in congruence modular varieties

Michael Kompatscher Charles University Prague

22/06/2019 AAA98 - Dresden

The equivalence problem

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

Circuit equivalence problem CEQV(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials, encoded by *circuits*

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

Circuit equivalence problem CEQV(A)

INPUT: $p(x_1,...,x_n), q(x_1,...,x_n)$ polynomials, encoded by *circuits*

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

 $\mathsf{CEQV}(\mathbf{A}) \in \mathsf{coNP}$

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

Circuit equivalence problem CEQV(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials, encoded by *circuits*

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

 $CEQV(\mathbf{A}) \in coNP$

Main question

What are criteria for tractability (P) or hardness (coNP-c)?

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

Circuit equivalence problem CEQV(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials, encoded by *circuits*

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

 $CEQV(\mathbf{A}) \in coNP$

Main question

What are criteria for tractability (P) or hardness (coNP-c)?

Why circuits?

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

Circuit equivalence problem CEQV(A)

INPUT: $p(x_1, ..., x_n), q(x_1, ..., x_n)$ polynomials, encoded by *circuits*

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

 $CEQV(\mathbf{A}) \in coNP$

Main question

What are criteria for tractability (P) or hardness (coNP-c)?

Why circuits?

Pol(A)... clone of polynomials of A

• $Pol(\mathbf{A}) \subseteq Pol(\mathbf{A}') \Rightarrow CEQV(\mathbf{A}) \le CEQV(\mathbf{A}')$

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

Circuit equivalence problem CEQV(A)

Input: $p(x_1,\ldots,x_n), q(x_1,\ldots,x_n)$ polynomials, encoded by *circuits*

QUESTION: Does $\mathbf{A} \models p(x_1, \dots, x_n) \approx q(x_1, \dots, x_n)$?

 $CEQV(A) \in coNP$

Main question

What are criteria for tractability (P) or hardness (coNP-c)?

Why circuits?

Pol(A)... clone of polynomials of A

- $Pol(\mathbf{A}) \subseteq Pol(\mathbf{A}') \Rightarrow CEQV(\mathbf{A}) \leq CEQV(\mathbf{A}')$
- If input encoded by strings ('PolEQV') \rightarrow language sensitive.

$$\mathbf{A} = (A, f_1, \dots, f_n)$$
... finite algebra

Circuit equivalence problem CEQV(A)

INPUT: $p(x_1,...,x_n), q(x_1,...,x_n)$ polynomials, encoded by *circuits* QUESTION: Does $\mathbf{A} \models p(x_1,...,x_n) \approx q(x_1,...,x_n)$?

 $CEQV(\mathbf{A}) \in coNP$

Main question

What are criteria for tractability (P) or hardness (coNP-c)?

Why circuits?

Pol(A)... clone of polynomials of A

- $Pol(\mathbf{A}) \subseteq Pol(\mathbf{A}') \Rightarrow CEQV(\mathbf{A}) \le CEQV(\mathbf{A}')$
- If input encoded by strings ('PolEQV') \rightarrow language sensitive.
- (will set aside in this talk)

A... from congruence modular variety

A... from congruence modular variety

• **A** Abelian \leftrightarrow module. CEQV(**A**) \in P compute normal form $p(\bar{x}) \approx \alpha_0 + \sum_{i=1}^n \alpha_i x_i$

A... from congruence modular variety

- **A** Abelian \leftrightarrow module. CEQV(**A**) \in P compute normal form $p(\bar{x}) \approx \alpha_0 + \sum_{i=1}^n \alpha_i x_i$
- **A** k-supernilpotent. CEQV(**A**) \in P: $p(x_1 ..., x_n) \approx 0$ iff $p(a_1 ..., a_n) = 0$, for all \bar{a} with at most k-many $a_i \neq 0$ (Aichinger, Mudrinski '10)

A... from congruence modular variety

- **A** Abelian \leftrightarrow module. CEQV(**A**) \in P compute normal form $p(\bar{x}) \approx \alpha_0 + \sum_{i=1}^n \alpha_i x_i$
- **A** k-supernilpotent. CEQV(**A**) \in P: $p(x_1 \ldots, x_n) \approx 0$ iff $p(a_1 \ldots, a_n) = 0$, for all \bar{a} with at most k-many $a_i \neq 0$ (Aichinger, Mudrinski '10)

 A non-solvable: CEQV(A) ∈ coNP-c (Idziak, Krzaczkowski '18)

A... from congruence modular variety

- **A** Abelian \leftrightarrow module. CEQV(**A**) \in P compute normal form $p(\bar{x}) \approx \alpha_0 + \sum_{i=1}^n \alpha_i x_i$
- **A** k-supernilpotent. CEQV(**A**) \in P: $p(x_1 \ldots, x_n) \approx 0$ iff $p(a_1 \ldots, a_n) = 0$, for all \bar{a} with at most k-many $a_i \neq 0$ (Aichinger, Mudrinski '10)
- A solvable, non-nilpotent:
 ∃θ : CEQV(A/θ) ∈ coNP-c (Idziak, Krzaczkowski '18)
- A non-solvable: CEQV(A) ∈ coNP-c (Idziak, Krzaczkowski '18)

A... from congruence modular variety

- **A** Abelian \leftrightarrow module. CEQV(**A**) \in P compute normal form $p(\bar{x}) \approx \alpha_0 + \sum_{i=1}^n \alpha_i x_i$
- **A** k-supernilpotent. CEQV(**A**) \in P: $p(x_1 ..., x_n) \approx 0$ iff $p(a_1 ..., a_n) = 0$, for all \bar{a} with at most k-many $a_i \neq 0$ (Aichinger, Mudrinski '10)
- A nilpotent, not supernilpotent...?
- A solvable, non-nilpotent:
 ∃θ: CEQV(A/θ) ∈ coNP-c
 (Idziak, Krzaczkowski '18)
- A non-solvable: CEQV(A) ∈ coNP-c (Idziak, Krzaczkowski '18)

Nilpotent algebras

A... *n*-nilpotent from CM variety.

