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Department of Probability and Mathematical Statistics, Charles University in Prague
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This document shows how to perform the analysis of the Epileptic data presented in Komárek
and Lesaffre (2008) using the functions of the package glmmAK. To process the MCMC output,
we also extensively use the coda package (Plummer et al., 2006). It is assumed that the user
reads Komárek and Lesaffre’s paper first. In this manual, the same notation is used, often
without redefining it.

This manual especially supplements the help pages of the following functions of the package
glmmAK:� logpoissonRE,� summaryGspline2.

The user is encouraged to take a look on the manual pages of these functions first! You can try

> help(logpoissonRE, package = glmmAK, htmlhelp = TRUE)

> help(summaryGspline2, package = glmmAK, htmlhelp = TRUE)

1 Getting started

We start by loading the package, specifying the working directory and loading the data. Note
that data epileptic are the original data as reported by Thall and Vail (1990) and data epilepticBC
are data where the variables are transformed to fit the models presented by Breslow and Clayton
(1993) and Komárek and Lesaffre (2008).

> library(glmmAK)

> root <- "/home/komarek/Rlib/glmmAK/Doc/"

> setwd(root)

> data(epileptic)

> data(epilepticBC)

Brief summary of the data:

> summary(epileptic)
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id seizure visit trt age

Min. :101.0 Min. : 0.00 Min. :0 Min. :0.0000 Min. :18.00

1st Qu.:118.0 1st Qu.: 3.00 1st Qu.:1 1st Qu.:0.0000 1st Qu.:23.00

Median :147.0 Median : 6.00 Median :2 Median :1.0000 Median :28.00

Mean :168.4 Mean : 12.85 Mean :2 Mean :0.5254 Mean :28.34

3rd Qu.:217.0 3rd Qu.: 14.50 3rd Qu.:3 3rd Qu.:1.0000 3rd Qu.:32.00

Max. :238.0 Max. :151.00 Max. :4 Max. :1.0000 Max. :42.00

> summary(epilepticBC)

id visit seizure0 age Seizure

Min. :101.0 Min. :1.00 Min. : 6.00 Min. :18.00 Min. : 0.000

1st Qu.:118.0 1st Qu.:1.75 1st Qu.: 12.00 1st Qu.:23.00 1st Qu.: 2.750

Median :147.0 Median :2.50 Median : 22.00 Median :28.00 Median : 4.000

Mean :168.4 Mean :2.50 Mean : 31.22 Mean :28.34 Mean : 8.263

3rd Qu.:217.0 3rd Qu.:3.25 3rd Qu.: 41.00 3rd Qu.:32.00 3rd Qu.: 9.000

Max. :238.0 Max. :4.00 Max. :151.00 Max. :42.00 Max. :102.000

Base Trt Base.Trt Age Visit

Min. :0.4055 Min. :0.0000 Min. :0.0000 Min. :2.890 Min. :-0.30

1st Qu.:1.0986 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:3.135 1st Qu.:-0.15

Median :1.7047 Median :1.0000 Median :0.5596 Median :3.332 Median : 0.00

Mean :1.7680 Mean :0.5254 Mean :0.9484 Mean :3.320 Mean : 0.00

3rd Qu.:2.3273 3rd Qu.:1.0000 3rd Qu.:1.7918 3rd Qu.:3.466 3rd Qu.: 0.15

Max. :3.6310 Max. :1.0000 Max. :3.6310 Max. :3.738 Max. : 0.30
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2 Data and models

Thall and Vail (1990) report the data from a longitudinal study of seizures in epileptic patients.
In total, N = 59 patients were randomized to receive either the antiepileptic drug progabide
(Trt=1) or placebo (Trt=0), as an adjuvant to standard chemotherapy. Patients underwent
four successive postrandomization clinic visits. For the ith patient, the response variable Yi,l

denotes the number of seizures during the 2-weeks period before the lth visit. GLMM’s to this
data were fitted using an approximate method of penalized quasilikelihood (PQL) under the
assumption of normality of random effects by Breslow and Clayton (1993). We will specify the
linear predictor of the GLMM in the same way as a way equivalent to Breslow and Clayton’s
Model IV and will consider two PGM GLMM and two Normal GLMM’s. In the following,
let Visit be the centered visit time in weeks divided by 10 (−0.3, −0.1, 0.1, 0.3), Base be the
logarithm of 1

4
the 8-week prerandomization seizure count and Age be the logaritm of age in

years.

2.1 PGM GLMM, not hierarchically centered

PGM GLMM, not hierarchically centered model is the following:

log
{
E(Yi,l |β, bi)

}
=

β1 + β2Visiti,l + β3Basei + β4Trti + β5Basei · Trti + β6Agei + bi,1 + bi,2Visiti,l, (1)

where

bi =

(
bi,1

bi,2

)

i.i.d.
∼

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2(a)N2

((
τ1µ1,j1

τ2µ2,j2

)

,

(
(τ1σ1)

2 0
0 (τ2σ2)

2

))

(i = 1, . . . ,N).

In a sequel, we will denote this model as PGM GLMM(nhc).

The results of this model are shown in Komárek and Lesaffre (2008).

2.2 PGM GLMM, hierarchically centered

PGM GLMM, hierarchically centered model is the following:

log
{
E(Yi,l |β, bi)

}
= β3Basei + β4Trti + β5Basei · Trti + β6Agei + bi,1 + bi,2Visiti,l, (2)

where

bi =

(
bi,1

bi,2

)

i.i.d.
∼

(
α1

α2

)

+

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2(a)N2

((
τ1µ1,j1

τ2µ2,j2

)

,

(
(τ1σ1)

2 0
0 (τ2σ2)

2

))

(i = 1, . . . ,N).

In a sequel, we will denote this model as PGM GLMM(hc).
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2.3 Normal GLMM, not hierarchically centered

Normal GLMM, not hierarchically centered model is the following:

log
{
E(Yi,l |β, bi)

}
=

β1 + β2Visiti,l + β3Basei + β4Trti + β5Basei · Trti + β6Agei + bi,1 + bi,2Visiti,l, (3)

where

bi =

(
bi,1

bi,2

)

i.i.d.
∼ N2

((
0
0

)

,

(
d1,1 d2,1

d2,1 d2,2

)

︸ ︷︷ ︸

D

)

(i = 1, . . . ,N).

In a sequel, we will denote this model as Normal GLMM(nhc).

The results of this model are shown in Komárek and Lesaffre (2008).

