i = 1, . . . ,N, l = 1, . . . , ni},
and n =

∑N
i=1 ni;

• For Gζ we have {yi∗ : i∗ = 1, . . . , n} = {ζi,l : i = 1, . . . ,N, l =

1, . . . , ni}, {ri∗ : i∗ = 1, . . . , n} = {rζ
i,l : i = 1, . . . ,N, l = 1, . . . , ni},

and n =
∑N

i=1 ni;

• For Gb we have {yi∗ : i∗ = 1, . . . , n} = {bi : i = 1, . . . ,N}, {ri∗ : i∗ =
1, . . . , n} = {rb

i : i = 1, . . . ,N}, and n = N ;
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• For Gd we have {yi∗ : i∗ = 1, . . . , n} = {di : i = 1, . . . ,N}, {ri∗ : i∗ =
1, . . . , n} = {rd

i : i = 1, . . . ,N}, and n = N .

Full conditional for transformed mixture weights

The full conditional of each element of a is given by

p(aj | · · · ) ∝
exp(Nj aj)

{ K∑
k=−K

exp(ak)
}n

× exp

[
−

{
aj − E

(
aj |a−(j), λ

)}2

2 var
(
aj |a−(j), λ

)
]
,

j = −K, . . . ,K, (9.8)

where Nj is the number of yi∗ for which the latent allocation variable ri∗ is
equal to j, i.e.

Nj =

n∑

i∗=1

I[ri∗ = j].

Further, E
(
aj |a−(j), λ

)
and var

(
aj |a−(j), λ

)
are the mean and the variance

resulting from the GMRF prior (9.7). For example, for the third order differ-
ences (s = 3), which have been used in all applications in this thesis (Sections
9.7 and 9.8), we have

E
(
aj

∣∣a−(j)

)
=
aj−3 − 6 aj−2 + 15 aj−1 + 15 aj+1 − 6 aj+2 + aj+3

20
,

j = −K + 3, . . . ,K − 3,

E
(
a−K+2

∣∣a−(−K+2)

)
=

−3 a−K + 12 a−K+1 + 15 a−K+3 − 6 a−K+4 + a−K+5

19
,

E
(
aK−2

∣∣a−(K−2)

)
=

−3 aK + 12 aK−1 + 15 aK−3 − 6 aK−4 + aK−5

19
,

E
(
a−K+1

∣∣a−(−K+1)

)
=

3 a−K + 12 a−K+2 − 6 a−K+3 + a−K+4

10
,

E
(
aK−1

∣∣a−(K−1)

)
=

3 aK + 12 aK−2 − 6 aK−3 + aK−4

10
,

E
(
a−K

∣∣a−(−K)

)
= 3 a−K+1 − 3 a−K+2 + a−K+3,

E
(
aK

∣∣a−(K)

)
= 3 aK−1 − 3 aK−2 + aK−3,
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and

var
(
aj

∣∣a−(j)) = (20λ)−1, j = −K + 3, . . . ,K − 3,

var
(
a−K+2

∣∣a−(−K+2)

)
= var

(
aK−2

∣∣a−(K−2)

)
= (19λ)−1,

var
(
a−K+1

∣∣a−(−K+1)

)
= var

(
aK−1

∣∣a−(K−1)

)
= (10λ)−1,

var
(
a−K

∣∣a−(−K)

)
= var

(
aK

∣∣a−(K)

)
= λ−1.

Distribution (9.8) is log-concave so we experimented both with the slice sam-
pler of Neal (2003) as well as with the adaptive rejection sampling (ARS)
method of Gilks and Wild (1992) to update the elements of a. However, in
our applications no method was found to be superior with respect to the per-
formance of the MCMC. The results presented in Sections 9.7 and 9.8 were
obtained using slice sampling.

Furthermore, it is seen that the full conditional distribution for each trans-
formed mixture weight depends only on the weights of the neighboring mix-
ture components. For a better performance of the MCMC, especially to
decrease the autocorrelation of the sampled chain, it is thus advantageous to
update in one iteration of the MCMC the transformed mixture weights in
such an order that the full conditional of a we are updating does not depend
on a which has just been updated. This is obtained, for example, using the
following update order:

· · · → a0 → as+1 → a2(s+1) → · · · → a1 → a1+s+1 → a1+2(s+1) → · · · .

Full conditional for the smoothing parameter

For the smoothing parameter λ, the full conditional distribution is Gamma
(h∗λ,1, h

∗
λ,2) where

h∗λ,1 = hλ,1 +
2K + 1 − s+ 1

2
, h∗λ,2 = hλ,2 +

1

2
a′P′

Pa.

Full conditional for the mixture intercept

The full conditional for the mixture intercept α is a normal distribution with
the mean and variance

E(α | · · · ) = var(α | · · · ) ×
{
(στ)−2

n∑

i∗=1

(yi∗ − τµri∗
) + ψ−1

α να

}
,

var(α | · · · ) =
{
(στ)−2n + ψ−1

α

}−1
,

respectively and is thus easily sampled from.
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Full conditional for the mixture scale

The full conditional distribution of τ−2 has the form

p(τ−2 | · · · ) ∝ (τ−2)ξ1−1 exp
(
ξ3
√
τ−2 − ξ2τ

−2
)
, (9.9)

with

ξ1 = hτ,1 + 0.5n,

ξ2 = hτ,2 + 0.5σ−2
n∑

i∗=1

(yi∗ − α)2,

ξ3 = σ−2
n∑

i∗=1

µri∗
(yi∗ − α).

Distribution (9.9) is generally not log-concave so that the adaptive rejection
sampling (ARS) method of Gilks and Wild (1992), successfully used in many
situations when the full conditional distribution does not have a standard
form, cannot be used here. However, it can easily be shown that the density
(9.9) is always unimodal and the slice sampler of Neal (2003) can be used to
update the parameter τ−2 in an MCMC run.

Full conditional for the allocation variables

The full conditional for each allocation variable ri∗ , i
∗ = 1, . . . , n is discrete

with

Pr(ri∗ = j | · · · ) ∝ wj exp
{
−(yi∗ − α− τµj)

2

2(στ)2

}
, j ∈ {−K, . . . ,K}.

9.3.2 Updating the generic node Y

The update of the generic node Y is of two types: (1) update of the residuals
εi,l, ζi,l, i = 1, . . . , N , l = 1, . . . , ni (2) update of the univariate random effects
bi, di, i = 1, . . . , N in Model U.

Updating the residuals

The update of the ‘onset’ residuals ζi,l, i = 1, . . . ,N , l = 1, . . . , ni is fully
deterministic provided the (i, l)th onset time ui,l = uL

i,l = uU
i,l is uncensored.

The update of ζi,l consists then of using the AFT expression (9.1) with the
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current values of the parameters, i.e. the updated ζi,l is equal to log(ui,l) −
δ′xu

i,l − d′izu
i,l.

When the (i, l)th onset time is interval-censored with an observed interval
⌊uL

i,l, u
U
i,l⌋, its update consists of the sampling from a truncated normal dis-

tribution, namely

N
(
αζ + τ ζµ

r
ζ
i,l

, (σζτ ζ)2
)

truncated on
⌊
log(uL

i,l) − δ′xu
i,l − d′izu

i,l, log(uU
i,l) − δ′xu

i,l − d′izu
i,l

⌋
.

A similar procedure is used when updating the ‘event’ residuals εi,l, i =
1, . . . , N , l = 1, . . . , ni. It is useful to stress that for the update of εi,l
also the ‘onset’ residual ζi,l and subsequently also the true onset time ui,l =
exp(δ′xu

i,l + d′iz
u
i,l + ζi,l) make a part of the condition when exploiting the

full conditional distribution. This implies that the update of εi,l is fully de-
terministic provided the (i, l)th failure time vi,l = vL

i,l = vU
i,l is uncensored,

irrespective whether the onset time is censored or not. The update of εi,l
consists then of using the AFT expression (9.2) with the current values of
the parameters, i.e. the updated εi,l is equal to log(vi,l −ui,l)−β′xt

i,l −b′izt
i,l.

When the residual εi,l corresponds to the censored failure time with an ob-
served interval ⌊vL

i,l, v
U
i,l⌋ its update consists of the sampling from the full

conditional distribution of εi,l which is here a truncated normal distribution,
namely

N
(
αε + τ εµrε

i,l
, (σετ ε)2

)
truncated on

⌊
log(vL

i,l − ui,l) − β′xt
i,l − b′izt

i,l, log(vU
i,l − ui,l) − β′xt

i,l − b′izt
i,l

⌋
.

Updating the univariate random effects in Model U

In Model U, the full conditional distributions for the univariate random effects
bi and/or di, i = 1, . . . , N are normal distributions, namely

bi | · · · ∼ N
(
E(bi | · · · ), var(bi | · · · )

)
, i = 1, . . . ,N,

with

E(bi | · · · ) = var(bi | · · · )×
[
(σbτ b)−2 τ bµb

rb
i

+ (σετ ε)−2
ni∑

l=1

{
log(ti,l) − αε − β′xt

i,l − τ εµε
rε
i,l

}]
,

var(bi | · · · ) =
{

(σbτ b)−2 + (σετ ε)−2 ni

}−1
,
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Analogous formulas, with an obvious change in notation, hold for di, i =
1, . . . , N .

9.3.3 Updating the parameters related to the multivariate
random effects in Model M

In the case of the multivariate random effects bi and/or di having a multi-
variate normal prior distribution the following full conditionals are used to
update the related parameters.

Full conditionals for the multivariate random effects bi and di

The full conditional of the multivariate random effects vector bi, i = 1, . . . ,N
is multivariate normal distribution, i.e.

bi | · · · ∼ N
(
E(bi | · · · ), var(bi | · · · )

)
, i = 1, . . . ,N,

with

E(bi | · · · ) = var(bi | · · · )×
[
D
−1
b γb + (σετ ε)−2

ni∑

l=1

zt
i,l

{
log(ti,l) − αε − β′xt

i,l − τ εµε
rε
i,l

}]
,

var(bi | · · · ) =
{

D
−1
b + (σετ ε)−2

ni∑

l=1

zt
i,l(z

t
i,l)

′
}−1

.

The full conditional distribution of the multivariate random effects di, i =
1, . . . , N is analogous with an obvious change in notation.

Full conditionals for the means γb, γd and the covariance matrices Db,
Dd of the multivariate random effects

For the means γb, γd and the covariance matrices Db, Dd of the multivariate
random effects, the full conditional distributions are exactly the same as these
derived for the Bayesian normal mixture CS AFT model in Section 8.3.2.
Only appropriate subscripts have to be added to expressions appearing in
formulas given in Section 8.3.2.
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9.3.4 Updating the regression parameters

Full conditionals for the fixed effects δ and β

Let β(S) be an arbitrary sub-vector of vector β, and xi,l(S) the corresponding
sub-vectors of covariate vectors xt

i,l, and further let xi,l(−S) be their com-
plementary sub-vectors. Similarly, let further νβ(S) and ψβ(S) be appro-
priate sub-vectors of hyperparameters νβ and ψβ, respectively. Finally, let
Ψβ(S) = diag(ψβ(S)). Then

β(S) | · · · ∼ N
(
E(β(S) | · · · ), var(β(S) | · · · )

)
,

with

E(β(S) | · · · ) = var(β(S) | · · · )×
{

Ψ−1
β(S)νβ(S) + (σετ ε)−2

N∑

i=1

ni∑

l=1

xi,l(S)e
(F )
i,l(S)

}
,

var(β(S) | · · · ) =
{

Ψ−1
β(S) + (σετ ε)−2

N∑

i=1

ni∑

l=1

xi,l(S)x
′
i,l(S)

}−1
,

where e
(F )
i,l(S) = log(ti,l) − αε − β′

(−S)xi,l(−S) − b′izt
i,l − τ εµε

rε
i,l
.

The full conditional distribution for an arbitrary subvector of the vector δ is
analogous with an obvious change in notation.

9.4 Bayesian estimates of the survival distribution

9.4.1 Predictive survival and hazard curves and predictive
survival densities

Analogously to Section 8.4, the survival and hazard functions or the survival
densities for a specific combination of covariates are estimated by the mean
of (posterior) predictive quantities.

Almost all expressions given in Section 8.4.1 apply also here with the following
changes. To get the Bayesian estimate of the survival function of the event
time T , given the covariates xt

new and zt
new, the expression (8.16) changes
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into

S(t | θ, xt
new, z

t
new) = (9.10)

1 −
K∑

j=−K

wε
jΦ
{
log(t) − β′xt

new − b′zt
new

∣∣ αε + τ εµε
j , (σετ ε)2

}
.

Similarly, to get the estimate of the survival density, we use

p(t | θ, xt
new, z

t
new) = (9.11)

t−1
K∑

j=−K

wε
jϕ
{
log(t) − β′xt

new − b′zt
new

∣∣ αε + τ εµε
j, (σετ ε)2

}

instead of the expression (8.18).

To be able to use a relationship analogous to (8.17) we need a sample {b(m) :
m = 1, . . . ,M} of the posterior predictive values of the random effects. In
the case of a univariate random effect b in Model U, b(m) is sampled from the

normal mixture
∑K

j=−K w
(m)
j N

(
τ b,(m)µb

j , (σbτ b,(m))2
)
. In the case of a mul-

tivariate random effect b in Model M, b(m) is sampled from Nqb
(γ

(m)
b , D

(m)
b ).

The predictive quantities for the onset time U are obtained in an analogous
manner.

9.4.2 Predictive error and random effect densities

The estimate of the smoothed densities gε, gζ , gb, gd is obtained by the mean
of the (posterior) predictive density which is given, for example in the case
of gε, by

E
{
gε(e)

∣∣ data
}

=

∫
gε(e)p(θ | data) dθ, e ∈ R. (9.12)

The MCMC estimate of (9.12) is obtained by averaging the error density
(9.3) over the MCMC run, i.e.

ĝε(e) =
1

M

M∑

m=1

{(
τ ε,(m)

)−1
K∑

j=−K

w
ε,(m)
j ϕ

(e− αε,(m)

τ ε,(m)

∣∣∣µε
j, (σε)2

)}
. (9.13)

9.5 Bayesian estimates of the individual random
effects

As explained in Section 8.5 in the context of the Bayesian normal mixture
CS AFT model, in some situation estimates of the individual random effects
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must be provided. In the context of this chapter these can be computed in
the same way as shown in Section 8.5.

9.6 Simulation study

To validate our approach we conducted a simulation study which mimics to
a certain extent the Signal Tandmobielr data. From each of 150 clusters
we simulated 4 observations. The onset time Ui,l and the event time Ti,l,
i = 1, . . . , 150, l = 1, . . . , 4 were generated according to the AFT models
(9.1) and (9.2) with xu

i,l = (xu
i,l,1, x

u
i,l,2)

′, zu
i,l ≡ 1, δ = (0.20, −0.10)′ and

xt
i,l = (xt

i,l,1, x
t
i,l,2)

′, zt
i,l ≡ 1, β = (0.30, −0.15)′. The covariates xu

i,l,1 and

xt
i,l,1 are continuous and generated independently from a uniform distribution

on (0, 1), the covariates xu
i,l,2 and xt

i,l,2 are binary with the equal probabilities
for zeros and ones.

The error terms ζi,l and εi,l are obtained from ζi,l = αζ + τ ζ ζ∗i,l (αζ = 1.75,
ζ∗i,l ∼ g∗ζ ) and εi,l = αε + τ ε ε∗i,l (αε = 2.00, ε∗i,l ∼ g∗ε), respectively. Further,

the random effects di and bi are obtained from di = τd d∗i (d∗i ∼ g∗d) and
bi = τ b b∗i (b∗i ∼ g∗b ), respectively. The scale parameters were chosen such
that (τd)2 + (τ ζ)2 = τ2

onset = 0.1 and (τ b)2 + (τ ε)2 = τ2
event = 1.0, see below

for the individual values. The choice of τ2
onset and τ2

event was motivated by
the results of the analysis in Section 9.7.

Two scenarios for the distributional parts of the model were considered. In
scenario I, both densities g∗ζ and g∗ε (of the standardized error terms) are
a mixture of normals, i.e. equal to 0.4N (−2.000, 0.25) + 0.6N (1.333, 0.36)
standardized to have unit variance. For the densities g∗d and g∗b (of the stan-
dardized random effects) the density of a standardized extreme value of min-
imum distribution was taken. In scenario II, we reversed the setting, i.e. we
have taken an extreme value distribution for the error terms and a normal
mixture for the random effects. Additionally, within each scenario, the vari-
ances τ2

onset and τ2
event were decomposed such that the ratios τd/τ ζ = τ b/τ ε

were equal to 5, 3, 2, 1, 1/2, 1/3, and 1/5, respectively.

The true onset and event times were interval-censored by simulating the
‘visit’ times for each subject in the data set. The first visit was drawn from
N (1, 0.22). Each of the distances between the consecutive visits was drawn
from N (0.5, 0.052).

The results for the simulation study are shown in Appendix B.3. Tables
B.12 and B.13 give the results for the regression parameters and show that
they are estimated practically unbiasedly and with a reasonable precision.
It is further seen that the precision of the estimation decreases when the
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within-cluster variability (variance of the error terms) increases compared
to the between-cluster variability (variance of the random effects). In prac-
tice however, the between-cluster variability is often much higher than the
within-cluster variability. Further, Tables B.14 and B.15 show results for the
standard deviations of the error terms and random effects. Here, the precision
is sometimes somewhat worse. However, also the standard deviations are, in
most cases, estimated with minimal bias. Furthermore, the shape of the sur-
vival functions or survival densities is correctly estimated as is illustrated in
Figures B.10–B.17 which show results for the fitted survival functions and
survival densities for selected combinations of covariates.

9.7 Example: Signal Tandmobielr study – clus-
tered doubly-interval-censored data

This analysis of the Signal Tandmobielr data, introduced in Section 1.1,
involves

(a) doubly-interval-censored data, i.e. the time from tooth emergence to
onset of caries;

(b) clustering. Indeed, we will examine several teeth jointly and the teeth
from the same mouth are related.

The primary interest of the present analysis is to address the influence of
sound versus affected (decayed/filled/missing due to caries) deciduous sec-
ond molars (in Figure 1.2, teeth 55, 65, 75, 85, respectively) on the caries
susceptibility of the adjacent permanent first molars (in Figure 1.1, teeth 16,
26, 36, 46, respectively). Note that for about five years the deciduous second
molars are in the mouth together with the permanent first molars.

It is possible that the caries processes on the primary and the permanent
molar occur simultaneously. In this case it is difficult to know whether caries
on the deciduous molar caused caries on the permanent molar or vice versa.
For this reason, the permanent first molar was excluded from the analysis
if caries was present when emergence was recorded. This implies that the
data are not balanced with respect to the size of the clusters. In total, 3 520
children were included in the analysis of which 187 contributed 1 tooth, 317
2 teeth, 400 3 teeth and 2 616 all 4 teeth.