A... *n*-nilpotent from CM variety. Theorem (Freese, McKenzie)

A... *n*-nilpotent from CM variety.

Theorem (Freese, McKenzie)

Then \exists **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$ and

$$f^{\mathbf{A}}((l_1, u_1), \ldots, (l_n, u_n)) = (f^{\mathbf{L}}(l_1, \ldots, l_n) + \hat{f}(u_1, \ldots, u_n), f^{\mathbf{U}}(u_1, \ldots, u_n)),$$

for all operations.

A... *n*-nilpotent from CM variety.

Theorem (Freese, McKenzie)

Then \exists **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$ and

$$f^{\mathbf{A}}((l_1, u_1), \dots, (l_n, u_n)) = (f^{\mathbf{L}}(l_1, \dots, l_n) + \hat{f}(u_1, \dots, u_n), f^{\mathbf{U}}(u_1, \dots, u_n)),$$

for all operations. We write $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$.

A... *n*-nilpotent from CM variety.

Theorem (Freese, McKenzie)

Then \exists **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$ and

$$f^{\mathbf{A}}((l_1, u_1), \ldots, (l_n, u_n)) = (f^{\mathbf{L}}(l_1, \ldots, l_n) + \hat{f}(u_1, \ldots, u_n), f^{\mathbf{U}}(u_1, \ldots, u_n)),$$

for all operations. We write $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$.

Corollary

Checking $\mathbf{A} \models p^{\mathbf{A}}(x_1, \dots, x_n) \approx 0$ is equivalent to checking

A... *n*-nilpotent from CM variety.

Theorem (Freese, McKenzie)

Then \exists **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$ and

$$f^{\mathbf{A}}((l_1, u_1), \ldots, (l_n, u_n)) = (f^{\mathbf{L}}(l_1, \ldots, l_n) + \hat{f}(u_1, \ldots, u_n), f^{\mathbf{U}}(u_1, \ldots, u_n)),$$

for all operations. We write $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$.

Corollary

Checking
$$\mathbf{A} \models p^{\mathbf{A}}(x_1, \dots, x_n) \approx 0$$
 is equivalent to checking $p^{\mathbf{U}}(u_1, \dots, u_n) \approx 0$ in \mathbf{U} $p^{\mathbf{L}}(I_1, \dots, I_n) \approx c$ in \mathbf{L} $\hat{p}(u_1, \dots, u_n) \approx -c$ in \mathbf{L}

A... *n*-nilpotent from CM variety.

Theorem (Freese, McKenzie)

Then \exists **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$ and

$$f^{\mathbf{A}}((I_1, u_1), \dots, (I_n, u_n)) = (f^{\mathbf{L}}(I_1, \dots, I_n) + \hat{f}(u_1, \dots, u_n), f^{\mathbf{U}}(u_1, \dots, u_n)),$$

for all operations. We write $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$.

Corollary

Checking
$$\mathbf{A} \models p^{\mathbf{A}}(x_1, \dots, x_n) \approx 0$$
 is equivalent to checking $p^{\mathbf{U}}(u_1, \dots, u_n) \approx 0$ in $\mathbf{U} \sim \checkmark (n-1\text{-nilpotent})$ $p^{\mathbf{L}}(I_1, \dots, I_n) \approx c$ in $\mathbf{L} \checkmark \hat{p}(u_1, \dots, u_n) \approx -c$ in \mathbf{L}

A... *n*-nilpotent from CM variety.

Theorem (Freese, McKenzie)

Then \exists **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$ and

$$f^{\mathbf{A}}((l_1, u_1), \ldots, (l_n, u_n)) = (f^{\mathbf{L}}(l_1, \ldots, l_n) + \hat{f}(u_1, \ldots, u_n), f^{\mathbf{U}}(u_1, \ldots, u_n)),$$

for all operations. We write $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$.

Corollary

Checking
$$\mathbf{A} \models p^{\mathbf{A}}(x_1, \dots, x_n) \approx 0$$
 is equivalent to checking $p^{\mathbf{U}}(u_1, \dots, u_n) \approx 0$ in $\mathbf{U} \sim \checkmark (n-1\text{-nilpotent})$ $p^{\mathbf{L}}(l_1, \dots, l_n) \approx c$ in $\mathbf{L} \checkmark \hat{p}(u_1, \dots, u_n) \approx -c$ in \mathbf{L}

• we need to analyze the expressions \hat{p} !

A... *n*-nilpotent from CM variety.

