Short definitions in constraint languages

Jakub Bulín, Michael Kompatscher
Charles University
28.08.2023

MFCS - Bordeaux

Short pp-definitions

Structures with short pp-definitions

$\mathbb{A}=\left(A ; R_{1}, \ldots, R_{k}\right) \ldots$ finite relational structure
$Q \subseteq A^{n}$ is pp-definable over \mathbb{A} if

$$
Q\left(x_{1}, \ldots, x_{n}\right) \Leftrightarrow \underbrace{\exists y_{1}, \ldots, y_{k} R_{i_{1}}(\ldots) \wedge \ldots \wedge R_{i_{j}}(\ldots)}_{\psi\left(x_{1}, \ldots, x_{n}\right) \text { pp-formula over } \mathbb{A}}
$$

$\langle\mathbb{A}\rangle:=$ all pp-definable relations

Definition

- \mathbb{A} has pp-definitions of length $\leq f(n)$ if $\forall Q \in\langle\mathbb{A}\rangle \cap A^{n}$: Q is definable by a pp-formula ψ with $|\psi| \leq f(n)$
- \mathbb{A} has short pp-definitions if \mathbb{A} has pp-definitions of length $\leq p(n)$, for a polynomial $p(n)$.

Question: Which \mathbb{A} have short pp-definitions?

Examples

Affine spaces

$\mathbb{A}=(\{0,1\} ;\{(x, y, z) \mid x+y=z\},\{0\},\{1\})$,
$Q \in\langle\mathbb{A}\rangle \Leftrightarrow Q$ affine subspace of \mathbb{Z}_{2}^{n}
\Leftrightarrow given by $\leq n$ equations:

$$
x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{k}}=a \Leftrightarrow
$$

$\exists y_{2}, \ldots, y_{k}:\left(x_{i_{1}}+x_{i 2}=y_{2}\right) \wedge\left(y_{2}+x_{i 3}=y_{3}\right) \wedge \ldots \wedge\left(y_{k-1}+x_{k}=y_{k}\right) \wedge\left(y_{k}=a\right)$.
\Rightarrow pp-definitions of length $O\left(n^{2}\right)$.

Examples

Affine spaces

$\mathbb{A}=(\{0,1\} ;\{(x, y, z) \mid x+y=z\},\{0\},\{1\})$,
$Q \in\langle\mathbb{A}\rangle \Leftrightarrow Q$ affine subspace of \mathbb{Z}_{2}^{n}
\Leftrightarrow given by $\leq n$ equations:

$$
x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{k}}=a \Leftrightarrow
$$

$\exists y_{2}, \ldots, y_{k}:\left(x_{i_{1}}+x_{i_{2}}=y_{2}\right) \wedge\left(y_{2}+x_{i 3}=y_{3}\right) \wedge \ldots \wedge\left(y_{k-1}+x_{k}=y_{k}\right) \wedge\left(y_{k}=a\right)$.
\Rightarrow pp-definitions of length $O\left(n^{2}\right)$.

2-SAT

$\mathbb{A}=\left(\{0,1\} ;\left(R_{\mathrm{a}, \mathrm{b}}\right)_{\mathrm{a}, \mathrm{b} \in\{0,1\}}\right)$, with $R_{\mathrm{a}, \mathrm{b}}=\{0,1\}^{2} \backslash\{(a, b)\}$.

$$
Q \in\langle\mathbb{A}\rangle \Leftrightarrow Q\left(x_{1}, \ldots, x_{n}\right)=\bigwedge_{1 \leq i, j \leq n} \operatorname{pr}_{\{i, j\}} Q\left(x_{i}, x_{j}\right) .
$$

\Rightarrow pp-definitions of length $O\left(n^{2}\right)$.

