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Clones and clonoids

Clones
A ⊆

⋃
n≥1 A

An
is a clone on A if

• all πn
i ∈ A with πn

i (x1, . . . , xn) = xi
• f , g1, . . . , gk ∈ A ⇒ f ◦ (g1, . . . , gk) ∈ A (A ◦ A ⊆ A)

Clo(A) := term clone of algebra A

Clonoids
For clones A,B (on A,B), C ⊆

⋃
n≥1 B

An
is a (A,B)-clonoid if

• C ◦ A ⊆ C,
• B ◦ C ⊆ C.

An (A,B)-clonoid is a (Clo(A),Clo(B))-clonoid.

Goal: For given algebras A, B, describe the (A,B)-clonoids.
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Example: A = B = (Z2,+,−, 0)

C ⊆
⋃

n≥1 Z
Zn

2
2 is (A,B)-clonoid ⇔ ◦-closed under linear functions

Represent f : Zn
2 → Z2 by reduced polynomials, e.g.

f (x , y , z , u) = 1 + xz + xyz .

Then f ∈ C ⇒ f (0, 0, 0, 0) = 1 ∈ C,
⇒ f (x , 0, z , 0)− 1 = xz ∈ C
⇒ f (x , y , z , 0)− 1− xz = xyz ∈ C

Conversely f (x , y , z , u) = 1 + xxz + xyz .

In general: f ∈ C ⇔ f (0, . . . , 0), x1x2 · · · xdeg(f ) ∈ C
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Example: A = B = (Z2,+,−, 0)

∅

⟨0⟩

⟨x1⟩ ⟨1⟩

⟨x1, 1⟩⟨x1x2⟩

⟨x1x2, 1⟩

⋃
n∈N ZZn

2
2

⟨x1, x1x2, x1x2x3, . . . ⟩

⟨F ⟩A,B = smallest (A,B)-clonoid
containing F .

Observations
• lattice ordered by ⊆
• ω-many (A,B)-clonoids

• all but top two clonoid have
finite generating set F

[Kreinecker ’19]

Complete classification for all
A = B = Zp.
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Goal revisited

Goal
For given finite algebras A, B:

• Describe the lattice of (A,B)-clonoids.

• What is its cardinality?

• Find nice generating sets.

Observation
Finite lattice ⇔ ∃k ∈ N : C = ⟨C(k)⟩ for every (A,B)-clonoid C.

C(k) = C ∩ BAk
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Some known results

Pippenger ’02 : (A,B)-clonoid = minor closed set/minion.
Minions are equal to Pol(A,B) = {h : An → B, n ≥ 1} for
relational structures A,B.

Couceiro, Foldes ’09 : (A,B)-clonoid = left/right stable under A/B
(A,B)-clonoids = Pol(A,B) for A,B invariant under A,B.

Lehtonen, Szendrei ’11 : (A,A)-clonoids
study of clones A with finitely many A-equivalence classes
(f ≡ g ⇔ ⟨f ⟩ = f ◦ A = g ◦ A = ⟨g⟩)

Aichinger, Mayr ’16 : (A,B)-clonoid = B-clonoid

Sparks ’19 : The number of (A,B)-clonoid is

1. finite if B has NU-term,
2. ω if B has few subpowers, no NU-term,
3. 2ω else.

Lehtonen ′25 : classification of (A,B)-clonoid, for Boolean A,B
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Erkko’s results on Boolean clonoids
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Clonoids between modules

R-modules are algebras A = (A,+,−, 0, (r)r∈R), with r(x) = r · x .

Clo(A) = {x 7→ rTx =
n∑

i=1

ri · xi with ri ∈ R.}

Goal
Describe the (A,B)-clonoids for finite modules A, B.

Motivation: 2-nilpotent algebras

• classification results [Aichinger, Mayr ’07], [Fioravanti ’21]

• equational bases [Mayr, K. ’24]

• complexity of computational problems
CEQV [Kawa lek, K., Krzaczkowski ’24], SMP [K. ’24] [Patrick Wynne’s talk]
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Finitely many clonoids

Conjecture for A, B finite modules

There are finitely many (A, B)-clonoids ⇔ gcd(|A|, |B|) = 1.

