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Multistage stochastic programs I.

T -stage stochastic program . . . stochastic data process

ω = {ω1, . . . , ωT−1} or ω = {ω1, . . . , ωT}
realizations are (multidimensional) data trajectories;

vector decision process x = {x1, . . . xT},

t ∈ {1, . . . ,T} — stage index, T depth of the tree.

Components of ω and decisions x2, . . . , xT are random vectors defined on
probability space (Z,F , µ), x1 is nonrandom.

Decision process x is NONANTICIPATIVE i.e. decisions taken at any
stage of the process do not depend on future realizations of stochastic
data nor on future decisions whereas past information and knowledge of
probability distribution of the data process are exploited:

For t = 1, . . . ,T , DENOTE Ft−1 ⊂ F , σ-field generated by the part
ωt−1,• := {ω1, . . . , ωt−1} of stochastic data process ω that precedes
stage t.

NONANTICIPATIVITY means that t-th stage decision xt is
Ft−1-measurable.



Multistage stochastic programs II.

DENOTE xt−1,• = (x1, . . . , xt−1) sequence of decisions at stages
t = 1, . . . , t − 1,

P distribution function of ω,

Pt marginal probability distribution of ωt ,

Pt(·|ωt−1,•) its conditional probability distribution.

ASSUME that all infima are attained & all expectations exist.

1st-STAGE DECISIONS consist of all decisions that have to be selected
BEFORE further information is revealed whereas the 2nd-stage decisions
are allowed to adapt to this information, etc.

In each stage, decisions are limited by constraints that may depend on
previous decisions and observations.



Multistage stochastic programs III.

EXAMPLE: NESTED FORM of multistage stochastic LINEAR program
resembles backward recursion of stochastic dynamic programming with
additive overall cost function:

Minimize
c>1 x1 + EP {ϕ1(x1, ω)}

on X1 := {x1|A1x1 = b1, l1 ≤ x1 ≤ u1}

ϕt−1(·, ·), t = 2, . . . ,T , are defined recursively as

ϕt−1(xt−1,•, ωt−1,•) =

min
xt

[
ct(ω

t−1,•)>xt + EPt(•|ωt−1,•)

{
ϕt(x

t−1,•, xt , ω
t−1,•, ωt)

}]
subject to constraints

Bt(ω
t−1,•) xt−1 + At(ω

t−1,•) xt = bt(ω
t−1,•) a.s.

lt(ω
t−1,•) ≤ xt ≤ ut(ω

t−1•), a.s.

and ϕT ≡ fT (xT ) is explictly given. For the 1st stage, all elements of
b1, c1,A1 are known and the main decision variable is x1 that
corresponds to 1st stage.



Multistage stochastic programs IV.

FOR APPLICATIONS: Approximate P by a discrete distribution, carried
by finite number of atoms (scenarios), ωk , k = 1, . . . ,K → supports of
marginal and conditional probability distributions Pt , Pt(·|ωt−1,•)∀t are
finite sets.

For disjoint sets of indices Kt , t = 2, . . . ,T , we list as ω̃kt , kt ∈ Kt all
possible realizations of ωt−1,• and denote by the same subscripts the
corresponding values of t-th stage coefficients.
Total number of scenarios K equals the number of elements of KT .

Each scenario ωk = {ωk
1 , . . . , ωk

T−1} generates sequence of coefficients
{ck2 , . . . , ckT

}, {Ak2 , . . . ,AkT
}, {Bk2 , . . . ,BkT

}, {bk2 , . . . ,bkT
},

{lk2 , . . . , lkT
}, {uk2 , . . . ,ukT

}.

Data are organized in the form of SCENARIO TREE:

Nodes are determined by all considered realizations
ω̃kt , kt ∈ Kt , t = 2, . . . ,T , and by the root indexed as k1 = 1.

Each realization ω̃kt+1 of ωt•, t = 1, . . . ,T , has a UNIQUE ANCESTOR
ω̃kt (realization of ωt−1,•), denoted by subscript a(kt+1), and a finite
number of DESCENDANTS — realizations of ωt+1,•.

Scenario generation procedure is demanding, it should represent the
uncertainty in a sensible way, taking into account

• the goal of the model and its structure

• the available information

• computer facilities and available software

Compromises are needed between the wish to capture well the dynamic
features and to use an approximation of P which is precise enough.



Multistage stochastic programs V.

Given horizon & prescribed structure of stages → “arborescent” form of
T -stage scenario-based stochastic linear program with additive recourse

minimize

c>1 x1 +
∑

k2∈K2

pk2c
>
k2
xk2 +

∑
k3∈K3

pk3c
>
k3
xk3 + · · ·+

∑
kT∈KT

pkT
c>kT

xkT
(1)

subject to

A1x1 = b1

Bk2x1 + Ak2xk2 = bk2 , k2 ∈ K2

Bk3xa(k3) +Ak3xk3 = bk3 , k3 ∈ K3

. . .
. . .