Theorem (Freese, McKenzie)

Then \exists **L** Abelian, **U** is (n-1)-nilpotent, $A = L \times U$ and

$$f^{\mathbf{A}}((l_1, u_1), \dots, (l_n, u_n)) = (f^{\mathbf{L}}(l_1, \dots, l_n) + \hat{f}(u_1, \dots, u_n), f^{\mathbf{U}}(u_1, \dots, u_n)),$$

for all operations. We write $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$.

Corollary

Checking
$$\mathbf{A} \models p^{\mathbf{A}}(x_1, \dots, x_n) \approx 0$$
 is equivalent to checking $p^{\mathbf{U}}(u_1, \dots, u_n) \approx 0$ in $\mathbf{U} \sim \checkmark (n-1\text{-nilpotent})$ $p^{\mathbf{L}}(l_1, \dots, l_n) \approx c$ in $\mathbf{L} \checkmark \hat{p}(u_1, \dots, u_n) \approx -c$ in \mathbf{L}

- we need to analyze the expressions \hat{p} !
- Operations $\hat{p} \colon U^n \to L$ form a (\mathbf{U}, \mathbf{L}) -clonoid.

$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f) \text{ with } p \neq q, \ \hat{f}(u) = \begin{cases} 1 \text{ if } u = 0 \\ 0 \text{ else} \end{cases}$$

$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f) \text{ with } p \neq q, \ \hat{f}(u) = \begin{cases} 1 \text{ if } u = 0 \\ 0 \text{ else} \end{cases}$$

2-nilpotent, polynomials of form

$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f) \text{ with } p \neq q, \ \hat{f}(u) = \begin{cases} 1 \text{ if } u = 0 \\ 0 \text{ else} \end{cases}$$

2-nilpotent, polynomials of form

$$p((I_1, u_1), \ldots, (I_n, u_n)) = (\alpha_0 + \sum_i \alpha_i I_i + \hat{p}(u_1, \ldots, u_n), \beta_0 + \sum_i \beta_i u_i),$$

$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f) \text{ with } p \neq q, \ \hat{f}(u) = \begin{cases} 1 \text{ if } u = 0 \\ 0 \text{ else} \end{cases}$$

2-nilpotent, polynomials of form

$$p((l_1, u_1), \dots, (l_n, u_n)) = (\alpha_0 + \sum_i \alpha_i l_i + \hat{p}(u_1, \dots, u_n), \beta_0 + \sum_i \beta_i u_i),$$
 \hat{p} affine combination of $\hat{f}(\delta_0 + \sum_i \delta_i u_i)$

$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f) \text{ with } p \neq q, \ \hat{f}(u) = \begin{cases} 1 \text{ if } u = 0 \\ 0 \text{ else} \end{cases}$$

2-nilpotent, polynomials of form

$$p((I_1, u_1), \dots, (I_n, u_n)) = (\alpha_0 + \sum_i \alpha_i I_i + \hat{p}(u_1, \dots, u_n), \beta_0 + \sum_i \beta_i u_i),$$
 \hat{p} affine combination of $\hat{f}(\delta_0 + \sum_i \delta_i u_i)$

Simplify \hat{p} by:

- $\hat{f}(u) \approx \hat{f}(2u) \approx \cdots \approx \hat{f}((q-1)u)$
- $1 \approx \sum_{i=0}^{p-1} \hat{f}(u-i)$
- axioms for **L** and **U** (e.g. $p \cdot \hat{f}(u) \approx 0$, $\hat{f}(u + q \cdot u') \approx \hat{f}(u)$)

$$\mathbf{L} \otimes^{\mathsf{T}} \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f) \text{ with } p \neq q, \ \hat{f}(u) = \begin{cases} 1 \text{ if } u = 0 \\ 0 \text{ else} \end{cases}$$

2-nilpotent, polynomials of form

$$p((I_1, u_1), \dots, (I_n, u_n)) = (\alpha_0 + \sum_i \alpha_i I_i + \hat{p}(u_1, \dots, u_n), \beta_0 + \sum_i \beta_i u_i),$$
 \hat{p} affine combination of $\hat{f}(\delta_0 + \sum_i \delta_i u_i)$

Simplify \hat{p} by:

- $\hat{f}(u) \approx \hat{f}(2u) \approx \cdots \approx \hat{f}((q-1)u)$
- $1 \approx \sum_{i=0}^{p-1} \hat{f}(u-i)$
- axioms for **L** and **U** (e.g. $p \cdot \hat{f}(u) \approx 0$, $\hat{f}(u + q \cdot u') \approx \hat{f}(u)$)

 \rightarrow compute in **polynomial time** the representation:

$$\hat{p}(u_1,\ldots,u_n)\approx \gamma_0+\sum \gamma_{\bar{\delta}}\cdot\hat{f}(1+\sum \delta_i\cdot u_i)$$

$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f) \text{ with } p \neq q, \ \hat{f}(u) = \begin{cases} 1 \text{ if } u = 0 \\ 0 \text{ else} \end{cases}$$

2-nilpotent, polynomials of form

$$p((I_1, u_1), \dots, (I_n, u_n)) = (\alpha_0 + \sum_i \alpha_i I_i + \hat{p}(u_1, \dots, u_n), \beta_0 + \sum_i \beta_i u_i),$$
 \hat{p} affine combination of $\hat{f}(\delta_0 + \sum_i \delta_i u_i)$