Algebras/Clones with short pp-definitions

Observation 1
\mathbb{A} has pp-defs. of length $\leq p(n)$
$\langle\mathbb{A}\rangle=\langle\mathbb{B}\rangle \Rightarrow \mathbb{B}$ has pp-defs. of length $\leq c \cdot p(n)$

Algebras/Clones with short pp-definitions

Observation 1

\mathbb{A} has pp-defs. of length $\leq p(n)$
$\langle\mathbb{A}\rangle=\langle\mathbb{B}\rangle \Rightarrow \mathbb{B}$ has pp-defs. of length $\leq c \cdot p(n)$
$\operatorname{Pol}(\mathbb{A})=\left\{f: \mathbb{A}^{n} \rightarrow \mathbb{A} \mid n \in \mathbb{N}\right\} \ldots$ polymorphism clone of \mathbb{A}
A... algebraic structure
$\operatorname{lnv}(\mathbf{A})=\left\{R \leq \mathbf{A}^{n} \mid n \in \mathbb{N}\right\}$ invariant relations of \mathbf{A}
$\operatorname{Inv}(\operatorname{Pol}(\mathbb{A}))=\langle\mathbb{A}\rangle \Rightarrow$ short pp-definitions is a property of $\operatorname{Pol}(\mathbb{A})$
(even up to clone isomorphism).

Algebras/Clones with short pp-definitions

Observation 1
\mathbb{A} has pp-defs. of length $\leq p(n)$
$\langle\mathbb{A}\rangle=\langle\mathbb{B}\rangle \Rightarrow \mathbb{B}$ has pp-defs. of length $\leq c \cdot p(n)$
$\operatorname{Pol}(\mathbb{A})=\left\{f: \mathbb{A}^{n} \rightarrow \mathbb{A} \mid n \in \mathbb{N}\right\} \ldots$ polymorphism clone of \mathbb{A}
A... algebraic structure
$\operatorname{lnv}(\mathbf{A})=\left\{R \leq \mathbf{A}^{n} \mid n \in \mathbb{N}\right\}$ invariant relations of \mathbf{A}
$\operatorname{Inv}(\operatorname{Pol}(\mathbb{A}))=\langle\mathbb{A}\rangle \Rightarrow$ short pp-definitions is a property of $\operatorname{Pol}(\mathbb{A})$
(even up to clone isomorphism).
Definition
\mathbf{A} has short pp-definitions, if $\operatorname{Inv}(\mathbf{A})=\langle\mathbb{A}\rangle$ has short pp-definitions.

Examples

- Affine subspaces of $\mathbb{Z}_{2}^{n} \leftrightarrow \mathbf{A}=(\{0,1\}, x-y+z)$
- 2-SAT $\leftrightarrow \mathbf{A}=(\{0,1\}, \operatorname{maj}(x, y, z))$

Few subpower algebras

Observation 2

\mathbb{A} has pp-definitions of length $\leq p(n)$
$\Rightarrow\left|\langle\mathbb{A}\rangle \cap A^{n}\right| \leq c^{p(n)}$ for some $c>1$

Few subpower algebras

Observation 2

\mathbb{A} has pp-definitions of length $\leq p(n)$
$\Rightarrow\left|\langle\mathbb{A}\rangle \cap A^{n}\right| \leq c^{p(n)}$ for some $c>1$
If p is polynomial, we say $\operatorname{Pol}(\mathbb{A})$ has few subpowers.
So short pp-definitions \Rightarrow few subpowers.

Few subpower algebras

Observation 2

\mathbb{A} has pp-definitions of length $\leq p(n)$
$\Rightarrow\left|\langle\mathbb{A}\rangle \cap A^{n}\right| \leq c^{p(n)}$ for some $c>1$
If p is polynomial, we say $\operatorname{Pol}(\mathbb{A})$ has few subpowers.
So short pp-definitions \Rightarrow few subpowers.
If \mathbf{A} has few subpowers:

- A has an edge term t (IMMVW'10):

$$
\begin{aligned}
& t(y, y, x, x, x, \ldots, x) \approx x \\
& t(y, x, y, x, x, \ldots, x) \approx x \\
& t(x, x, x, y, x, \ldots, x) \approx x
\end{aligned}
$$

$$
t(x, x, x, x, x, \ldots, y) \approx x
$$

- $\operatorname{lnv}(\mathbf{A})=\langle\mathbb{A}\rangle$ for some finite $\mathbb{A}=\left(A ; R_{1}, \ldots, R_{n}\right)\left(\mathrm{AMM}^{\prime} 14\right)$

A conjecture

about few subpowers

Conjecture

Conjecture (Bulín)

- (weak) \mathbf{A} has short pp-defs. $\Leftrightarrow \boldsymbol{A}$ has few subpowers.
- (strong) \mathbf{A} has pp-defs. of length $O\left(n^{k}\right) \Leftrightarrow \mathbf{A}$ has a k-edge term.

Conjecture

Conjecture (Bulín)

- (weak) \mathbf{A} has short pp-defs. $\Leftrightarrow \boldsymbol{A}$ has few subpowers.
- (strong) \mathbf{A} has pp-defs. of length $O\left(n^{k}\right) \Leftrightarrow \mathbf{A}$ has a k-edge term.

True for

- A is affine
- A has NU-term

$$
y \approx t(y, x, \ldots, x) \approx t(x, y, x, \ldots, x) \approx \ldots \approx t(x, \ldots, x, y)
$$

- $|A|=2$ (Lagerkvist, Wahlström '14)

Conjecture

Conjecture (Bulín)

- (weak) \mathbf{A} has short pp-defs. $\Leftrightarrow \mathbf{A}$ has few subpowers.
- (strong) \mathbf{A} has pp-defs. of length $O\left(n^{k}\right) \Leftrightarrow \mathbf{A}$ has a k-edge term.

True for

- \mathbf{A} is affine
- A has NU-term

$$
y \approx t(y, x, \ldots, x) \approx t(x, y, x, \ldots, x) \approx \ldots \approx t(x, \ldots, x, y)
$$

- $|A|=2$ (Lagerkvist, Wahlström '14)
$|A|=3$ not covered by above

Main result

Theorem (Bulín, MK '23)
If $\operatorname{HSP}(\mathbf{A})$ is residually finite, then
A has pp-definition of length $O\left(n^{k}\right) \Leftrightarrow \mathbf{A}$ has a k-edge term.

Main result

Theorem (Bulín, MK '23)

If $\operatorname{HSP}(\mathbf{A})$ is residually finite, then
A has pp-definition of length $O\left(n^{k}\right) \Leftrightarrow \mathbf{A}$ has a k-edge term.
B is subdirectly irreducible, if $\operatorname{Con}(B)=\left\{\begin{array}{c}1 \mathbf{B}_{\mathbf{B}} \\ \mu \\ 0_{\mathbf{B}}\end{array}\right.$
$\operatorname{HSP}(\mathbf{A})$ residually finite, if
$\mathbf{B} \in \operatorname{HSP}(\mathbf{A})$ is $\mathrm{SI} \Leftrightarrow \mathbf{B} \in\left\{\mathbf{B}_{1}, \ldots, \mathbf{B}_{k}\right\},\left|B_{i}\right|<\infty$.

Main result

Theorem (Bulín, MK '23)

If $\operatorname{HSP}(\mathbf{A})$ is residually finite, then
A has pp-definition of length $O\left(n^{k}\right) \Leftrightarrow \mathbf{A}$ has a k-edge term.
B is subdirectly irreducible, if $\operatorname{Con}(B)=\left\{\begin{array}{l}1_{B} \\ \mu \\ 0_{B}\end{array}\right.$
$\operatorname{HSP}(\mathbf{A})$ residually finite, if
$\mathbf{B} \in \operatorname{HSP}(\mathbf{A})$ is $\mathrm{SI} \Leftrightarrow \mathbf{B} \in\left\{\mathbf{B}_{1}, \ldots, \mathbf{B}_{k}\right\},\left|B_{i}\right|<\infty$.
(folklore) $|A|=3, \mathbf{A}$ few subpowers $\Rightarrow \operatorname{HSP}(\mathbf{A})$ is residually finite.
Corollary (Bulín, MK '23)
If $|A|=3$, then
A has pp-definition of length $O\left(n^{k}\right) \Leftrightarrow \mathbf{A}$ has a k-edge term.