2.4 Normal GLMM, hierarchically centered

Normal GLMM, hierarchically centered model is the following:

log
{
E(Yi,l |β, bi)

}
= β3Basei + β4Trti + β5Basei · Trti + β6Agei + bi,1 + bi,2Visiti,l, (4)

where

bi =

(
bi,1

bi,2

)

i.i.d.
∼ N2

((
α1

α2

)

,

(
d1,1 d2,1

d2,1 d2,2

)

︸ ︷︷ ︸

D

)

(i = 1, . . . ,N).

In a sequel, we will denote this model as Normal GLMM(hc).

2.5 Remarks

From the probabilistic point of view, PGM GLMM(nhc) is indeed equivalent to PGM GLMM(hc)
and Normal GLMM(nhc) is equivalent to Normal GLMM(hc).
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3 Specification of the prior distributions

Choices for the prior distributions are passed as list objects to the function logpoissonRE.
In this Section, we create objects holding the prior information for considered models.

3.1 Prior for the fixed effects β

In all models, we will assume that the prior distribution for the components of the vector of
fixed effects β is a product of independent normal distributions N (0, 10 000):

> prior.fixed <- list(mean = 0, var = 10000)

3.2 Prior for the parameters of the penalized Gaussian mixture in the PGM

GLMM’s

For the PGM GLMM’s (1) and (2), the following choices of the parameters defining the PGM
will be used: K1 = K2 = 15, that is, 2 ·15+1 = 31 knots in each margin. Further, the distance
between the two consecutive knots in each margin will be δ1 = δ2 = 0.3, that is, the knots are

µ1 = {µ1,−15, . . . , µ1,15} = {j1δ1 : j1 = −15, . . . , 15} = {−4.5, −4.2, . . . , 4.2, 4.5},

µ2 = {µ2,−15, . . . , µ2,15} = {j2δ2 : j2 = −15, . . . , 15} = {−4.5, −4.2, . . . , 4.2, 4.5}.

The basis standard deviation will be the same in both margins and equal to 0.2, i.e., σ1 = σ2 =
0.2.

The prior distribution for the transformed PGM weights a will be the intrinsic Gaussian Markov
random field (IGMRF) based on the 3rd order (CARorder=3) differences between the consecu-
tive weights in each margin, i.e.,

p(a |λ) ∝ exp
{

−
λ1

2

K2∑

j2=−K2

K1∑

j1=−K1+3

(
aj1,j2 − 3aj1−1,j2 + 3aj1−2,j2 − aj1−3,j2

)2

−
λ2

2

K1∑

j1=−K1

K2∑

j2=−K2+3

(
aj1,j2 − 3aj1,j2−1 + 3aj1,j2−2 − aj1,j2−3

)2
}

,

where λ = (λ1, λ2)
′ are the smoothing hyperparameters.

For the smoothing hyperparameters λ1 and λ2 independent gamma priors Gamma(1, 0.005)
will be used. The transformed weights a will be updated using the slice sampling of Neal
(2003). All above information is stored in a list:

> prior.gspline <- list(K = 15, delta = 0.3, sigma = 0.2, CARorder = 3,

+ Ldistrib = "gamma", Lequal = FALSE, Lshape = 1, LinvScale = 0.005,

+ AtypeUpdate = "slice")

It is also possible to use different grids of knots and/or different basis standard deviations in
each margin and/or different priors for the smoothing hyperparameters λ1 and λ2. For example,
the choices K1 = 15, K2 = 10, δ1 = 0.3, δ2 = 0.6, σ1 = 0.2, σ2 = 0.4, λ1 ∼ Gamma(1, 0.005),
λ2 ∼ Gamma(0.001, 0.001) would be specified in the following alternative:
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> prior.gspline.Alternative <- list(K = c(15, 10), delta = c(0.3,

+ 0.6), sigma = c(0.2, 0.4), CARorder = 3, Ldistrib = "gamma",

+ Lequal = FALSE, Lshape = c(1, 0.001), LinvScale = c(0.005, 0.001),

+ AtypeUpdate = "slice")

3.3 Prior for the remaining parameters of the random effects distribution

in the PGM GLMM’s

In both PGM GLMM’s (1) and (2) we still have to specify prior choices for the PGM scale
parameter vector τ = (τ1, τ2)

′, in the PGM GLMM(hc) (2) we also have to specify the prior
distribution for the PGM location α = (α1, α2)

′. We will use the following priors:

τ−2
1 ∼ Gamma(1, 0.005), τ−2

2 ∼ Gamma(1, 0.005),

α1 ∼ N (0, 10 000), α2 ∼ N (0, 10 000),

which in the case of the PGM GLMM(nhc) is in R specified as

> prior.random.gspl.nhc <- list(Ddistrib = "gamma", Dshape = 1, DinvScale = 0.005)

and in the case of the PGM GLMM(hc) as

> prior.random.gspl.hc <- list(Mdistrib = "normal", Mmean = 0, Mvar = 10000,

+ Ddistrib = "gamma", Dshape = 1, DinvScale = 0.005)

Alternatively, one can assume the uniform prior for the PGM scale parameters τ1 and τ2 which
is often prefered to the gamma prior, see Gelman (2006) for the discussion of this point. For
example, the prior distribution

τ1 ∼ Unif(0, 100), τ2 ∼ Unif(0, 200),

is specified in the following way:

> prior.random.gspl.nhc.Unif <- list(Ddistrib = "sduniform", Dupper = c(100,

+ 200))

3.4 Prior for the parameters of the random effects distribution in the PGM

GLMM’s

In both Normal GLMM’s (3) and (4) we have to specify prior distribution for the covariance
matrix D of the random effects and in the Normal GLMM(hc) (4) also the prior for the mean
α of the random intercept. We will use the following priors:

D
−1 ∼ Wishart

(

2,

(
0.005 0

0 0.005

)
−1
)

,

α1 ∼ N (0, 10 000), α2 ∼ N (0, 10 000),
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where the Wishart distribution is parametrized in the same way as in Gelman et al. (2004),
that is, a priori

E
(
D
−1
)

= 2

(
0.005 0

0 0.005

)
−1

.

These prior distributions are specified in R, in the case of the Normal GLMM(nhc) as

> prior.random.norm.nhc <- list(Ddistrib = "wishart", Ddf = 2, DinvScale = 0.005)

and in the case of the Normal GLMM(hc) as

> prior.random.norm.hc <- list(Mdistrib = "normal", Mmean = 0, Mvar = 10000,

+ Ddistrib = "wishart", Ddf = 2, DinvScale = 0.005)
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4 MCMC simulation

Having specified the prior distribution we are almost ready to start the MCMC simulation to
sample from the posterior distribution of the model parameters.

4.1 Directories to store the chains

For each considered model, we create one directory as a subdirectory of root/chEpileptic which
will afterwards be used to store the sampled chains. Creation of directories can of course be
performed outside R as well.