Additionally, we considered the impact of gender (boy/girl), presence of
sealants in pits and fissures of the permanent first molar (none/present),
occlusal plaque accumulation on the permanent first molar (none/in pits and
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fissures/on total surface), and reported oral brushing habits (not daily/daily).
Note that pits and fissures sealing is a preventive action which is expected
to protect the tooth against caries development. The presence of plaque on
the occlusal surfaces of the permanent first molars was assessed using a sim-
plified version of the index described by Carvalho, Ekstrand, and Thylstrup
(1989). All explanatory variables were obtained at the examination where
the presence of the permanent first molar was first recorded.

The choice of explanatory variables is motivated by the results of Leroy et al.
(2005) where a GEE multivariate log-logistic AFT model was used to analyze
the time to caries. Multiple imputation was used to deal with the interval-
censored emergence times. Further, on top of that, the caries status of the
deciduous first molars (in Figure 1.2, teeth 54, 64, 74, 84, respectively) was
included in the covariate part of the model. We will not use this factor as
an explanatory variable due to its high dependence with the status of the
deciduous second molar (in all quadrants of the mouth, the χ2 test statistics
with 9 degrees of freedom exceeded 1 100).

The onset time Ui,l, l = 1, . . . , 4 is the age (in years) of the ith child (ith
cluster) at which the lth permanent first molar emerged. The failure time,
Vi,l, indicates the onset of caries of the lth permanent first molar. The time
from tooth emergence to the onset of caries, Ti,l, is doubly-interval-censored.
Here, both the time of tooth emergence and the onset of caries experience
are only known to lie in an interval of about 1 year.

Further, in our example about 85% of the permanent first molars had emerged
at the first examination giving rise to a huge amount of left-censored onset
times. However, at each examination the permanent teeth were scored ac-
cording to their clinical eruption stage using a grading that starts at P0
(tooth not visible in the mouth) and ends with P4 (fully erupted tooth with
full occlusion). Based on the clinical eruption stage at the moment of the
first examination, all left-censored emergence times were transformed into
interval-censored ones with the lower limit of the observed interval equal to
the age at examination minus 0.25 year, 0.5 year and 1 year, respectively for
the teeth with the eruption stage P1, P2 and P3, respectively and with the
lower limit equal to 5 years for the teeth with the eruption stage P4. We
refer to Leroy et al. (2005) for details and motivation.

9.7.1 Basic Model

The analysis starts with the Basic Model where we allowed for a different
effect of the covariates on both emergence and caries experience for the four
permanent first molars. Namely, the Basic Model was based on the AFT
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models (9.1) and (9.2) with the covariate vector xu
i,l for emergence:

xu
i,l = (genderi, tooth26i,l, tooth36i,l, tooth46i,l,

tooth26i,l ∗ genderi, tooth36i,l ∗ genderi, tooth46i,l ∗ genderi)
′,

and the covariate vector xt
i,l for caries:

xt
i,l = (x̃t

i,l, tooth26i,l, tooth36i,l, tooth46i,l,

tooth26i,l ∗ x̃t
i,l, tooth36i,l ∗ x̃t

i,l, tooth46i,l ∗ x̃t
i,l)

′,

where

x̃t
i,l = (genderi, statusDi,l, statusFi,l, statusMi,l,

brushingi, sealantsi,l, plaquePFi,l, plaqueTi,l).

The covariates tooth26, tooth36, tooth46 are dummies for the position of
the permanent first molar with the molar 16 as the baseline, the covariate
gender equals 1 for boys and equals 0 for girls. The covariates statusD, statusF,
statusM are dummies for the status of the adjacent deciduous molar: decayed,
filled, missing due to caries with sound being the baseline. The covariate
brushing is dichotomous (1 = daily, 0 = not daily) as well as the covariate
sealants (1 = present, 0 = not present). Finally, the covariates plaquePF and
plaqueT are dummies for the plaque accumulation: in pits and fissures, on
total surface with no plaque as the baseline.

To account for clustering, univariate child-specific random effects di and bi
are included in the model expressions (9.1) and (9.2), respectively with zu

i,l =

zt
i,l ≡ 1. Finally, analogously to Sections 7.7 and 8.7, we subtracted 5 years

from all observed times, i.e. log(Ui,l −5) was used in the left-hand side of the
model formula (9.1).

As discussed already in Section 9.1, our model assumes that, given the covari-
ates and child-specific random effects, the emergence time Ui,l and the time
to caries Ti,l are independent for each i and l. Specifically, we assume that
the caries process on a specific tooth only depends on the time when that
tooth is at risk for caries and not on the chronological time. This assumption
seems reasonable for the Signal Tandmobielr data taking into account the
results of Leroy et al. (2005) who evaluated also the effect of the emergence
time on the time to caries and found it non-significant (p = 0.78).

9.7.2 Final Model

Based on the results for the Basic Model (see below) we fitted the Fi-
nal Model where we omitted all two-way interactions with the covariates
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tooth26, tooth36, tooth46. Additionally, we binarized the covariates statusD,
statusF, statusM into a new covariate status which was equal to 1 for decayed,
filled or missing due to caries deciduous molars and was equal to 0 for sound
deciduous molars. Also the covariates plaquePF and plaqueT were binarized
into the covariate plaque equal to 1 for the teeth with plaque present either
in pits and fissures or on total surface and equal to 0 otherwise. That is, the
onset and event covariate vectors are equal to

xu
i,l = (genderi, tooth26i,l, tooth36i,l, tooth46i,l)

′,

xt
i,l = (genderi, statusi,l, brushingi, sealantsi,l, plaquei,l,

tooth26i,l, tooth36i,l, tooth46i,l)
′.

9.7.3 Prior distribution

Firstly, for all penalized mixtures we used the same grid of equidistant knots
of length 31 (K = 15) defined on [−4.5, 4.5] with the basis standard deviation
σ = 2(µj − µj−1)/3 = 0.2. Secondly, the third order difference (s = 3) was
used in the prior (9.7). Further, the prior distributions of the nodes in DAGs
(Figures 9.1 and 9.3) without parents were taken highly dispersed. That is
all λ and τ−2 parameters were a priori Gamma(1, 0.005) distributed, all α,
β and δ parameters were given a N (0, 100) prior.

9.7.4 Results

For each considered model we ran 500 000 iterations with 1:3 thinning which
took about 44 hours on a 3 GHz Pentium IV PC with 1 GB RAM. We kept
the last 100 000 iterations for inference.

Results for the Basic Model

The analysis of the Basic Model revealed that all interaction terms with
tooth covariates are redundant implying that the effect of all these covari-
ates is the same for all four permanent first molars. To evaluate this we
used simultaneous Bayesian p-values computed using the method described
in Section 4.6.2. For the emergence part, the simultaneous p-value for the
tooth:gender interactions is higher than 0.5. For the caries part of the model,
the p-values are higher than 0.5 for the interactions of tooth with gender and
plaque and higher than 0.1 for the interactions with brushing, sealants and
status. Also the covariate tooth is not significant however we kept it in the
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Table 9.1: Signal Tandmobielr study, Final Model. Posterior medians, 95%
equal-tail credible regions (CR) and Bayesian two-sided p-values for the model
parameters. For the parameter Tooth the CR and the p-value are simultane-
ous.

Emergence Caries

Posterior Posterior

Parameter median 95% CR median 95% CR

Tooth p > 0.5 p > 0.5

tooth 26 −0.003 (−0.013, 0.007) −0.006 (−0.045, 0.031)

tooth 36 0.001 (−0.008, 0.011) −0.009 (−0.051, 0.034)

tooth 46 0.002 (−0.008, 0.012) −0.016 (−0.059, 0.026)

Gender p = 0.008 p = 0.085

girl −0.023 (−0.039, −0.007) −0.071 (−0.155, 0.009)

Status p < 0.001

dmf −0.140 (−0.193, −0.091)

Brushing p < 0.001

daily 0.337 (0.233, 0.436)

Sealants p < 0.001

present 0.119 (0.060, 0.178)

Plaque p < 0.001

present −0.114 (−0.171, −0.067)

E(error) 0.442 (0.427, 0.456) 1.920 (1.810, 2.059)

sd(error) 0.029 (0.025, 0.034) 0.767 (0.712, 0.834)

sd(random) 0.199 (0.191, 0.210) 0.672 (0.614, 0.734)

model to address the question whether the emergence and caries timing are
the same for the four permanent first molars.

Further, for none of the four permanent first molars a significant difference
was found between the status groups decayed, filled or missing, and between
the plaque groups present in pits and fissures or present on total surface.
This finding, together with the fact that the group with extracted deciduous
molar and the group with the plaque present on total surface had very low
prevalence (1.45% and 3.13%, respectively), led to the simplification of these
two covariates in the Final Model.
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Results for the Final Model

Table 9.1 shows posterior medians, 95% equal-tail credible intervals and
Bayesian two-sided p-values for the parameters in the Final Model. It
is seen that neither for the emergence and nor for the caries process there is
a significant difference between the four permanent first molars. However, the
molars of girls emerge significantly earlier than those of boys. With respect
to caries experience, the difference between boys and girls is not significant at
5%. However all remaining covariates have a significant impact on the caries
process. Namely, daily brushing increases the time to caries with a factor of
exp(0.337) = 1.40 compared to less frequent brushing. Presence of sealants
increases the time to caries with a factor of exp(0.119) = 1.13. On the other
hand, the presence of the plaque decreases the time to caries with a factor
of exp(−0.114) = 0.89 and the fact that the neighboring deciduous second
molar is either decayed, filled or extracted due to caries decreases the time
time to caries with a factor of exp(−0.140) = 0.87.

Figure 9.4 shows the posterior predictive survival and hazard functions for the
time to caries on the upper right permanent first molar of boys, for ‘the best’,
‘the worst’ and two intermediate combinations of covariates (the curves for
the remaining teeth and girls are similar). It is seen that when the teeth are
daily brushed, plaque-free and sealed the hazard for caries starts to increase
approximately 1 year after emergence however then remains almost constant.
Whereas, when the teeth are not brushed daily and are exposed to other risk
factors the hazard starts to increase already approximately 6 months after
emergence. After a period of constant risk then the hazard starts to increase
again.

The peak in the hazard for caries approximately 1 year after emergence was
observed also by Leroy et al. (2005) and can be explained by the fact that
teeth are most vulnerable for caries soon after the emergence when the enamel
is not yet fully developed. This peak is also present, although with a different
size and with a slight shift, for all covariate combinations. On the other hand,
for covariate combinations reflecting good oral health and hygiene habits, the
hazard remains almost constant after the initial period of highly increasing
risk whereas for combinations of covariates reflecting bad oral conditions the
hazard starts to increase again approximately 3 years after emergence. This
shows clearly the relationship between caries experience and oral health and
hygiene habits.

Finally, Figure 9.5 shows Bayesian predictive error and random effect density
estimates. The estimate of the emergence random effect density gd suggests
the children could be divided, even after conditioning on gender, into two
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Figure 9.4: Signal Tandmobielr study, Final Model. Posterior predictive
caries free (survival) and caries hazard curves for tooth 16 of boys and the
following combinations of covariates: solid and dashed lines for no plaque,
present sealing, daily brushing and sound primary second molar (solid line)
or dmf primary second molar (dashed line), dotted and dotted-dashed lines
for present plaque, no sealing, not daily brushing and sound primary second
molar (dotted line) or dmf primary second molar (dotted-dashed line).
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groups: early and late emergers. Also, the children can be divided into
two groups with respect to caries sensitivity (see random effect density gb).
Finally, as the estimate of the caries error density gε shows three modes it
seems that there are other important factors influencing the caries process
besides the included covariates.

9.7.5 Conclusions

This section showed how the Bayesian penalized mixture CS AFT model can
be used to analyze clustered doubly-interval-censored data. Owing to flexible
distributional assumptions it was not here necessary to perform the classical
checks for correct distributional specification. Clearly, this step cannot be
avoided when using fully parametric methods. However, for censored, or let
alone doubly-interval-censored data, this is far from trivial. As was illustrated
in this section new important findings concerning the distribution of the event
time, derived e.g. from the shape of the hazard function, can be discovered
when avoiding strong parametric assumptions.

Further, we point out that the Basic Model corresponded, for comparison
purposes, as closely as possible to the model used by Leroy et al. (2005). The
differences were in detail outlined above. The most important one is that we
used here the flexible and cluster-specific (conditional) model fitted in the
Bayesian way, whereas in Leroy et al. (2005) a parametric and population-
averaged (marginal) model fitted using a frequentist method. The results for
the regression parameters of the caries part of the model correspond quite
closely to the earlier findings of Leroy et al. (2005) where, however, no at-
tempts were done to simplify the model. Nevertheless, our results largely
confirmed their findings. Namely, they found the overall effect (on all four
teeth) of all factors except gender to be significant with p-value < 0.001. For
the effect of gender they observed a p-value of 0.060 compared to 0.085 found
by us. Due to the fact that Leroy et al. (2005) used a parametric log-logistic
AFT model, they could not reveal the second period of increased hazard
found here.

Finally, we have to admit that some covariates used in our dental application
should actually be treated as time-dependent. Unfortunately, with our and
any other method where the distribution of the event time is specified using
a density and not using an instantaneous quantity like the hazard function,
inclusion of time-dependent covariates is difficult.



184 CHAPTER 9. BAYESIAN PENALIZED MIXTURE CS AFT MODEL

9.8 Example: EBCP data – multicenter study

In this section, we re-analyze the Early Breast Cancer Patients data intro-
duced in Section 1.4 using the penalized mixture cluster-specific AFT model
and compare the results to the results of the earlier analysis conducted using
the classical normal mixture cluster-specific AFT model (see Section 8.9).

Except for the model for the error distribution of the AFT model, we fitted
exactly the same models as in Section 8.9. Here is their brief overview. The
response event time Ti,l, i = 1, . . . , 14, l = 1, . . . , ni, 25 ≤ ni ≤ 902 is the
progression-free survival (PFS) time of the lth patient treated by the ith
center. In the CS AFT model (9.2), a bivariate random effect bi = (bi,1, bi,2)

′

with the covariate vector zt
i,l = (1, trtmtGroupi,l)

′ is included to allow for
the baseline heterogeneity as well as the heterogeneity with respect to the
treatment effect across centra. The covariate vector for the fixed effects is
given by

xt
i,l = (ageMidi,l, ageOldi,l, tySui,l, tumSizi,l, nodSti,l, otDisi,l,

regionNLi, regionPLi, regionSEi, regionSAi)
′.

See Section 8.9 for explanation of the meaning of the single covariates.

Analogously to Section 8.9, besides the model with region described above
we fitted also the model without region for which the covariates regionNL,
regionPL, regionSE, and regionSA were omitted from the covariate vector xt

i,l.
The motivation for this step was an attempt to see whether the the regional
structure can be revealed from the estimates of the individual random effects
bi,1, i = 1, . . . , 14.

For the inference we sampled two chains, each of length 125 000 with 1:5
thinning which took about 2.5 hour on a Pentium IV 2 GHz PC with 512
MB RAM. For the inference we kept the last 25 000 iterations of each chain.

9.8.1 Prior distribution

To specify the penalized mixture defining the distribution of the error terms
εi,l, i = 1, . . . , N , l = 1, . . . , ni we used the grid of equidistant knots of
length 31 (K = 15) defined on the interval [−4.5, 4.5] with the basis standard
deviation σ = 2(µj−µj−1)/3 = 0.2. In the prior (9.7), we used the third order
differences (s = 3). Further, the smoothing parameter λε as well as the error
precision parameter (τ ε)−2 were given a dispersed Gamma(1, 0.005) prior.
The intercept parameter αε as well as all fixed effect regression parameters
β and the parameter γb,2 – the mean of the treatment random effects bi,2
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Table 9.2: Early breast cancer patients data. Posterior medians, 95% equal-
tail credible intervals and Bayesian two-sided (simultaneous) p-values for the
effect of covariates.

Model with region Model without region

Poster. Poster.

Parameter median 95% CI median 95% CI

Treatment group p = 0.084 p = 0.074

surgery alone −0.153 (−0.325, 0.026) −0.150 (−0.310, 0.015)

Age p = 0.026 p = 0.014

40–50 years 0.325 (0.059, 0.585) 0.344 (0.088, 0.619)

> 50 years 0.285 (0.041, 0.520) 0.313 (0.073, 0.565)

Type of surgery p = 0.008 p = 0.007

breast conserving 0.229 (0.053, 0.404) 0.248 (0.078, 0.420)

Tumor size p < 0.001 p < 0.001

≥ 2cm −0.462 (−0.643, −0.283) −0.470 (−0.656, −0.288)

Nodal status p < 0.001 p < 0.001

positive −0.599 (−0.758, −0.442) −0.605 (−0.771, −0.440)

Other disease p = 0.016 p = 0.015

present −0.323 (−0.605, −0.059) −0.335 (−0.609, −0.067)

Region p = 0.007

the Netherlands −0.403 (−0.737, −0.017)

Poland 0.349 (−0.113, 0.802)

South Europe −0.339 (−0.729, 0.033)

South Africa −0.737 (−1.161, −0.320)

– were given a dispersed N (0, 100) prior. Finally, the covariance matrix
Db of the random effects got an inverse Wishart prior with dfb = 2 and
Sb = diag(0.002).

9.8.2 Effect of covariates on PFS time

Table 9.2 shows the posterior summary for the effect of considered covariates
in both models with included or excluded covariate region. In the model with
region included, surgery alone decreases the time to the cancer progression by
the factor of exp(−0.153) = 0.86 compared to the surgery given together with
the perioperative chemotherapy. However, as well as in the previous analysis
in Section 8.9, the difference is not significant at conventional 5% level.
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Table 9.3: Early breast cancer patients data. Posterior medians and 95%
equal-tail credible intervals for the moments of the error distribution and
variance components of the random effects.

Model with region Model without region

Poster. Poster.

Parameter median 95% CI median 95% CI

Moments of the error distribution

E(ε) 9.155 (8.771, 9.525) 8.967 (8.570, 9.353)

sd(ε) 1.481 (1.356, 1.663) 1.470 (1.352, 1.639)

Variance components of the random effects

sd(bi,1) 0.111 (0.024, 0.336) 0.302 (0.157, 0.541)

sd(bi,2) 0.057 (0.020, 0.217) 0.074 (0.022, 0.245)

corr(bi,1, bi,2) −0.219 (−0.987, 0.963) −0.675 (−0.993, 0.980)

Also the results for the effect of remaining covariates is very similar to the
results of the earlier analysis given in Table 8.6. Firstly, again, the estimates
in both models – with and without region – are almost the same. Further,
according to the model with region included, in the middle age group 40 –
50 years, the time to the progression of cancer is increased by the factor
of exp(0.325) = 1.38 compared to the youngest group <40 years. For the
patients from the oldest group >50 years, this time is increased by the factor
of exp(0.285) = 1.33 compared to the youngest group. The variable breast
conserving surgery increases the PFS time by the factor exp(0.229) = 1.26
compared to mastectomy. Further, the tumor of size ≥2 cm decreases the
PFS time by the factor of exp(−0.462) = 0.63 compared to the smaller tumors
of size <2 cm. A positive pathological nodal status decreases the PFS time
by the factor of exp(−0.599) = 0.55 compared to the negative result. The
presence of other related disease decreases the PFS time by the factor of
exp(−0.323) = 0.72. Analogously to Section 8.9, the effect of the geographical
reason on the PFS time is highly significant with the same ordering of regions,
namely Poland performs the best, followed by France, South Europe, the
Netherlands and South Africa.

