Convex Optimization 2025/26

Practical session # 8

November 20, 2025

1. Consider the QCQP

minimize
$$x_1^2 + x_2^2$$

subject to $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$
 $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$

- Sketch the feasible set and find optimal point x^* and optimal value p^* .
- Give the KKT conditions. Are there Langrange multipliers λ_1^* and λ_2^* that prove that x^* is optimal?
- Does strong duality hold?
- 2. Let us consider an LP in normal form:

minimize
$$c^T x$$

subject to $Ax = b$
 $x \succeq 0$

Show that it is equivalent to the dual of its dual.

3. Consider the feasibility problem for the above LP, so

minimize 0
subject to
$$Ax = b$$

 $x \succeq 0$

Derive Farkas' lemma from using Exercise 2 and strong duality for LPs.

- 4. For each of the following problems draw a sketch of $\mathcal{A} = \{(u,t) \mid \exists x \in \mathcal{D} : f_0(x) \leq t, f_1(x) \leq u\}$. Is the problem convex? Does Slater's condition hold? Does strong duality hold?
 - minimize x subject to $x^2 \le 1$
 - minimize x subject to $x^2 \le 0$
 - minimize x subject to $|x| \leq 0$
 - minimize x subject to $f_1(x) \leq 0$, where

$$f_1(x) = \begin{cases} -x+2 & x \ge 1\\ x & -1 \le x \le 1\\ -x-2 & x \le -1 \end{cases}$$

- minimize x^3 subject to $-x+1 \le 0$
- minimize x^3 subject to $-x+1 \le 0$ on domain \mathbf{R}_+