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Circuits in Universal Algebra:
Why?



Circuits

Definition
A circuit is finite directed acyclic graph, where every vertex ('gate’) is
labelled by an operation of arity corresponding to its in-degree ('fan-in’).

e natural model of computation
e usually studied for Boolean values

e Circuit over an algebra A = (A, f1,...,1):
labelled by basic operations f;
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Circuits over algebras

Circuits over an algebra A = (A, f1,...,f,) encode the term operations
over A - and they are good at it!

Example

In (Ag,-,71), the operations

to(X1, .oy Xn) = [+ [[x1, x2], X3, - - -, Xp] can
be represented by circuits linear in n,
corresponds to terms exponential in n.

Encoding by circuits is

e more compact than encoding by terms

e stable under term equivalence

~> use in algorithmic problems. © Idziak, Krzaczkowski



Outline of this talk:

1. Circuit complexity and CC-circuits

2. Circuits over A < CC-circuits
for finite nilpotent A from CM varieties

3. Consequences in circuit complexity

4. Consequences for solving equations and checking identities
in nilpotent algebras.
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Circuit complexity

Boolean circuits can be used to measure the complexity of L C {0,1}*.

Basic idea

We say a family (C,)nen computes L C {0,1}* if

Co(X1y .-y xn) =14 (x1,...,%,) € LN {0,1}". The complexity is
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Circuit complexity

Boolean circuits can be used to measure the complexity of L C {0,1}*.

Basic idea

We say a family (C,)nen computes L C {0,1}* if

Co(X1y .-y xn) =14 (x1,...,%,) € LN {0,1}". The complexity is
measured by the size/depth of C,,.

Examples .
polynomial

fan-in

e P/poly: Circuits over
({0,1}, A, Vv, =) of polynomial
size

e NC: Circuits over
({0,1}, A, Vv, =) of polynomial
size and depth < O(logk(n))

e ACP: polynomial size, constant

constant

depth, but arbitrary fan-in depth
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A result about AC°-circuits

Theorem (Furst, Saxe, Sipser '84)
The parity language {x € {0,1}*: >°7_, x; =0 mod 2} is not in AC°.

There exists even a strict lower bound!

Theorem (Hastad '87) )
Circuits of depth d with {AND, OR, NEG}-gates need size Q(e"’") to
compute parity.

In essence: Logical gates are bad at counting.
Question:

e Are vice-versa counting gates bad at logic?

e What are circuits with 'counting gates’?
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A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD ,-gates:

1if Y, =0 mod m

0 else.

MOD,(x1, .-, Xn) = {

1
MOD:
N
MODs ||| MOD;
| |
1 X y Z
1 1 o0
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1if Y, =0 mod m

0 else.
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A CC[m]-circuit is a (Boolean) circuit, whose gates are MOD ,-gates:

MODm(Xl,...,Xn) = ! ZIX mod m
0 else.

>
[ ]

Gates are of arbitrary fan-in

<
O
e

Depth = longest path
/ \ e CC°[m]: languages accepted by
MODs MODs constant depth polynomial size
I I CC[m]-circuits.
1 X y z e CCO=J, CClm]
1 1 0
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A conjecture about CC-circuits

Conjecture (McKenzie*, Péladeau, Therién...)
Vm, d: CC[m]-circuits of depth d need size Q(e") to compute
AND(x1, ..., Xp)-

Weak version of conjecture: AND is not in CCP.
What is known?

e For p prime, CC[p¥]-circuits of depth d
cannot compute AND of big arity (BST '90)
o Otherwise they compute all functions (for d > 2),
e true for m = pq, d =2 (BST '90)
e openfor m=6,d =3

o best known lower bounds in general are super-linear (CGPT '06)

*not the one you are thinking of!
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Beyond Boolean

How about Z,-valued variants of CC[m]-circuits?
Definition CC™[m]-circuits:
e consist of MOD,,-gates and +-gates

e evaluated over Z,, not {0,1}
Definition

An operation f is called (0-)absorbing if
(0, x2, ..., Xn) & F(x1,0, %0, ..., Xp) & -+ = f(xq1,...,Xp—1,0) = 0.