Proof idea

Proof step 1: Reduction to critical relations

A relation $R \leq \mathbf{A}^{n}$ is called critical if

- R is \wedge-irreducible ($R_{1}, R_{2}>R \Rightarrow R_{1} \cap R_{2}>R$)
- R has no dummy variables

Proof step 1: Reduction to critical relations

A relation $R \leq \mathbf{A}^{n}$ is called critical if

- R is \wedge-irreducible ($R_{1}, R_{2}>R \Rightarrow R_{1} \cap R_{2}>R$)
- R has no dummy variables

Lemma

A... k-edge-term, $R \leq \mathbf{A}^{n}$. Then
$R=\bigwedge_{|J| \leq k}\left(\operatorname{pr}_{J} R\right) \wedge R_{1} \wedge \ldots \wedge R_{I}$ for $I \leq n \cdot|A|^{2}, R_{i}$ critical, parallelogram property.

Proof step 1: Reduction to critical relations

A relation $R \leq \mathbf{A}^{n}$ is called critical if

- R is \wedge-irreducible ($R_{1}, R_{2}>R \Rightarrow R_{1} \cap R_{2}>R$)
- R has no dummy variables

Lemma

A... k-edge-term, $R \leq \mathbf{A}^{n}$. Then
$R=\bigwedge_{|J| \leq k}\left(\operatorname{pr} r_{J} R\right) \wedge R_{1} \wedge \ldots \wedge R_{I}$ for $I \leq n \cdot|A|^{2}, R_{i}$ critical, parallelogram property.
$R \subseteq A^{n}$ has the parallelogram property if $\forall I \subset[n]$

Proof step 2: Similarity

Task: find short pp-definitions for $R \leq \mathbf{A}^{n}$ critical, parallelogram property

Proof step 2: Similarity

Task: find short pp-definitions for $R \leq \mathbf{A}^{n}$ critical, parallelogram property Strategy: as for $x_{1}+x_{2}+\ldots+x_{n}=a$

- $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right): \Leftrightarrow \exists \bar{z} R\left(x_{1}, x_{2}, \bar{z}\right) \wedge R\left(x_{1}^{\prime}, x_{2}^{\prime}, \bar{z}\right)$
- $\sim \in \operatorname{Con}\left(\mathrm{pr}_{1,2} R\right), \mathbf{A}_{1,2}:=\left(\mathrm{pr}_{1,2} R\right) / \sim$

Proof step 2: Similarity

Task: find short pp-definitions for $R \leq \mathbf{A}^{n}$ critical, parallelogram property Strategy: as for $x_{1}+x_{2}+\ldots+x_{n}=a$

- $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right): \Leftrightarrow \exists \bar{z} R\left(x_{1}, x_{2}, \bar{z}\right) \wedge R\left(x_{1}^{\prime}, x_{2}^{\prime}, \bar{z}\right)$
- $\sim \in \operatorname{Con}\left(\mathrm{pr}_{1,2} R\right), \mathbf{A}_{1,2}:=\left(\mathrm{pr}_{1,2} R\right) / \sim$

Proof step 2: Similarity

Task: find short pp-definitions for $R \leq \mathbf{A}^{n}$ critical, parallelogram property Strategy: as for $x_{1}+x_{2}+\ldots+x_{n}=a$

