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A= (Anf,...,1f).. finite algebra

Circuit equivalence problem CEQV(A)

INPUT: p(X1,...,Xn), g(X1,...,Xs) polynomials, encoded by circuits
QUESTION: Does A = p(xi,...,%,) = q(x1,...,%n)?

CEQV(A) € coNP
Main question
What are criteria for tractability (P) or hardness (coNP-c)?

Why circuits?

Pol(A)... clone of polynomials of A
e Pol(A) C Pol(A’") = CEQV(A) < CEQV(A’)
e If input encoded by strings ('PolEQV’) — language sensitive.
o (will set aside in this talk)
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(Aichinger, Mudrinski '10)
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e A nilpotent, not supernilpotent...?
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A... n-nilpotent from CM variety.
Theorem (Freese, McKenzie)
Then 3 L Abelian, U is (n — 1)-nilpotent, A= L x U and

FA((hy 1),y (b up)) = (FY (oo ) + f(ul, coytn), YU, ),
for all operations. We write A=L®7 U.

Corollary

Checking A |= pA(x1, ..., x,) ~ 0 is equivalent to checking
pY(u1,...,u,) = 0in U~ v (n— l-nilpotent)
pt(fh,....lh)~cinL Vv

p(ur,...,uy) = —cinl

e we need to analyze the expressions p!

e Operations p: U" — L form a (U, L)-clonoid.
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Example 1 (|L| and |U| coprime)

1ifu=0

L®T U= (Z, X Zg,+,(0,0), —, f) with p # q, f(u) =
0 else

2-nilpotent, polynomials of form

p((/17 u1)7 ey (/fh Un)) :A(ao + Z,‘ Oé,'/,' + ﬁ(uh D) un)aﬁo + Z,’ 5iui)v
p affine combination of 7(dg + >_ &;u;)

Simplify p by:
o flu) = fu)~ -~ F((qg—1)u)
o lx Z{':ol Flu—1i)
e axioms for L and U (e.g. p-f(u) =0, f(u+q-u') ~ f(u))

— compute in polynomial time the representation:

N

Plu,...,up) =y + 375 F(1 4226 up)
This is representation is unique:
{F(1+ 37,6 - 1)} U {1} is a basis of the vector space LY" for every n.
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Thus CEQV((Z, x Zg,+,(0,0),—,f)) € P
(compute normal form of p, and check if = 0)
Observation 1

e all operations U" — L are generated by £

= For every 2-nilpotent A with L =Z,, U = Z:
Pol(A) < Pol((Z, x Z4,+,(0,0),—, f))

= CEQV(A) € P.

e Question: Can we find such canonical extension for every L, U?

Observation 2
e Only finitely many identities used to compute normal form.

= (Zp x Zg,+,(0,0), —, f) is finitely based.
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Example 2 (|L| and |U| of same characteristic)

Let L®" U = (Z, x Zp, +,(0,0), —, f),
i U— L isomorphism

f(ul, UBgoooyg Upfl) = i(u1 sup - Upfl).

o f generates all unary maps U — L (by u+s f(u—1,...,u—(p—1)))

e For n € N, the 'monomials’ of degree < p—1
B, ={f(1,...,1,u;,...,u;)} form a basis for all p(uy, ..., u,)
e Normal form of p in B, can be computed in polynomial time
(distributivity of f over +)

= CEQV(L®T U)e P

Observe: All A with L = U = Z, and unary operations reduce to this
one. Analogous for n-ary operations.
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2-nilpotent algebras

Theorem (Kawatek, MK, Krzaczkowski '19)
Let A=L®" U 2-nilpotent. Then CEQV(A) € P

Proof idea

1. Examples 1 generalizes to U = Z and L = Z/

2. Deal with products U = ZK x - x Z by adapting
f(ui,...,up) =1if Vj:mj(uj) =0 and 0 else

3. Problem: Non vector-spaces, e.g. U = Zg, L = Z4.

4. — different approach: 'systematic summing'