> if (!("chEpileptic" %in% dir(root))) dir.create(paste(root, "chEpileptic",

+ sep = ""))

> dirNames <- c("PGM_nhc", "PGM_hc", "Normal_nhc", "Normal_hc")

> dirPaths <- paste(root, "chEpileptic/", dirNames, "/", sep = "")

> for (i in 1:length(dirPaths)) {

+ if (!(dirNames[i] %in% dir(paste(root, "chEpileptic", sep = ""))))

+ dir.create(dirPaths[i])

+ }

> names(dirPaths) <- c("PGM_nhc", "PGM_hc", "Normal_nhc", "Normal_hc")

That is, the chains for considered models will be stored in the following directories:

> print(dirPaths)

PGM_nhc

"/home/komarek/Rlib/glmmAK/Doc/chEpileptic/PGM_nhc/"

PGM_hc

"/home/komarek/Rlib/glmmAK/Doc/chEpileptic/PGM_hc/"

Normal_nhc

"/home/komarek/Rlib/glmmAK/Doc/chEpileptic/Normal_nhc/"

Normal_hc

"/home/komarek/Rlib/glmmAK/Doc/chEpileptic/Normal_hc/"

4.2 Matrices of covariates

To pass the covariates to the function logpoissonRE, we have to create two matrices or data
frames which will contain (i) the covariates that appear in the fixed effect part of the model
and are not involved in the random effect part (Base, Trt, Base:Trt interaction, Age) and (ii)
the covariates that appear in the random effect part of the model (Visit). Remember, that
inclusion of the random intercept is treated separately by the argument intcpt.random of the
function logpoissonRE. Needed matrices will be stored as X2mat and Xb2mat:

> X2mat <- epilepticBC[, c("Base", "Trt", "Base.Trt", "Age")]

> Xb2mat <- data.frame(Visit = epilepticBC[, "Visit"])
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Let us take a look at first few rows of these matrices:

> print(X2mat[1:6, ])

Base Trt Base.Trt Age

2 2.944439 1 2.944439 2.890372

3 2.944439 1 2.944439 2.890372

4 2.944439 1 2.944439 2.890372

5 2.944439 1 2.944439 2.890372

7 2.251292 1 2.251292 3.465736

8 2.251292 1 2.251292 3.465736

> print(Xb2mat[1:6, ])

[1] -0.3 -0.1 0.1 0.3 -0.3 -0.1

4.3 Length of the MCMC

The length of the MCMC simulation will be passed to the function cumlogitRE as a list:

> nsimul <- list(niter = 2000, nthin = 10, nburn = 1000, nwrite = 100)

With this specification, we will perform in total 2000 iterations out of which 1000 iterations
will be a burn-in period. Further, we will thin the sample and store only every 10th value.
Finally, the iteration count will increase every 100 iterations. That is, for inference, we will
have chains of length 1000.

Remark: In the paper Komárek and Lesaffre (2008), much longer MCMC simulation was used
to derive the results presented there.

4.4 Running MCMC

At this stage, we have specified all the information to start the MCMC simulation by calling
the function logpoissonRE for each considered model. Be aware that this can take some time,
according to the length of the MCMC specified.

PGM GLMM(nhc)

> fit.PGM.nhc <- logpoissonRE(y = epilepticBC$Seizure, x = X2mat, xb = Xb2mat,

+ cluster = epilepticBC$id, intcpt.random = TRUE, hierar.center = FALSE,

+ drandom = "gspline", prior.fixed = prior.fixed,

+ prior.random = prior.random.gspl.nhc, prior.gspline = prior.gspline,

+ nsimul = nsimul, store = list(ecount = FALSE, b = TRUE),

+ dir = dirPaths["PGM_nhc"])

9



Simulation started on Fri Jun 1 13:53:09 2007

Iteration 1000

Burn-up finished on Fri Jun 1 13:54:02 2007 (iteration 1000)

Iteration 2000

Simulation finished on Fri Jun 1 13:55:01 2007 (iteration 2000)

PGM GLMM(hc)

> fit.PGM.hc <- logpoissonRE(y = epilepticBC$Seizure, x = X2mat, xb = Xb2mat,

+ cluster = epilepticBC$id, intcpt.random = TRUE, hierar.center = TRUE,

+ drandom = "gspline", prior.fixed = prior.fixed,

+ prior.random = prior.random.gspl.hc, prior.gspline = prior.gspline,

+ nsimul = nsimul, store = list(ecount = FALSE, b = TRUE),

+ dir = dirPaths["PGM_hc"])

Simulation started on Fri Jun 1 13:55:01 2007

Iteration 1000

Burn-up finished on Fri Jun 1 13:55:54 2007 (iteration 1000)

Iteration 2000

Simulation finished on Fri Jun 1 13:56:48 2007 (iteration 2000)

Normal GLMM(nhc)

> fit.Normal.nhc <- logpoissonRE(y = epilepticBC$Seizure, x = X2mat, xb = Xb2mat,

+ cluster = epilepticBC$id, intcpt.random = TRUE, hierar.center = FALSE,

+ drandom = "normal", prior.fixed = prior.fixed,

+ prior.random = prior.random.norm.nhc,

+ nsimul = nsimul, store = list(ecount = FALSE, b = TRUE),

+ dir = dirPaths["Normal_nhc"])

Simulation started on Fri Jun 1 13:56:48 2007

Iteration 1000

Burn-up finished on Fri Jun 1 13:56:53 2007 (iteration 1000)

Iteration 2000

Simulation finished on Fri Jun 1 13:56:58 2007 (iteration 2000)

Normal GLMM(hc)

> fit.Normal.hc <- logpoissonRE(y = epilepticBC$Seizure, x = X2mat, xb = Xb2mat,

+ cluster = epilepticBC$id, intcpt.random = TRUE, hierar.center = TRUE,

+ drandom = "normal", prior.fixed = prior.fixed,

+ prior.random = prior.random.norm.hc,

+ nsimul = nsimul, store = list(ecount = FALSE, b = TRUE),

+ dir = dirPaths["Normal_hc"])
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Simulation started on Fri Jun 1 13:56:58 2007

Iteration 1000

Burn-up finished on Fri Jun 1 13:57:03 2007 (iteration 1000)

Iteration 2000

Simulation finished on Fri Jun 1 13:57:08 2007 (iteration 2000)
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5 Basic posterior computation

In this Section, we compute posterior summary statistics for regression coefficients β and
moments of the distribution of random effects. To get reasonable results, we will use the
chains sampled for the analysis in Komárek and Lesaffre (2008) which were obtained under the
following value of the argument nsimul:

> nsimul <- list(niter = 50000, nthin = 130, nburn = 25000, nwrite = 1000)

That is, in the paper, we performed in total 50000 iterations out of which 25000 iterations were
considered as a burn-in period. Further, we thined the sample and stored only every 130th
value. For inference, we have the chains of length 25000.