Finally, Figure 9.6 illustrates rather small effect of the perioperative therapy
compared to surgery alone on the posterior predictive survival curves drawn
for region = France and two typical combinations of covariates. More or less
the same picture has been seen also in Figure 8.9 referring to the results of
the earlier analysis.
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Figure 9.6: Early breast cancer patients data. Predictive survival curves
based on the model with region for region = France, and two typical com-
binations of covariates: (1) breast conserving surgery, tumor size ≥2 cm,
negative nodal status and no other associated disease (9.79% of the sam-
ple), (2) mastectomy, tumor size ≥2 cm, positive nodal status and no other
associated disease (13.88% of the sample).
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9.8.3 Predictive error density and variance components of
random effects

Table 9.3 gives posterior summary statistics for the moments of the error
distribution and the variance components of the random effects. Also in this
case, the results are very similar to these related to the earlier analysis and
shown in Table 8.7. Furthermore, the 95% equal-tail credible interval for
the correlation between the overall center level and the treatment × center
interaction covers again almost the whole range (−1, 1) of possible value.
This is also seen on the scaled histograms of sampled values of ̺ in Figure
9.7.

The estimates of the error densities in both models with and without the
covariate region are shown in Figure 9.8. It is seen that exclusion of the
covariate region had hardly an effect on the estimated error distribution.
Indeed, since this covariate only groups different centra (clusters), its omission
approved itself mainly in the variability of the random intercept bi,1 (see Table
9.3).
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Figure 9.7: Early breast cancer patients data. Scaled histograms for sampled
corr(bi,1, bi,2).
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Figure 9.8: Early breast cancer patients data. Posterior predictive error
densities.
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Figure 9.9: Early breast cancer patients data, comparison of the penalized
mixture CS AFT model (solid lines) and the classical mixture CS AFT model
(dashed lines). Predictive survival curves based on the model with region
for region = France, and two typical combinations of covariates: (1) breast
conserving surgery, tumor size ≥2 cm, negative nodal status and no other
associated disease (9.79% of the sample), (2) mastectomy, tumor size ≥2 cm,
positive nodal status and no other associated disease (13.88% of the sample).
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Figure 9.10: Early breast cancer patients data. Posterior means and 95%
equal-tail credible intervals for individual random effects. Random intercepts
are further shifted by the error mean E(ε) and in the model with region also
by a corresponding region main effect β(region).
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The shape of the estimated error density seems to be somewhat different
from what has been found using the classical mixture model in Section 8.9
(Figure 8.11). In Figure 8.11, the shape similar to what is seen now (Figure
9.8) can only be found when looking at conditional predictive densities, given
K > 1. However, both estimated error distributions lead to almost the same
estimates of the survival curves as it is seen in Figure 9.9.

9.8.4 Estimates of individual random effects

Finally, Figure 9.10 shows estimates of individual random effects. Analo-
gously to Figure 8.12, the plots related to the random intercept takes into
account also the mean of the error term and in the case of the model with
region also the appropriate main effect of region. It can be seen that, anal-
ogous to the remaining model characteristics, Figure 9.10 resembles quite
closely Figure 8.12. Among other things, also here the estimates of individ-
ual random intercepts in the model without region managed quite nicely to
capture also the region effect.

9.8.5 Conclusions

The main purpose of this section was to explore how the chosen method for
the estimation of the error distribution influences the results of a particular
analysis. We have seen that, except for the estimate of the error distribution
itself, the differences were almost negligible. Moreover, although the esti-
mated shapes of the error distribution were somewhat different they both led
to almost identical survival curves.

9.9 Discussion

A semiparametric method to perform a regression analysis with clustered
doubly-interval-censored data was suggested in this chapter. We opted for
a fully Bayesian approach and MCMC methodology. Note however, that
similarly as in Chapter 8, the Bayesian approach is used only for technical
convenience to avoid difficult optimization unavoidable with more classical
maximum-likelihood based estimation. Remember that we use a penalty-like
prior distribution for the transformed mixture weights a and vague priors for
all remaining parameters. We did not make any attempt to use any prior
information although it could have been utilized. Taking into account the
above reasoning, we conclude that similar results would have been obtained
if the penalized maximum-likelihood estimation had been used.



Chapter 10
Bayesian Penalized Mixture
Population-Averaged AFT Model

In Section 9.7, we evaluated the impact of several covariates on the time to
caries of the permanent first molars which are the teeth most often attacked
by caries during childhood. It was also of interest to know whether the
covariates have the same effect on all teeth. Hence all four teeth had to
be modelled jointly. In the same section, univariate cluster-specific random
effects have been included in the model expression to account for within-
cluster dependencies. Given these random effects, the observations within
each cluster were assumed to be independent. Distributional parts of the
model were specified as penalized univariate normal mixtures.

However, it is also of interest to evaluate the association between the times-to-
caries of the studied teeth. Nevertheless, the approach of Chapter 9 treats the
within-cluster association as nuisance and, except for the estimated variance
of the random effects, it does not give a direct measure of the within-cluster
association. For this reason, we modify the method of Chapter 9 and assume
a multivariate error distribution as a penalized multivariate normal mixture
with a high number of components with equidistant means and constant
covariance matrices.

For the explanatory and also computational reasons we describe only a bi-
variate version of the model as given by Komárek and Lesaffre (2006c) and
apply it to the analysis of right permanent first molars in Section 10.6. The
approach of this chapter allows to visualize the estimated bivariate error dis-
tribution and evaluate the association of paired responses.

In Section 10.1, we specify the penalized mixture population-averaged AFT

193
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model. Further, the prior distributions are given and posterior distribution
is derived in Section 10.2. Section 10.3 provides the details of the Markov
chain Monte Carlo method in the context of the model of this chapter. In
Section 10.4, we show how the association between the paired responses can
be evaluated. Estimation of the survival distribution is discussed in Section
10.5. The analysis of the doubly-interval-censored caries times of the right
permanent first molars is given in Section 10.6. Finally, we provide discussion
in Section 10.7.

10.1 Model

A similar notation as in Chapter 9 will be used here. That is, let Ui,l and Vi,l,
i = 1, . . . , N, l = 1, 2 be the onset time and the failure time, respectively for
the lth unit of the ith cluster in the study. Let Ti,l = Vi,l − Ui,l denote the
corresponding event time The onset time Ui,l is only observed in an interval
⌊uL

i,l, u
U
i,l⌋. Similarly, we only know that the event time Vi,l lies in an interval

⌊vL
i,l, v

U
i,l⌋.

Further, let xu
i,l be the vector of covariates which might have an effect on the

onset time Ui,l and xt
i,l be the vector of covariates which can possibly influ-

ence the event time Ti,l. Additionally, we assume that the onset times vector
(Ui,1, Ui,2)

′ and the time-to-event vector (Ti,1, Ti,2)
′ are, given the covariates,

for each i independent (see Chapter 9 for a detailed discussion of this as-
sumption) and that the interval censoring is independent and noninformative
(e.g. pre-scheduled visits, see Section 2.4).

The distribution of (Ui,1, Ui,2, Ti,1, Ti,2)
′, i = 1, . . . ,N , given the covariates,

is given by the following accelerated failure time model:

log(Ui,l) = δ′xu
i,l + ζi,l, (10.1)

log(Vi,l − Ui,l) = log(Ti,l) = β′xt
i,l + εi,l, (10.2)

i = 1, . . . ,N, l = 1, 2,

where δ = (δ1, . . . , δmu)′ and β = (β1, . . . , βmt)
′ are unknown regression

parameter vectors, ζi = (ζi,1, ζi,2)
′, i = 1, . . . ,N are i.i.d. random vectors

with a bivariate density gζ(ζ1, ζ2) and similarly, εi = (εi,1, εi,2)
′, i = 1, . . . ,N

i.i.d. random vectors with a bivariate density gε(ε1, ε2).

10.1.1 Distributional assumptions

Our model for the unknown bivariate densities gε(ε1, ε2) and gζ(ζ1, ζ2) is mo-
tivated by a penalized smoothing as introduced in Section 6.3.4 and directly
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generalizes the method used in Chapter 9 into higher dimensions.

Let Y = (Y1, Y2)
′ be a generic symbol for either ε = (ε1, ε2)

′ or ζ = (ζ1, ζ2)
′

and g(y) = g(y1, y2) be a generic symbol for its density. We express the
unknown density g(y) as a location-and-scale transformed finite mixture of
bivariate normal densities with zero correlation over a fixed fine grid with
knots µ(j1,j2) = (µ1,j1, µ2,j2)

′, j1 = −K1, . . . , K1, j2 = −K2, . . . ,K2 that are
centered around zero, i.e. µ(0,0) = (0, 0)′. The means of the bivariate normal
components are equal to the knots and their covariance matrices are all equal
but fixed to Σ = diag

(
σ2

1 , σ
2
2

)
. Thus,

g(y) = (10.3)

(τ1τ2)
−1

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2(A)ϕ2

(y1 − α1

τ1
,
y2 − α2

τ2

∣∣∣µ(j1,j2), Σ
)
.

In expression (10.3), the intercept term α = (α1, α1)
′ and the scale pa-

rameters vector τ = (τ1, τ2)
′ have to be estimated as well as the matrix A =

(aj1,j2), j1 = −K1, . . . ,K1, j2 = −K2, . . . ,K2 of the transformed weights. See
(6.19) for the relationship between A and W = (wj1,j2), j1 = −K1, . . . ,K1,
j2 = −K2, . . . ,K2. The density of the zero-mean, unit-variance random vec-

tor Y ∗ =
(
τ−1
1 (Y1 − α1), τ

−1
2 (Y2 − α2)

)′
is a density of the bivariate normal

mixture with uncorrelated components given by (6.21).

In the following, let Gε refers to the set {Σε, µε, αε, τ ε, W
ε, A

ε, λε} which
contains the parameters defining the distribution of ε and a smoothing param-
eter vector λε which we will discuss in Section 10.2.1. Similarly, let Gζ refers
to the set µζ , αζ , τ ζ , W

ζ , A
ζ , λζ} which contains the parameters defining

the distribution of ζ and a corresponding smoothing parameter vector λζ .
Finally, let G be a generic symbol for Gε or Gζ .

10.1.2 Likelihood

Let p denote a generic density. The likelihood contribution of the ith paired
response equals

Li =

∮ uU
i,1

uL
i,1

∮ uU
i,2

uL
i,2

∮ vU
i,1−ui,1

vL
i,1−ui,1

∮ vU
i,2−ui,2

vL
i,2−ui,2

p(ui,1, ui,2, ti,1, ti,2)

dti,2 dti,1 dui,2 dui,1
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=

∮ uU
i,1

uL
i,1

∮ uU
i,2

uL
i,2

p(ui,1, ui,2) (10.4)

{∮ vU
i,1−ui,1

vL
i,1−ui,1

∮ vU
i,2−ui,2

vL
i,2−ui,2

p(ti,1, ti,2) dti,2 dti,1

}
dui,2 dui,1,

where

p(ti,1, ti,2) = (ti,1 ti,2)
−1 gε

{
log(ti,1) − β′xi,1, log(ti,2) − β′xi,2

}
,

p(ui,1, ui,2) = (ui,1 ui,2)
−1 gζ

{
log(ui,1) − δ′zi,1, log(ui,2) − δ′zi,2

}
,

are obtained using the expression (10.3) for gε and gζ .

In another context, Ghidey, Lesaffre, and Eilers (2004) used an expression
similar to (10.3) to model a density of the random intercept and slope in the
linear mixed model with uncensored data. Further, Bogaerts and Lesaffre
(2006) used this approach to model a density of bivariate simply-interval-
censored data without covariates. In both papers, a penalized maximum
likelihood method has been used to estimate unknown parameters. In our
context, however, a maximum likelihood procedure is difficult and computa-
tionally almost intractable. Like in Chapter 9 we suggest to use the Bayesian
approach together with MCMC methodology.

10.2 Bayesian hierarchical model

Let θ be a vector of all unknown parameters in our model. We assume the
hierarchical structure represented by the directed acyclic graph (DAG) shown
in Figure 10.1. The DAG implies the following prior distribution:

p(θ) ∝
N∏

i=1

{
p
(
vi,1, vi,2

∣∣ ui,1, ui,2, ti,1, ti,2
)
×

p
(
ti,1, ti,2

∣∣ β, εi,1, εi,2
)
× p

(
ui,1, ui,2

∣∣ δ, ζi,1, ζi,2
)
×

p
(
εi,1, εi,2

∣∣ Gε, r
ε
i,1, r

ε
i,2

)
× p

(
ζi,1, ζi,2

∣∣ Gζ , r
ζ
i,1, r

ζ
i,2

)
× (10.5)

p
(
rε
i,1, r

ε
i,2

∣∣ Gε

)
× p

(
rζ
i,1, r

ζ
i,2

∣∣ Gζ

)}
×

p
(
Gε

)
× p

(
Gζ

)
× p

(
δ
)
× p

(
β
)
.

The DAG child-parent conditional distributions and priors for the parameters
residing on the top of the hierarchy are similar to these used in Chapter 9. We
give a brief overview and highlight the differences with the bivariate model
considered here.
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10.2.1 Prior distribution for G
The structure of the prior distribution of the generic node G is the same as
in Section 9.2.1, i.e.

p(G) ∝ p(A |λ) p(λ) p(α) p(τ ).

With the bivariate setting, the number of unknown elements of the matrix A

is naturally much higher than with the univariate setting used in Chapter 9,
namely it is equal to (2K1 +1)×(2K2 +1) (e.g. equal to 961 in the analysis of

Onset Event

censoringi,l

uU
i,luL

i,l vL
i,l vU

i,l

vi,l

ui,l ti,l

δ xu
i,l ζi,l εi,l xt

i,l β

rζi,l rεi,l

Σζ µζ αζ τζ
W

ζ W
ε τε αε µε Σε

A
ζ A

ε

λζ λε

l = 1, 2

i = 1, . . . , N

Gζ Gε

Figure 10.1: Directed acyclic graph for the Bayesian penalized mixture
population-averaged AFT model.
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the Signal Tandmobielr data in Section10.6). With an uninformative prior
for A, this could cause overfitting of the data or identifiability problems.

Spatial prior for A

Since the (transformed) mixture weights correspond to spatially located nor-
mal components, a Gaussian Markov random field (GMRF) prior (see, e.g.,
Besag et al., 1995, Section 3), common in spatial statistics, can be exploited
here. Such a prior distribution can be defined by specifying the conditional
distribution of each aj1,j2 given remaining ak1,k2, (k1, k2) 6= (j1, j2), here de-
noted as A−(j1, j2), and the hyperparameter λ that controls the smoothness.
Usually, only a few neighboring coefficients are effectively used in the spec-
ification of p(aj1,j2 |A−(j1, j2), λ). A commonly used conditional distribution
is a normal distribution with expectation and variance equal to

E
(
aj1,j2 |A−(j1,j2), λ

)
=
aj1−1,j2 + aj1+1,j2 + aj1,j2−1 + aj1,j2+1

2
−

aj1−1,j2−1 + aj1−1,j2+1 + aj1+1,j2−1 + aj1+1,j2+1

4
,

var
(
aj1,j2 |A−(j1,j2), λ

)
= (4λ)−1, (10.6)

respectively, based on the eight nearest neighbors and local quadratic smooth-
ing. Note that the expectation and variance formulas have to be changed
appropriately on edges where only five neighbors are available and in corners
where we have only three neighbors out of the original eight. Namely, for the
edge given by j1 = K1:

E
(
aK1,j2 |A−(K1,j2), λ

)
= aK1−1,j2 +

aK1,j2−1 + aK1,j2+1

2
−

aK1−1,j2−1 + aK1−1,j2+1

2

var
(
aK1,j2 |A−(K1,j2), λ

)
= (2λ)−1, j2 = −K2 + 1, . . . ,K2 − 1,

and similarly for the remaining edges. In the corner given by (j1, j2) =
(K1,K2):

E
(
aK1,K2 |A−(K1,K2), λ

)
= aK1−1,K2 + aK1,K2−1 − aK1−1,K2−1,

var
(
aK1,K2 |A−(K1,K2), λ

)
= λ−1,

and similarly for the remaining corners.

Let a denote the matrix A stacked into a column vector. Using a bivariate
difference operator

∆ aj1,j2 = aj1,j2 − aj1+1,j2 − aj1,j2+1 + aj1+1,j2+1,
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and denoting D the associated difference operator matrix, the joint prior of all
transformed weights A given the smoothing hyperparameter λ can be written
as

p(A | λ) ∝ exp
{
−λ

2

K1−1∑

j1=−K1

K2−1∑

j2=−K2

(
∆ aj1,j2

)2}
= exp

(
−λ

2
a′D′

Da
)

(10.7)

which shows that the DAG conditional distribution p(A |λ) specified as a GMRF

is multivariate normal with covariance matrix λ−1
(
D
′
D
)−

, where
(
D
′
D
)−

de-
notes a generalized inverse of D

′
D. Although this distribution is improper

(the matrix D
′
D has a deficiency of 2(K1 + K2) + 1 in its rank) the result-

ing posterior distribution is proper as soon as there is some informative data
available, see Besag et al. (1995).

Conditionally univariate difference prior

An alternative prior, still belonging to the class of GMRF, corresponding
closely to the prior for A used in Chapter 9 is obtained by considering a uni-
variate difference operator for each row and each column of the matrix A

with possibly two different smoothing hyperparameters stacked in a vector
λ = (λ1, λ2)

′ acting on rows and columns separately. Then

p(A | λ) ∝ exp

{
−λ1

2

K1∑

j1=−K1

K2∑

j2=−K2+s

(
∆s

1 aj1,j2

)2

− λ2

2

K2∑

j2=−K2

K1∑

j1=−K1+s

(
∆s

2 aj1,j2

)2
}

= exp
{
−1

2
a′
(
λ1 D

′
1D1 + λ2 D

′
2D2

)
a
}

(10.8)

where ∆s
l , l = 1, 2 denotes a difference operator of order s for the lth dimen-

sion, e.g. ∆3
1 aj1,j2 = aj1,j2 − 3 aj1,j2−1 + 3 aj1,j2−2 − aj1,j2−3 and D1 and D2

are the corresponding difference operator matrices for each dimension. This
prior distribution corresponds to a local polynomial smoothing of degree s−1
in each row and each column of the matrix A. For example, the conditional
mean and variance are given (for s = 3 and except on the corners and on
edges) by

E
(
aj1,j2 |A−(j1,j2), λ

)
=
λ1Aj2 | j1 + λ2Aj1 | j2

λ1 + λ2

var
(
aj1,j2 |A−(j1,j2), λ

)
=

1

20(λ1 + λ2)
, (10.9)
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where

Ak | j =
aj,k−3 − 6 aj,k−2 + 15 aj,k−1 + 15 aj,k+1 − 6 aj,k+2 + aj,k+3

20
.