Simplify \hat{p} by:

•
$$\hat{f}(u) \approx \hat{f}(2u) \approx \cdots \approx \hat{f}((q-1)u)$$

•
$$1 \approx \sum_{i=0}^{p-1} \hat{f}(u-i)$$

• axioms for **L** and **U** (e.g.
$$p \cdot \hat{f}(u) \approx 0$$
, $\hat{f}(u + q \cdot u') \approx \hat{f}(u)$)

 \rightarrow compute in **polynomial time** the representation:

$$\hat{p}(u_1,\ldots,u_n)\approx \gamma_0+\sum \gamma_{\bar{\delta}}\cdot\hat{f}(1+\sum \delta_i\cdot u_i)$$

This is representation is unique:

$$\{\hat{f}(1+\sum_{i=1}^n \delta_i \cdot u_i)\} \cup \{1\}$$
 is a basis of the vector space \mathbf{L}^{U^n} for every n .

Thus
$$\mathsf{CEQV}((\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f)) \in \mathsf{P}$$
 (compute normal form of p , and check if $= 0$)

Thus CEQV(($\mathbb{Z}_p \times \mathbb{Z}_q, +, (0,0), -, f$)) $\in P$ (compute normal form of p, and check if = 0)

Observation 1

Thus
$$\mathsf{CEQV}((\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f)) \in \mathsf{P}$$
 (compute normal form of p , and check if $= 0$)

Observation 1

• all operations $U^n \to L$ are generated by \hat{f} .

Thus CEQV((
$$\mathbb{Z}_p \times \mathbb{Z}_q, +, (0,0), -, f$$
)) $\in P$ (compute normal form of p , and check if $= 0$)

- all operations $U^n \to L$ are generated by \hat{f} .
- \Rightarrow For every 2-nilpotent **A** with $\mathbf{L} = \mathbb{Z}_p$, $\mathbf{U} = \mathbb{Z}_q$: $\operatorname{Pol}(\mathbf{A}) \leq \operatorname{Pol}((\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f))$

Thus CEQV((
$$\mathbb{Z}_p \times \mathbb{Z}_q, +, (0,0), -, f$$
)) $\in P$ (compute normal form of p , and check if $= 0$)

- all operations $U^n \to L$ are generated by \hat{f} .
- \Rightarrow For every 2-nilpotent **A** with $\mathbf{L} = \mathbb{Z}_p$, $\mathbf{U} = \mathbb{Z}_q$: $\operatorname{Pol}(\mathbf{A}) \leq \operatorname{Pol}((\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f))$
- $\Rightarrow CEQV(\mathbf{A}) \in P.$

Thus CEQV((
$$\mathbb{Z}_p \times \mathbb{Z}_q, +, (0,0), -, f$$
)) $\in P$ (compute normal form of p , and check if $= 0$)

- all operations $U^n \to L$ are generated by \hat{f} .
- \Rightarrow For every 2-nilpotent **A** with $\mathbf{L} = \mathbb{Z}_p$, $\mathbf{U} = \mathbb{Z}_q$: $\operatorname{Pol}(\mathbf{A}) \leq \operatorname{Pol}((\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f))$
- $\Rightarrow CEQV(\mathbf{A}) \in P.$
 - Question: Can we find such canonical extension for every L, U?

Thus CEQV((
$$\mathbb{Z}_p \times \mathbb{Z}_q, +, (0,0), -, f$$
)) $\in P$ (compute normal form of p , and check if $= 0$)

Observation 1

- all operations $U^n \to L$ are generated by \hat{f} .
- \Rightarrow For every 2-nilpotent **A** with $\mathbf{L} = \mathbb{Z}_p$, $\mathbf{U} = \mathbb{Z}_q$: $\operatorname{Pol}(\mathbf{A}) \leq \operatorname{Pol}((\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f))$
- $\Rightarrow CEQV(\mathbf{A}) \in P.$
 - Question: Can we find such canonical extension for every L, U?

Thus CEQV((
$$\mathbb{Z}_p \times \mathbb{Z}_q, +, (0,0), -, f$$
)) $\in P$ (compute normal form of p , and check if $= 0$)

Observation 1

- all operations $U^n \to L$ are generated by \hat{f} .
- \Rightarrow For every 2-nilpotent **A** with $\mathbf{L} = \mathbb{Z}_p$, $\mathbf{U} = \mathbb{Z}_q$: $\operatorname{Pol}(\mathbf{A}) \leq \operatorname{Pol}((\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f))$
- $\Rightarrow CEQV(\mathbf{A}) \in P.$
 - Question: Can we find such canonical extension for every L, U?

Observation 2

• Only finitely many identities used to compute normal form.

Thus CEQV((
$$\mathbb{Z}_p \times \mathbb{Z}_q, +, (0,0), -, f$$
)) $\in P$ (compute normal form of p , and check if $= 0$)

Observation 1

- all operations $U^n \to L$ are generated by \hat{f} .
- \Rightarrow For every 2-nilpotent **A** with $\mathbf{L} = \mathbb{Z}_p$, $\mathbf{U} = \mathbb{Z}_q$: $\operatorname{Pol}(\mathbf{A}) \leq \operatorname{Pol}((\mathbb{Z}_p \times \mathbb{Z}_q, +, (0, 0), -, f))$
- $\Rightarrow CEQV(\mathbf{A}) \in P.$
 - Question: Can we find such canonical extension for every L, U?