Lemma (MK '19)

CC™*[m]-circuit CC[m]-circuit
non-trivial absorbing, depth d —  computing AND, depth d
non-trivial absorbing, depth d +1 < computing AND, depth d

—... linear time computation
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The structure of nilpotent algebras

A= (A f,...,f) finite algebra

Nilpotency of A is

e in general defined by the term condition commutator
[ [1a,14],...14] =04
in congruence modular varieties (Freese, McKenzie*):
e A is Abelian < polynomially equivalent to a module

e A is n-nilpotent < 3 L Abelian, U is (n — 1)-nilpotent, A= L x U:

A, un)y oy Uy un)) = (FY(hy oy 1) + f(ul, ey tn), F9(u, .. up)),
for all basic operations.

Also true for polynomial operations of A

*Yes, that's him!
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Encoding CC*-circuits in nilpotent algebras

CC*[m]-circuits of bounded depth can be encoded in a nilpotent algebra
in the following sense:
Proposition (MK '19)
Vm,d € N 3(d + 1)-nilpotent algebra B, s.t.
e B contains the group (B, +) = Z4 1

e for every CC[m]T-circuit C of depth d,
3 circuit C’ over B with
C'(x1,y..y%n) = (Cmgs1(x1)s -+, Ta41(Xn)), 0, ..., 0).

(Proof sketch on blackboard.)

Question
What about the opposite direction?

10
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Example: Extended abelian groups

A = (Z3 X Z3,+,f(x,y)) with

F((a,%)s (1, 2)) = (F(xe, y2),0) = {(1’0) ifxx=y=1

(0,0) else

A is 2-nilpotent. Polynomial e.g.:
x4 f(x,y +z) = (x1 + f(x2, y2 + 22), x2) corresponds to the circuit

oD,

N

M

0
7y

M
e

= MOD3
Y
a

Ds

N 1

X1 X3 Y1 Y2 Z; Z;

= similarly all polynomials of A can be rewritten in polynomial time to
CC[3]*-circuits of depth 3
11
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Coordinatisation of nilpotent algebras

Example works because of abelian group operations.

Theorem (Aichinger '18)

Let A be nilpotent, |A| = pf . pg ... pim_Then there are operations
+,0,— such that

o (A4,0,—) = Z1 X - x Zin
e (A, +,0,—) is still nilpotent.

— wlog work only in Aichinger's extended groups

Remark
The degree of nilpotency might increase (but < log,(]A|)).
E.g. (Z4,+) Abelian, but (Z4,+,+v) is 2-nilpotent.

12
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Main result

A... finite nilpotent algebra (from CM variety)
ki

|Al = H’FI o

m:=[[;_, pi

Theorem (MK '19)

e Vd, m: 3(d + 1) nilpotent B, such that CC[m]"-circuits of depth d
can be encoded as polynomials over B in polynomial time.

e Every polynomial over A can be rewritten in polynomial time to a
CC[m]"-circuit of depth < C(A).

e If mis not prime power, then C(A) is linear in log, |A.

13
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Conjecture (*) in nilpotent algebras

An operation f : A" — A is called 0-absorbing iff
(0, %2, ..., %n) & F(x1,0,%2,..., %) & -+ = f(x1,...,xn—1,0) = 0.

CC-circuits in nilpotent algebra A

Conjecture (*)
Bounded depth CC[m]-circuits need
size Q(e") to compute AND.

Theorem (BST '90)
Bounded depth CC[p*]-circuits can-
not compute AND of arity > C(d)

Theorem (BST '90)
Conjecture (*) is true for m = pq
and depth 2
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size Q(e") to compute AND. n have size Q(e").
Theorem (BST '90) Theorem (Aichinger, Mudrinski '10)

Bounded depth CC[p*]-circuits can- | A with |A| = p* has only trivial absorbing
not compute AND of arity > C(d) circuits of arity > C(A)

Theorem (BST '90) (ldziak, Kawatek, Krzaczkowski '18)
Conjecture (*) is true for m = pg | (**) is true for certain 2-nilpotent A with
and depth 2 |A| = p*q’
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There exists another algebraic characterization of CC® by NUDFA

(non-uniform deterministic finite automata) over monoids.

Theorem (Barrington, Straubing, Therien '90)

L € complexity class <> L accepted by a NUDFA over M
ACO + M aperiodic monoid

cco <> M solvable group

ACCO <+ M solvable monoid

NCt < M non-solvable group

15
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The equivalence problem for finite algebras

A= (Af,...,1f).. finite algebra
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A= (Af,...,1f).. finite algebra

Circuit Equivalence Problem CEQV(A)

INPUT: p(X1,...,Xn), g(X1, ..., X,) circuits over A
QUESTION: Does A = p(xi,...,%,) = q(x1,...,xn)7?

