Algebras with short pp-definitions

Jakub Bulín, Michael Kompatscher

Charles University

04.07.2023

TCA - Pocinho

Short pp-definitions

Structures with short pp-definitions

$$\mathbb{A} = (A; R_1, \dots, R_k)$$
... finite relational structure $Q \subseteq A^n$ is **pp-definable** over \mathbb{A} if

$$Q(x_1, \dots, x_n) \Leftrightarrow \underbrace{\exists y_1, \dots, y_k \ R_{i_1}(\dots) \land \dots \land R_{i_j}(\dots)}_{\psi(x_1, \dots, x_n) \ \text{pp-formula over} \ \mathbb{A}}$$

 $\langle \mathbb{A} \rangle :=$ all pp-definable relations

Definition

- A has **pp-definitions of length** $\leq f(n)$ if $\forall Q \in \langle \mathbb{A} \rangle \cap A^n$: Q is definable by a pp-formula ψ with $|\psi| \leq f(n)$
- A has **short pp-definitions** if A has pp-definitions of length $\leq p(n)$, for a *polynomial* p(n).

Question: Which A have short pp-definitions?

Examples

Affine spaces

$$\mathbb{A} = (\{0,1\}; \{(x,y,z) \mid x+y=z\}, \{0\}, \{1\}),$$

$$Q \in \langle \mathbb{A} \rangle \Leftrightarrow Q \text{ affine subspace of } \mathbb{Z}_2^n$$

$$\Leftrightarrow \text{ given by } \leq n \text{ equations:}$$

$$x_{i_1} + x_{i_2} + \ldots + x_{i_k} = a \Leftrightarrow$$

$$\exists y_2, \ldots, y_k : (x_{i_1} + x_{i_2} = y_2) \wedge (y_2 + x_{i_3} = y_3) \wedge \ldots \wedge (y_{k-1} + x_k = y_k) \wedge (y_k = a).$$

 \Rightarrow pp-definitions of length $O(n^2)$.

Examples

Affine spaces

$$\begin{split} \mathbb{A} &= (\{0,1\}; \{(x,y,z) \mid x+y=z\}, \{0\}, \{1\}), \\ Q &\in \langle \mathbb{A} \rangle \Leftrightarrow Q \text{ affine subspace of } \mathbb{Z}_2^n \\ &\Leftrightarrow \text{given by } \leq n \text{ equations:} \end{split}$$

$$x_{i_1} + x_{i_2} + \ldots + x_{i_k} = a \Leftrightarrow \exists y_2, \ldots, y_k : (x_{i_1} + x_{i_2} = y_2) \land (y_2 + x_{i_3} = y_3) \land \ldots \land (y_{k-1} + x_k = y_k) \land (y_k = a).$$

 \Rightarrow pp-definitions of length $O(n^2)$.

2-SAT

$$\mathbb{A} = (\{0,1\}; (R_{a,b})_{a,b \in \{0,1\}}), \text{ with } R_{a,b} = \{0,1\}^2 \setminus \{(a,b)\}.$$

$$Q \in \langle \mathbb{A} \rangle \Leftrightarrow Q(x_1, \dots, x_n) = \bigwedge_{1 \leq i, j \leq n} \mathsf{pr}_{\{i, j\}} \ Q(x_i, x_j).$$

 \Rightarrow pp-definitions of length $O(n^2)$.

Algebras/Clones with short pp-definitions

Observation 1

Algebras/Clones with short pp-definitions

Observation 1

```
\mathbb{A} has pp-defs. of length \leq p(n)

\langle \mathbb{A} \rangle = \langle \mathbb{B} \rangle \Rightarrow \mathbb{B} has pp-defs. of length \leq c \cdot p(n)

\mathsf{Pol}(\mathbb{A}) = \{f \colon \mathbb{A}^n \to \mathbb{A} \mid n \in \mathbb{N}\}... polymorphism clone of \mathbb{A}

\mathbf{A}... algebraic structure

\mathsf{Inv}(\mathbf{A}) = \{R \leq \mathbf{A}^n \mid n \in \mathbb{N}\} invariant relations of \mathbf{A}

\mathsf{Inv}(\mathsf{Pol}(\mathbb{A})) = \langle \mathbb{A} \rangle \Rightarrow \mathsf{short} pp-definitions is a property of \mathsf{Pol}(\mathbb{A})

(even up to clone isomorphism).
```