Both the spatial prior for A and the conditionally univariate difference prior
for A put higher probability mass in areas where spatially close coefficients of
the matrix A do not substantially differ. In other words, a priori, we believe
that the estimated densities gζ(ζ1, ζ2) and gε(ε1, ε2) are smooth. In general,
prior (10.8) leads to better a fit in our context and hence is preferred.

Prior for the smoothing parameter

The λ parameter in the prior (10.7) or the components λ1, λ2 of the λ param-
eter in the prior (10.8) determine, together with the fixed difference operator
matrix D, the precision of the transformed weights A. We assign these pa-
rameters standardly used highly dispersed (but proper) Gamma priors.

Prior for the mixture intercepts and scales

The intercept parameters αε
1, α

ε
2, α

ζ
1, α

ζ
2 can obtain a vague normal prior

unless there is some external information available. For the scale parameters
τ ε
1 , τ

ε
2 , τ

ζ
1 , τ

ζ
2 we suggest to use either the uniform prior or a highly dispersed

inverse-Gamma prior for the squared scale parameters.

10.2.2 Prior distribution for the generic node Y

To specify the prior distribution of the generic node Y , i.e. of the nodes εi and
ζi, i = 1, . . . , N , we introduce, analogously to Chapter 9 and using the idea
of Bayesian data augmentation (see Section 4.3), latent allocation vector r =
(r1, r2)

′ that can take discrete values from {−K1, . . . ,K1}× {−K2, . . . ,K2}.
Its DAG conditional distribution is given by

Pr(r = (j1, j2)
′ | G) = Pr(r = (j1, j2)

′ |W) = wj1, j2,

j1 ∈ {−K1, . . . ,K1}, j2 ∈ {−K2, . . . ,K2}.
The DAG conditional distribution of the generic node Y is then simply bi-
variate normal with independent margins:

p(y1, y2 | G, r1, r2) = ϕ2

(
y
∣∣α+ diag(τ )µ(r1, r2), diag(τ )Σ diag(τ )

)
.

Without introducing the latent allocation vectors we would have to work with
p(y | G) = p(y | µ, Σ, α, τ ,W) which is a bivariate normal mixture given by
(10.3).
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10.2.3 Prior distribution for the regression parameters and
time variables

The prior distribution of the regression parameters and the time variables
is exactly the same as in Chapter 9. That is, the regression parameter vec-
tors β and δ are given a vague normal prior unless there is some external
information available. Finally, the nodes uL

i,l, u
U
i,l, v

L
i,l, v

U
i,l, t

L
i,l and tUi,l have,

conditionally on their parents, the Dirac distribution driven by the censoring
mechanism and the true onset, failure or event time, respectively. See Section
9.2.5 with an obvious change in notation. Finally, remember that we do not
have to specify an exact form of the censoring mechanism as soon as it is
noninformative and independent.

10.2.4 Posterior distribution

The posterior distribution is given as a product of all DAG conditional dis-
tributions. See Section 9.2.6 for details.

10.3 Markov chain Monte Carlo

In practice we obtain a sample from the posterior distribution using the
Markov chain Monte Carlo method and base our inference on this sample.
Analogously to Chapter 9, the basis for the MCMC algorithm is Gibbs sam-
pling (Geman and Geman, 1984) using the full conditional distributions. In
the situations when the full conditional distribution was not of standard
form we used either slice sampling (Neal, 2003) or adaptive rejection sam-
pling (Gilks and Wild, 1992). For most parameters the full conditionals are
identical (with only a slight change in notation) to those given in Section 9.3
and we refer the reader thereinto.

Here we mention only the full conditional distribution for the transformed
mixture weights which, due to the bivariate nature considered here, differs
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from that in Chapter 9 and is equal to

p(aj1,j2 | · · · ) ∝
exp(Nj1,j2aj1,j2)

{ K1∑
k1=−K1

K2∑
k2=−K2

exp(ak1,k2)
}N

×

exp

[
−

{
aj1,j2 − E

(
aj1,j2 |A−(j1,j2), λ

)}2

2 var
(
aj1,j2 |A−(j1,j2), λ

)
]
,

j1 = −K1, . . . ,K1, j2 = −K2, . . . ,K2,

where Nj1,j2 denotes the number of latent allocation vectors ri that are equal
to (j1, j2)

′ and E
(
aj1,j2 |A−(j1,j2), λ

)
and var

(
aj1,j2 |A−(j1,j2), λ

)
follow from

(10.6) or (10.9).

10.4 Evaluation of association

The association between the paired responses, after adjustment for the effect
of covariates, can be evaluated for example using the Pearson correlation
coefficient of the error terms ζi,1 and ζi,2, or εi,1 and εi,2, respectively. For
example, the Pearson correlation coefficient of the error terms εi,1 and εi,2
equals

̺ε =

K1∑
j1=−K1

K2∑
j2=−K2

wε
j1,j2

(
µε

1,j1
−M ε

1

)(
µε

2,j2
−M ε

2

)

{
(σε

1)
2 +

K1∑
j1=−K1

wε
j1+

(
µε

1,j1
−M ε

1

)} 1
2
{
(σε

2)
2 +

K2∑
j2=−K2

wε
+j2

(
µε

2,j2
−M ε

2

)} 1
2

,

where

wε
j1+ =

K2∑

j2=−K2

wε
j1,j2

, j1 = −K1, . . . ,K1, M ε
1 =

K1∑

j1=−K1

wε
j1+µ

ε
1,j1

,

wε
+j2

=

K1∑

j1=−K1

wε
j1,j2

, j2 = −K2, . . . ,K2, M ε
2 =

K2∑

j2=−K2

wε
+j2

µε
2,j2

.

Another popular measure of association for censored data is the Kendall’s
tau, denoted by τKend, of which one advantage is that it is invariant towards
monotone transformations. This implies in our context that after adjustment
for the effect of covariates, the same value of the Kendall’s tau is obtained
for both the original event times and for their logarithmic transformation
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represented by the error terms. For example for the time-to-event part of the
model, given the model parameters, the Kendall’s tau τ ε

Kend is equal to

τ ε
Kend = 4 ·

K1∑

j1=−K1

K2∑

j2=−K2

K1∑

k1=−K1

K2∑

k2=−K2

wε
j1,j2

wε
k1,k2

Φ
(µε

1,j1
− µε

1,k1√
2σε

1

)
Φ
(µε

2,j2
− µε

2,k2√
2σε

2

)
− 1,

see Bogaerts and Lesaffre (2006) for details.

10.5 Bayesian estimates of the survival distribution

10.5.1 Predictive survival nad hazard curves and predic-
tive survival densities

The estimates of the survival and hazard functions or the survival densites for
a specific combination of covariates are estimated by the mean of (posterior)
predictive quantities. In practice, this is done analogously to Sections 8.4
and 9.4. However, due to the bivariate approach in this chapter, we have
to distinguish between the quantities for the first margin: the onset time U1

and the event time T1 and for the second margin: the onset time U2 and the
event time T2.

For example, to get the Bayesian estimate of the predictive survival function
of the event time T1, given the covariates xt

new and zt
new, we can use the

relationship (8.17) while replacing the expression (8.16) by

S1(t1 | θ, xt
new, z

t
new) = (10.10)

1 −
K1∑

j1=−K1

wε
j1,+ Φ

{
log(t1) − β′xt

new − b′zt
new

∣∣ αε
1 + τ ε

1µ
ε
1,j1

, (σε
1τ

ε
1 )2
}
.

To get the Bayesian estimate of the predictive survival density of the event
time T1, we replace the expression (8.18) by

p1(t1 | θ, xt
new, z

t
new) = (10.11)

t−1
1

K1∑

j1=−K1

wε
j1,+ ϕ

{
log(t1) − β′xt

new − b′zt
new

∣∣ αε
1 + τ ε

1µ
ε
1,j1

, (σε
1τ

ε
1 )2
}
.

Analogously, the quantities for the event time T2 in the second margin and
for the onset times U1 and U2 are obtained.
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10.5.2 Predictive error densities

The MCMC estimates of the predictive error densities are obtained in the
same way as explained in Section 9.4.2. We only have to use a bivariate
counterpart of the expression (9.13), i.e. for the event error density we use

ĝε(e1, e2) =
1

M

M∑

m=1

{(
τ

ε,(m)
1 τ

ε,(m)
2

)−1
(10.12)

K1∑

j1=−K1

K2∑

j2=−K2

w
ε,(m)
j1,j2

ϕ2

(e1 − α
ε,(m)
1

τ
ε,(m)
1

,
e2 − α

ε,(m)
2

τ
ε,(m)
2

∣∣∣µε
(j1,j2)

, Σε
)}

.

10.6 Example: Signal Tandmobielr study – paired
doubly-interval-censored data

In Section 9.7, we have analyzed the time to caries of the permanent first mo-
lars based on the data from the Signal Tandmobielr study using the cluster-
specific AFT model. The results were compared to the earlier analysis of
Leroy et al. (2005). In this section, we perform a similar analysis. However,
for practical reasons (see the introduction to this chapter) it is only possible
to analyze a pair of teeth. In our analysis, we concentrated on differences
between the maxillary (upper) and mandibular (lower) teeth and analyzed
separately the pair of right teeth (teeth 16 and 46) and the pair of left teeth
(teeth 26 and 36). The results for both pairs were very similar so we report
only the results for the right teeth in this thesis. Due to the fact that a (para-
metric) population-averaged AFT model was used by Leroy et al. (2005), the
results presented in this section can even more closely be compared to their
findings.

The analysis proceeded in a similar way as in Section 9.7 with only changes
related to the fact we analyze only two teeth now. Specifically, the onset
time Ui,l, i = 1, . . . , N , l = 1, 2 refers to the age (in years) of the ith child
at which the lth tooth (l = 1 ≡ tooth 16, l = 2 ≡ tooth 46) emerged. The
failure time Vi,l, i = 1, . . . , N , l = 1, . . . , 2 refers to the onset of caries and
the event time Ti,l to the time between the emergence and the onset of caries.
As explained in Section 9.7, left-censored emergence times were transformed
into interval-censored ones based on the clinical eruption stage. Finally, as in
Section 9.7, we subtracted 5 years from all observed times, i.e. log(Ui,l − 5)
was used in the left-hand side of the model formula (10.1). Analogously to
Section 9.7, we started the analysis with the Basic Model and based on
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the results for the Basic Model we subsequently fitted its simplified version,
referred as the Final Model.

10.6.1 Basic Model

In the Basic Model we allowed for a different effect of the covariates on both
emergence and caries experience for the maxillary and mandibular tooth,
respectively. That is, in the AFT models (10.1) and (10.2) we used the
following covariate vectors xu

i,l and xt
i,l for the emergence and caries parts of

the model, respectively.

xu
i,l = (genderi, jawi,l ∗ genderi)

′,

xt
i,l = (x̃t

i,l, jawi,l ∗ x̃t
i,l),

where

x̃t
i,l = (genderi, statusDi,l, statusFi,l, statusMi,l,

brushingi, sealantsi,l, plaquePFi,l, plaqueTi,l).

The covariate jaw is dichotomous (1 = maxilla, 0 = mandible) and distin-
guishes between the maxillary and mandibular tooth. It replaces the covari-
ates tooth26, tooth36, tooth46 used in Section 9.7.1. Note that as well in the
caries part as in the emergence part of the model the main effect of jaw is
expressed by the intercept terms αε and αζ , respectively. See Section 9.7.1
for the explanation of the remaining covariates.

10.6.2 Final Model

In the Final Model, we excluded all interaction terms with the covariate jaw,
i.e. we assumed that the studied factors have the same effect on the emergence
and caries for both the maxillary and mandibular tooth. Additionally, as
in Section 9.7, we binarized the covariates plaquePF, plaqueT and statusD,
statusF, statusM into new covariates plaque and status, respectively. Bayesian
two-sided p-values and for factors with more than two levels simultaneous
two-sided Bayesian p-values (see Section 4.6.2) were used to arrive at the
Final Model.

10.6.3 Prior distribution

To model the bivariate densities gζ and gε we used in both cases a grid of 31×
31 (K1 = K2 = 15) knots with the distance d between the two knots in each
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margin equal to 0.3 and the basis standard deviations σε
1 = σε

2 = σζ
1 = σζ

2 =
0.2. The grid of knots is defined on a square [−4.5, 4.5] × [−4.5, 4.5] which
covers the support of most standardized unimodal distributions (unimodality
was checked after the analysis).

For the transformed mixture weights A
ε and A

ζ we used the prior (10.8) with
the differences of the third order (s = 3). The smoothing parameters λε

1, λ
ε
2,

λζ
1, λ

ζ
2 were all assigned dispersed Gamma(1, 0.005) priors. The same priors

were used also for the scale parameters τ ε
1 , τ

ε
2 , τ

ζ
1 , τ

ζ
2 . The intercept terms

αε
1, α

ε
2, α

ζ
1, α

ζ
2 as well as regression parameters contained in vectors β and δ

were all assigned dispersed N (0, 100) priors.

10.6.4 Results

For each model we ran 250 000 iterations with 1:3 thinning and kept last
25 000 iterations for the inference. Sampling for each model took about 68
hours on a 3 GHz Pentium IV PC with 1 GB RAM.

Results for the Basic Model

Table 10.1 shows the posterior medians, (simultaneous) 95% equal-tail credi-
ble intervals and (simultaneous) Bayesian two-sided p-values for the effect of
each considered factor on emergence and caries experience, separately for the
maxillary and the mandibular tooth.

It is seen that the results for the mandibular and the maxillary tooth are very
similar. Indeed, the interaction terms between jaw and the remaining factor
variables were all non-significant at 5%, namely, the p-values were > 0.5,
> 0.5, > 0.5, 0.262, > 0.5, 0.145, respectively for the interaction with gender
in the emergence and the caries part of the model, and for the interaction
with brushing, sealants, plaque, and status, respectively.

Additionally, we computed the (simultaneous) Bayesian two-sided p-values
for the two contrasts justifying the simplification of the covariates plaque
and status for the Final Model, again separately for the mandibular and the
maxillary tooth. For the variable status contrast decayed vs. filled vs. missing
due to caries, the p-values were equal to 0.342 and 0.308, respectively for the
maxillary and the mandibular tooth, respectively. For the variable plaque
contrast in pits and fissures vs. on total surface, the p-values were equal to
0.262 and 0.301, respectively for the maxillary and the mandibular tooth,
respectively.
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Table 10.1: Signal Tandmobielr study, Basic Model. Posterior medians, 95%
equal-tail credible regions (CR) and Bayesian two-sided p-values for each
factor variable, separately for the maxillary tooth 16 and the mandibular
tooth 46.

Maxillary tooth 16 Mandibular tooth 46

Posterior Posterior

Effect median 95% CR median 95% CR

Emergence

Gender p = 0.094 p = 0.142

girl −0.018 (−0.039, 0.003) −0.016 (−0.036, 0.005)

Caries

Gender p = 0.534 p = 0.403

girl −0.035 (−0.139, 0.073) −0.049 (−0.162, 0.063)

Status p < 0.001 p < 0.001

decayed −0.449 (−0.704, −0.224) −0.379 (−0.641, −0.151)

filled −0.627 (−0.844, −0.414) −0.375 (−0.588, −0.175)

missing −0.470 (−1.377, 0.138) −0.726 (−1.398, −0.208)

Brushing p = 0.003 p < 0.001

daily 0.226 (0.086, 0.386) 0.265 (0.097, 0.426)

Sealants p = 0.019 p = 0.401

present 0.158 (0.028, 0.283) 0.055 (−0.077, 0.180)

Plaque p = 0.014 p = 0.002

in pits and −0.183 (−0.333, −0.031) −0.252 (−0.404, −0.107)

fissures

on total −0.389 (−0.819, −0.015) −0.468 (−0.997, −0.038)

surface

Results for the Final Model

Results for the Final Model are given in Table 10.2. This table contains also
the main effect of jaw which is given by E(ζ2) − E(ζ1) and by E(ε2) − E(ε1)
in the case of emergence and caries, respectively.

It is seen that the lower tooth 46 emerges slightly later than the upper tooth
16. On the other hand, emergence occurs slightly earlier for girls than for
boys. However, neither the position of the tooth nor gender have a significant
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Table 10.2: Signal Tandmobielr study, Final Model. Posterior medians, 95%
equal-tail credible regions (CR) and Bayesian two-sided p-values for each
factor variable.

Emergence Caries

Posterior Posterior

Effect median 95% CR median 95% CR

Jaw p = 0.021 p = 0.816

lower 0.017 (0.003, 0.032) 0.024 (−0.158, 0.218)

Gender p = 0.018 p = 0.267

girl −0.017 (−0.033, −0.003) −0.044 (−0.120, 0.033)

Status p < 0.001

dmf −0.482 (−0.576, −0.388)

Brushing p < 0.001

daily 0.249 (0.139, 0.369)

Sealants p = 0.022

present 0.110 (0.019, 0.195)

Plaque p < 0.001

present −0.228 (−0.313, −0.141)

Table 10.3: Signal Tandmobielr study, Final Model. Posterior medians and
95% equal-tail credible regions (CR) for the mean, standard deviation, Pear-
son correlation and Kendall’s tau of the error terms.

Posterior Posterior

Param. median 95% CR Param. median 95% CR

Emergence Caries

E(ζ1) 0.392 (0.379, 0.404) E(ε1) 2.846 (2.645, 3.043)

E(ζ2) 0.409 (0.397, 0.421) E(ε2) 2.870 (2.706, 3.040)

sd(ζ1) 0.170 (0.163, 0.178) sd(ε1) 1.737 (1.631, 1.855)

sd(ζ2) 0.170 (0.164, 0.177) sd(ε2) 1.812 (1.722, 1.918)

̺ζ 0.037 (0.030, 0.050) ̺ε 0.023 (0.018, 0.028)

τζ
Kend 0.022 (0.016, 0.030) τε

Kend 0.011 (0.008, 0.013)
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Figure 10.2: Signal Tandmobielr study, Final Model. Scaled histograms for
sampled Pearson correlation and Kendall’s tau between the error terms.
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effect on the time to caries. The remaining factors do influence significantly
the time to caries, namely, daily brushing increases this time with a factor
of exp(0.249) = 1.283, presence of sealants with a factor of exp(0.110) =
1.116. The factor for presence of plaque is exp(−0.228) = 0.796 and when the
adjacent deciduous second molar was not sound the factor is exp(−0.482) =
0.618.