- Only finitely many identities used to compute normal form.
- \Rightarrow $(\mathbb{Z}_p \times \mathbb{Z}_q, +, (0,0), -, f)$ is finitely based.

Let
$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_p, +, (0, 0), -, f),$$

 $i: U \to L$ isomorphism
 $\hat{f}(u_1, u_2, \dots, u_{p-1}) = i(u_1 \cdot u_2 \cdots u_{p-1}).$

Let
$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_p, +, (0, 0), -, f),$$

 $i : U \to L$ isomorphism
 $\hat{f}(u_1, u_2, \dots, u_{p-1}) = i(u_1 \cdot u_2 \cdots u_{p-1}).$

ullet \hat{f} generates all unary maps U o L (by $u \mapsto \hat{f}(u-1,\ldots,u-(p-1))$)

```
Let \mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_p, +, (0, 0), -, f),

i: U \to L isomorphism

\hat{f}(u_1, u_2, \dots, u_{p-1}) = i(u_1 \cdot u_2 \cdots u_{p-1}).
```

- ullet \hat{f} generates all unary maps U o L (by $u \mapsto \hat{f}(u-1,\ldots,u-(p-1))$)
- For $n \in \mathbb{N}$, the 'monomials' of degree $\leq p-1$ $B_n = \{\hat{f}(1, \dots, 1, u_{i_1}, \dots, u_{i_k})\}$ form a basis for all $\hat{p}(u_1, \dots, u_n)$

```
Let \mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_p, +, (0, 0), -, f),

i: U \to L isomorphism

\hat{f}(u_1, u_2, \dots, u_{p-1}) = i(u_1 \cdot u_2 \cdots u_{p-1}).
```

- ullet \hat{f} generates all unary maps U o L (by $u \mapsto \hat{f}(u-1,\ldots,u-(p-1))$)
- For $n \in \mathbb{N}$, the 'monomials' of degree $\leq p-1$ $B_n = \{\hat{f}(1, \dots, 1, u_{i_1}, \dots, u_{i_k})\} \text{ form a basis for all } \hat{p}(u_1, \dots, u_n)$
- Normal form of \hat{p} in B_n can be computed in polynomial time (distributivity of \hat{f} over +)

Let
$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_p, +, (0, 0), -, f),$$

 $i : U \to L$ isomorphism
 $\hat{f}(u_1, u_2, \dots, u_{p-1}) = i(u_1 \cdot u_2 \cdots u_{p-1}).$

- ullet \hat{f} generates all unary maps U o L (by $u \mapsto \hat{f}(u-1,\ldots,u-(p-1))$)
- For $n \in \mathbb{N}$, the 'monomials' of degree $\leq p-1$ $B_n = \{\hat{f}(1, \dots, 1, u_{i_1}, \dots, u_{i_k})\}$ form a basis for all $\hat{p}(u_1, \dots, u_n)$
- Normal form of \hat{p} in B_n can be computed in polynomial time (distributivity of \hat{f} over +)

$$\Rightarrow \mathsf{CEQV}(\mathbf{L} \otimes^T \mathbf{U}) \in \mathsf{P}$$

Let
$$\mathbf{L} \otimes^T \mathbf{U} = (\mathbb{Z}_p \times \mathbb{Z}_p, +, (0, 0), -, f),$$

 $i: U \to L$ isomorphism
 $\hat{f}(u_1, u_2, \dots, u_{p-1}) = i(u_1 \cdot u_2 \cdots u_{p-1}).$

- ullet \hat{f} generates all unary maps U o L (by $u \mapsto \hat{f}(u-1,\ldots,u-(p-1))$)
- For $n \in \mathbb{N}$, the 'monomials' of degree $\leq p-1$ $B_n = \{\hat{f}(1, \dots, 1, u_{i_1}, \dots, u_{i_k})\}$ form a basis for all $\hat{p}(u_1, \dots, u_n)$
- Normal form of \hat{p} in B_n can be computed in polynomial time (distributivity of \hat{f} over +)

$$\Rightarrow CEQV(\mathbf{L} \otimes^T \mathbf{U}) \in P$$

Observe: All **A** with $\mathbf{L} = \mathbf{U} = \mathbb{Z}_p$ and **unary** operations reduce to this one. Analogous for *n*-ary operations.

CEQV for 2-nilpotent algebras

Theorem (Kawałek, MK, Krzaczkowski '19) Let $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$ 2-nilpotent. Then $CEQV(\mathbf{A}) \in P$

Theorem (Kawałek, MK, Krzaczkowski '19)

Let $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$ 2-nilpotent. Then $CEQV(\mathbf{A}) \in P$

Theorem (Kawałek, MK, Krzaczkowski '19)

Let $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$ 2-nilpotent. Then $CEQV(\mathbf{A}) \in P$

Proof idea

1. Examples 1 generalizes to $\mathbf{U}=\mathbb{Z}_p^k$ and $\mathbf{L}=\mathbb{Z}_q^l$

7

Theorem (Kawałek, MK, Krzaczkowski '19)

Let $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$ 2-nilpotent. Then $CEQV(\mathbf{A}) \in P$