...
BkT

xa(kT ) +AkT
xkT

= bkT
, kT ∈ KT

l1 ≤ x1 ≤ u1, lkt ≤ xkt ≤ ukt , kt ∈ Kt , t = 2, . . . ,T . (2)

Path probabilities pkt > 0∀kt ,
∑

kt∈Kt
pkt = 1, t = 2, . . . T , of partial

sequences of coefficients are probabilities of realizations of ωt−1,• ∀t.
Probabilities pk of individual scenarios ωk are equal to pkT

.

Nonanticipativity constraints are included implicitly.



Horizon and stages I.

NOTE: (1)–(2) may correspond also to T -period two-stage stochastic
program based on the same scenarios: Except for the root, there is only
one descendant d(kt) of each of t-th stage nodes, that is, the transition
probabilities πkt ,d(kt) = 1 ∀kt ∈ Kt , t = 2, . . . ,T − 1. Scenarios are
identified by sequences {k2, . . . , kT} such that kt ∈ Kt , kt+1 = d(kt)∀t
−→ objective function (1) simplifies to

c>1 x1 +
∑

kT∈KT

pkT
[c>k2

xk2 + c>k3
xk3 + · · ·+ c>kT

xkT
]. (3)

Problem (3), (2) is called TWO-STAGE RELAXATION of MSLP (1)–(2).
Insert FIGURE 22n



Why to use multistage formulation?

Difference between TWO-STAGE MULTIPERIOD AND MULTISTAGE
STOCHASTIC PROGRAMS

• In multiperiod two-stage problems decisions at all time instances
t = 1, . . . ,T are made at once, no further information is expected;

• Hedging against all considered unrelated scenarios of possible
developments is assumed;

• Except for the 1st stage no nonanticipativity constraints appear; The
input — no tree structure, just fan of scenarios.

Robustness, stability of solutions: similar subscenarios result in
similar decisions even for t > 1;

Stochastic specification (interstage dependence) is reflected;

Number of nodes decreases.



Scenario splitted form

With EXPLICIT INCLUSION OF NONANTICIPATIVITY
CONSTRAINTS, scenario-based multiperiod or multistage stochastic
programs with linear constraints can be again written as a large-scale
deterministic program:

Given scenario ωk denote by c(ωk) vector composed of all corresponding
coefficients, say, c1, ckt , t = 2, . . . ,T , in objective function, by A(ωk)
matrix of all coefficients of system of constraints (2) for scenario ωk , and
by b(ωk), l(ωk), u(ωk) vectors composed of right-hand sides in (2) and
bounds of box constraints for scenario ωk .

SCENARIO-SPLITTED form of T -stage stochastic linear program is

min
X∩C

{
K∑

k=1

pkc(ωk)>x(ωk)

}
(4)

subject to

A(ωk)x(ωk) = b(ωk), l(ωk) ≤ x(ωk) ≤ u(ωk)∀k, (5)

X is defined by deterministic constraints on xt(ω
k)∀t, k, C by

nonanticipativity conditions, and x(ωk) is the corresponding decision
vector composed of stage related subvectors xt(ω

k)∀t.

For two-stage stochastic programs nonanticipativity constraints boil down
to the requirement that the 1st stage decisions must be scenario
independent, i.e. x1(ω

k) = x1(ω
k′)∀k, k ′. Similar constraints guarantee

that the t-th stage decisions based on the same history are equal. Such
constraints can be expressed as x = Ux where x contains carefully
grouped components of all decision vectors x(ωk) and U is a 0-1 matrix.



Problem of private investor revisited

Investor wishes to raise enough money for his child college education N
years from now by investing w into some of I considered investments.

Tuition goal is g ,
exceeding g after N years −→ additional income of q% of the excess,
not meeting the goal −→ borrowing at the rate r > q.
Investor plans to revise his investment at certain time instances prior to
N using additional information that will be available in future.
Decision points (stages) and the corresponding time periods are indexed
by t = 1, . . . ,T − 1, and horizon N corresponds to t = T .

Main uncertainty: returns ρi (t, ω) on investments i in each period t
depend on an underlying random element ω and are observable at the
end period t. Investment decisions xi (t, ω) made at the beginning of
period t can be only based on the already observed part of the trajectory
of ω, i.e., they are nonanticipative of future outcomes.

=⇒ at the beginning of 1st period, investment decisions xi (1, ω) = xi (1)
are fixed for all ω belonging to a probability space (Ω,F ,P).



Problem of private investor revisited cont.

Let T = 3 — some of considered investments (term deposit or short
term bond) mature in N1 < N years −→ portfolio has to be restructured
at time N1; one more stage of decision process.