It is seen that the results given in Table 10.2 are slightly different from the
summary given in Table 9.1 which relates to the earlier joint analysis of
all four permanent first molars using the cluster-specific (conditional) AFT
model. Especially, the effect of the covariate status appears to be more
profound when evaluated using the population-averaged (marginal) model.
However, the conclusions concerning a beneficial effect of sealing and daily
brushing and an indisposed effect of not sound primary predecessors or plaque
on the caries process on the permanent first molars are the same irrespective
of the used model.

Further, Table 10.3 shows the mean and standard deviation of the error terms
and also the residual association (after adjustment for the effect of covariates)
between the maxillary and the mandibular tooth. For both the emergence
and the caries processes, a very low posterior median for the Pearson corre-
lation coefficient was found on the log-scale and the same is true also for the
Kendall’s tau. Moreover, as seen in Figure 10.2, the whole posterior distri-
bution for the correlation coefficients and the Kendall’s taus is concentrated
in the neighborhood of zero.

Figures 10.3 and 10.4 show the estimates of the error densities gζ(ζ) and gε(ε)
and their margins and illustrate the smoothing nature of our approach. These
figures also reveal the low association between error terms for the upper and
lower tooth. For the interpretation of the figure, we must take into account
that about 75% of the caries times were right-censored and practically all
around 12 years of age, which is 5 to 6 years after emergence. This implies
that in fact each margin is identifiable from the data only up to approximately
the first quartile. The right tail of the density is extrapolated from the left tail
using the weights distributed according to the GMRF prior. It also implies
that the association might be underestimated, see, e.g. Bogaerts and Lesaffre
(2006).

Figure 10.5 shows the predictive survival and hazard functions for caries on
the upper tooth 16 of boys and ‘the best’, ‘the worst’ and two intermedi-
ate combinations of covariates. Corresponding curves for the lower tooth 46
or for girls are almost the same due to the non-significant effect of the co-
variates gender and jaw on the caries. For teeth that are not brushed daily
and are exposed to other risk factors, a high peak in the hazard function is
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Figure 10.5: Signal Tandmobielr study, Final Model. Posterior predictive
caries free (survival) and caries hazard curves for tooth 16 of boys and the
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for present plaque, no sealing, not daily brushing and sound primary second
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observed already less than 1 year after emergence. A similar peak, however
shifted to right and of much lower magnitude is seen also for other covariate
combinations. The same peak, also approximately of the same magnitude,
has already been found when analyzing all four permanent first molars using
the cluster-specific AFT model in Chapter 9 (see Figure 9.4) and can be ex-
plained by the fact that permanent first molars are most vulnerable by caries
soon after they emerge, possibly because of not yet fully developed enamel
on their surfaces. However, when using the population-averaged model we do
not see the second period of increased hazard for the ‘worse’ combinations of
covariates as we have seen in Figure 9.4. This alleged difference between the
results of the population-averaged and cluster-specific model could be caused
by a failure to compare like with like, see Lee and Nelder (2004) for a deeper
discussion to this point.

10.7 Discussion

In this chapter, we have suggested a semiparametric method to analyze bivari-
ate doubly-interval-censored data in the presence of covariates. The method
was applied to the analysis of a dental data set where all covariates were
categorical. However, continuous covariates would not cause any difficulties
and could have been used as well. Although the method was presented to
deal with doubly-interval-censored data it can be used to analyze also simple
interval- or right-censored data.

Further, using the ideas outlined in Section 6.3.4, the method of this chapter
could theoretically be extended to handle not only bivariate data but also
data of an arbitrary dimension (i.e. ni > 2 for all i). However, the number
of unknown parameters increases exponentially and the estimation becomes
quite fast computationally intractable.

A disadvantage of the current method is that it requires balanced data, i.e.
exactly two observations must be supplied for each cluster and if only one
observation of the cluster is missing the whole cluster must be removed from
the analysis. Missingness in one event time out of the pair could have been
solved using the Bayesian data augmentation in the same way as it solves
the problem of censoring. However, if the missingness is caused by a miss-
ing covariate value, the Bayesian data augmentation would not help unless
a measurement model is set up also for the covariates. With unbalanced data,
the cluster specific approach of Chapter 9 can be used, however.



Chapter 11
Overview and Further Research

In this thesis, we have developed several modifications of the accelerated fail-
ure time model for the analysis of the multivariate (doubly-)interval-censored
data while making only weak distributional assumptions. We will now state
an overview and give topics for future research.

11.1 Overview

Chapter 1 brings several data sets that motivate the developments presented
in the thesis. The data sets are then used to illustrate the usage of presented
methods in practical situations. Chapter 2 explains briefly several notions
used in the area of survival data and introduces the notation used in the
thesis.

An overview of the regression models for the analysis of the survival data is
given in Chapter 3. We described the Cox’s proportional hazards (PH) model
and the accelerated failure time (AFT) model as the most popular models
in the given area. For reasons stated in Section 3.3 we chose the accelerated
failure time model as the basis for all developments in this thesis.

In Chapter 4, we discuss the likelihood form in the case of (multivariate)
(doubly-)interval-censored data and show several advantages of the Bayesian
inference compared to the maximum-likelihood estimation in such situations.
Further, we suggest to use the Markov chain Monte Carlo methodology as
the mean of Bayesian estimation.

The final chapter of the introductory part of the thesis, Chapter 5, gives
an overview of existing methods for the analysis of the interval-censored data
and shows in detail a Bayesian analysis of the dental multivariate doubly-

215
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interval-censored data using a PH model with piecewise constant baseline
hazard functions.

The main part of the thesis starts with Chapter 6 where we describe two
slightly different classes of models for a flexible modelling of continuous den-
sities. Firstly, a classical normal mixture is introduced and secondly, we pro-
pose a penalized normal mixture motivated by penalized B-splines as a useful
tool to model unknown densities. Both approaches are subsequently used in
the AFT models to express either the error density or the density of the
random effects.

Chapter 7 gives the AFT model for univariate interval-censored data where
the error distribution is specified as the penalized normal mixture. The in-
ference is based on the maximum-likelihood paradigm. The model is further
extended to allow not only the mean response but also the scale of the re-
sponse to depend on covariates.

The AFT models presented in subsequent chapters can already handle also
the multivariate (doubly-)interval-censored data. However, due to reasons
discussed in Chapter 4 and in Section 7.8, we switch to the Bayesian inference.
Firstly, Chapter 8 gives the AFT model with normal random effects (cluster-
specific model) and the distribution of the error term specified as the classical
normal mixture.

Secondly, Chapter 9 shows the cluster-specific AFT model where the error
distribution and in the case of univariate random effects also the distribution
of the random effects is specified as the penalized normal mixture. In this
chapter, we also explicitely show and illustrate the usage of the proposed
methods in the context of doubly-interval-censored data.

Finally, Chapter 10 gives the population-averaged AFT model for paired
(doubly-)interval-censored data where the error distribution is given by a bi-
variate penalized normal mixture.
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11.2 Generalizations and improvements

In this section, we list several topics to generalize or improve the models
presented in this thesis.

Time-dependent covariates and joint modelling of survival data and
longitudinal profiles

In many applications of the survival analysis, it is of interest to evaluate
an effect of factors that can evolve over time. The values of such factors
(e.g., blood pressure, dose of medication, etc.) are typically determined at
(prespecified) occasions and it is assumed that they remain constant (deter-
ministic) until the next occasion. In the last decade, several models were
developed for joint modelling of the evolution of factors evolving over time
(longitudinal data analysis) and the time-to-event, see Tsiatis and Davidian
(2004) for an overview. That is, a stochastic component is included in the
evolution of the time-dependent factors possibly influencing the survival time.

To include the time-dependent covariates, both deterministic and stochastic,
in the survival model, it is necessary to specify the dependence of the survival
time on the covariates using a local characteristic like the hazard function.
However, in all models presented in Part II of this thesis, the covariates
modified a global characteristic of the survival time, i.e. the mean log-time.
The possibility on how to extend the models of this thesis to handle also the
time-dependent covariates would be to use the hazard specification (3.3) of
the AFT model and use a mixture model for the baseline hazard function ℏ0.

Dependence of the scale parameters on covariates

In Section 7.1.2 we suggested to extend the basic AFT model by allowing
the dependence of the scale parameter on the covariates. The same exten-
sion could quite easily be applied to both Bayesian penalized approaches in
Chapters 9 and 10. However, in the case of the classical mixture (Chapter 8),
a similar extension would be much more complicated due to the fact that the
scale of the response is derived from the unknown number of the estimated
variances of the mixture components.

Dependent censoring

The models in this thesis assumed all that the censoring mechanism is in-
dependent on the time-to-event (see Section 2.4). Generally, this does not
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always have to be true. All Bayesian models (Chapters 8–10) could relatively
easily be extended to handle also dependent censoring. However, a reasonable
measurement model has to be specified for the censoring mechanism.

Goodness-of-fit

An important topic, not discussed in this thesis is the evaluation of goodness-
of-fit. Indeed, in all models in this thesis, the distribution of the response is
specified in a flexible manner and there is less need to evaluate the distribu-
tional assumptions. Nevertheless, one should also check an appropriatness of
the AFT assumption with respect to the form in which the covariates modify
the distribution of the response. On few places in this thesis, and in the case
of categorical covariates, this was only graphically checked by comparing the
fitted survival curves with their nonparametric estimates.

Classical goodness-of-fit methods are based on residuals whose form is straight-
forward in the case of a linear regression with uncensored data. In the case of
right censored data, various forms of residuals are derived from the counting
process specification of the survival models, see, e.g., Therneau and Grambsch
(2000, Chapter 4). However, the definition of residuals for interval-censored
data is not straightforward and only recently (Topp and Gómez, 2004) a work
in this direction appeared in the literature.

Model selection

A general model selection is another important topic somewhat neglectful in
this thesis. In Chapter 7, we based the model selection on the Akaike’s infor-
mation criterion whereas in Chapters 8–10 on the (simultaneous) Bayesian
p-values for model contrasts. In general, also in the Bayesian framework some
form of the information criterion could be used for the model selection. Re-
cently, the most popular one seems to be the deviance information criterion
(Spiegelhalter et al., 2002).

The use of specifically developed optimizers

Due to the complexity of the likelihood, we have considered the estimation
through the method of penalized maximum-likelihood only in Chapter 7.
However, there are currently several convenient gateways to optimization
software and services available on the Internet. For example, the Kestrel
interface to the NEOS server (Czyzyk, Mesnier, and Moré, 1998; Ferris, Mes-
nier, and Moré, 2000) together with the modeling language for mathematical
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programming AMPL (Fourer, Gay, and Kernighan, 2003) enables to opti-
mize complicated functions subject to different types of constraints. These
possibilities could be explored as promising alternatives to the full Bayesian
approaches presented in Chapters 8–10.

11.3 The use of penalized mixtures in other appli-
cation areas

Finally, we show how we intend to use the ideas used in this thesis in the
future work.

11.3.1 Generalized linear mixed models with random ef-
fects having a flexible distribution

Firstly, we aim to develop a generalized linear mixed model (GLMM) with
random effects distribution specified as the penalized mixture. The proposed
work has the following objectives.

Let Yi,l, i = 1, . . . , N , l = 1, . . . , ni be discrete random variables for which
the components of the vector Y i = (Yi,1, . . . , Yi,ni

)′ are possibly dependent.
Typically, Y i represents the outcomes of the ith subject at ni different time
points ti,1, . . . , ti,ni

in a longitudinal study or outcomes of ni subjects forming
the ith cluster in the case of clustered data. Further, let µi,l = E(Yi,l). Using
the GLMM, the expected outcome µi,l is expressed as

µi,l = h−1(x′
i,lβ + z′i,lbi), i = 1, . . . ,N, l = 1, . . . , ni,

where h is a known link function (e.g. log, logit, probit), β is the vector of
unknown regression parameters (fixed effects), xi,l the vector of covariates for
fixed effects, bi the vector of random effects and zi,l the vector of covariates
for random effects, see, e.g., Molenberghs and Verbeke (2005) for more details.
We aim to concentrate mainly on longitudinal studies where usually zi,l =
(1, ti,l)

′, and bi = (bi,1, bi,2)
′.

Classically, it is assumed that the random effects bi, i = 1, . . . ,N are i.i.d.
following a (multivariate) normal distribution. However, it has been shown
(see Molenberghs and Verbeke, 2005, Chapter 23) that the incorrect assump-
tion of normality of the random effects may lead to biased estimates of the
regression parameters β. But, due to the fact that the random effects bi are
latent, it is very difficult to check the normality assumption. That is why one
strives for more flexible methods with respect to the distribution of the ran-
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dom effects. One possibility, we wish to explore is to specify the distribution
of the random effects as a penalized bivariate mixture (10.3).

11.3.2 Spatial models with the intensity specified by the
penalized mixture

Secondly, we would like to explore the possibilities of the penalized mixtures
in the context of spatial models. The motivation is the following. In epi-
demiology, it is of interest to model the prevalence or incidence of a disease
in a spatial manner in order to represent the true risk in a honest manner.
Let A denote the study area, R a region within A, and y = (y1, y2) coordi-
nates of a location in A. Generation of the disease cases can be formalized
by considering an underlying point process described by a counting measure
N on A, i.e. N(R) denotes the number of disease cases in R. Finally, let

λ(y) = lim
‖∆ y‖→0

E
{
N(∆y)

}

‖∆y‖ ,

where ∆y is an infinitesimal region around y and ‖∆y‖ its area, be the
intensity of the point process. Different approaches have been suggested in
the literature to express λ(y) of which one uses an expression

λ(y) = ̺ g(y) f(y; θ), (11.1)

where ̺ denotes an overall region-wide rate, g(y) a known background func-
tion representing the reference population and f(y; θ) represents a function
of spatial location and possibly other parameters and associated covariates as
well (see Lawson et al., 1999). However, there exists no gold standard for the
expression of f(y; θ). The main requirement for f(y; θ) is, however, that it
varies smoothly across A.

To model smoothly the variation of the intensity λ(y) across the region of
interest A, a penalized mixture could be used to express f(y; θ) as part of
expression (11.1) as

f(y; θ) = 1 +

K1∑

k1=−K1

K2∑

k2=−K2

wk1,k2ϕk1(y1)ϕk2(y2), (11.2)

where the weights are, in contrast to the approaches used in this thesis, not
constrained.

Further, it is here of interest to develop efficient procedures (a) to test a null
hypothesis of w−K1,−K2 = · · · = wK1,K2 = 0, corresponding to a constant
ratio λ(y)/g(y) which is known as a standardized mortality rate, and (b) to
develop a general procedure for model selection.
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Further, to allow for the dependence of the intensity λ(y) on other (region-
specific) covariates x(y), we would like to explore a generalization of the
model (11.2) of the form

f(y; θ, β) = h
{
x(y), β

}
+

K1∑

k1=1

K2∑

k2=1

wk1,k2ϕk1(y1)ϕk2(y2),

where h is an unknown (nonlinear) function and β a vector of unknown
regression parameters.
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Appendix A
Technical details for the Maximum
Likelihood Penalized AFT Model

This appendix provides the technical details for the practical computation of
the penalized maximum-likelihood estimate for the AFT model of Chapter 7.
Namely, we give more details concerning the optimization algorithm, provide
the formulas for computation of the first and second derivatives of the penal-
ized log-likelihood needed to implement this algorithm and give the proof of
Proposition 7.1.

Notation introduced in Chapter 7 will be used throughout this appendix.
Additionally, the following notation is employed.

eLi = τ−1
i (yL

i − α− β′xi), eUi = τ−1
i (yU

i − α− β′xi),

ẽLi,j = σ−1(eLi − µj), ẽUi,j = σ−1(eUi − µj),

ϕL
i,j = ϕ(ẽLi,j), ϕU

i,j = ϕ(ẽUi,j),

ϕ̄L
i,j = ẽLi,jϕ(ẽLi,j), ϕ̄U

i,j = ẽUi,jϕ(ẽUi,j),

ϕ̆L
i,j =

{(
ẽLi,j

)2
− 1

}
ϕ(ẽLi,j), ϕ̆U

i,j =

{(
ẽUi,j

)2
− 1

}
ϕ(ẽUi,j),

ΦL
i,j = Φ(ẽLi,j) ΦU

i,j = Φ(ẽUi,j),

i = 1, . . . , N, j = −K, . . . ,K.

223
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ϕL
i = (ϕL

i,−K , . . . , ϕ
L
i,K)′, ϕU

i = (ϕU
i,−K , . . . , ϕ

U
i,K)′,

ϕ̄L
i = (ϕ̄L

i,−K , . . . , ϕ̄
L
i,K)′, ϕ̄U

i = (ϕ̄U
i,−K , . . . , ϕ̄

U
i,K)′,

ϕ̆L
i = (ϕ̆L

i,−K , . . . , ϕ̆
L
i,K)′, ϕ̆U

i = (ϕ̆U
i,−K , . . . , ϕ̆

U
i,K)′,

ΦL
i = (Φ̄L

i,−K, . . . , Φ̄
L
i,K)′, ΦU

i = (Φ̄U
i,−K, . . . , Φ̄

U
i,K)′,

i = 1, . . . , N.

We omit the superscripts ‘L’ and ‘U’ in the case of exactly observed event
times (δi = 1) resulting in yL

i = yU
i = yi. Finally, in all formulas, we omit

the Jacobian term (t−1
i for exactly observed event times with tLi = tUi = ti)

resulting from the logarithmic transformation of the event times in the log-
likelihood.

A.1 Optimization algorithm

To compute the penalized maximum-likelihood estimate we firstly maximize
the penalized log-likelihood (7.7) with respect to θ̃ = (α, β′, γ′,a′−0)

′ un-
der the constraints (7.4) and upon the convergence we compute the second
derivative matrix of ℓP with respect to θ = (α, β′, γ′,d′)′ to get the variance
estimates.

Constrained optimization is conducted using the sequential quadratic pro-
gramming (SQP) algorithm, see Han (1977); Fletcher (1987, Section 12.4).
The idea of this algorithm is to iteratively maximize slightly modified quadratic
approximation of the objective function subject to the linear approximation
of the constraints.

Let

c1(θ̃) =
K∑

j=−K

wjµj , c2(θ̃) = 1 − σ2
0 −

K∑

j=−K

wjµ
2
j (A.1)

be the constraint equations resulting from (7.4), and let

L(θ̃, ξ1, ξ2) = ℓP (θ̃) + ξ1c1(θ̃) + ξ2c2(θ̃)

be the Lagrange function with the Lagrange multipliers ξ1 and ξ2 corre-
sponding to the maximization problem max

θ̃
ℓP (θ̃) subject to c1(θ̃) = 0 and

c2(θ̃) = 0.