- 1. Examples 1 generalizes to $\mathbf{U}=\mathbb{Z}_p^k$ and $\mathbf{L}=\mathbb{Z}_q^l$
- 2. Deal with products $\mathbf{U} = \mathbb{Z}_{p_1}^{k_1} \times \cdots \times \mathbb{Z}_{p_n}^{k_n}$ by adapting \hat{f} : $\hat{f}(u_1, \dots, u_n) = 1$ if $\forall j : \pi_j(u_j) = 0$ and 0 else

Theorem (Kawałek, MK, Krzaczkowski '19)

Let $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$ 2-nilpotent. Then $CEQV(\mathbf{A}) \in P$

- 1. Examples 1 generalizes to $\mathbf{U}=\mathbb{Z}_p^k$ and $\mathbf{L}=\mathbb{Z}_q^l$
- 2. Deal with products $\mathbf{U} = \mathbb{Z}_{p_1}^{k_1} \times \cdots \times \mathbb{Z}_{p_n}^{k_n}$ by adapting \hat{f} : $\hat{f}(u_1, \dots, u_n) = 1$ if $\forall j : \pi_j(u_j) = 0$ and 0 else
- 3. Problem: Non vector-spaces, e.g. $\mathbf{U}\cong\mathbb{Z}_9$, $\mathbf{L}\cong\mathbb{Z}_4$.

Theorem (Kawałek, MK, Krzaczkowski '19)

Let $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$ 2-nilpotent. Then $CEQV(\mathbf{A}) \in P$

- 1. Examples 1 generalizes to $\mathbf{U}=\mathbb{Z}_p^k$ and $\mathbf{L}=\mathbb{Z}_q^l$
- 2. Deal with products $\mathbf{U} = \mathbb{Z}_{p_1}^{k_1} \times \cdots \times \mathbb{Z}_{p_n}^{k_n}$ by adapting \hat{f} : $\hat{f}(u_1, \dots, u_n) = 1$ if $\forall j : \pi_j(u_j) = 0$ and 0 else
- 3. Problem: Non vector-spaces, e.g. $\mathbf{U}\cong\mathbb{Z}_9$, $\mathbf{L}\cong\mathbb{Z}_4$.
- 4. → **different approach:** 'systematic summing'

Theorem (Kawałek, MK, Krzaczkowski '19)

Let $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$ 2-nilpotent. Then $CEQV(\mathbf{A}) \in P$

- 1. Examples 1 generalizes to $\mathbf{U}=\mathbb{Z}_p^k$ and $\mathbf{L}=\mathbb{Z}_q^l$
- 2. Deal with products $\mathbf{U} = \mathbb{Z}_{p_1}^{k_1} \times \cdots \times \mathbb{Z}_{p_n}^{k_n}$ by adapting \hat{f} : $\hat{f}(u_1, \dots, u_n) = 1$ if $\forall j : \pi_j(u_j) = 0$ and 0 else
- 3. Problem: Non vector-spaces, e.g. $\mathbf{U}\cong\mathbb{Z}_9$, $\mathbf{L}\cong\mathbb{Z}_4$.
- 4. → **different approach:** 'systematic summing'
- 5. E.g. $\hat{f}(u+1) + \hat{f}(u+v) + \hat{f}(u+4v) \approx const$

Theorem (Kawałek, MK, Krzaczkowski '19)

Let $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$ 2-nilpotent. Then $CEQV(\mathbf{A}) \in P$

- 1. Examples 1 generalizes to $\mathbf{U}=\mathbb{Z}_p^k$ and $\mathbf{L}=\mathbb{Z}_q^l$
- 2. Deal with products $\mathbf{U} = \mathbb{Z}_{p_1}^{k_1} \times \cdots \times \mathbb{Z}_{p_n}^{k_n}$ by adapting \hat{f} : $\hat{f}(u_1, \dots, u_n) = 1$ if $\forall j : \pi_j(u_j) = 0$ and 0 else
- 3. **Problem:** Non vector-spaces, e.g. $U \cong \mathbb{Z}_9$, $L \cong \mathbb{Z}_4$.
- 4. \rightarrow different approach: 'systematic summing'
- 5. E.g. $\hat{f}(u+1) + \hat{f}(u+v) + \hat{f}(u+4v) \approx const$
- $\Rightarrow \sum_{a=1}^{9}(\hat{f}(u+1)+\hat{f}(u+a)+\hat{f}(u+4a))pprox \hat{f}(u+1)+1+1pprox const$

Theorem (Kawałek, MK, Krzaczkowski '19)

Let $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$ 2-nilpotent. Then $CEQV(\mathbf{A}) \in P$

Proof idea

- 1. Examples 1 generalizes to $\mathbf{U}=\mathbb{Z}_p^k$ and $\mathbf{L}=\mathbb{Z}_q^l$
- 2. Deal with products $\mathbf{U} = \mathbb{Z}_{p_1}^{k_1} \times \cdots \times \mathbb{Z}_{p_n}^{k_n}$ by adapting \hat{f} : $\hat{f}(u_1, \dots, u_n) = 1$ if $\forall j : \pi_j(u_j) = 0$ and 0 else
- 3. Problem: Non vector-spaces, e.g. $\mathbf{U}\cong\mathbb{Z}_9$, $\mathbf{L}\cong\mathbb{Z}_4$.
- 4. → different approach: 'systematic summing'
- 5. E.g. $\hat{f}(u+1) + \hat{f}(u+v) + \hat{f}(u+4v) \approx const$

$$\Rightarrow \sum_{a=1}^{9} (\hat{f}(u+1) + \hat{f}(u+a) + \hat{f}(u+4a)) \approx \hat{f}(u+1) + 1 + 1 \approx const$$

Problem

Specific for abelian **U**. Are we stuck in general?