5.1 Reading the chains into coda objects

Using the commands below, it is possible to read all sampled chains and store them as coda
mcmc objects. It is possible to skip some values at the beginning of the chains by setting the
argument skip to a positive value.

> chPGM.nhc <- glmmAK.files2coda(dir = dirPaths["PGM_nhc"], drandom = "gspline",

+ skip = 0)

> chPGM.hc <- glmmAK.files2coda(dir = dirPaths["PGM_hc"], drandom = "gspline",

+ skip = 0)

> chNormal.nhc <- glmmAK.files2coda(dir = dirPaths["Normal_nhc"],

+ drandom = "normal", skip = 0)

> chNormal.hc <- glmmAK.files2coda(dir = dirPaths["Normal_hc"], drandom = "normal",

+ skip = 0)

5.2 Reading only needed chains

On this place, we will read only the chains that will be worked out now, that is the chains for
regression coefficients β and the chains for the moments of the random effect distribution. We
will use the function scanFH which is a customized version of the R base function scan. All
chains will be stored as coda mcmc objects.

PGM GLMM(nhc)
The chains we need now will be stored in the object chPGM.nhc. Let us first explicitly mention
which (derived) parameters, stored in the files betaF.sim, betaRadj.sim and varRadj.sim will be
summarized.

betaF.sim, columns “Base”, “Trt”, “Base.Trt”, “Age” are the chains for β3, β4, β5, β6, i.e.,
regression coefficients for the fixed effects covariates. We will store them as components
Base, Trt, Base.Trt, Age of the object chPGM.nhc.
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betaRadj.sim, column “(Intercept)” is the chain for

γ1 = β1 + E(b1) = β1 + τ1β
∗

1 ,

where β∗

1 =

K1∑

j1=−K1

wj1,+(a)µ1,j1, wj1,+(a) =

K2∑

j2=−K2

wj1,j2(a) (j1 = −K1, . . . ,K1).

That is, γ1 is the mean intercept value and its chain will be stored as a component Intcpt
of the object chPGM.nhc.

betaRadj.sim, column “Visit” is the chain for

γ2 = β2 + E(b2) = β2 + τ2β
∗

2 ,

where β∗

2 =

K2∑

j2=−K2

w+,j2(a)µ2,j2, w+,j2(a) =

K1∑

j1=−K1

wj1,j2(a) (j2 = −K2, . . . ,K2).

That is, γ2 is the mean effect of the covariate Visit and its chain will be stored as a com-
ponent Visit of the object chPGM.nhc.

varRadj.sim, column “varR.1.1” is the chain for

d1,1 = var(b1) = τ2
1 d∗1,1, where d∗1,1 =

K1∑

j1=−K1

wj1,+(a)
(
µ1,j1 − β∗

1

)2
+ σ2

1.

That is, d1,1 is the variance of the random intercept. In the following, we will store
a standard deviation of the random intercept, i.e.,

√
d1,1 as a component SDIntcpt of the

object chPGM.nhc.

varRadj.sim, column “varR.2.2” is the chain for

d2,2 = var(b2) = τ2
2 d∗2,2, where d∗2,2 =

K2∑

j2=−K2

w+,j2(a)
(
µ2,j2 − β∗

2

)2
+ σ2

2.

That is, d2,2 is the variance of the random Visit effect. In the following, we will store
a standard deviation of the random Visit effect, i.e.,

√
d2,2 as a component SDVisit of the

object chPGM.nhc.

varRadj.sim, column “varR.2.1” is the chain for

d2,1 = cov(b1, b2) = τ1τ2 d∗2,1, where d∗2,1 =

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2(a)
(
µ1,j1−β∗

1

)(
µ2,j2−β∗

2

)
.

That is, d2,1 is the covariance between the random intercept and the random Visit effect.
In the following, we will store a correlation between the random intercept and the random
Visit effect, i.e., d2,1/

√
d1,1 d2,2 as a component Corr of the object chPGM.nhc.

> iters <- scanFH(paste(dirPaths["PGM_nhc"], "iteration.sim", sep = ""))

> betaF <- scanFH(paste(dirPaths["PGM_nhc"], "betaF.sim", sep = ""))

> betaRadj <- scanFH(paste(dirPaths["PGM_nhc"], "betaRadj.sim", sep = ""))
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> varRadj <- scanFH(paste(dirPaths["PGM_nhc"], "varRadj.sim", sep = ""))

> chPGM.nhc <- mcmc(data.frame(Base=betaF[,"Base"],

+ Trt=betaF[,"Trt"],

+ Base.Trt=betaF[,"Base.Trt"],

+ Age=betaF[,"Age"],

+ Intcpt=betaRadj[,"(Intercept)"],

+ Visit=betaRadj[,"Visit"],

+ SDIntcpt=sqrt(varRadj[,"varR.1.1"]),

+ SDVisit=sqrt(varRadj[,"varR.2.2"]),

+ Corr=varRadj[,"varR.2.1"]/sqrt(varRadj[,"varR.1.1"]*varRadj[,"varR.2.2"])),

+ start=iters[1,1])

> rm(list = c("iters", "betaF", "betaRadj", "varRadj"))

PGM GLMM(hc)
The chains we need now will be stored in the object chPGM.hc. Again, let us first explicitly
mention which (derived) parameters, stored in the files betaF.sim, betaRadj.sim and varRadj.sim
will be summarized.

betaF.sim, columns “Base”, “Trt”, “Base.Trt”, “Age” are the chains for β3, β4, β5, β6, i.e.,
regression coefficients for the fixed effects covariates. We will store them as components
Base, Trt, Base.Trt, Age of the object chPGM.hc.

betaRadj.sim, column “(Intercept)” is the chain for

γ1 = E(b1) = α1 + τ1β
∗

1 ,

where β∗

1 =

K1∑

j1=−K1

wj1,+(a)µ1,j1, wj1,+(a) =

K2∑

j2=−K2

wj1,j2(a) (j1 = −K1, . . . ,K1).

That is, γ1 is the mean intercept value and its chain will be stored as a component Intcpt
of the object chPGM.hc.

betaRadj.sim, column “Visit” is the chain for

γ2 = E(b2) = α2 + τ2β
∗

2 ,

where β∗

2 =

K2∑

j2=−K2

w+,j2(a)µ2,j2, w+,j2(a) =

K1∑

j1=−K1

wj1,j2(a) (j2 = −K2, . . . ,K2).