Algebras/Clones with short pp-definitions

Observation 1

$$\mathsf{Pol}(\mathbb{A}) = \{f : \mathbb{A}^n \to \mathbb{A} \mid n \in \mathbb{N}\}...$$
 polymorphism clone of \mathbb{A}

A... algebraic structure

$$Inv(\mathbf{A}) = \{R \leq \mathbf{A}^n \mid n \in \mathbb{N}\}$$
 invariant relations of \mathbf{A}

$$\mathsf{Inv}(\mathsf{Pol}(\mathbb{A})) = \langle \mathbb{A} \rangle \Rightarrow \mathsf{short} \ \mathsf{pp\text{-}definitions} \ \mathsf{is} \ \mathsf{a} \ \mathsf{property} \ \mathsf{of} \ \mathsf{Pol}(\mathbb{A})$$
 (even up to clone isomorphism).

Definition

A has **short pp-definitions**, if $Inv(\mathbf{A}) = \langle \mathbb{A} \rangle$ has short pp-definitions.

Examples

- Affine subspaces of $\mathbb{Z}_2^n \leftrightarrow \mathbf{A} = (\{0,1\}, x-y+z)$
- 2-SAT \leftrightarrow **A** = ({0,1},maj(x,y,z))

Few subpower algebras

Observation 2

 \mathbb{A} has pp-definitions of length $\leq p(n)$

$$\Rightarrow |\langle \mathbb{A} \rangle \cap A^n| \leq c^{p(n)}$$
 for some $c>1$

Few subpower algebras

Observation 2

 \mathbb{A} has pp-definitions of length $\leq p(n)$

$$\Rightarrow |\langle \mathbb{A} \rangle \cap A^n| \leq c^{p(n)}$$
 for some $c > 1$

If p is polynomial, we say Pol(A) has few subpowers.

So short pp-definitions \Rightarrow few subpowers.

Few subpower algebras

Observation 2

A has pp-definitions of length $\leq p(n)$

$$\Rightarrow |\langle \mathbb{A} \rangle \cap A^n| \leq c^{p(n)}$$
 for some $c > 1$

If p is polynomial, we say Pol(A) has few subpowers.

So short pp-definitions \Rightarrow few subpowers.

If A has few subpowers:

• A has an edge term t (IMMVW'10):

$$t(y, y, x, x, x, \dots, x) \approx x$$

 $t(y, x, y, x, x, \dots, x) \approx x$
 $t(x, x, x, y, x, \dots, x) \approx x$

$$t(x, x, x, x, x, \ldots, y) \approx x$$

• Inv(\mathbf{A}) = $\langle \mathbb{A} \rangle$ for some finite $\mathbb{A} = (A; R_1, \dots, R_n)$ (AMM'14)

A conjecture

about few subpowers

Conjecture

Conjecture (Bulín)

- (weak) A has short pp-defs.

 ⇔ A has few subpowers.
- (strong) **A** has pp-defs. of length $O(n^k) \Leftrightarrow \mathbf{A}$ has a k-edge term.

Conjecture

Conjecture (Bulín)

- (weak) **A** has short pp-defs. ⇔ **A** has few subpowers.
- (strong) **A** has pp-defs. of length $O(n^k) \Leftrightarrow \mathbf{A}$ has a k-edge term.

True for

- A is affine
- A has NU-term

$$y \approx t(y, x, ..., x) \approx t(x, y, x, ..., x) \approx ... \approx t(x, ..., x, y)$$

• |A| = 2 (Lagerkvist, Wahlström '14)

Conjecture

Conjecture (Bulín)

- (weak) A has short pp-defs.