AAA (Aichinger's awesome

augmentations)

Proposition (Aichinger '18)

Let **A** be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

- $(A, +, 0, -) \cong \mathbb{Z}_{p_1}^{i_1} \times \cdots \times \mathbb{Z}_{p_m}^{i_m}$
- (A, +, 0, -) is still nilpotent.

Proposition (Aichinger '18)

Let **A** be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

- $(A,+,0,-)\cong \mathbb{Z}_{p_1}^{i_1}\times\cdots\times\mathbb{Z}_{p_m}^{i_m}$
- $(\mathbf{A}, +, 0, -)$ is still nilpotent.

$$CEQV(\mathbf{A}) \leq CEQV((\mathbf{A},+,0,-))$$

Proposition (Aichinger '18)

Let **A** be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

- $(A, +, 0, -) \cong \mathbb{Z}_{p_1}^{i_1} \times \cdots \times \mathbb{Z}_{p_m}^{i_m}$
- $(\mathbf{A}, +, 0, -)$ is still nilpotent.

$$\mathsf{CEQV}(\boldsymbol{\mathsf{A}}) \leq \mathsf{CEQV}((\boldsymbol{\mathsf{A}},+,0,-))$$

ightarrow work only in Aichinger's extended groups

Proposition (Aichinger '18)

Let **A** be nilpotent, $|A|=p_1^{i_1}\cdot p_2^{i_2}\cdots p_m^{i_m}.$ Then there are operations +,0,- such that

- $(A,+,0,-) \cong \mathbb{Z}_{p_1}^{i_1} \times \cdots \times \mathbb{Z}_{p_m}^{i_m}$
- $(\mathbf{A}, +, 0, -)$ is still nilpotent.

$$CEQV(\mathbf{A}) \leq CEQV((\mathbf{A},+,0,-))$$

ightarrow work only in Aichinger's extended groups

Remark

The degree of nilpotency might increase (but $\leq \log_2(|A|)$).

E.g. $(\mathbb{Z}_4, +)$ Abelian, but $(\mathbb{Z}_4, +, +_V)$ is 2-nilpotent.

A... *n*-nilpotent, extension of a group $\mathbb{Z}_{p_1}^{i_1} imes \cdots imes \mathbb{Z}_{p_m}^{i_m}$

A... *n*-nilpotent, extension of a group $\mathbb{Z}_{p_1}^{i_1} imes \cdots imes \mathbb{Z}_{p_m}^{i_m}$

1.
$$\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$$

A... *n*-nilpotent, extension of a group $\mathbb{Z}_{p_1}^{i_1} imes \cdots imes \mathbb{Z}_{p_m}^{i_m}$

- 1. $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$
- 2. Extend **A** by \hat{f} (that canonically generates subspaces of \mathbf{L}^{U^n})

A... *n*-nilpotent, extension of a group $\mathbb{Z}_{p_1}^{i_1} imes \cdots imes \mathbb{Z}_{p_m}^{i_m}$

- 1. $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$
- 2. Extend **A** by \hat{f} (that canonically generates subspaces of \mathbf{L}^{U^n})
- 3. Extension is finitely based

A... *n*-nilpotent, extension of a group $\mathbb{Z}_{p_1}^{i_1} imes \cdots imes \mathbb{Z}_{p_m}^{i_m}$

Plan of attack

- 1. $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$
- 2. Extend **A** by \hat{f} (that canonically generates subspaces of \mathbf{L}^{U^n})
- 3. Extension is finitely based
- 4. Computing a normal form of $\hat{p}(u_1, \ldots, u_n)$ in \hat{f} is possible

9

A... *n*-nilpotent, extension of a group $\mathbb{Z}_{p_1}^{i_1} imes \cdots imes \mathbb{Z}_{p_m}^{i_m}$

Plan of attack

- 1. $\mathbf{A} = \mathbf{L} \otimes^T \mathbf{U}$
- 2. Extend **A** by \hat{f} (that canonically generates subspaces of \mathbf{L}^{U^n})
- 3. Extension is finitely based
- 4. Computing a normal form of $\hat{p}(u_1, \ldots, u_n)$ in \hat{f} is possible

If U is abelian (4) can be done in P. But in general?