That is, γ2 is the mean effect of the covariate Visit and its chain will be stored as a com-
ponent Visit of the object chPGM.hc.

varRadj.sim, column “varR.1.1” is the chain for

d1,1 = var(b1) = τ2
1 d∗1,1, where d∗1,1 =

K1∑

j1=−K1

wj1,+(a)
(
µ1,j1 − β∗

1

)2
+ σ2

1.

That is, d1,1 is the variance of the random intercept. In the following, we will store
a standard deviation of the random intercept, i.e.,

√
d1,1 as a component SDIntcpt of the

object chPGM.hc.
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varRadj.sim, column “varR.2.2” is the chain for

d2,2 = var(b2) = τ2
2 d∗2,2, where d∗2,2 =

K2∑

j2=−K2

w+,j2(a)
(
µ2,j2 − β∗

2

)2
+ σ2

2.

That is, d2,2 is the variance of the random Visit effect. In the following, we will store
a standard deviation of the random Visit effect, i.e.,

√
d2,2 as a component SDVisit of the

object chPGM.hc.

varRadj.sim, column “varR.2.1” is the chain for

d2,1 = cov(b1, b2) = τ1τ2 d∗2,1, where d∗2,1 =

K1∑

j1=−K1

K2∑

j2=−K2

wj1,j2(a)
(
µ1,j1−β∗

1

)(
µ2,j2−β∗

2

)
.

That is, d2,1 is the covariance between the random intercept and the random Visit effect.
In the following, we will store a correlation between the random intercept and the random
Visit effect, i.e., d2,1/

√
d1,1 d2,2 as a component Corr of the object chPGM.hc.

> iters <- scanFH(paste(dirPaths["PGM_hc"], "iteration.sim", sep = ""))

> betaF <- scanFH(paste(dirPaths["PGM_hc"], "betaF.sim", sep = ""))

> betaRadj <- scanFH(paste(dirPaths["PGM_hc"], "betaRadj.sim", sep = ""))

> varRadj <- scanFH(paste(dirPaths["PGM_hc"], "varRadj.sim", sep = ""))

> chPGM.hc <- mcmc(data.frame(Base=betaF[,"Base"],

+ Trt=betaF[,"Trt"],

+ Base.Trt=betaF[,"Base.Trt"],

+ Age=betaF[,"Age"],

+ Intcpt=betaRadj[,"(Intercept)"],

+ Visit=betaRadj[,"Visit"],

+ SDIntcpt=sqrt(varRadj[,"varR.1.1"]),

+ SDVisit=sqrt(varRadj[,"varR.2.2"]),

+ Corr=varRadj[,"varR.2.1"]/sqrt(varRadj[,"varR.1.1"]*varRadj[,"varR.2.2"])),

+ start=iters[1,1])

> rm(list = c("iters", "betaF", "betaRadj", "varRadj"))

Normal GLMM(nhc)
The chains we need now will be stored in the object chNormal.nhc. Let us first explicitly mention
which (derived) parameters, stored in the files betaF.sim and varR.sim will be summarized.

betaF.sim, columns “Base”, “Trt”, “Base.Trt”, “Age” are the chains for β3, β4, β5, β6, i.e.,
regression coefficients for the fixed effects covariates. We will store them as components
Base, Trt, Base.Trt, Age of the object chNormal.nhc.

betaF.sim, columns “(Intercept)”, “Visit” are the chains for β1 and β2, which are (due
to the fact that E(b) = (0, 0)′) the mean intercept value and the mean value of the Visit
effect. We will store them as components Intcpt and Visit of the object chNormal.nhc.

varR.sim, columns “varR.1.1”, “varR.2.1”, “varR.2.2” are the chains for d1,1, d2,1, d2,2,
which is the lower traingle of the random effects covariance matrix D. In the object
chNormal.nhc, random effect standard deviations

√
d1,1 and

√
d2,2 will be stored as com-

ponents SDIntcpt and SDVisit, respectively and the correlation between the random ef-
fects, d2,1/

√
d1,1 d2,2, will be stored as a component Corr.
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> iters <- scanFH(paste(dirPaths["Normal_nhc"], "iteration.sim", sep = ""))

> betaF <- scanFH(paste(dirPaths["Normal_nhc"], "betaF.sim", sep = ""))

> varR <- scanFH(paste(dirPaths["Normal_nhc"], "varR.sim", sep = ""))

> chPGM.nhc <- mcmc(data.frame(Base=betaF[,"Base"],

+ Trt=betaF[,"Trt"],

+ Base.Trt=betaF[,"Base.Trt"],

+ Age=betaF[,"Age"],

+ Intcpt=betaF[,"(Intercept)"],

+ Visit=betaF[,"Visit"],

+ SDIntcpt=sqrt(varR[,"varR.1.1"]),

+ SDVisit=sqrt(varR[,"varR.2.2"]),

+ Corr=varR[,"varR.2.1"]/sqrt(varR[,"varR.1.1"]*varR[,"varR.2.2"])),

+ start=iters[1,1])

> rm(list = c("iters", "betaF", "varR"))

Normal GLMM(hc)
The chains we need now will be stored in the object chNormal.hc. Again, let us first explicitly
mention which (derived) parameters, stored in the files betaF.sim, betaR.sim and varR.sim will
be summarized.

betaF.sim, columns “Base”, “Trt”, “Base.Trt”, “Age” are the chains for β3, β4, β5, β6, i.e.,
regression coefficients for the fixed effects covariates. We will store them as components
Base, Trt, Base.Trt, Age of the object chNormal.hc.

betaR.sim, columns “(Intercept)”, “Visit” are the chains for α1 and α2, which are the
mean intercept value and the mean value of the Visit effect. We will store them as
components Intcpt and Visit of the object chNormal.hc.

varR.sim, columns “varR.1.1”, “varR.2.1”, “varR.2.2” are the chains for d1,1, d2,1, d2,2,
which is the lower traingle of the random effects covariance matrix D. In the object
chNormal.hc, random effect standard deviations

√
d1,1 and

√
d2,2 will be stored as compo-

nents SDIntcpt and SDVisit, respectively and the correlation between the random effects,
d2,1/

√
d1,1 d2,2, will be stored as a component Corr.