- $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right): \Leftrightarrow \exists \bar{z} R\left(x_{1}, x_{2}, \bar{z}\right) \wedge R\left(x_{1}^{\prime}, x_{2}^{\prime}, \bar{z}\right)$
- $\sim \in \operatorname{Con}\left(\mathrm{pr}_{1,2} R\right), \mathbf{A}_{1,2}:=\left(\mathrm{pr}_{1,2} R\right) / \sim$

Proof step 2: Similarity

Task: find short pp-definitions for $R \leq \mathbf{A}^{n}$ critical, parallelogram property Strategy: as for $x_{1}+x_{2}+\ldots+x_{n}=a$

- $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right): \Leftrightarrow \exists \bar{z} R\left(x_{1}, x_{2}, \bar{z}\right) \wedge R\left(x_{1}^{\prime}, x_{2}^{\prime}, \bar{z}\right)$
- $\sim \in \operatorname{Con}\left(\mathrm{pr}_{1,2} R\right), \mathbf{A}_{1,2}:=\left(\mathrm{pr}_{1,2} R\right) / \sim$

Proof step 2: Similarity

Task: find short pp-definitions for $R \leq \mathbf{A}^{n}$ critical, parallelogram property Strategy: as for $x_{1}+x_{2}+\ldots+x_{n}=a$

- $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right): \Leftrightarrow \exists \bar{z} R\left(x_{1}, x_{2}, \bar{z}\right) \wedge R\left(x_{1}^{\prime}, x_{2}^{\prime}, \bar{z}\right)$
- $\sim \in \operatorname{Con}\left(\mathrm{pr}_{1,2} R\right), \mathbf{A}_{1,2}:=\left(\mathrm{pr}_{1,2} R\right) / \sim$

Proof step 2: Similarity

Task: find short pp-definitions for $R \leq \mathbf{A}^{n}$ critical, parallelogram property Strategy: as for $x_{1}+x_{2}+\ldots+x_{n}=a$

- $\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right): \Leftrightarrow \exists \bar{z} R\left(x_{1}, x_{2}, \bar{z}\right) \wedge R\left(x_{1}^{\prime}, x_{2}^{\prime}, \bar{z}\right)$
- $\sim \in \operatorname{Con}\left(\mathrm{pr}_{1,2} R\right), \mathbf{A}_{1,2}:=\left(\mathrm{pr}_{1,2} R\right) / \sim$

$$
R\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \Leftrightarrow \exists y \in A_{1,2} Q\left(x_{1}, x_{2}, y\right) \wedge R^{\prime}\left(y, x_{3}, \ldots, x_{n}\right) .
$$

Problem: in general $\mathbf{A}_{1,2} \neq \mathbf{A}$

Proof step 2: Similarity

Task: find short pp-definitions for $R \leq \mathbf{A}^{n}$ critical, parallelogram property Strategy: as for $x_{1}+x_{2}+\ldots+x_{n}=a$

$$
\begin{aligned}
& \text { - }\left(x_{1}, x_{2}\right) \sim\left(x_{1}^{\prime}, x_{2}^{\prime}\right): \Leftrightarrow \exists \bar{z} R\left(x_{1}, x_{2}, \bar{z}\right) \wedge R\left(x_{1}^{\prime}, x_{2}^{\prime}, \bar{z}\right) \\
& \text { - } \sim \in \operatorname{Con}\left(\mathrm{pr}_{1,2} R\right), \mathbf{A}_{1,2}:=\left(\mathrm{pr}_{1,2} R\right) / \sim
\end{aligned}
$$

$$
R\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right) \Leftrightarrow \exists y \in A_{1,2} Q\left(x_{1}, x_{2}, y\right) \wedge R^{\prime}\left(y, x_{3}, \ldots, x_{n}\right) .
$$

Problem: in general $\mathbf{A}_{1,2} \neq \mathbf{A}$
But: R critical $\Rightarrow \mathbf{A}_{1,2}$ is $\mathrm{SI} \Rightarrow$ bounded by residual finiteness.