Let QP(θ̃, H) be a quadratic programming problem

max
δ

{
δ′
∂ℓP

∂θ̃

(
θ̃
)

+ 0.5 δ′ H δ
}

(A.2)
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subject to

c1(θ̃) + δ′
∂c1

∂θ̃

(
θ̃
)

= 0, c2(θ̃) + δ′
∂c2

∂θ̃

(
θ̃
)

= 0, (A.3)

where

H = H(θ̃, ξ1, ξ2) =
∂2L
∂θ̃∂θ̃

′

(
θ̃, ξ1, ξ2

)
. (A.4)

Note that the objective function in (A.2) is the second order Taylor approxi-
mation of ℓP (θ̃) around some fixed point θ̃0 with δ = θ̃−θ̃0, omitted constant
term and the matrix of second derivatives ∂2ℓP/∂θ̃∂θ

′ replaced by the θ̃-θ̃
block of the second derivative matrix of the Lagrange function L.

The SQP algorithm proceeds in the following steps

Step 0. Give the initial estimate θ̃
(0)

and the initial guesses ξ
(0)
1 , ξ

(0)
2 for the

Lagrange multipliers. Set H
(0) = H

(
θ̃

(0)
, ξ

(0)
1 , ξ

(0)
2

)
.

In the sth iteration:

Step 1. Find the point δ(s) which solves the quadratic program QP(θ̃
(s)
, H

(s));

Step 2. Set

θ̃
(s+1)

= θ̃
(s)

+ δ(s).

If θ̃
(s+1)

does not lead to increase of ℓP use step-halving procedure;

Step 3. Set ξ
(s+1)
1 and ξ

(s+1)
2 to the optimal Lagrangian multipliers of the

quadratic program QP(θ̃
(s)
, H

(s));

Step 4. Check the convergence, if it is not reached go to Step 1.

A.2 Individual log-likelihood contributions

ℓi(θ̃) =






log(1 −w′ΦL
i ), δi = 0,

− log(τi) + log(w′ϕi), δi = 1,

log(w′ΦU
i ), δi = 2,

log
{
w′(ΦU

i − ΦL
i )
}
, δi = 3,

i = 1, . . . ,N.



226 APPENDIX A. DETAILS FOR THE ML PENALIZED AFT

A.3 First derivatives of the log-likelihood

A.3.1 With respect to the regression parameters and the
intercept

∂ℓ

∂α
= (τiσ0)

−1w′
( N∑

i=1

dbi

)
,

∂ℓ

∂βl
= (τiσ0)

−1w′
( N∑

i=1

xi,l dbi

)
, l = 1, . . . ,m,

where dbi is a vector of length 2K + 1 of the form

dbi =






(1 −w′ΦL
i )−1ϕL

i , δi = 0,

(w′ϕi)
−1 ϕ̄i, δi = 1,

−(w′ΦU
i )−1ϕU

i , δi = 2,{
w′(ΦU

i −ΦL
i )
}−1

(ϕL
i −ϕU

i ), δi = 3,

i = 1, . . . ,N.

A.3.2 With respect to the log-scale and the scale-regression
parameters

Firstly, we consider the case when the scale parameter τ does not depend on
covariates, i.e. log(τ) = γ1.

∂ℓ

∂γ1
= −

N∑

i=1

I[δi = 1] + σ−1
0 w′

( N∑

i=1

dli

)
.

Secondly, we consider the case when log(τi) = γ ′zi, where zi = (zi,1, . . . , zi,ms)
′.

Then

∂ℓ

∂γl
= −

N∑

i=1

I[δi = 1] zi,l + σ−1
0 w′

( N∑

i=1

zi,l dli

)
, l = 1, . . . ,ms.

In both formulas, dli is a vector of length 2K + 1 of the form

dli =






{
w′(1− ΦL

i )
}−1

eLi ϕ
L
i , δi = 0,

(w′ϕi)
−1 ei ϕ̄i, δi = 1,

−(w′ΦU
i )−1 eUi ϕ

U
i , δi = 2,{

w′(ΦU
i − ΦL

i )
}−1

(eLi ϕ
L
i − eUi ϕ

U
i ), δi = 3,

i = 1, . . . ,N.
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A.3.3 With respect to the transformed mixture weights

Let a−0 be the vector of transformed mixture weights except the baseline
coefficient which is fixed to zero (without loss of generality a0 = 0). Then

∂ℓ

∂a−0
=

∂w

∂a−0

N∑

i=1

dai,

where dai is a vector of length 2K + 1 of the form

dai =






{
w′(1− ΦL

i )
}−1

(1 − ΦL
i ), δi = 0,

(w′ϕi)
−1ϕi, δi = 1,

(w′ΦU
i )−1 ΦU

i , δi = 2,{
w′(ΦU

i − ΦL
i )
}−1

(ΦU
i − ΦL

i ), δi = 3,

i = 1, . . . ,N,

and ∂w/∂a−0 is a 2K × (2K + 1) matrix whose (j, k)th element equals
∂wk/∂aj , j = −K, . . . ,−1, 1, . . . ,K, k = −K, . . . ,K. Namely

∂wj

∂aj
= wj (1 − wj), j = −K, . . . ,−1, 1, . . . ,K,

∂wk

∂aj
= −wj wk, j = −K, . . . ,−1, 1, . . . ,K, k = −K, . . . ,K, j 6= k.

A.4 Second derivatives of the log-likelihood

Let β̃ be the vector of regression parameters extended by the intercept, i.e.
β̃ = (α, β′)′ and x̃i, i = 1, . . . ,N be the covariate vectors extended by the
intercept term, i.e. x̃i = (1, x′

i)
′.

A.4.1 With respect to the extended regression parameters

∂2ℓ

∂β̃∂β̃
′ =

N∑

i=1

(ddbbi,1 − ddbb2i,2) x̃ix̃
′
i,
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where ddbbi,1 and ddbbi,2 are scalars of the following form

ddbbi,1 =






(τiσ0)
−2 w′ϕ̄L

i

w′(1 − ΦL
i )
, δi = 0,

(τiσ0)
−2 w

′ϕ̆i

w′ϕi
, δi = 1,

−(τiσ0)
−2 w

′ϕ̄U
i

w′ΦU
i

, δi = 2,

(τiσ0)
−2 w

′(ϕ̄L
i − ϕ̄U

i )

w′(ΦU
i − ΦL

i )
, δi = 3,

i = 1, . . . ,N,

ddbbi,2 =






(τiσ0)
−1 w′ϕL

i

w′(1 − ΦL
i )
, δi = 0,

(τiσ0)
−1w

′ϕ̄i

w′ϕi
, δi = 1,

−(τiσ0)
−1w

′ϕU
i

w′ΦU
i

, δi = 2,

(τiσ0)
−1w

′(ϕL
i −ϕU

i )

w′(ΦU
i − ΦL

i )
, δi = 3,

i = 1, . . . ,N.

A.4.2 Mixed with respect to the extended regression pa-
rameters and the log-scale or the scale-regression
parameters

In the case when the scale parameter does not depend on covariates we have

∂2ℓ

∂β̃∂γ1

=

N∑

i=1

{
ddbli,1 − ddbbi,2(1 + ddbli,2)

}
x̃i.

In the case of log(τi) = γ′zi we have

∂2ℓ

∂β̃∂γ ′
=

N∑

i=1

{
ddbli,1 − ddbbi,2(1 + ddbli,2)

}
x̃iz

′
i.
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In both formulas, ddbbi,2 is given in Section A.4.1, ddbli,1 and ddbli,2 are
scalars of the form

ddbli,1 =






eLi
τiσ

2
0
· w′ϕ̄L

i

w′(1 −ΦL
i )
, δi = 0,

ei
τiσ

2
0
· w

′ϕ̆i

w′ϕi
, δi = 1,

− eUi
τiσ

2
0
· w

′ϕ̄U
i

w′ΦU
i

, δi = 2,

1
τiσ

2
0
· w

′(eLi ϕ̄
L
i − eUi ϕ̄

U
i )

w′(ΦU
i − ΦL

i )
, δi = 3,

i = 1, . . . ,N,

ddbli,2 =






eLi
σ0

· w′ϕL
i

w′(1 − ΦL
i )

δi = 0,

ei
σ0

· w
′ϕ̄i

w′ϕi
δi = 1,

−e
U
i
σ0

· w
′ϕU

i

w′ΦU
i

δi = 2,

1
σ0

· w
′(eLi ϕ

L
i − eUi ϕ

U
i )

w′(ΦU
i − ΦL

i )
δi = 3,

i = 1, . . . ,N.

A.4.3 Mixed with respect to the extended regression pa-
rameters and the transformed mixture weights

∂2ℓ

∂β̃∂a′−0

=

[ N∑

i=1

{
ddbai − (τiσ0)

−1 (w′dbi) x̃i da
′
i

}]( ∂w

∂a−0

)′
,

where ddbai is a (m+ 1) × (2K + 1) matrix of the form

ddbai =






{
τiσ0w

′(1 − ΦL
i )
}−1

x̃iϕ
L
i
′
, δi = 0,

(τiσ0w
′ϕi)

−1 x̃iϕ̄i
′, δi = 1,

−(τiσ0w
′ΦU

i )−1 x̃iϕ
U
i
′
, δi = 2,{

τiσ0w
′(ΦU

i − ΦL
i )
}−1

x̃i(ϕ
L
i −ϕU

i )′, δi = 3,

i = 1, . . . ,N.

Further, dbi is a vector of length 2K + 1 given in Section A.3.1. Finally, dai

and ∂w/∂a−0 are a vector of length 2K + 1 and a 2K × (2K + 1) matrix,
respectively, given in Section A.3.3.
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A.4.4 With respect to the log-scale or the scale-regression
parameters

In the case when the scale parameter does not depend on covariates we have

∂2ℓ

∂γ2
1

=

N∑

i=1

{
ddlli − ddbli,2(1 + ddbli,2)

}
.

In the case of log(τi) = γ′zi we have

∂2ℓ

∂γ∂γ ′
=

N∑

i=1

{
ddlli − ddbli,2(1 + ddbli,2)

}
ziz

′
i.

In both formulas, ddbli,2 is a scalar given in Section A.4.2 and ddlli is a scalar
given by the formula

ddlli =






(
eLi
σ0

)2
· w′ϕ̄L

i

w′(1− ΦL
i )
, δi = 0,

(
ei
σ0

)2
· w

′ϕ̆i

w′ϕi
, δi = 1,

−
(
eUi
σ0

)2
· w

′ϕ̄U
i

w′ΦU
i

, δi = 2,

σ−2
0

w′
{

(eLi )2ϕ̄L
i − (eUi )2ϕ̄U

i

}

w′(ΦU
i − ΦL

i )
, δi = 3,

i = 1, . . . ,N.

A.4.5 Mixed with respect to the log-scale or the scale-
regression parameters and the transformed mixture
weights

In the case when the scale parameter does not depend on covariates we have

∂2ℓ

∂γ1∂a
′
−0

=

[ N∑

i=1

{
ddlai − σ−1

0 (w′dli) da
′
i

}]( ∂w

∂a−0

)′
.

In the case of log(τi) = γ′zi we have

∂2ℓ

∂γ∂a′−0

= zi

[ N∑

i=1

{
ddlai − σ−1

0 (w′dli) da
′
i

}]( ∂w

∂a−0

)′
.
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In both formulas, dai and ∂w/∂a−0 are a vector of length 2K+1 and a 2K×
(2K+1) matrix, respectively, given in Section A.3.3, and ddlai is a row vector
of length 2K + 1 of the form

ddlai =






σ−1
0

eLi
w′(1 − ΦL

i )
ϕL

i

′
, δi = 0,

σ−1
0

ei
w′ϕi

ϕ̄′
i, δi = 1,

−σ−1
0

eUi
w′ΦU

i

ϕU
i

′
, δi = 2,

{
σ0w

′
(
ΦU

i − ΦL
i

)}−1 (
eLi ϕ

L
i − eUi ϕ

U
i

)′
, δi = 3,

i = 1, . . . , N.

A.4.6 With respect to the transformed mixture weights

∂2ℓ

∂a−0∂a
′
−0

=
N∑

i=1

ddaai − ∂w

∂a−0

( N∑

i=1

daida
′
i

)(
∂w

∂a−0

)′

,

where dai and ∂w/∂a−0 are a vector of length 2K + 1 and a 2K × (2K + 1)
matrix, respectively, given in Section A.3.3. Further, ddaai is a 2K × 2K
matrix given by

ddaai =






{
w′(1 − ΦL

i )
}−1∑K

j=−K(1 − ΦL
i,j)

∂2wj

∂a−0∂a
′
−0
, δi = 0,

(w′ϕi)
−1
∑K

j=−K ϕi,j
∂2wj

∂a−0∂a
′
−0
, δi = 1,

(w′ΦU
i )−1

∑K
j=−K ΦU

i,j

∂2wj

∂a−0∂a
′
−0
, δi = 2,

{
w′(ΦU

i − ΦL
i )
}−1∑K

j=−K(ΦU
i,j − ΦL

i,j)
∂2wj

∂a−0∂a
′
−0
, δi = 3,

i = 1, . . . , N,
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where ∂2wj/∂a−0∂a
′
−0, j = −K, . . . ,K is a 2K × 2K matrix with the ele-

ments ddwaaj
k,l, k, l = −K, . . . ,−1, 1, . . . ,K given by

ddwaaj
j,j = wj (1 − wj) (1 − 2wj), j 6= 0,

ddwaaj
k,k = −wj wk (1 − 2wk), k 6= j,

ddwaaj
j,k = −wj wk (1 − 2wj), j 6= 0, k 6= j,

ddwaaj
k,j = −wj wk (1 − 2wj), j 6= 0, k 6= j,

ddwaaj
k,l = 2 wj wk wl, k 6= j, l 6= j, k 6= l.

A.5 Derivatives of the penalty term

The penalty term depends only on the a−0 part of θ̃ so we have to provide
only the derivatives with respect to this parameter sub-vector.

∂q

∂a−0
= λD

′
Da with removed 0th element,

∂2q

∂a−0∂a′−0

= λD
′
D with removed 0th row and 0th column.

A.6 Derivatives of the constraints

To be able to compute the H matrix (A.4) derivatives of the constraint func-
tions (A.1) are needed. Since the constraints (A.1) depend only on the a−0

part of θ̃ we have to provide only the derivatives with respect to this param-
eter sub-vector. The first derivatives are computed by

∂c1
∂a−0

=
∂w

∂a−0
µ,

∂c2
∂a−0

=
∂w

∂a−0
µ2,

where µ = (µ−K , . . . , µK)′, µ2 = (µ2
−K , . . . , µ

2
K)′, and ∂w/∂a−0 is a 2K ×

(2K + 1) matrix given in Section A.3.3.

The second derivatives are given by

∂2c1
∂a−0∂a′−0

=

K∑

j=−K

µj
∂2wj

∂a−0∂a′−0

,
∂2c2

∂a−0∂a′−0

=

K∑

j=−K

µ2
j

∂2wj

∂a−0∂a′−0

,
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where ∂2wj/∂a−0∂a
′
−0, j = −K, . . . ,K is a 2K × 2K matrix introduced in

Section A.4.6.

A.7 Proof of Proposition 7.1

It is easily seen that the unconstrained minimizer of
∑K2

j=−K2+3

{
∆3aj

}2
is

not unique and is given by an arbitrary quadratic function of knots, i.e.

aK
j = bK0 − bK2 (µK

j − bK1 )2, j = −K2, . . . ,K2.

Under the constraints (7.9), the minimizer becomes unique with bK1 = 0,

bK0 = − log
[∑K2

j=−K2 exp
{
−bK2 (µK

j )2
}]

and bK2 being a solution to CK(b) = 0,

where

CK(b) =

∑K2

j=−K2(µK
j )2 exp

{
−b (µK

j )2
}

∑K2

j=−K2 exp
{
−b (µK

j )2
} − (1 − σ2

0).

The function CK(b) has the following properties:

• It is continuous on [0, ∞);

• For all b ∈ [0, ∞)

d

db
CK(b) =

[
E
{
(µK)2

∣∣bK2 = b
}]2

− E
{
(µK)4

∣∣bK2 = b
}
,

and from the Hölder’s inequality (see, e.g., Billingsley, 1995, p. 80)
d
db
CK(b) < 0. I.e. CK(b) is decreasing on [0, ∞);

• CK(0) = (K2 + 1)/3 − (1 − σ2
0) > 0 for all K ≥ 2;

• limb→∞CK(b) = −(1 − σ2
0) < 0.

So that for all K ≥ 2 there exists exactly obe root bK2 ∈ (0∞) of the equation
CK(b) = 0.

Let function C(b) be defined as

C(b) =

∫∞
−∞ s2 exp

(
−b s2

)
ds

∫∞
−∞ exp

(
−b s2

)
ds

− (1 − σ2
0) = (2b)−1 − (1 − σ2

0).

The equation C(b) = 0 has a unique solution b2 =
{
2(1− σ2

0)
}−1 ∈ (0.5, ∞).

It follows from the property of the integral that for all b ∈ (0, ∞)

lim
K→∞

CK(b) = C(b)
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and consequently, using the properties of CK(b) also

lim
K→∞

bK2 = b2.

Let FK(µ) be a cumulative distribution function of µK under bK2 , i.e.

FK(µ) =

∑min(Kµ, K2)
j=−K2 exp

{
−bK2 (µK

j )2
}

∑K2

j=−K2 exp
{
−bK2 (µK

j )2
}

and Φ(µ | 0, 1 − σ2
0) be a cumulative distribution function of the normal dis-

tribution N (0, 1 − σ2
0), i.e.

Φ(µ | 0, 1 − σ2
0) =

∫ µ

−∞ exp
(
−b2 s2

)
ds

∫∞
−∞ exp

(
−b2 s2

)
ds
.

It can be now shown that for all µ ∈ R

lim
K→∞

FK(µ) = Φ(µ | 0, 1 − σ2
0),

i.e. the random variable µK under bK2 converges in distribution to a N (0, 1−
σ2

0) random variable.

Finally, for all y ∈ R

gK(y) =

∫ ∞

−∞
ϕ(y |µ, σ2

0) dFK(µ)

and

ϕ(y) =

∫ ∞

−∞
ϕ(y |µ, σ2

0) dΦ(µ | 0, 1 − σ2
0).

The assertion of the proposition now follows from the fact that function
ϕ(y |µ, σ2

0) is for all y ∈ R bounded and continuous function of µ.



Appendix B
Simulation results

B.1 Simulation for the maximum likelihood penal-
ized AFT model

Here we present selected results of the simulation study introduced in Sec-
tion 7.5. Tables B.1 – B.6 show the results for the regression parameters.
In the first third of the tables, results based on the penalized AFT model
are shown. The second third of the tables shows the results based on the
parametric AFT model estimated using the maximum-likelihood method as-
suming a correct (true) error distribution. Finally, the last third of the tables
shows the results obtained by the parametric AFT model estimated using
the maximum-likelihood method while assuming (in most case incorrectly)
normal error distribution.

Figures B.1 – B.3 show the fitted error distributions. For comparison pur-
poses, we plot also the true error distribution.
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Table B.1: Results for the regression parameter β1 = −0.800 related to the
binary covariate. True error distribution: normal. Mean, standard deviation
and MSE (×10−4) are calculated over the simulations.