> iters <- scanFH(paste(dirPaths["Normal_hc"], "iteration.sim", sep = ""))

> betaF <- scanFH(paste(dirPaths["Normal_hc"], "betaF.sim", sep = ""))

> betaR <- scanFH(paste(dirPaths["Normal_hc"], "betaR.sim", sep = ""))

> varR <- scanFH(paste(dirPaths["Normal_hc"], "varR.sim", sep = ""))

> chPGM.nhc <- mcmc(data.frame(Base=betaF[,"Base"],

+ Trt=betaF[,"Trt"],

+ Base.Trt=betaF[,"Base.Trt"],

+ Age=betaF[,"Age"],

+ Intcpt=betaR[,"(Intercept)"],

+ Visit=betaR[,"Visit"],

+ SDIntcpt=sqrt(varR[,"varR.1.1"]),

+ SDVisit=sqrt(varR[,"varR.2.2"]),

+ Corr=varR[,"varR.2.1"]/sqrt(varR[,"varR.1.1"]*varR[,"varR.2.2"])),

+ start=iters[1,1])

> rm(list = c("iters", "betaF", "betaR", "varR"))
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5.3 Basic posterior summary statistics

Basic posterior summary statistics can be obtained using the coda summary function for objects
of class mcmc:

PGM GLMM(nhc)

> summary(chPGM.nhc)

Iterations = 25001:50000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 25000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Base 0.8658 0.1374 0.0008691 0.002598

Trt -0.9952 0.4228 0.0026743 0.009159

Base.Trt 0.3706 0.2131 0.0013479 0.003993

Age 0.4875 0.3614 0.0022857 0.006344

Intcpt -1.3766 1.2385 0.0078327 0.024679

Visit -0.2747 0.1665 0.0010533 0.007553

SDIntcpt 0.5429 0.0754 0.0004771 0.003565

SDVisit 0.7114 0.1855 0.0011733 0.006676

Corr 0.0608 0.2196 0.0013886 0.026354

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

Base 0.5908 0.7754 0.8667 0.9577 1.13206

Trt -1.8346 -1.2744 -0.9947 -0.7133 -0.16488

Base.Trt -0.0479 0.2293 0.3690 0.5128 0.79355

Age -0.2299 0.2483 0.4880 0.7251 1.20148

Intcpt -3.8308 -2.1842 -1.3764 -0.5692 1.06379

Visit -0.6028 -0.3860 -0.2770 -0.1655 0.05612

SDIntcpt 0.4181 0.4900 0.5354 0.5869 0.71322

SDVisit 0.3747 0.5870 0.7013 0.8264 1.10404

Corr -0.4367 -0.0777 0.0458 0.2045 0.48560

PGM GLMM(hc)

> summary(chPGM.hc)
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Iterations = 25001:50000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 25000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Base 0.9080 0.1386 0.0008768 0.002091

Trt -0.8642 0.4246 0.0026853 0.005009

Base.Trt 0.3084 0.2155 0.0013632 0.002951

Age 0.4711 0.3649 0.0023076 0.024643

Intcpt -1.3986 1.2400 0.0078426 0.086138

Visit -0.2490 0.1598 0.0010109 0.002611

SDIntcpt 0.5320 0.0668 0.0004226 0.000812

SDVisit 0.7289 0.2018 0.0012763 0.005511

Corr -0.0539 0.1077 0.0006808 0.013067

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

Base 0.6344 0.8152 0.9084 1.0003 1.18117

Trt -1.7111 -1.1488 -0.8611 -0.5816 -0.04256

Base.Trt -0.1133 0.1643 0.3089 0.4517 0.73546

Age -0.2457 0.2207 0.4762 0.7142 1.20073

Intcpt -3.8800 -2.2165 -1.4163 -0.5345 1.00589

Visit -0.5725 -0.3530 -0.2465 -0.1404 0.05717

SDIntcpt 0.4164 0.4852 0.5272 0.5727 0.67790

SDVisit 0.3665 0.5921 0.7169 0.8510 1.16253

Corr -0.2631 -0.1213 -0.0574 0.0067 0.17057

Normal GLMM(nhc)

> summary(chNormal.nhc)

Iterations = 25001:50000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 25000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Base 0.8853 0.1366 0.0008642 0.0009286

Trt -0.9435 0.4179 0.0026432 0.0028505
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Base.Trt 0.3456 0.2127 0.0013453 0.0013762

Age 0.4917 0.3699 0.0023396 0.0021058

Intcpt -1.4185 1.2564 0.0079463 0.0072118

Visit -0.2733 0.1557 0.0009848 0.0011859

SDIntcpt 0.5305 0.0645 0.0004081 0.0003842

SDVisit 0.6131 0.2055 0.0012997 0.0017880

Corr 0.0422 0.3143 0.0019878 0.0017636

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%

Base 0.6165 0.7950 0.8852 0.9747 1.15444

Trt -1.7741 -1.2242 -0.9442 -0.6621 -0.12047

Base.Trt -0.0718 0.2039 0.3454 0.4865 0.76296

Age -0.2402 0.2443 0.4930 0.7388 1.21305

Intcpt -3.8839 -2.2702 -1.4215 -0.5779 1.06445

Visit -0.5767 -0.3769 -0.2742 -0.1706 0.03298

SDIntcpt 0.4173 0.4856 0.5259 0.5703 0.67129

SDVisit 0.1117 0.5018 0.6248 0.7457 0.98885

Corr -0.5288 -0.1620 0.0328 0.2305 0.78734

Normal GLMM(hc)

> summary(chNormal.hc)

Iterations = 25001:50000

Thinning interval = 1

Number of chains = 1

Sample size per chain = 25000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean SD Naive SE Time-series SE

Base 0.8844 0.1375 0.0008693 0.001492

Trt -0.9422 0.4207 0.0026608 0.003125

Base.Trt 0.3433 0.2139 0.0013527 0.002231

Age 0.4655 0.3697 0.0023380 0.019473

Intcpt -1.3282 1.2553 0.0079390 0.067613

Visit -0.2724 0.1568 0.0009914 0.000983

SDIntcpt 0.5306 0.0649 0.0004106 0.000498

SDVisit 0.6112 0.2084 0.0013178 0.002086

Corr 0.0357 0.3201 0.0020242 0.004038

2. Quantiles for each variable:

2.5% 25% 50% 75% 97.5%
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Base 0.6158 0.7921 0.8841 0.9756 1.15473

Trt -1.7624 -1.2243 -0.9402 -0.6609 -0.12179

Base.Trt -0.0778 0.2012 0.3438 0.4863 0.76057

Age -0.2746 0.2175 0.4690 0.7173 1.17956

Intcpt -3.7458 -2.1847 -1.3402 -0.4797 1.16613

Visit -0.5819 -0.3758 -0.2731 -0.1687 0.03888

SDIntcpt 0.4193 0.4849 0.5258 0.5702 0.67361

SDVisit 0.1014 0.5002 0.6275 0.7470 0.98166

Corr -0.5570 -0.1679 0.0253 0.2236 0.80353

5.4 Bayesian P-values

Bayesian P-values as defined in Komárek and Lesaffre (2008) can be computed as follows:

PGM GLMM(nhc)

