Shart pp-definitions

$$
\mathbb{A}=\left(A, R_{1} \ldots R_{k}\right)
$$

$\langle\mathbb{A}\rangle_{\exists, 1} \ldots$ all $p p$-definable relations
be! A pp-defs. If leugth $\leqslant f(n)$
$\forall w \forall Q \in\langle A\rangle \geqslant, \cap A^{n} Q$ has $p P$ definition ψ

$$
|\psi| \leqslant \rho(n)
$$

shout pp-def. - $p p$-difs. of polynawial luyth $O\left(n^{\ell}\right)$ for save l.

Examples

$$
\Rightarrow A=(\{0,1\} ;\{(x, y, z) \mid x+y=z\}, 0,1)
$$

$Q \in A^{n} 0<A>$... offine subspoces $\& 2_{2}^{n} \ldots$
Q - conjunctio of $\leqslant n$ man y

$$
\begin{gathered}
x_{i_{1}}+x_{i_{2}}+\ldots+x_{k}=c \quad c \in\{0,1\} \\
\exists y_{2} \ldots y_{k}:\left(x_{i_{1}}+x_{2}=y_{2}\right) \wedge\left(y_{2}+x_{i_{3}}=y_{3}\right) \wedge 1\left(y_{k}=c\right)
\end{gathered}
$$

pp-pm of eupth $O\left(n^{2}\right)$
\leadsto affine A
$\therefore \quad A=(\{0,1\}$, all bieary $)$ $m_{a j} \in P o l A$

$$
\begin{aligned}
& Q \in\langle A\rangle \Leftrightarrow Q=\bigwedge_{I \mid K 2} p r_{I} Q \\
& P p-d f_{s} \leqslant O\left(n^{2}\right)
\end{aligned}
$$

f $\exists f(y x-x) x f(x y x-\ldots) x \ldots x f(x-x y) x x$ NU polynorphism op ailly $太$ \leadsto pp-deps of length $O\left(n^{k-1}\right)$
"̈f $\langle A\rangle \stackrel{\lambda^{2}}{=}\langle B\rangle$

$$
\begin{aligned}
& \Rightarrow B \text { pp-defs } \leqslant c_{1} \cdot f\left(i_{2} \cdot n\right)
\end{aligned}
$$

Def A -algebraic structure/clove

$$
\begin{aligned}
\text { A has short pp-dels. } & \Leftrightarrow\left\{\begin{array}{c}
\ln \sim A A
\end{array}=\left\{R \leq A^{n}, n \in N\right\}\right. \\
& \text { las short pp-dess. }
\end{aligned}
$$

\%2 if A ppodefs of leypth $s f(n)$
$\Rightarrow \mid\left\langle A D \cap A^{n}\right| \leq c^{f(n)}$ for sone $C D 1$
So short pp-def \Rightarrow few subpowers
Conjecture
-) A has shont pp-defs. $\Leftrightarrow A$ hos fow subpowers
$\begin{array}{rl}9 & A \text { has } \mathrm{pp} \text {-defs of } \\ \text { length } O\left(n^{\operatorname{mox}(k-122)}\right)\end{array} \Rightarrow$ has k-edge tenn.

A hos few subpowers \Longleftrightarrow
$\exists k$-edge-term $t \in \operatorname{Clo} A^{(k+l)}$

$$
\begin{aligned}
& t(y y x: x \ldots x)=x \\
& t\left(y x y_{1}^{\prime} x-x\right) \sim x \\
& t(x x x i y x \ldots x) \approx x
\end{aligned}
$$

flow subponers 4)
$t(x \ldots, \ldots, y) \simeq x$ finitely velated

$$
K \text {-e ofgeterm } \Leftrightarrow i^{\prime}(n)=O\left(n^{k-1}\right)
$$ en lpp-def Rel Qanits n |