 ⇔ A has few subpowers.
- (strong) **A** has pp-defs. of length $O(n^k) \Leftrightarrow \mathbf{A}$ has a k-edge term.

True for

- A is affine
- A has NU-term

$$y \approx t(y, x, ..., x) \approx t(x, y, x, ..., x) \approx ... \approx t(x, ..., x, y)$$

• |A| = 2 (Lagerkvist, Wahlström '14)

|A| = 3 not covered by above

Main result

Theorem (Bulín, MK '23)

If $\mathsf{HSP}(\mathbf{A})$ is residually finite, then

A has pp-definition of length $O(n^k) \Leftrightarrow \mathbf{A}$ has a k-edge term.

Main result

Theorem (Bulín, MK '23)

If HSP(A) is residually finite, then

A has pp-definition of length $O(n^k) \Leftrightarrow \mathbf{A}$ has a k-edge term.

B is subdirectly irreducible, if
$$Con(B) = \bigcap_{0_B}^{1_B} \mu_{0_B}^{\mu}$$

HSP(A) residually finite, if

$$B \in \mathsf{HSP}(A)$$
 is $\mathsf{SI} \Leftrightarrow B \in \{B_1, \dots, B_k\}$, $|B_i| < \infty$.

Main result

Theorem (Bulín, MK '23)

If HSP(A) is residually finite, then

A has pp-definition of length $O(n^k) \Leftrightarrow \mathbf{A}$ has a k-edge term.

B is subdirectly irreducible, if
$$Con(B) = \bigcap_{0_B}^{1_B} \mu_{0_B}^{\mu}$$

HSP(A) residually finite, if

$$B \in \mathsf{HSP}(A)$$
 is $\mathsf{SI} \Leftrightarrow B \in \{B_1, \dots, B_k\}$, $|B_i| < \infty$.

(folklore) |A| = 3, **A** few subpowers $\Rightarrow \mathsf{HSP}(\mathbf{A})$ is residually finite.

Corollary (Bulín, MK '23)

If |A| = 3, then

A has pp-definition of length $O(n^k) \Leftrightarrow \mathbf{A}$ has a k-edge term.

Proof idea

Proof step 1: Reduction to critical relations

A relation $R \leq \mathbf{A}^n$ is called **critical** if

- R is \land -irreducible $(R_1, R_2 > R \Rightarrow R_1 \cap R_2 > R)$
- R has no dummy variables

Proof step 1: Reduction to critical relations

A relation $R \leq \mathbf{A}^n$ is called **critical** if

- R is \land -irreducible $(R_1, R_2 > R \Rightarrow R_1 \cap R_2 > R)$
- R has no dummy variables

Lemma

A... k-edge-term, $R \leq \mathbf{A}^n$. Then

$$R = \bigwedge_{|J| \le k} (\operatorname{pr}_J R) \wedge R_1 \wedge \ldots \wedge R_l$$
 for $l \le n \cdot |A|^2$, R_i critical, parallelogram property.

Proof step 1: Reduction to critical relations

A relation $R \leq \mathbf{A}^n$ is called **critical** if

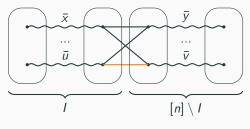
- R is \land -irreducible $(R_1, R_2 > R \Rightarrow R_1 \cap R_2 > R)$
- R has no dummy variables

Lemma

A... k-edge-term, $R \leq \mathbf{A}^n$. Then

$$R = \bigwedge_{|J| \le k} (\operatorname{pr}_J R) \wedge R_1 \wedge \ldots \wedge R_l$$
 for $l \le n \cdot |A|^2$, R_i critical, parallelogram property.