> BPvalue(chPGM.nhc[,params])

Base Trt Base.Trt Age Visit

0.00000 0.02072 0.08168 0.17368 0.10104

PGM GLMM(hc)

> BPvalue(chPGM.hc[,params])

Base Trt Base.Trt Age Visit

0.00000 0.03944 0.14952 0.19096 0.11064

Normal GLMM(nhc)

> BPvalue(chNormal.nhc[,params])

Base Trt Base.Trt Age Visit

0.00000 0.02392 0.10728 0.18248 0.08336

Normal GLMM(hc)

> BPvalue(chNormal.hc[,params])

Base Trt Base.Trt Age Visit

0.00000 0.02472 0.10928 0.20824 0.08552
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5.5 Highest posterior density intervals

Highest posterior density intervals can be computed using the coda function HPDinterval:

PGM GLMM(nhc)

> HPDinterval(chPGM.nhc, prob = 0.95)

lower upper

Base 0.6035998 1.14340284

Trt -1.8485035 -0.18414713

Base.Trt -0.0448175 0.79529207

Age -0.2018371 1.22327080

Intcpt -3.7995117 1.08654797

Visit -0.6016992 0.05661944

SDIntcpt 0.4081708 0.69554563

SDVisit 0.3668022 1.09183617

Corr -0.4367999 0.48559052

attr(,"Probability")

[1] 0.95

PGM GLMM(hc)

> HPDinterval(chPGM.hc, prob = 0.95)

lower upper

Base 0.6331944 1.17915433

Trt -1.7143816 -0.04690501

Base.Trt -0.1162877 0.73081797

Age -0.2248783 1.21851045

Intcpt -3.9051979 0.96909231

Visit -0.5645966 0.06295498

SDIntcpt 0.4075452 0.66454562

SDVisit 0.3308356 1.12106139

Corr -0.2591699 0.17375843

attr(,"Probability")

[1] 0.95

Normal GLMM(nhc)

> HPDinterval(chNormal.nhc, prob = 0.95)

lower upper

Base 0.6155912 1.15193728

Trt -1.7645179 -0.11450856
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Base.Trt -0.0690086 0.76408915

Age -0.2449218 1.20725069

Intcpt -3.9043743 1.03435788

Visit -0.5739697 0.03562814

SDIntcpt 0.4110878 0.66122106

SDVisit 0.0959356 0.97249436

Corr -0.5706093 0.71429813

attr(,"Probability")

[1] 0.95

Normal GLMM(hc)

> HPDinterval(chNormal.hc, prob = 0.95)

lower upper

Base 0.6207683 1.15915086

Trt -1.7655127 -0.12578612

Base.Trt -0.0698370 0.76658142

Age -0.2575308 1.19336622

Intcpt -3.8250303 1.06536196

Visit -0.5809721 0.03939429

SDIntcpt 0.4130962 0.66233863

SDVisit 0.0997530 0.97877056

Corr -0.6142601 0.72709863

attr(,"Probability")

[1] 0.95

The chains can be further processed using the coda package to check for convergence, draw
plots, etc. We will skip this in this manual to concentrate more on the issues specific for the
glmmAK package.
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6 Estimation of the random effect density in the PGM models

The estimate of the random effect density in the PGM models can be summarized using the
pointwise posterior summary statistics (mean, median, quantiles). To compute these from the
sampled chains, we use the function summaryGspline2.

6.1 Standardized version

Firstly, we summarize the standardized version of the random effect density. That is, when
computing the posterior statistics, the random effect density at each iteration is standardized
first to have zero means and unit variances and summarized afterwards. The pointwise posterior
summary statistics will be computed in a grid of points stored in the variables grid1 (random
intercept margin) and grid2 (random Visit effect margin). Besides computing pointwise posterior
mean, we will also compute pointwise posterior 2.5%, 25%, 50%, 75% and 97.5% quantiles. Note
that variables knots1 and sigma1 determine the PGM knots µ1,−K1

, . . . , µ1,K1
and basis standard

deviation σ1, respectively. Similarly, variables knots2 and sigma2 determine the PGM knots
µ2,−K2

, . . . , µ2,K2
and basis standard deviation σ2, respectively. Computed posterior summary

statistics for the random effect density will be stored in objects stPGM.nhc and stPGM.hc
for PGM GLMM(nhc) and PGM GLMM(hc) model, respectively. The following commands
compute summaries for both joint (bivariate) random effect density and also the marginal
(univariate) random intercept and random Visit effect densities.

> knots1 <- seq(-4.5, 4.5, by=0.3)

> knots2 <- seq(-4.5, 4.5, by=0.3)

> sigma1 <- 0.2

> sigma2 <- 0.2

> grid1 <- seq(-3, 3, length=20)

> grid2 <- seq(-3, 3, length=20)

>

> ### PGM GLMM(nhc)

> stPGM.nhc <- summaryGspline2(x1=grid1, x2=grid2,

+ mu1=knots1, mu2=knots2,

+ sigma1=sigma1, sigma2=sigma2,

+ standard=TRUE,

+ probs=c(0.025, 0.25, 0.5, 0.75, 0.975), values=FALSE,

+ dir=dirPaths["PGM_nhc"])

>

> ### PGM GLMM(hc)

> stPGM.hc <- summaryGspline2(x1=grid1, x2=grid2,

+ mu1=knots1, mu2=knots2,

+ sigma1=sigma1, sigma2=sigma2,

+ standard=TRUE,

+ probs=c(0.025, 0.25, 0.5, 0.75, 0.975), values=FALSE,

+ dir=dirPaths["PGM_hc"])

For example, for the PGM GLMM(nhc) model, the pointwise posterior summary statistics of
the joint random effect density are stored in the subobject stPGM.nhc$summary, which has
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components labeled "x1" and "x2" (vectors of grid points), "Mean" (matrix with the pointwise
posterior mean), "2.5%", "25%", "50%", "75%", "97.5%" (matrices with the pointwise posterior
quantiles). The pointwise posterior summary statistics of the marginal random intercept density
are stored in the subobject stPGM.nhc$summary1, which is a data frame with columns "x",
"Mean", "2.5%", "25%", "50%", "75%", "97.5%" having an obvious meaning. Similarly, the
pointwise posterior summary statistics of the marginal random Visit effect density are stored
in the data frame stPGM.nhc$summary1.

Computed posterior summary statistics of the densities can be plotted as follows, see Figure 1
for the results. The example code below applies for the PGM GLMM(hc) model.