Put ω = (ω1, ω2), trajectory up to N1 and its continuation from N1 to N.
Denote by ω̃k2 , k2 ∈ K2 considered realizations of ω1, pk2 their
probabilities and by ω̃k3 , k3 ∈ K3 possible realizations of ω2• grouped
into sets D(k2), k2 ∈ K2 for which the conditional probabilities πk2,k3 6= 0;
notice that

∑
k3∈D(k2)

πk2,k3 = 1 ∀k2. This information about the discrete
probability distribution may be represented by a scenario tree, see
FIGURE 21n

1st stage decisions xi (1) are scenario independent, returns %i (1, ω) and
decisions xi (2, ω) at 2nd stage of decision process depend only on the
first part ω1 of ω,

subsequent returns %i (2, ω), final decisions and compensations depend on
whole history, i.e., on scenarios ωs which consist of ω̃k2 and of their
“extension” to ω̃k3 , k3 ∈ D(k2), k2 ∈ K2. Their probabilities ps equal
pk2πk2,k3 .



Problem of private investor revisited cont.

Following notation introduced above, we assign subscripts k2, k3 to
random coefficients % and to decision variables xi , y+, y− which appear
in 2nd and 3rd stages. The problem — a three-stage stochastic linear
program — reads

maximize
∑

k2∈K2

pk2

∑
k3∈D(k2)

πk2,k3(qy+
k3
− ry−k3

)

subject to ∑
i

xi (1) = w , xi (t) ≥ 0 ∀i , t

∑
i

ρik2xi (1)−
∑

i

xik2 = 0, k2 ∈ K2

∑
i

ρik3xik2 − y+
k3

+ y−k3
= g , k3 ∈ D(k2), k2 ∈ K2

and nonnegativity of all variables.



Horizon and stages I.

Above formulations of SP model rely on already fixed topology of stages,
possibly with long irregular time steps in comparison with time
discretization of data process.

Choice of stages, branching scheme, scenarios and their
probabilities influence the optimal 1st-stage decision and the overall
optimal value. Stages do not necessarily refer to time periods, they
correspond to steps in the decision process. To use multiperiod two-stage
model or to assign one stage to each of possible discretization points are
two extreme cases. Requirements of various applications may lead to
different topologies of decision points.

In majority of cases, the horizon and the stages are declared as given. In
practice, various situations can be distinguished:

Both the horizon and stages are determined ad hoc, often for
purposes of testing numerical approaches and/or software.

Both the horizon and stages are determined, e.g., by the nature of
the real-life technological process.



Horizon and stages II.

The horizon is tied to a fixed date, e.g., to the end of the fiscal year,
to a date related with the annual Board of Directors’ meeting, or to
the end date of a screening study. Stages are sometimes dictated by
the nature of the solved problem, e.g., by the dates of maturity of
bonds, expiration dates of options or by periodic (quarterly, annual,
etc.) management review meetings. In other cases, they are
obtained by application of heuristic rules and/or experience, taking
into account limitations due to numerical tractability. Rolling
forward after the T -stage problem has been solved, the first-stage
decision accepted and new information exploited means to solve a
subsequent T − 1-stage stochastic program with a reduced number
of stages or possibly another T -stage problem with a different
topology of stages.
The horizon is connected with a time interval of a fixed (possibly
even infinite) length, given for instance by the periodicity of the
underlying random process, and the number of stages is chosen in
dependence on the available computing facilities. Rolling forward
means here repeated solution of a T -stage problem of the same
structure of stages with the initial state of the system determined by
the applied first-stage decision and by observation of the value of
ω1, and using process ω shifted in time.
For example, the BONDS model of Bradley and Crane uses three
one-year periods for the three-year planning horizon of the bank and
rolling forward means that each year the bank is planning as if it
wants to optimize its outcome at the end of the next three years.



Flower-Girl Problem I

Flower-girl sells roses at price c and has to buy them at cost p before she
starts selling.

Flowers left over at the end of the day can be stored and sold the next
day, when she starts selling the old roses.

The roses cannot be carried over more than one additional day at the end
of which they are thrown away.

The demand is random, ωt denotes demand on the t-th day. The
flower-girl wants to maximize her total expected profit.

Horizon is related to the number of days for which the flower-girl
continues selling roses without break (and also to the fact that our
formulation treats only one-period carry-over).

Assume, that flower-girl sells roses only during weekend, orders amount
x1 on Friday evening, registers demand ω1 on Saturday, stores unsold
roses (without any additional cost) and, possibly, buys x2(ω1) new roses.

Denote s2(ω1) stock left for 2nd day, z(ω1, ω2) amount of unsold roses at
the end of 2nd day which is also affected by the demand ω2 on Sunday.