 $R \subseteq A^n$ has the **parallelogram property** if $\forall I \subset [n]$



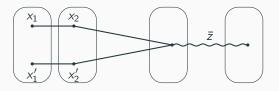
$$(\bar{x}, \bar{y}), (\bar{x}, \bar{v}), (\bar{u}, \bar{y}) \in R$$

 $\Rightarrow (\bar{u}, \bar{v}) \in R$

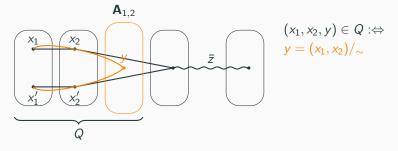
Task: find short pp-definitions for $R \leq \mathbf{A}^n$ critical, parallelogram property

- $(x_1, x_2) \sim (x'_1, x'_2) : \Leftrightarrow \exists \bar{z} \ R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \text{Con}(\operatorname{pr}_{1,2} R)$, $\mathbf{A}_{1,2} := (\operatorname{pr}_{1,2} R)/_{\sim}$

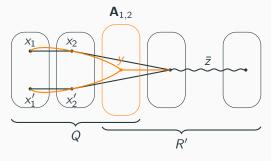
- $(x_1, x_2) \sim (x'_1, x'_2) :\Leftrightarrow \exists \bar{z} \ R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \operatorname{Con}(\operatorname{pr}_{1,2} R)$, $\mathbf{A}_{1,2} := (\operatorname{pr}_{1,2} R)/_{\sim}$



- $(x_1, x_2) \sim (x'_1, x'_2) :\Leftrightarrow \exists \bar{z} \ R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \text{Con}(\operatorname{pr}_{1,2} R)$, $\mathbf{A}_{1,2} := (\operatorname{pr}_{1,2} R)/_{\sim}$



- $(x_1, x_2) \sim (x'_1, x'_2) :\Leftrightarrow \exists \bar{z} \ R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \text{Con}(\text{pr}_{1,2} R)$, $\mathbf{A}_{1,2} := (\text{pr}_{1,2} R)/_{\sim}$



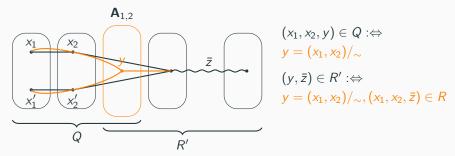
$$(x_1, x_2, y) \in Q :\Leftrightarrow$$

$$y = (x_1, x_2)/_{\sim}$$

$$(y, \bar{z}) \in R' :\Leftrightarrow$$

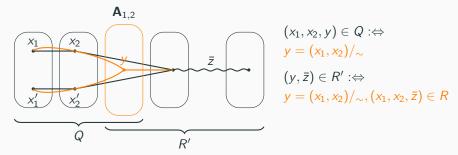
$$y = (x_1, x_2)/_{\sim}, (x_1, x_2, \bar{z}) \in R$$

- $(x_1, x_2) \sim (x'_1, x'_2) :\Leftrightarrow \exists \bar{z} \ R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \text{Con}(\text{pr}_{1,2} R)$, $\mathbf{A}_{1,2} := (\text{pr}_{1,2} R)/_{\sim}$



$$R(x_1, x_2, x_3, \ldots, x_n) \Leftrightarrow \exists y \in A_{1,2} \ Q(x_1, x_2, y) \land R'(y, x_3, \ldots, x_n).$$

- $(x_1, x_2) \sim (x'_1, x'_2) :\Leftrightarrow \exists \bar{z} \ R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \text{Con}(\text{pr}_{1,2} R)$, $\mathbf{A}_{1,2} := (\text{pr}_{1,2} R)/_{\sim}$



$$R(x_1, x_2, x_3, \dots, x_n) \Leftrightarrow \exists y \in A_{1,2} \ Q(x_1, x_2, y) \land R'(y, x_3, \dots, x_n).$$
Problem: in general $\mathbf{A}_{1,2} \neq \mathbf{A}$

Task: find short pp-definitions for $R \le \mathbf{A}^n$ critical, parallelogram property **Strategy:** as for $x_1 + x_2 + \ldots + x_n = a$

- $(x_1, x_2) \sim (x'_1, x'_2) :\Leftrightarrow \exists \bar{z} \ R(x_1, x_2, \bar{z}) \land R(x'_1, x'_2, \bar{z})$
- $\sim \in \text{Con}(\text{pr}_{1,2} R)$, $\mathbf{A}_{1,2} := (\text{pr}_{1,2} R)/_{\sim}$



$$R(x_1,x_2,x_3,\ldots,x_n) \Leftrightarrow \exists y \in A_{1,2} \ Q(x_1,x_2,y) \land R'(y,x_3,\ldots,x_n).$$

Problem: in general $\mathbf{A}_{1,2} \neq \mathbf{A}$

But: R critical $\Rightarrow \mathbf{A}_{1,2}$ is $SI \Rightarrow$ bounded by residual finiteness.