9

Example (simplified)

$$\mathbf{A} = (\mathbb{Z}_2 \times (\mathbb{Z}_3 \times \mathbb{Z}_5), +, f_2, f_3), \text{ with } f_2((x_2, x_3, x_5)) = (1, 0, 0) \text{ if } x_3 = 0 \\ f_3((x_2, x_3, x_5)) = (0, 1, 0) \text{ if } x_5 = 0$$

Example (simplified)

$$\mathbf{A} = (\mathbb{Z}_2 \times (\mathbb{Z}_3 \times \mathbb{Z}_5), +, f_2, f_3), \text{ with }$$

$$f_2((x_2, x_3, x_5)) = (1, 0, 0) \text{ if } x_3 = 0$$

$$f_3((x_2, x_3, x_5)) = (0, 1, 0) \text{ if } x_5 = 0$$

$$p(x, y) \approx f_2(1 + y) + f_2(x + f_3(x + 2z)); \text{ corresponds to the circuit }$$

Example (simplified)

$$\mathbf{A} = (\mathbb{Z}_2 \times (\mathbb{Z}_3 \times \mathbb{Z}_5), +, f_2, f_3), \text{ with }$$

$$f_2((x_2, x_3, x_5)) = (1, 0, 0) \text{ if } x_3 = 0$$

$$f_3((x_2, x_3, x_5)) = (0, 1, 0) \text{ if } x_5 = 0$$

$$p(x, y) \approx f_2(1 + y) + f_2(x + f_3(x + 2z)); \text{ corresponds to the circuit }$$

MOD_n outputs 1
 iff input sums to 0 mod n

Example (simplified)

$$\mathbf{A} = (\mathbb{Z}_2 \times (\mathbb{Z}_3 \times \mathbb{Z}_5), +, f_2, f_3), \text{ with }$$
 $f_2((x_2, x_3, x_5)) = (1, 0, 0) \text{ if } x_3 = 0$
 $f_3((x_2, x_3, x_5)) = (0, 1, 0) \text{ if } x_5 = 0$
 $p(x, y) \approx f_2(1 + y) + f_2(x + f_3(x + 2z)); \text{ corresponds to the circuit}$

- MOD_n outputs 1
 iff input sums to 0 mod n
- (Boolean) circuits only using MOD_n gates are called CC[n]-circuits

Example (simplified)

$$\mathbf{A} = (\mathbb{Z}_2 \times (\mathbb{Z}_3 \times \mathbb{Z}_5), +, f_2, f_3), \text{ with } f_2((x_2, x_3, x_5)) = (1, 0, 0) \text{ if } x_3 = 0 \\ f_3((x_2, x_3, x_5)) = (0, 1, 0) \text{ if } x_5 = 0$$

$$p(x,y) \approx f_2(1+y) + f_2(x+f_3(x+2z))$$
; corresponds to the circuit

- MOD_n outputs 1
 iff input sums to 0 mod n
- (Boolean) circuits only using MOD_n gates are called CC[n]-circuits
- CEQV(A) reduces to check if CC[30]-circuits of depth 3 are ≈ 0

A... finite nilpotent, from a CM variety

Proposition (MK)

CEQV(**A**) can be reduced to checking equivalence of CC[n] circuits of depth at most k, for some n, k (and vice versa).

A... finite nilpotent, from a CM variety

Proposition (MK)

CEQV(**A**) can be reduced to checking equivalence of CC[n] circuits of depth at most k, for some n, k (and vice versa).

Question

What is the complexity of $CC[n]_k - EQV$?

A... finite nilpotent, from a CM variety

Proposition (MK)

CEQV(\mathbf{A}) can be reduced to checking equivalence of CC[n] circuits of depth at most k, for some n, k (and vice versa).

Question

What is the complexity of $CC[n]_k - EQV$?

Conjecture (Barrington, Straubing, Therien '90)

 $CC[n]_k$ circuits need size $\mathcal{O}(c^s)$ to compute AND_s .

A... finite nilpotent, from a CM variety

Proposition (MK)

CEQV(**A**) can be reduced to checking equivalence of CC[n] circuits of depth at most k, for some n, k (and vice versa).

Question

What is the complexity of $CC[n]_k - EQV$?

Conjecture (Barrington, Straubing, Therien '90)

 $CC[n]_k$ circuits need size $\mathcal{O}(c^s)$ to compute AND_s .

• Conjecture true \Rightarrow $CC[n]_k$ — EQV decidable in $\mathcal{O}(|C|^{\log(|C|)})$

A... finite nilpotent, from a CM variety

Proposition (MK)

CEQV(**A**) can be reduced to checking equivalence of CC[n] circuits of depth at most k, for some n, k (and vice versa).

Question

What is the complexity of $CC[n]_k - EQV$?

Conjecture (Barrington, Straubing, Therien '90)

 $CC[n]_k$ circuits need size $\mathcal{O}(c^s)$ to compute AND_s .

- Conjecture true $\Rightarrow CC[n]_k \text{EQV}$ decidable in $\mathcal{O}(|C|^{\log(|C|)})$
- If AND_s -circuits computable in $P \Rightarrow CC[n]_k EQV \in coNP-c$

A... finite nilpotent, from a CM variety

Proposition (MK)

CEQV(**A**) can be reduced to checking equivalence of CC[n] circuits of depth at most k, for some n, k (and vice versa).

Question

What is the complexity of $CC[n]_k - EQV$?

Conjecture (Barrington, Straubing, Therien '90)

 $CC[n]_k$ circuits need size $\mathcal{O}(c^s)$ to compute AND_s .

- Conjecture true \Rightarrow $CC[n]_k$ EQV decidable in $\mathcal{O}(|C|^{\log(|C|)})$
- If AND_s -circuits computable in $P \Rightarrow CC[n]_k EQV \in coNP-c$

Question 2

A has a finitely based nilpotent extension. Is A itself finitely based?

The end

Thank you!