Assumed Error Distribution

Smoothed True Normal

MSE MSE MSE

N β̂ (SD) (×10−4) β̂ (SD) (×10−4) β̂ (SD) (×10−4)

light RC

600 −0.792 (0.118) 138.93 −0.792 (0.114) 130.57 −0.792 (0.114) 130.57

300 −0.812 (0.175) 307.92 −0.812 (0.168) 282.47 −0.812 (0.168) 282.47

100 −0.787 (0.337) 1140.71 −0.778 (0.316) 1005.28 −0.778 (0.316) 1005.28

50 −0.772 (0.478) 2290.06 −0.762 (0.401) 1623.70 −0.762 (0.401) 1623.70

light R+IC

600 −0.794 (0.119) 142.59 −0.794 (0.117) 136.20 −0.794 (0.117) 136.20

300 −0.817 (0.176) 311.80 −0.812 (0.172) 295.97 −0.812 (0.172) 295.97

100 −0.775 (0.351) 1235.08 −0.778 (0.323) 1045.28 −0.778 (0.323) 1045.28

50 −0.792 (0.513) 2635.81 −0.769 (0.424) 1806.80 −0.769 (0.424) 1806.80

heavy RC

600 −0.780 (0.140) 200.25 −0.782 (0.135) 186.94 −0.782 (0.135) 186.94

300 −0.798 (0.198) 391.34 −0.799 (0.198) 391.21 −0.799 (0.198) 391.21

100 −0.789 (0.491) 2412.45 −0.793 (0.413) 1708.48 −0.793 (0.413) 1708.48

50 −0.629 (0.622) 4156.99 −0.652 (0.490) 2616.76 −0.652 (0.490) 2616.76

heavy R+IC

600 −0.787 (0.150) 2280.00 −0.786 (0.141) 201.63 −0.786 (0.141) 201.63

300 −0.811 (0.212) 449.06 −0.800 (0.206) 425.72 −0.800 (0.206) 425.72

100 −0.837 (0.487) 2387.49 −0.799 (0.425) 1809.93 −0.799 (0.425) 1809.93

50 −0.680 (0.717) 5278.77 −0.664 (0.514) 2826.40 −0.664 (0.514) 2826.40
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Table B.2: Results for the regression parameter β1 = −0.800 related to the
binary covariate. True error distribution: extreme value. Mean, standard
deviation and MSE (×10−4) are calculated over the simulations.

Assumed Error Distribution

Smoothed True Normal

MSE MSE MSE

N β̂ (SD) (×10−4) β̂ (SD) (×10−4) β̂ (SD) (×10−4)

light RC

600 −0.791 (0.112) 126.39 −0.786 (0.104) 110.56 −0.819 (0.136) 187.24

300 −0.827 (0.151) 235.96 −0.824 (0.151) 233.70 −0.864 (0.188) 393.02

100 −0.796 (0.300) 901.70 −0.782 (0.267) 714.10 −0.842 (0.349) 1234.08

50 −0.888 (0.467) 2257.10 −0.883 (0.323) 1112.5 −0.912 (0.465) 2290.56

light R+IC

600 −0.795 (0.109) 118.64 −0.786 (0.104) 109.58 −0.793 (0.123) 152.84

300 −0.826 (0.156) 250.12 −0.824 (0.151) 232.65 −0.833 (0.173) 309.89

100 −0.796 (0.299) 896.48 −0.782 (0.266) 712.12 −0.808 (0.320) 1024.61

50 −0.869 (0.428) 1883.02 −0.884 (0.324) 1117.59 −0.885 (0.430) 1919.72

heavy RC

600 −0.788 (0.149) 222.96 −0.785 (0.140) 198.32 −0.869 (0.173) 348.10

300 −0.851 (0.218) 499.81 −0.853 (0.200) 427.42 −0.935 (0.249) 802.15

100 −0.813 (0.459) 2104.51 −0.777 (0.360) 1301.67 −0.877 (0.460) 2176.66

50 −0.891 (0.732) 5437.10 −0.921 (0.546) 3132.58 −0.973 (0.648) 4493.43

heavy R+IC

600 −0.800 (0.156) 242.35 −0.786 (0.138) 191.75 −0.819 (0.152) 233.59

300 −0.855 (0.229) 552.22 −0.856 (0.203) 442.33 −0.880 (0.229) 589.85

100 −0.853 (0.469) 2225.78 −0.786 (0.368) 1357.85 −0.833 (0.420) 1778.50

50 −0.872 (0.684) 4725.93 −0.936 (0.563) 3360.86 −0.944 (0.620) 4048.72
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Table B.3: Results for the regression parameter β1 = −0.800 related to the
binary covariate. True error distribution: normal mixture. Mean, standard
deviation and MSE (×10−4) are calculated over the simulations.

Assumed Error Distribution

Smoothed True Normal

MSE MSE MSE

N β̂ (SD) (×10−4) β̂ (SD) (×10−4) β̂ (SD) (×10−4)

light RC

600 −0.817 (0.154) 239.76 −0.813 (0.142) 203.08 −0.845 (0.173) 319.10

300 −0.817 (0.201) 408.04 −0.814 (0.187) 350.64 −0.850 (0.262) 713.18

100 −0.829 (0.386) 1498.05 −0.809 (0.319) 1019.39 −0.814 (0.438) 1917.94

50 −0.845 (0.624) 3912.84 −0.819 (0.502) 2526.53 −0.836 (0.628) 3963.00

light R+IC

600 −0.824 (0.159) 258.53 −0.819 (0.150) 229.01 −0.877 (0.184) 399.17

300 −0.834 (0.226) 523.20 −0.819 (0.201) 408.76 −0.880 (0.283) 865.88

100 −0.803 (0.411) 1686.57 −0.803 (0.323) 1043.16 −0.833 (0.466) 2184.66

50 −0.871 (0.688) 4781.04 −0.807 (0.567) 3209.78 −0.867 (0.692) 4839.10

heavy RC

600 −0.80 (0.213) 451.77 −0.797 (0.187) 349.75 −0.743 (0.194) 407.02

300 −0.752 (0.318) 1036.14 −0.763 (0.285) 827.02 −0.715 (0.310) 1033.05

100 −0.781 (0.558) 3114.28 −0.780 (0.485) 2357.78 −0.716 (0.520) 2771.73

50 −0.723 (0.915) 8426.26 −0.810 (0.746) 5568.92 −0.728 (0.788) 6257.40

heavy R+IC

600 −0.826 (0.263) 700.18 −0.808 (0.223) 497.55 −0.821 (0.230) 531.61

300 −0.789 (0.376) 1412.76 −0.759 (0.342) 1189.15 −0.782 (0.366) 1345.87

100 −0.752 (0.640) 4118.05 −0.776 (0.548) 3012.35 −0.779 (0.609) 3711.43

50 −0.846 (1.183) 14012.96 −0.868 (0.969) 9440.90 −0.851 (0.981) 9655.56
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Table B.4: Results for the regression parameter β2 = 0.400 related to the
continuous covariate. True error distribution: normal. Mean, standard
deviation and MSE (×10−4) are calculated over the simulations.

Assumed Error Distribution

Smoothed True Normal

MSE MSE MSE

N β̂ (SD) (×10−4) β̂ (SD) (×10−4) β̂ (SD) (×10−4)

light RC

600 0.406 (0.046) 21.58 0.406 (0.046) 21.20 0.406 (0.046) 21.20

300 0.399 (0.064) 41.34 0.397 (0.059) 34.48 0.397 (0.059) 34.48

100 0.380 (0.134) 182.30 0.388 (0.121) 147.19 0.388 (0.121) 147.19

50 0.398 (0.202) 407.62 0.391 (0.176) 311.05 0.391 (0.176) 311.05

light R+IC

600 0.407 (0.049) 24.60 0.406 (0.048) 23.10 0.406 (0.048) 23.10

300 0.397 (0.063) 39.78 0.397 (0.062) 38.69 0.397 (0.062) 38.69

100 0.389 (0.133) 178.22 0.391 (0.121) 147.62 0.391 (0.121) 147.62

50 0.402 (0.215) 461.64 0.398 (0.184) 338.59 0.398 (0.184) 338.59

heavy RC

600 0.404 (0.051) 26.57 0.405 (0.050) 25.05 0.405 (0.050) 25.05

300 0.398 (0.070) 48.90 0.402 (0.068) 46.37 0.402 (0.068) 46.37

100 0.385 (0.173) 299.81 0.392 (0.140) 197.65 0.392 (0.140) 197.65

50 0.400 (0.264) 697.82 0.407 (0.214) 460.12 0.407 (0.214) 460.12

heavy R+IC

600 0.408 (0.056) 31.72 0.406 (0.054) 29.01 0.406 (0.054) 29.01

300 0.403 (0.087) 75.08 0.403 (0.074) 54.82 0.403 (0.074) 54.82

100 0.404 (0.166) 275.28 0.399 (0.142) 200.59 0.399 (0.142) 200.59

50 0.438 (0.314) 997.94 0.424 (0.244) 600.63 0.424 (0.244) 600.63
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Table B.5: Results for the regression parameter β2 = 0.400 related to the con-
tinuous covariate. True error distribution: extreme value. Mean, standard
deviation and MSE (×10−4) are calculated over the simulations.

Assumed Error Distribution

Smoothed True Normal

MSE MSE MSE

N β̂ (SD) (×10−4) β̂ (SD) (×10−4) β̂ (SD) (×10−4)

light RC

600 0.402 (0.040) 15.96 0.400 (0.039) 15.33 0.420 (0.048) 27.40

300 0.415 (0.061) 39.21 0.413 (0.057) 33.84 0.432 (0.076) 68.03

100 0.414 (0.101) 104.29 0.408 (0.093) 86.87 0.415 (0.113) 129.37

50 0.428 (0.188) 361.29 0.436 (0.158) 260.77 0.438 (0.186) 359.47

light R+IC

600 0.403 (0.041) 17.17 0.400 (0.039) 15.53 0.404 (0.045) 20.06

300 0.416 (0.059) 37.93 0.412 (0.056) 32.98 0.417 (0.067) 48.18

100 0.416 (0.101) 103.67 0.409 (0.093) 87.23 0.410 (0.105) 111.89

50 0.433 (0.182) 343.47 0.436 (0.160) 268.39 0.429 (0.174) 311.89

heavy RC

600 0.407 (0.061) 38.05 0.403 (0.058) 34.09 0.453 (0.073) 80.63

300 0.427 (0.086) 82.19 0.420 (0.077) 63.28 0.463 (0.098) 135.13

100 0.389 (0.155) 241.04 0.398 (0.138) 190.95 0.431 (0.155) 248.61

50 0.454 (0.294) 895.33 0.441 (0.229) 540.61 0.464 (0.256) 698.09

heavy R+IC

600 0.413 (0.061) 38.47 0.403 (0.059) 34.94 0.426 (0.066) 50.42

300 0.432 (0.084) 80.49 0.420 (0.077) 63.71 0.440 (0.087) 92.29

100 0.419 (0.164) 271.55 0.405 (0.143) 203.32 0.425 (0.151) 234.82

50 0.445 (0.268) 736.90 0.452 (0.241) 607.49 0.461 (0.250) 662.22
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Table B.6: Results for the regression parameter β2 = 0.400 related to the
continuous covariate. True error distribution: normal mixture. Mean,
standard deviation and MSE (×10−4) are calculated over the simulations.

Assumed Error Distribution

Smoothed True Normal

MSE MSE MSE

N β̂ (SD) (×10−4) β̂ (SD) (×10−4) β̂ (SD) (×10−4)

light RC

600 0.405 (0.051) 26.07 0.403 (0.050) 24.79 0.412 (0.068) 48.18

300 0.401 (0.075) 56.31 0.400 (0.072) 51.28 0.418 (0.090) 84.56

100 0.386 (0.154) 239.62 0.386 (0.125) 158.23 0.397 (0.176) 311.23

50 0.361 (0.274) 763.56 0.358 (0.250) 640.84 0.369 (0.282) 806.32

light R+IC

600 0.408 (0.059) 35.94 0.407 (0.056) 31.74 0.424 (0.076) 62.83

300 0.408 (0.079) 62.88 0.401 (0.071) 50.22 0.432 (0.098) 105.56

100 0.403 (0.183) 336.76 0.397 (0.152) 230.94 0.417 (0.196) 386.41

50 0.376 (0.313) 983.42 0.391 (0.306) 935.42 0.390 (0.316) 997.41

heavy RC

600 0.400 (0.078) 60.87 0.396 (0.069) 48.17 0.368 (0.081) 74.92

300 0.392 (0.110) 121.55 0.404 (0.092) 85.67 0.373 (0.100) 106.46

100 0.367 (0.201) 414.59 0.380 (0.172) 301.03 0.363 (0.206) 437.47

50 0.315 (0.409) 1747.62 0.332 (0.347) 1253.25 0.327 (0.331) 1148.82

heavy R+IC

600 0.410 (0.091) 84.33 0.402 (0.084) 69.92 0.401 (0.096) 92.04

300 0.418 (0.107) 117.03 0.408 (0.095) 90.05 0.405 (0.113) 128.28

100 0.434 (0.302) 924.86 0.427 (0.249) 628.79 0.418 (0.267) 713.71

50 0.385 (0.479) 2296.79 0.392 (0.441) 1941.29 0.381 (0.429) 1843.27
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N = 600, light RC N = 300, light RC N = 100, light RC N = 50, light RC

N = 600, light R+IC N = 300, light R+IC N = 100, light R+IC N = 50, light R+IC

N = 600, heavy RC N = 300, heavy RC N = 100, heavy RC N = 50, heavy RC

N = 600, heavy R+IC N = 300, heavy R+IC N = 100, heavy R+IC N = 50, heavy R+IC
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Figure B.1: Results for the standardized error distribution. True error distri-
bution: normal. Solid line: average fitted density, grey lines: 95% pointwise
confidence band, dashed line: true error density.
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Figure B.2: Results for the standardized error distribution. True error distri-
bution: extreme value. Solid line: average fitted density, grey lines: 95%
pointwise confidence band, dashed line: true error density.
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Figure B.3: Results for the standardized error distribution. True error distri-
bution: normal mixture. Solid line: average fitted density, grey lines: 95%
pointwise confidence band, dashed line: true error density.
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B.2 Simulation for the Bayesian normal mixture clus-
ter-specific AFT model

In this section we give the results of the simulation study introduced in Sec-
tion 8.6. Tables B.7 and B.8 show the results for the regression parameters.
Further, Tables B.9 – B.11 give the results related to the covariance matrix D

of the random effects In the first third (or half) of the tables, results based on
the Bayesian normal mixture AFT model are shown. The second third (half)
of the tables shows the results based on Bayesian AFT model with assumed
normal error distribution and finally the last third of Tables B.7 and B.8 show
the results obtained using the parametric AFT model with assumed normal
distribution, no random effects included and estimated using the maximum
likelihood.

Figures B.4 and B.5 give the fitted standardized (in the case of Cauchy and
Student t2 distribution only centered) error distribution compared to the true
density. Figures B.6 and B.7 show the fitted hazard function for a combi-
nation of covariates zi,l = 0 and xi,l = 8.13 (median value). Always a com-
parison between the Bayesian normal mixture and the Bayesian model with
(incorrectly) specified normal error distribution is given. The same compari-
son, however with respect to the fitted survivor functions is given in Figures
B.8 and B.9.
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Table B.7: Results for the mean of the covariate random effect γ = −0.800
related to the binary covariate. Mean, standard deviation and MSE (×10−4)
are clculated over the simulations.

Estimation method

Bayesian mixture Bayesian normal ML, no random effects

MSE MSE MSE

N, ni γ̂ (SD) (×10−4) γ̂ (SD) (×10−4) γ̂ (SD) (×10−4)

True error = normal

100, 10 −0.798 (0.069) 47.01 −0.798 (0.069) 48.17 −0.798 (0.078) 60.45

50, 5 −0.813 (0.155) 240.43 −0.811 (0.149) 222.78 −0.812 (0.153) 235.67

True error = Cauchy t1

100, 10 −0.8100 (0.103) 107.16 −0.736 (0.139) 234.52 −0.738 (0.142) 238.91

50, 5 −0.766 (0.224) 512.72 −0.719 (0.255) 716.39 −0.721 (0.253) 703.97

True error = Student t2

100, 10 −0.793 (0.100) 99.91 −0.761 (0.104) 123.72 −0.7600 (0.108) 132.14

50, 5 −0.778 (0.218) 479.02 −0.759 (0.196) 401.28 −0.761 (0.200) 415.46

True error = extreme value

100, 10 −0.797 (0.069) 47.39 −0.80 (0.075) 56.62 −0.802 (0.082) 66.90

50, 5 −0.815 (0.137) 191.09 −0.811 (0.138) 192.4 −0.809 (0.142) 202.26

True error = normal mixture

100, 10 −0.804 (0.051) 26.60 −0.926 (0.144) 366.82 −0.923 (0.148) 369.41

50, 5 −0.787 (0.097) 95.70 −0.869 (0.291) 894.99 −0.863 (0.283) 840.46
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Table B.8: Results for the regression parameter β = 0.400 related to the con-
tinuous covariate. Mean, standard deviation and MSE (×10−4) are calculated
over the simulations.

Estimation method

Bayesian mixture Bayesian normal ML, no random effects

MSE MSE MSE

N, ni β̂ (SD) (×10−4) β̂ (SD) (×10−4) β̂ (SD) (×10−4)

True error = normal

100, 10 0.402 (0.027) 7.28 0.402 (0.027) 7.28 0.402 (0.030) 9.01

50, 5 0.397 (0.051) 26.31 0.397 (0.051) 25.6 0.399 (0.059) 34.67

True error = Cauchy t1

100, 10 0.392 (0.036) 13.23 0.361 (0.051) 41.84 0.357 (0.057) 50.73

50, 5 0.412 (0.071) 52.54 0.383 (0.081) 68.17 0.378 (0.109) 124.59

True error = Student t2

100, 10 0.394 (0.033) 11.51 0.379 (0.038) 19.02 0.378 (0.041) 21.62

50, 5 0.393 (0.076) 58.15 0.386 (0.069) 49.62 0.382 (0.084) 72.93

True error = extreme value

100, 10 0.404 (0.021) 4.34 0.403 (0.023) 5.41 0.402 (0.026) 6.76

50, 5 0.393 (0.042) 17.92 0.395 (0.045) 20.89 0.395 (0.051) 25.87

True error = normal mixture

100, 10 0.400 (0.019) 3.46 0.448 (0.048) 45.62 0.450 (0.052) 52.93

50, 5 0.394 (0.042) 17.65 0.432 (0.076) 68.1 0.444 (0.104) 127.26
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Table B.9: Results for the standard deviation of the random intercept
sd(bi,1) = 0.500. Mean, standard deviation and MSE (×10−4) are calculated
over the simulations.