Application:

Subpower Membership Problem

Subpower Membership Problem

A... finite algebra

SMP(A)
Input: $\bar{a}_{1}, \ldots, \bar{a}_{k}, \bar{b} \in A^{n}$
Decide: Is $\bar{b} \in \operatorname{Sg}_{\mathbf{A}^{n}}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right)$?
Question (IMMVW'10): Is $\operatorname{SMP}(\mathbf{A}) \in \mathrm{P}$ for \mathbf{A} with few subpowers?

Subpower Membership Problem

A... finite algebra

SMP(A)
Input: $\bar{a}_{1}, \ldots, \bar{a}_{k}, \bar{b} \in A^{n}$
Decide: Is $\bar{b} \in \operatorname{Sg}_{A^{n}}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right)$?
Question (IMMVW'10): Is $\operatorname{SMP}(\mathbf{A}) \in \mathrm{P}$ for \mathbf{A} with few subpowers?
Observation
$\bar{b} \notin \operatorname{Sg}_{\mathbf{A}^{n}}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right) \Leftrightarrow \exists$ pp-fma. $\psi: \neg \psi(\bar{b}) \wedge \psi\left(\bar{a}_{1}\right) \wedge \ldots \wedge \psi\left(\bar{a}_{k}\right)$.
A has short pp-definitions $\Rightarrow \operatorname{SMP}(\mathbf{A}) \in$ coNP.

Subpower Membership Problem

A... finite algebra

SMP(A)
Input: $\bar{a}_{1}, \ldots, \bar{a}_{k}, \bar{b} \in A^{n}$
Decide: Is $\bar{b} \in \operatorname{Sg}_{A^{n}}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right)$?
Question (IMMVW'10): Is $\operatorname{SMP}(\mathbf{A}) \in \mathrm{P}$ for \mathbf{A} with few subpowers?
Observation
$\bar{b} \notin \operatorname{Sg}_{\mathbf{A}^{n}}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right) \Leftrightarrow \exists$ pp-fma. $\psi: \neg \psi(\bar{b}) \wedge \psi\left(\bar{a}_{1}\right) \wedge \ldots \wedge \psi\left(\bar{a}_{k}\right)$.
A has short pp-definitions $\Rightarrow \operatorname{SMP}(\mathbf{A}) \in$ coNP.
Theorem (BMS'19)

- $\operatorname{SMP}(\mathbf{A}) \in \operatorname{NP}$ if \mathbf{A} has few subpowers
(weak) Conjecture $\Rightarrow \operatorname{SMP}(\mathbf{A}) \in N P \cap$ coNP.

Subpower Membership Problem

A... finite algebra

SMP(A)
Input: $\bar{a}_{1}, \ldots, \bar{a}_{k}, \bar{b} \in A^{n}$
Decide: Is $\bar{b} \in \operatorname{Sg}_{A^{n}}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right)$?
Question (IMMVW'10): Is $\operatorname{SMP}(\mathbf{A}) \in \mathrm{P}$ for \mathbf{A} with few subpowers?
Observation
$\bar{b} \notin \operatorname{Sg}_{\mathbf{A}^{n}}\left(\bar{a}_{1}, \ldots, \bar{a}_{k}\right) \Leftrightarrow \exists$ pp-fma. $\psi: \neg \psi(\bar{b}) \wedge \psi\left(\bar{a}_{1}\right) \wedge \ldots \wedge \psi\left(\bar{a}_{k}\right)$.
A has short pp-definitions $\Rightarrow \operatorname{SMP}(\mathbf{A}) \in$ coNP.
Theorem (BMS'19)

- $\operatorname{SMP}(\mathbf{A}) \in N P$ if \mathbf{A} has few subpowers
- $\operatorname{SMP}(\mathbf{A}) \in \mathrm{P}$ if further $\operatorname{HSP}(\mathbf{A})$ is residually finite.
(weak) Conjecture $\Rightarrow \operatorname{SMP}(\mathbf{A}) \in N P \cap$ coNP.

Thank you for your attention!
Any questions?