> obj <- stPGM.nhc$summary

> obj1 <- stPGM.nhc$summary1

> obj2 <- stPGM.nhc$summary2

>

> par(mfrow=c(2, 2), bty="n", mar=c(4, 4, 1, 0)+0.1)

>

> ### Joint density (posterior mean only)

> contour(obj$x1, obj$x2, obj$Mean, col="red", xlab="b1[st]", ylab="b2[st]")

> persp(obj$x1, obj$x2, obj$Mean, col="seagreen3", theta=30, phi=60,

+ xlab="b1[st]", ylab="b2[st]", zlab="g(b1[st],b2[st])")

>

> ### Marginal random intercept density (posterior mean, 2.5% and 97.5% quantiles)

> plot(obj1$x, obj1[,"97.5%"], type="l", lty=1, col="red",

+ xlab="b1[st]", ylab="g(b1[st])", main="Random intercept")

> lines(obj1$x, obj1[,"2.5%"], lty=2, col="red")

> lines(obj1$x, obj1$Mean, lty=1, col="blue")

>

> ### Marginal random Visit effect density (posterior mean, 2.5% and 97.5% quantiles)

> plot(obj2$x, obj2[,"97.5%"], type="l", lty=1, col="red",

+ xlab="b2[st]", ylab="g(b2[st])", main="Random Visit effect")

> lines(obj2$x, obj2[,"2.5%"], lty=2, col="red")

> lines(obj2$x, obj2$Mean, lty=1, col="blue")
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Figure 1: PGM GLMM(nhc): Pointwise posterior mean of the joint random effect density
(upper panels), pointwise posterior mean, 2.5% and 97% quantiles of the marginal random
intercept and random Visit effect densities (lower panels).
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7 Summary for the values of individual random effects

Sampled values of the individual random effects are stored in the files b.sim. Posterior mean
and quantiles can be used to infer on the individual random effects.

In this manual, we will show the results for the PGM GLMM(nhc) only. The results for the
remaining models would have been obtained analogically. Note that we will compute posterior
summary for β1 + bi,1 and β2 + bi,2 (i = 1, . . . ,N), that is for random effects shifted by the
corresponding location parameter.

Firstly, we extract from the original data identification numbers of the patients and divide also
these id numbers into two groups according to the treatment.

> IDNR <- unique(epilepticBC$id)

> IDNR0 <- unique(subset(epilepticBC, Trt == 0)$id)

> IDNR1 <- unique(subset(epilepticBC, Trt == 1)$id)

> index.tr0 <- (1:length(IDNR))[IDNR %in% IDNR0]

> index.tr1 <- (1:length(IDNR))[IDNR %in% IDNR1]

Now, we read the sampled values of random effects and shift them by the sampled location
parameters β1 and β2. Note that the sampled location parameters are stored in the columns
“(Intercept)” and “Visit” of the file betaF.sim.

> betab.PGMnhc <- scanFH(paste(dirPaths["PGM_nhc"], "/betaF.sim", sep=""))

+ [,c("(Intercept)", "Visit")]

> b.PGMnhc <- scanFH(paste(dirPaths["PGM_nhc"], "b.sim", sep = "")) +

+ as.matrix(betab.PGMnhc)

> colnames(b.PGMnhc) <- paste(c("Intcpt", "Visit"), rep(IDNR, each=2), sep="")

We continue by computing posterior mean and median for the individual values of random
intercepts. Note that the chains for individual random intercepts are stored in odd columns of
the object b.PGMnhc.

> indIntcpt <- seq(1, ncol(b.PGMnhc) - 1, by = 2)

> bIntcptMean.PGMnhc <- apply(b.PGMnhc[, indIntcpt], 2, mean)

> bIntcptMedian.PGMnhc <- apply(b.PGMnhc[, indIntcpt], 2, median)

Similarly, we compute posterior means and medians for the individual values of random Visit
effects. Note that the chains for individual random Visit effects are stored in even columns of
the object b.PGMnhc.

> indVisit <- seq(2, ncol(b.PGMnhc), by = 2)

> bVisitMean.PGMnhc <- apply(b.PGMnhc[, indVisit], 2, mean)

> bVisitMedian.PGMnhc <- apply(b.PGMnhc[, indVisit], 2, median)

Finally, we produce scatterplots of posterior means and medians of individual values of random
effects. We will use different symbols and colors for the control and treatment group and
identify some patients by their identification numbers. See Figure 2 for the result.
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> showid <- c(112, 135, 225, 227, 232)

> index.show <- IDNR %in% showid

>

> par(mfrow=c(2, 1), bty="n", mar=c(4, 4, 4, 1)+0.1)

>

> ### Posterior means

> plot(bIntcptMean.PGMnhc[index.tr0], bVisitMean.PGMnhc[index.tr0], pch=1, col="red",

+ xlab="beta1+b1", ylab="beta2+b2",

+ xlim=range(bIntcptMean.PGMnhc), ylim=range(bVisitMean.PGMnhc),

+ main="Posterior means")

> points(bIntcptMean.PGMnhc[index.tr1], bVisitMean.PGMnhc[index.tr1], pch=7,

+ col="darkgreen")

> text(bIntcptMean.PGMnhc[index.show]+0.005, bVisitMean.PGMnhc[index.show],

+ labels=IDNR[index.show], pos=4)

>

> ### Posterior medians

> plot(bIntcptMedian.PGMnhc[index.tr0], bVisitMedian.PGMnhc[index.tr0], pch=1, col="red",

+ xlab="beta1+b1", ylab="beta2+b2",

+ xlim=range(bIntcptMedian.PGMnhc), ylim=range(bVisitMedian.PGMnhc),

+ main="Posterior medians")

> points(bIntcptMedian.PGMnhc[index.tr1], bVisitMedian.PGMnhc[index.tr1], pch=7,

+ col="darkgreen")

> text(bIntcptMedian.PGMnhc[index.show]+0.005, bVisitMedian.PGMnhc[index.show],

+ labels=IDNR[index.show], pos=4)

27



−2.5 −2.0 −1.5 −1.0 −0.5 0.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Posterior means

beta1+b1

be
ta

2+
b2

135

227

112

225

232

−2.5 −2.0 −1.5 −1.0 −0.5 0.0

−1
.5

−1
.0

−0
.5

0.
0

0.
5

Posterior medians

beta1+b1

be
ta

2+
b2

135

227

112

225

232

Figure 2: PGM GLMM(nhc): Scatterplot of the posterior means and posterior medians of
individual random effects shifted by the locations β1 and β2.

28



References

Breslow, N. E. and Clayton, D. G. (1993). Approximate inference in generalized linear mixed
models. Journal of the American Statistical Association, 88, 9–25.

Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models. Bayesian

Analysis, 1, 515–533.

Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). Bayesian Data Analysis.
Chapman & Hall/CRC, Boca Raton, Second edition. ISBN 1-58488-388-X.
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