Convex Optimization 2025/26

Practical session # 3

October 16, 2025

- 1. Show that $f(x) = \log \log(x)$ is concave on $dom(f) = (1, \infty)$. What about $f(x) = \log \log \ldots \log(x)$?
- 2. Find two convex functions $g, h \colon \mathbf{R} \to \mathbf{R}$, such that $g \circ h$ is not convex. Can you find an example where h is non-decreasing?
- 3. Is every convex function $f: \mathbf{R}^n \to \mathbf{R}$ continuous on its domain? (*) What if dom(f) is open?
- 4. Consider the linear program:

minimize
$$f(x_1, x_2, x_3) = 2x_1 + 3x_2 - x_3$$

subject to $x_1 - x_2 \ge 4$
 $3x_1 + x_2 \le 1$
 $x_3 \le 0$

Find an equivalent linear program of the form:

minimize
$$c^T y$$

subject to $Ay = b$
 $y \succeq 0$

(Hint: start by turning existing inequality constraints into an equality constraint with the help of an additional non-negative variable.)

5. Let $f: \mathbf{R}^{n+m} \to \mathbf{R}$ be a convex function, and let $C \subseteq \mathbf{R}^m$ be a convex set. Show that $g(x) = \inf_{y \in C} f(x, y)$ is also convex. (Hint: describe $\operatorname{epi}(g)$. Observe that projection of convex sets are convex sets.)

As a consequence the distance function $x \mapsto \operatorname{dist}(x,C) = \inf_{y \in C} \|x - y\|$ is a convex function for every convex set C.