5 E.g. f(u+1)+Ff(u+v)+ f(u+4v)~ const

= Y0 (Flu+1)+f(u+a)+F(u+4a) ~f(u+1)+1+1~ const

Problem

Specific for abelian U. Are we stuck in general?
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Coordinatisation of nilpotent algebras

Proposition (Aichinger '18)
Let A be nilpotent, |A] = pf -pg ... pim_Then there are operations
+,0,— such that

O (Aa+7037) Ezgl Koo X Zgnm

e (A +,0,—) is still nilpotent.

CEQV(A) < CEQV((A,+,0,-))
— work only in Aichinger's extended groups

Remark
The degree of nilpotency might increase (but < log,(|Al)).
E.g. (Z4,+) Abelian, but (Z4,+,+v) is 2-nilpotent.



A... n-nilpotent, extension of a group Z3 x --- x Zi

Plan of attack



A... n-nilpotent, extension of a group Z3 x --- x Zi
Plan of attack

I.A=L®TU



A... n-nilpotent, extension of a group Z3 x --- x Zi
Plan of attack

LA=L®"U
2. Extend A by f (that canonically generates subspaces of LU")



A... n-nilpotent, extension of a group Z3 x --- x Zi
Plan of attack
LA=L®"U
2. Extend A by f (that canonically generates subspaces of LU")

3. Extension is finitely based



A... n-nilpotent, extension of a group Z3 x --- x Zi
Plan of attack
L.A=L®"U

2. Extend A by f (that canonically generates subspaces of LU")

3. Extension is finitely based

4. Computing a normal form of p(uy, ..., up) in f is possible



A... n-nilpotent, extension of a group Z3 x --- x Zi

Plan of attack
LA=L®"U
2. Extend A by f (that canonically generates subspaces of LU")
3. Extension is finitely based

4. Computing a normal form of p(uy, ..., up) in f is possible

If U is abelian (4) can be done in P. But in general?
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f?)((X27X37X5)) - (Ov 10) if x5 =0
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MOD2

™
MOD3 MOD3

Sl
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iff input sums to 0 mod n
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MOD2
AN

MOD
MOD3 e (Boolean) circuits only using MOD,,

/ \ NI/O{)\s gates are called CC[n]-circuits

e MOD,, outputs 1
iff input sums to 0 mod n
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Example (simplified)

A = (Zy x (Zs x Zs), +, b, f5), with
h((x2,x3,%5)) = (1,0,0) if x3 =0
f?)((X27X37X5)) - (Ov 10) if x5 =0

p(x,y) = (1 +y) + fa(x + f3(x + 2z)); corresponds to the circuit

MOD2
N
MOD3 MOD

e MOD,, outputs 1
iff input sums to 0 mod n

e (Boolean) circuits only using MOD,,
/ \ MODs gates are called CC[n]-circuits
/ \\ e CEQV(A) reduces to check if
CC[30]-circuits of depth 3 are =~ 0

10



Open questions

A... finite nilpotent, from a CM variety

Proposition (MK)
CEQV(A) can be reduced to checking equivalence of CC[n] circuits of
depth at most k, for some n, k (and vice versa).
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Open questions

A... finite nilpotent, from a CM variety

Proposition (MK)
CEQV(A) can be reduced to checking equivalence of CC[n] circuits of
depth at most k, for some n, k (and vice versa).

Question
What is the complexity of CC[n], — EQV?

Conjecture (Barrington, Straubing, Therien '90)

CC[n] circuits need size O(c®) to compute AND:;.

e Conjecture true = CC[n]x — EQV decidable in O(|C|'&(I€D)
e If AND;s-circuits computable in P = CC[n],x — EQV € coNP-c

Question 2
A has a finitely based nilpotent extension. Is A jtself finitely based?
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Thank you!
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