Application:

```
A... finite algebra
```

SMP(A)

Input: $\bar{a}_1, \dots, \bar{a}_k, \bar{b} \in A^n$

DECIDE: Is $\bar{b} \in \operatorname{Sg}_{\mathbf{A}^n}(\bar{a}_1, \dots, \bar{a}_k)$?

Question (IMMVW'10): Is $SMP(A) \in P$ for A with few subpowers?

A... finite algebra

SMP(A)

Input:
$$\bar{a}_1, \dots, \bar{a}_k, \bar{b} \in A^n$$

DECIDE: Is $\bar{b} \in \operatorname{Sg}_{\mathbf{A}^n}(\bar{a}_1, \dots, \bar{a}_k)$?

Question (IMMVW'10): Is $SMP(A) \in P$ for A with few subpowers?

Observation

$$\bar{b} \notin \operatorname{\mathsf{Sg}}_{\mathbf{A}^n}(\bar{a}_1, \dots, \bar{a}_k) \Leftrightarrow \exists \operatorname{\mathsf{pp-fma}}.\psi : \neg \psi(\bar{b}) \wedge \psi(\bar{a}_1) \wedge \dots \wedge \psi(\bar{a}_k).$$

A has short pp-definitions \Rightarrow SMP(**A**) \in coNP.

A... finite algebra

SMP(A)

Input:
$$\bar{a}_1, \dots, \bar{a}_k, \bar{b} \in A^n$$

DECIDE: Is $\bar{b} \in \operatorname{Sg}_{\mathbf{A}^n}(\bar{a}_1, \dots, \bar{a}_k)$?

Question (IMMVW'10): Is $SMP(A) \in P$ for A with few subpowers?

Observation

$$ar{b}
otin \mathsf{Sg}_{\mathbf{A}^n}(ar{a}_1, \dots, ar{a}_k) \Leftrightarrow \exists \mathsf{pp\text{-}fma}.\psi : \neg \psi(ar{b}) \wedge \psi(ar{a}_1) \wedge \dots \wedge \psi(ar{a}_k).$$

A has short pp-definitions \Rightarrow SMP(**A**) \in coNP.

Theorem (BMS'19)

SMP(A) ∈ NP if A has few subpowers

(weak) Conjecture \Rightarrow SMP(A) \in NP \cap coNP.

A... finite algebra

SMP(A)

Input: $\bar{a}_1, \ldots, \bar{a}_k, \bar{b} \in A^n$

DECIDE: Is $\bar{b} \in \operatorname{Sg}_{\mathbf{A}^n}(\bar{a}_1, \dots, \bar{a}_k)$?

Question (IMMVW'10): Is $SMP(A) \in P$ for **A** with few subpowers?

Observation

 $\bar{b} \notin \operatorname{\mathsf{Sg}}_{\mathbf{A}^n}(\bar{a}_1, \dots, \bar{a}_k) \Leftrightarrow \exists \operatorname{\mathsf{pp-fma}}.\psi : \neg \psi(\bar{b}) \wedge \psi(\bar{a}_1) \wedge \dots \wedge \psi(\bar{a}_k).$

A has short pp-definitions \Rightarrow SMP(**A**) \in coNP.

Theorem (BMS'19)

- SMP(A) ∈ NP if A has few subpowers
- $SMP(A) \in P$ if further HSP(A) is residually finite.

(weak) Conjecture \Rightarrow SMP(A) \in NP \cap coNP.

Thank you for your attention!

Any questions?