Circuit Satisfaction Problem CSAT(A)
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The equivalence problem for finite algebras

A= (Af,...,1f).. finite algebra

Circuit Equivalence Problem CEQV(A)
INPUT: p(X1,...,Xn), g(X1, ..., X,) circuits over A
QUESTION: Does A = p(xi,...,%,) = q(x1,...,xn)7?

Circuit Satisfaction Problem CSAT(A)
INPUT: p(X1,...,%n), g(X1,...,X,) circuits over A
QUESTION: Does p(xi,...,x,) = q(xi,...,x,) have a solution in A?

CEQV(A) € coNP, CSAT(A) € NP

In general the complexity is widely unclassified.

Question

What is the complexity for nilpotent A from CM varieties?
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In congruence modular varieties

A... from congruence modular variety:

e A Abelian <> module. CEQV(A) € P

A k-supernilpotent. CEQV(A) € P:
(Aichinger, Mudrinski '10)

solvable

nilpotent

A nilpotent, not supernilpotent...?

A solvable, non-nilpotent:

30 : CEQV(A/0) € coNP-c

(Idziak, Krzaczkowski '18)

A non-solvable: CEQV(A) € coNP-c
(Idziak, Krzaczkowski '18)

supernilpotent

Abelian

For CSAT the picture is similar (modulo products with DL algebras).
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Circuit equivalence

Observation 1 (MK '19)
Assume Conjecture (**) holds for A nilpotent.
Then CEQV(A) and CSAT(A) can be solved in quasipolynomial time.

Proof idea:
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Circuit equivalence

Observation 1 (MK '19)

Assume Conjecture (**) holds for A nilpotent.
Then CEQV(A) and CSAT(A) can be solved in quasipolynomial time.

Proof idea:

Let C(X) =~ 0 be an input to CEQV(A).

Assume 33: C(3) # 0.

Take 3 with minimal number k of a; # 0, wlog.

a= (31,...731(,0,...,0)

Then C'(x1,...,xx) = C(x1,...,x,0,0,...,0) is O-absorbing.
Conjecture (xx) = k < log(|C|)

e evaluate g at all tuples with 'support’ log(|C|) in time O(|C|'(I€D)

Note that for |A| = p/: k < const
= polynomial time algorithm for prime powers / supernilpotent.
(Aichinger, Mudrinski '10)
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On the contrary

Assume 3(C,)nen

e CC[m]-circuits of depth d,
e enumerable in polynomial time,

e computing AND (AND is in "uniform CC?").

Observation 2 (MK '19)
Then 3B nilpotent CEQV(B) € coNP-c and CSAT(B) € NP-c.

Conclusion
Complexity of CEQV(A), CSAT(A) for nilpotent A is correlated to the
expressive power of CC-circuits.
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e Falsehood of the conjecture does not implies hardness
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e There can be better algorithms (semantic vs. syntactic approach):

20



Caution!

e Falsehood of the conjecture does not implies hardness
(non-uniform vs. uniform circuits).

e There can be better algorithms (semantic vs. syntactic approach):

Theorem (ldziak, Kawatek, Krzaczkowski '18)

For every A =L ®" U such that L and U are polynomially equivalent to
finite vector spaces CEQV(A) € P and CSAT(A) € P.

20



Caution!

e Falsehood of the conjecture does not implies hardness
(non-uniform vs. uniform circuits).

e There can be better algorithms (semantic vs. syntactic approach):

Theorem (ldziak, Kawatek, Krzaczkowski '18)

For every A =L ®" U such that L and U are polynomially equivalent to
finite vector spaces CEQV(A) € P and CSAT(A) € P.

Theorem (Kawatek, Kompatscher, Krzaczkowski ~'19)
For every A finite 2-nilpotent from a CM variety CEQV(A) € P.

20



Caution!

e Falsehood of the conjecture does not implies hardness
(non-uniform vs. uniform circuits).

e There can be better algorithms (semantic vs. syntactic approach):

Theorem (ldziak, Kawatek, Krzaczkowski '18)

For every A =L ®" U such that L and U are polynomially equivalent to
finite vector spaces CEQV(A) € P and CSAT(A) € P.

Theorem (Kawatek, Kompatscher, Krzaczkowski ~'19)
For every A finite 2-nilpotent from a CM variety CEQV(A) € P.

(This is all we know, despite bold claims made at BLAST'19)
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Thank you!
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