Estimation method

Bayesian mixture Bayesian normal

N, ni
bsd(bi,1) (SD) MSE bsd(bi,1) (SD) MSE

True error = normal

100, 10 0.476 (0.069) 52.98 0.476 (0.068) 52.52

50, 5 0.321 (0.154) 559.95 0.324 (0.156) 551.48

True error = Cauchy t1

100, 10 0.381 (0.120) 284.36 0.188 (0.121) 1117.45

50, 5 0.118 (0.060) 1492.37 0.086 (0.013) 1718.19

True error = Student t2

100, 10 0.452 (0.094) 111.52 0.418 (0.106) 179.32

50, 5 0.160 (0.128) 1321.32 0.125 (0.086) 1480.14

True error = extreme value

100, 10 0.489 (0.061) 38.41 0.495 (0.069) 48.37

50, 5 0.343 (0.144) 453.41 0.305 (0.156) 625.15

True error = normal mixture

100, 10 0.493 (0.047) 22.33 0.428 (0.176) 360.99

50, 5 0.446 (0.093) 115.32 0.105 (0.048) 1583.26
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Table B.10: Results for the standard deviation of the covariate random effect
sd(bi,2) = 0.100. Mean, standard deviation and MSE (×10−4) are calculated
over the simulations.

Estimation method

Bayesian mixture Bayesian normal

N, ni
bsd(bi,2) (SD) MSE bsd(bi,2) (SD) MSE

True error = normal

100, 10 0.125 (0.040) 22.13 0.125 (0.040) 22.30

50, 5 0.152 (0.059) 61.67 0.153 (0.059) 62.53

True error = Cauchy t1

100, 10 0.156 (0.058) 64.95 0.124 (0.054) 34.43

50, 5 0.093 (0.017) 3.36 0.083 (0.008) 3.60

True error = Student t2

100, 10 0.135 (0.031) 22.03 0.142 (0.033) 28.49

50, 5 0.105 (0.039) 15.61 0.097 (0.029) 8.30

True error = extreme value

100, 10 0.109 (0.027) 8.22 0.112 (0.028) 9.16

50, 5 0.151 (0.059) 60.72 0.142 (0.052) 44.71

True error = normal mixture

100, 10 0.094 (0.029) 8.51 0.174 (0.062) 93.20

50, 5 0.139 (0.043) 33.42 0.090 (0.020) 5.24
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Table B.11: Results for the random effects correlation corr(bi,1, , bi,2) = 0.400.
Mean, standard deviation and MSE (×10−4) are calculated over the simula-
tions.

Estimation method

Bayesian mixture Bayesian normal

N, ni dcorr(bi,1, bi,2) (SD) MSE dcorr(bi,1, bi,2) (SD) MSE

True error = normal

100, 10 0.391 (0.457) 2086.96 0.395 (0.459) 2108.60

50, 5 0.293 (0.343) 1292.59 0.290 (0.343) 1299.25

True error = Cauchy t1

100, 10 0.380 (0.372) 1385.34 0.210 (0.226) 873.41

50, 5 0.061 (0.090) 1232.64 0.014 (0.032) 1502.97

True error = Student t2

100, 10 0.266 (0.434) 2066.67 0.240 (0.423) 2045.53

50, 5 0.100 (0.197) 1284.85 0.070 (0.118) 1230.40

True error = extreme value

100, 10 0.388 (0.428) 1831.69 0.244 (0.469) 2442.23

50, 5 0.327 (0.409) 1722.62 0.249 (0.352) 1466.79

True error = normal mixture

100, 10 0.376 (0.401) 1617.48 0.228 (0.415) 2019.53

50, 5 0.307 (0.433) 1958.50 0.027 (0.051) 1413.30
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Figure B.4: Results for the standardized error density, estimated using the
Bayesian mixture model. Solid line: average fitted standardized density, grey
lines: 95% pointwise confidence band, dashed line: true standardized error
density.
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Figure B.7: Results for the hazard function, estimated using the Bayesian
mixture model (left part) and the Bayesian normal model (right part). Each
row shows the results for different true error densities. Solid line: average
fitted hazard, grey lines: 95% pointwise confidence band, dashed line: true
hazard function.
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Figure B.8: Results for the survivor function, estimated using the Bayesian
mixture model (left part) and the Bayesian normal model (right part). Each
row shows the results for different true error densities. Solid line: average
fitted survivor function, grey lines: 95% pointwise confidence band, dashed
line: true survivor function.
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Figure B.9: Results for the survivor function, estimated using the Bayesian
mixture model (left part) and the Bayesian normal model (right part). Each
row shows the results for different true error densities. Solid line: average
fitted survivor function, grey lines: 95% pointwise confidence band, dashed
line: true survivor function.
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B.3 Simulation for the Bayesian penalized mixture
cluster-specific AFT model

This section presents selected results of the simulation study introduced in
Section 9.6. Tables B.12 and B.13 show the results for the regression param-
eters. Tables B.14 and B.15 give the results for the variance components of
the model.

Figures B.10 and B.11 show the fitted survivor densities for the onset part
of the model for a combination of covariates xu

i,l,1 = 0.5 (median value) and
xu

i,l,2 = 1. Figures B.12 and B.13 give the fitted survivor densities for the

event part of the model for a combination of covariates xt
i,l,1 = 0.5 (median

value) and xt
i,l,2 = 1. Corresponding fitted survivor functions are given in

Figures B.14 – B.17.
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Table B.12: Results for the regression parameters from the onset part of the
model. Mean, standard deviation and MSE (×10−4) over the simulation.

δ1 = 0.200 δ2 = −0.100

τd/τ ζ = MSE MSE

τ b/τ ε δ̂1 (SD) (×10−4) δ̂2 (SD) (×10−4)

Scenario I

(error ∼ normal mixture, random effect ∼ extreme value)

5 0.199 (0.007) 0.56 −0.101 (0.004) 0.17

3 0.201 (0.008) 0.68 −0.100 (0.005) 0.20

2 0.198 (0.011) 1.30 −0.100 (0.006) 0.37

1 0.199 (0.014) 1.84 −0.100 (0.009) 0.76

1/2 0.200 (0.018) 3.14 −0.100 (0.010) 0.92

1/3 0.201 (0.019) 3.74 −0.101 (0.010) 1.02

1/5 0.198 (0.019) 3.51 −0.100 (0.010) 0.95

Scenario II

(error ∼ extreme value, random effect ∼ normal mixture)

5 0.200 (0.010) 0.93 −0.101 (0.005) 0.30

3 0.202 (0.015) 2.38 −0.101 (0.008) 0.72

2 0.200 (0.019) 3.44 −0.099 (0.011) 1.27

1 0.196 (0.029) 8.73 −0.099 (0.019) 3.45

1/2 0.194 (0.038) 14.46 −0.097 (0.025) 6.30

1/3 0.201 (0.041) 16.73 −0.099 (0.024) 5.90

1/5 0.203 (0.043) 18.12 −0.100 (0.020) 4.12
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Table B.13: Results for the regression parameters from the event part of the
model. Mean, standard deviation and MSE (×10−4) over the simulation.

β1 = 0.300 β2 = −0.150

τd/τ ζ = MSE MSE

τ b/τ ε β̂1 (SD) (×10−4) β̂2 (SD) (×10−4)

Scenario I

(error ∼ normal mixture, random effect ∼ extreme value)

5 0.302 (0.014) 2.12 −0.149 (0.008) 0.64

3 0.301 (0.032) 9.99 −0.149 (0.021) 4.47

2 0.298 (0.056) 30.55 −0.150 (0.034) 11.75

1 0.304 (0.054) 29.04 −0.148 (0.028) 7.55

1/2 0.301 (0.043) 18.07 −0.147 (0.031) 9.66

1/3 0.311 (0.058) 34.67 −0.150 (0.035) 11.88

1/5 0.299 (0.050) 25.11 −0.151 (0.031) 9.68

Scenario II

(error ∼ extreme value, random effect ∼ normal mixture)

5 0.298 (0.031) 9.40 −0.148 (0.016) 2.74

3 0.291 (0.040) 16.44 −0.152 (0.022) 4.99

2 0.306 (0.065) 42.02 −0.146 (0.036) 13.01

1 0.299 (0.103) 105.54 −0.149 (0.057) 32.60

1/2 0.304 (0.121) 144.59 −0.151 (0.070) 48.40

1/3 0.296 (0.126) 157.36 −0.146 (0.071) 50.06

1/5 0.308 (0.112) 125.51 −0.142 (0.065) 42.10
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Table B.14: Results for the scale parameters from the onset part of the model.
Mean, standard deviation and MSE (×10−4) over the simulation.

τd τ ζ

τd/τ ζ = MSE MSE

τ b/τ ε True τd τ̂d (SD) (×10−4) True τ ζ τ̂ ζ (SD) (×10−4)

Scenario I

(error ∼ normal mixture, random effect ∼ extreme value)

5 0.310 0.341 (0.035) 21.20 0.062 0.062 (0.002) 0.04

3 0.300 0.324 (0.037) 19.13 0.100 0.100 (0.002) 0.04

2 0.283 0.283 (0.031) 9.31 0.141 0.141 (0.003) 0.08

1 0.224 0.219 (0.024) 5.85 0.224 0.223 (0.006) 0.39

1/2 0.141 0.143 (0.018) 3.24 0.283 0.283 (0.006) 0.31

1/3 0.100 0.103 (0.035) 12.23 0.300 0.301 (0.012) 1.35

1/5 0.062 0.110 (0.097) 116.93 0.310 0.325 (0.034) 13.74

Scenario II

(error ∼ extreme value, random effect ∼ normal mixture)

5 0.310 0.311 (0.009) 0.86 0.062 0.061 (0.003) 0.11

3 0.300 0.318 (0.112) 128.44 0.100 0.116 (0.099) 99.25

2 0.283 0.299 (0.141) 198.36 0.141 0.159 (0.126) 159.21

1 0.224 0.218 (0.011) 1.54 0.224 0.224 (0.012) 1.35

1/2 0.141 0.132 (0.021) 5.23 0.283 0.285 (0.013) 1.70

1/3 0.100 0.065 (0.037) 25.76 0.300 0.304 (0.013) 1.83

1/5 0.062 0.040 (0.030) 13.87 0.310 0.314 (0.015) 2.34
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Table B.15: Results for the scale parameters from the event part of the model.
Mean, standard deviation and MSE (×10−4) over the simulation.

τ b τ ε

τd/τ ζ = MSE MSE

τ b/τ ε True τ b τ̂ b (SD) (×10−4) True τ ε τ̂ ε (SD) (×10−4)

Scenario I

(error ∼ normal mixture, random effect ∼ extreme value)

5 0.981 0.980 (0.393) 1532.34 0.196 0.202 (0.005) 0.60

3 0.949 0.987 (0.517) 2660.34 0.316 0.417 (0.160) 356.10

2 0.894 0.827 (0.065) 87.10 0.447 0.663 (0.217) 932.57

1 0.707 0.647 (0.046) 57.34 0.707 0.741 (0.090) 91.97

1/2 0.447 0.428 (0.039) 18.27 0.894 0.901 (0.017) 3.47

1/3 0.316 0.307 (0.037) 14.42 0.949 0.954 (0.018) 3.57

1/5 0.196 0.180 (0.037) 15.93 0.981 0.984 (0.018) 3.49

Scenario II

(error ∼ extreme value, random effect ∼ normal mixture)

5 0.981 0.971 (0.030) 9.67 0.196 0.202 (0.012) 1.73

3 0.949 0.941 (0.040) 16.72 0.316 0.325 (0.054) 29.79

2 0.894 0.884 (0.049) 24.54 0.447 0.532 (0.237) 626.75

1 0.707 0.671 (0.040) 28.78 0.707 0.886 (0.273) 1056.64

1/2 0.447 0.394 (0.092) 111.54 0.894 1.160 (0.230) 1228.67

1/3 0.316 0.079 (0.115) 695.18 0.949 1.286 (0.214) 1589.69

1/5 0.196 0.024 (0.026) 302.36 0.981 1.345 (0.235) 1873.27
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Figure B.10: Results for the survivor density of the onset time, for the com-
bination of covariates xu

i,l = (0.5, 1)′, scenario I (error ∼ normal mixture,
random effect ∼ extreme value). Solid line: average fitted survivor density,
grey lines: 95% pointwise confidence band, dashed line: true survivor den-
sity..
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Figure B.11: Results for the survivor density of the onset time, for the com-
bination of covariates xu

i,l = (0.5, 1)′, scenario II (error ∼ extreme value,
random effect ∼ normal mixture). Solid line: average fitted survivor den-
sity, grey lines: 95% pointwise confidence band, dashed line: true survivor
density..
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Figure B.12: Results for the survivor density of the event time, for the com-
bination of covariates xt

i,l = (0.5, 1)′, scenario I (error ∼ normal mixture,
random effect ∼ extreme value). Solid line: average fitted survivor density,
grey lines: 95% pointwise confidence band, dashed line: true survivor den-
sity..
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Figure B.13: Results for the survivor density of the event time, for the com-
bination of covariates xt

i,l = (0.5, 1)′, scenario II (error ∼ extreme value,
random effect ∼ normal mixture). Solid line: average fitted survivor den-
sity, grey lines: 95% pointwise confidence band, dashed line: true survivor
density..
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Figure B.14: Results for the survivor function of the onset time, for the com-
bination of covariates xu

i,l = (0.5, 1)′, scenario I (error ∼ normal mixture,
random effect ∼ extreme value). Solid line: average fitted survivor func-
tion, grey lines: 95% pointwise confidence band, dashed line: true survivor
function..
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Figure B.15: Results for the survivor function of the onset time, for the com-
bination of covariates xu

i,l = (0.5, 1)′, scenario II (error ∼ extreme value,
random effect ∼ normal mixture). Solid line: average fitted survivor func-
tion, grey lines: 95% pointwise confidence band, dashed line: true survivor
function..
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Figure B.16: Results for the survivor function of the event time, for the com-
bination of covariates xt

i,l = (0.5, 1)′, scenario I (error ∼ normal mixture,
random effect ∼ extreme value). Solid line: average fitted survivor func-
tion, grey lines: 95% pointwise confidence band, dashed line: true survivor
function..
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Figure B.17: Results for the survivor function of the event time, for the
combination of covariates xt

i,l = (0.5, 1)′, scenario II (error ∼ extreme value,
random effect ∼ normal mixture). Solid line: average fitted survivor func-
tion, grey lines: 95% pointwise confidence band, dashed line: true survivor
function..
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Appendix C
Software

For all methodologies described in Part II of the thesis a software in the form
of R (R Development Core Team, 2005) packages smoothSurv and bayesSurv
has been written and can be downloaded, together with extensive manuals
and description on how to perform analyses shown in this thesis from the
Comprehensive R Archive Network at http://www.R-project.org. To op-
timize the computational time, all time consuming computation is performed
using the C++ compiled code. In this appendix, we only briefly list the most
important functions from both packages.

C.1 Package smoothSurv

This package implements the methods for the penalized maximum-likelihood
AFT model as described in Chapter 7 and involves, among others, the fol-
lowing functions:

smoothSurvReg fits the AFT model (7.1) with the error density (7.2) using
the method of penalized maximum-likelihood. It also allows for the
scale regression (7.6);

plot.smoothSurvReg computes and plots the fitted error density (7.2);

survfit.smoothSurvReg computes and plots the fitted survival function (7.13)
for a specified combination of covariates;

fdensity computes and plots the fitted survival density (7.14) for a specified
combination of covariates;

hazard computes and plots the fitted hazard function (7.15) for a specified
combination of covariates;
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estimTdiff estimates expected survival time for a specified combination of
covariates or estimates expected value of the difference between the
survival times for two specified combinations of covariates based on the
AFT model fitted using the function smoothSurvReg.

C.2 Package bayesSurv

This package implements the Bayesian methods described in Chapters 8 –
10.

For the Bayesian normal mixture cluster-specific AFT model of Chapter 8,
the core functions include:

bayessurvreg1 runs the MCMC simulation for the AFT model (8.1) with
the error density (8.2) and normally distributed (multivariate) random
effects;

bayesDensity computes the estimate of the predictive error densities (8.20)
and (8.21);

predictive computes the MCMC estimate of the predictive survival, density
or hazard function for a specified combination of covariates based on
the formulas (8.16), (8.18) and (8.19).

For the Bayesian penalized mixture cluster-specific and population-averaged
AFT models of Chapters 9 and 10, the core functions include:

bayessurvreg2 runs the MCMC simulation for the cluster-specific AFT model
(9.1), (9.2) with the error densities specified by (9.3) and normally dis-
tributed (multivariate) random effects (Model M );

bayessurvreg3 runs the MCMC simulation for the cluster-specific AFT model
(9.1), (9.2) with the error densities specified by (9.3) and univariate
random effects whose distribution is specified by (9.3) (Model U );

bayesBisurvreg runs the MCMC simulation for the population-averaged AFT
model (10.1), (10.2) with the error densities specified by (10.3);

bayesGspline computes the estimate of the predictive density of the factors
whose distribution was specified as the penalized normal mixture (9.3)
or (10.3). The function is based on formulas (9.13) and (10.12);

marginal.bayesGspline computes the estimates of the predictive marginal
densities of the factors whose distribution was specified as the bivariate
penalized normal mixture (10.3).

predictive2 computes the MCMC estimate of the predictive survival, density
or hazard function for a specified combination of covariates based on
the formulas (9.10), (9.11) or (10.10), (10.11).
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trees and random distributions. The Annals of Statistics, 20, 1203–1221.

McLachlan, G. J. and Basford, K. E. (1988). Mixture Models: Inference
and Applications to Clustering. Marcel Dekker, Inc., New York. ISBN 0-
8247-7691-7.



284 BIBLIOGRAPHY

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., and
Teller, A. H. (1953). Equations of state calculations by fast computing
machines. Journal of Chemical Physics, 21, 1087–1091.

Miller, R. G. (1976). Least squares regression with censored data.
Biometrika, 63, 449–464.

Molenberghs, G. and Verbeke, G. (2005). Models for Discrete Longi-
tudinal Data. Springer Science+Business Media, New York. ISBN 0-387-
25144-8.

Nanda, R. S. (1960). Eruption of human teeth. American Journal of Or-
thodontics, 46, 363–378.

Nardi, A. and Schemper, M. (2003). Comparing Cox and parametric
models in clinical studies. Statistics in Medicine, 22, 3597–3610.

Neal, R. M. (2003). Slice sampling (with Discussion). The Annals of
Statistics, 31, 705–767.

Odell, P. M., Anderson, K. M., and D’Agostino, R. B. (1992). Maxi-
mum likelihood estination for interval-censored data using a Weibull-based
accelerated failure time model. Biometrics, 48, 951–959.

O’Hagan, A. (1994). Kendall’s Advanced Theory of Statistics, Volume 2B:
Bayesian Inference. Arnold, London, Sixth edition. ISBN 0-340-52922-9.
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