“⇒” [Mayr, Wynne ’24]

as for A = B = Zp

“⇐” True for:
• A = F (1-dim. vector space) [Fioravanti ’20]

• A = F1 × F2 × · · · × Fm (as regular module) [Fioravanti ’21]

• Con(A) is distributive [Mayr, Wynne ’24]
(k-generated, k = nilpotence-degree of Jacobson radical of RA)

• A = Fk (k-dim. vector space) [Fioravanti, MK, Rossi ’25]
(k-generated) (in preparation)
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Generation from minors

Let A, B be modules, f : Ak → B, C = ⟨f ⟩.
Question: When is C = ⟨C(n)⟩?

C(n) = B ◦ f ◦ A(n)

= B ◦ {x 7→ f (Ux) : U ∈ Rk×n
A }

⟨C(n)⟩ = B ◦ {x 7→ f (Mx) : M ∈ Rk×m
A , rk(M) ≤ n}

rk(M) ≤ n ⇔ M = UV ,U ∈ Rk×n
A ,V ∈ Rn×m

A

So C = ⟨C(n)⟩ ⇔ f (x) =
∑

rk(M)≤n

rM f (Mx) for rM ∈ RB
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Generation from minors

Let A, B be clones, f : Ak → B, C = ⟨f ⟩.
Question: When is C = ⟨C(n)⟩?

C(n) = B ◦ f ◦ A(n)

= B ◦ {x 7→ f (Ux) : U ∈ Rk×n
A }

⟨C(n)⟩ = B ◦ {x 7→ f (r(x)) : rkA(r) ≤ n}
rkA(r) ≤ n ⇔ ∃ui ∈ A(n), vj ∈ A : ri = ui ◦ (v1, . . . , vn)

So C = ⟨C(n)⟩ ⇔ f = t ◦ (f ◦ r1, . . . , f ◦ rs),
for t ∈ B, rkA(ri ) ≤ n
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Uniform generation from minors

Definition
For clones A,B, U ⊆ BAk

is uniformly generated by n-ary
(A,B)-minors if ∃t ∈ B, r1, . . . , rs with rkA(ri ) ≤ n

∀f ∈ U : f = t ◦ (f ◦ r1, f ◦ r2, . . . , f ◦ rs).

For modules A,B:

U ⊆ BAk
is uniformly generated by n-ary minors if ∃rM ∈ RB.

∀f ∈ U : f =
∑

rk(M)≤n

rM f (Mx).
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Example [Fioravanti ’20]

A = F, B coprime module

For all f : F2 → B with f (0, 0) = 0:

I (f )(x , y) := |F |−1

(∑
a∈F

f (x + ay , 0)− f (ay , 0)

)
=

{
f (x , y) if y = 0

0 else.

(similar for lines other than y = 0)

⇒ ∃rM ∈ RB∀f ∈ BF2
: f (x) = f (0) +

∑
rk(M)=1

rM f (Mx)

• {f : F2 → B} is uniformly generated by unary minors.

• I is uniformly representable by unary minors.
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Uniform finite generation

Observation [Fioravanti, MK, Rossi ’25]

For clones A, B, the following are equivalent:

1. BAn+1
is ug by n-ary (A,B)-minors,

2. ∀k : BAk
is ug by n-ary (A,B)-minors,

3. All ur I : BAk → BAl
are ur by n-ary (A,B)-minors.

Consequence

BAn+1
is ug by n-ary (A,B)-minors ⇒ ∀(A,B)-clonoid: C = ⟨C(n)⟩

Example [Fioravanti ’20]

{f : F2 → B} is ug by 1-minors ⇒ C = ⟨C(1)⟩ for (F,B)-clonoids
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Products

Observation 2 [Fioravanti, MK, Rossi ’25]

• BAk
1 ug by n-ary (A1,B)-minors

• BAk
2 ug by n-ary (A2,B)-minors

⇒ B(A1×A2)k ug by n-ary (A1 ×A2,B)-minors.

Example [Fioravanti ’21]

For A = F1 × F2 × · · · × Fm, B coprime: C = ⟨C(1)⟩.

Example [Mayr, Wynne ’24]

Conjecture true for uniserial A ⇒ true for Con(A) distributive.
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Beyond modules

Example [Sparks ’19]

• PA projection clone on A

• B contains a NU-operation of arity n

⇒ BAk
is ug by |A|n-ary (PA,B)-minors.