$\operatorname{SMP}(A)$
Input: $\bar{a}_{1}, \ldots \bar{a}_{*}, \bar{b} \in A^{n}$
Question: $\bar{b} \in \operatorname{Sg}_{\underline{A}^{n}}\left(\bar{a}_{1}, \ldots \bar{a}_{*}\right)$
Is $\operatorname{SMP}(\underline{A}) \in P$ for A with few subpowers?
${ }^{\text {(y }}$ If $Y \in S$, then can encode $R \leqslant A^{n}$ efficiently as $S_{g_{A^{\prime \prime}}}\left(\bar{a}_{1} \ldots \bar{a}_{k}\right)$

$$
\begin{gathered}
\left.\bar{b} \notin S_{\delta_{A^{n}}\left(a_{1} \ldots a_{x}\right.}\right) \Rightarrow \exists p p-g_{n a} \cdot \psi \neg \psi(\bar{b}), \psi\left(\bar{a}_{i}\right) \\
A \text { short pp-defs } \Rightarrow \operatorname{sMP}(A) \in \text { con }
\end{gathered}
$$

A fer subpowers
$\forall R \leqslant A^{n}$.. has a compact representation $S \subseteq R \quad|S|=O\left(n^{k-1}+n^{2}\right)$ $S_{g}(S)=R$
$b \in S_{8}^{\prime \prime}\left(\bar{a}_{1} \ldots \bar{a}_{k}\right)$. . can be witnessed by S, $\rightarrow \operatorname{SMP}(A) \in N P$

Theorem

$$
\begin{aligned}
& \text { If }+I S P(A) \text { is residually finite theer } \\
& p P-\text { defs of leyth } \alpha\left(n^{k-1}+n^{2}\right) \Leftrightarrow k \text {-edgeterm }
\end{aligned}
$$

B is ST $\operatorname{con} B$

Proof idea
-) enougth to consides critical rels.

- 1 -irreducible
- no dulny vaviables

A few subpowers

$$
R \leqslant \frac{A^{n}}{n} \rightarrow n<k
$$

critical 1 or R has parallelogran property

$$
P P_{I} R
$$

Leman $R \leqslant A^{n} \quad \exists R_{1} \ldots$ Re cr.pp.

$$
R=\underbrace{\prod_{\mid I<K} P r_{I} R}_{O\left(n^{\alpha--}\right)} \otimes R_{1 A \ldots-\cap R_{l}} l \leq|A|^{2} n
$$

\rightarrow only consider R critical, parallelogram property
for R cr. P.P.

$$
\begin{aligned}
& \left(x_{1} x_{2}\right) \sim\left(x_{1}^{\prime} x_{2}^{\prime}\right)^{\prime y_{12}} \Leftrightarrow \exists \bar{z}: \begin{array}{l}
\left(x_{1} x_{2} \bar{z}\right) \in R \\
\left(x_{1}^{\prime} x_{2}^{\prime} \bar{z}\right) \in R
\end{array} \\
& \underline{A}_{12}:=p r_{(12)} R / \sim \\
& \underline{A}_{12} \text { is } S I \rightarrow \quad\left|A_{12}\right| \in C \\
& \quad\left|A_{12}\right| \leq\left|A_{1}\right| \cdot\left|A_{2}\right|
\end{aligned}
$$

G group

N central
G not abelia.

$$
M=\{(x, x) \mid x \in N\} \Delta \underline{G} \times \underline{G}
$$

M has unitive cover $N \times N$

$$
|G|<|G \times G / M|<|G|^{2}
$$

Maroti doesn't work

$$
\begin{aligned}
& A=(\{0,1\} \times\{0,1\}, g(x y z))
\end{aligned}
$$

$$
\begin{aligned}
& \text { HSP(A) not r.f. } \\
& \text { affine } \\
& \hat{\delta} \text { symetric } \\
& \hat{\delta}(100)=1 \\
& \hat{\rho}\left(u_{1}, x_{1}, v_{3}\right)=0 \text { els }
\end{aligned}
$$