Caution
Not all finiteness results are covered by ug!

Example [Lehtonen, Szendrei ’11]

For A =
⋃

n∈N AAn ∃<ω (A,PA)-clonoids, but

∀n : AAn+1
is not ug by n-ary (A,PA)-minors.
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Additional consequences

Relational bases
Assume C = ⟨C(n)⟩, for every (A,B)-clonoid. Then

C = Pol(A,B), for A = (A,A(n)),B = (B, C ◦ A(n)).

Equational basis

Assume C = ⟨C(n)⟩, for every (A,B)-clonoid. Then

f = g ⇔ f ◦(t1, . . . , tk) = g◦(t1, . . . , tk) for all t1, . . . , tk ∈ Clo(A)(n)

⇝ ug helpful for equational basis of C (as many-sorted algebra A,B, C(k)).

Example [Mayr, K.’24]

Nilpotent extensions of Zp ×Zq for primes p ̸= q are finitely based.
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Clonoids from Fk to B

Goal for A = Fk :
Find rM ∈ RB for all M ∈ F(k+1)×(k+1):

∀f : F(k+1)×k → B : f (X ) =
∑

rk(M)≤k

rM f (MX ).

Proof outline (induction step k − 1 → k):

1. By induction hypothesis: ∃r ′M :

f (X ) =
∑

rk(M)≤k−1

r ′M f (MX ) for rk(X ) ≤ k − 1.

2. ⇒ wlog f (X ) = 0 if rk(X ) ≤ k − 1.

3. Find coefficients rM such that

I (f )(X ) =
∑

rk(M)=k

rM f (MX ) =

{
f (X ) if eTk+1X = 0

0 else.

4. use operations as in (3) to cover all subspaces aTX = 0 and sum up. □
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Proof step 3
Find coefficients rM such that

I (f )(X ) =
∑

rk(M)=k

rM f (MX ) =

{
f (X ) if eTk+1X = 0

0 else.

wlog B = K is a field.

1. Let
χN(X ) :=

{
1 if X = N

0 else.

2. It is enough to find rM with

χ(Id,0)T (X ) =
∑

rk(M)=k,M∈Kk×(k+1)

rMχId (MX )

3. MX = Id has solution space of form

θX0,u = {X0 + uvT |v ∈ Fk}, u /∈ R(X0)

4. find formula χ(Id,0)T (X ) =
∑

V is θ−space χV (X ) □
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Upper bounds

Observation [Fioravanti, MK, Rossi ’25]

For modules A,B:

⟨BAm⟩A,B =
⋃
n∈N

BAn ⇒ m ≥ log |A|
log |RA|

.

Corollary [Fioravanti, MK, Rossi ’25]

(Fk ,B)-clonoids, for coprime F, B
• are generated by their k-ary functions

• in general not by their (k − 1)-ary functions.
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The lattice of (Fk ,B)-clonoids

Task
Describe the lattice of (Fk ,B)-clonoids C.

• C(0) ≤ B,

• {f ∈ C(1) | f (0) = 0} ≤ BFk\{0} as RB[F∗]-module

• {f ∈ C(m) | f (X ) = 0 for X /∈ Rm} ≤ BRm as RB[GL(F,m)]-module
Rm = {X ∈ Fk×m | rk(X ) = m}

Corollary [Fioravanti, MK, Rossi ’25]

The lattice of (Fk ,B)-clonoids ∼= Πk
m=0Lm, with

Lm = lattice of RB[GL(F,m)]-submodules of BRm .
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Back to the conjecture

Conjecture

Every (A, B)-clonoid is finitely generated ⇔ gcd(|A|, |B|) = 1.

Now confirmed for:
• A = Fk vector spaces

• A = Fk1
1 × Fk2

2 × · · · × Fkn
n × A′, as

(F1 × · · · × Fn × RA′)-module, with Con(A′) distributive.

It would be enough to prove:

Conjecture (*)

For A abelian p-group, B coprime abelian group.
∃k : BAk+1

uniformly generated by k-ary (A,B)-minors.
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Thank you!
Questions? Remarks? Counterexamples?
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