Flower-Girl Problem II

All variables are nonnegative. Constraints:

x1 − s2(ω1) ≤ ω1, x2(ω1) + s2(ω1)− z(ω1, ω2) ≤ ω2;

total profit is
(c − p)(x1 + x2(ω1))− cz(ω1, ω2).

If the demand ω1, ω2 is known in advance, then one of the optimal
solutions is to buy x1 = ω1 and x2(ω1) = ω2 roses which gives the
maximal profit of (c − p)(ω1 + ω2).

Scenario-based version of this 3-stage problem. Scenario tree consists of
S scenarios corresponding to the considered realizations
ωs = (ωs

1, ω
s
2), s = 1, . . . ,S , of the demand on 1st and 2nd day, their

probabilities are ps , s = 1, . . . ,S . We denote ω̃k2 = bk2 , k2 ∈ K2 possible
realizations of ω1, by pk2 their probabilities, by ωk3 the possible
realizations of (ω1, ω2) conditional on ωk2 and by πk2,k3 their
(conditional) probabilities.

Corresponding realizations of demand on the second day will be denoted
bk3 .



Flower-Girl Problem – Formulation

In the introduced notation the problem reads:

maximize (c − p)x1 +
∑

k2∈K∈

pk2 [(c − p)x2k2 − c
∑

k3∈D(k2)

πk2,k3zk3 ]

subject to
x1 − s2k2 ≤ bk2 , k2 ∈ K2

x2k2 + s2k2 − zk3 ≤ bk3 , k3 ∈ D(k2), k2 ∈ K2

and nonnegativity constraints.



Flower-Girl Problem – T stages

Generalization to T -stage problem (T > 3) is obvious.

We index by t all variables related with the stage t, i.e., amount of roses
ordered (x), stored (s) and thrown away (z) at the end of (t − 1)st day;
notice that zT plays the role of the only decision variable at the last
stage. We obtain:

maximize (c − p)x1 + E{(c − p)
T−1∑
t=2

xt(ω
t−1,•)− c

T∑
t=2

zt(ω
t−1,•)}

subject to
x1 + s1 − s2(ω1)− z2(ω1) ≤ ω1

xt(ω
t−1,•) + st(ω

t−1,•)− st+1(ω
t,•)− zt+1(ω

t,•) ≤ ωt , t = 2, . . . ,T − 1

st(ω
t−1,•)− zt+1(ω

t,•) ≤ ωt , t = 1, . . . ,T − 1

with sT (ω) ≡ 0 and nonnegativity of all variables. In case that the initial
supply s1 = 0, one gets z2(ω1) ≡ 0.

Number of stages equals one plus the number of days for which the
flower-girl sells roses without break, for T = 3, the last inequalities are
redundant.



Flower-Girl Problem – Discussion

Scenario-based formulation of the T -stage problem can be written in
arborescent form or in split variable form with explicit nonanticipativity
constraints.

Notice that flower-girl problem should be more realistically formulated as
an integer stochastic program.

Imagine now that the flower-girl wants to earn as much as possible
during the two months of her high-school vacations; such a 63 stage
problem may be solvable thanks to its simple form. Still some other
possibilities should be examined.

Program may be rolled forward in time with an essentially shorter
horizon, say, for T = 8 which covers a whole week. This means that the
flower-girl decides as if she plans to maximize her profit over each
one-week period and solves the problem every day with a known non-zero
initial supply of roses and with a new scenario tree spanning over the
horizon of the next 8 days.

Another possibility is aggregation of stages above a tractable horizon.



Generation of Scenario Trees I.

To generate SCENARIOS FOR MULTISTAGE SP means to replace
the initial probability distribution P of ω = (ω1, ω2, . . . , ωT−1) by a
discrete distribution carried by a finite number of atoms

ωk = (ωk
1 , ωk

2 , . . . , ωk
T−1), k = 1, . . . ,K

hence, to replace the conditional probability distributions Pt(·|ωt−1,•)
and the marginal distributions Pt of ωt ∀t by discrete distributions whose
supports are finite.

Arc or transition probabilities are P(ω1) and P(ωt |ωt−1,•)∀t > 1

Path probabilities

P(ωt−1,•) = P(ω1)
∏t−1

τ=2 P(ωτ |ωτ−1,•)

and probability of scenario ωk = (ωk
1 , . . . , ωk

T−1) is

pk = P(ωk) = P(ωk
1 )
∏T−1

t=2 P(ωk
t |ωk

1 , . . . , ωk
t−1)

This information is organized in SCENARIO TREE:

THERE IS EXACTLY ONE ANCESTOR of ωk
t ∀k, t, but multiple

descendants are allowed.



Two Special Types of Scenario Tree

• INTERSTAGE INDEPENDENCE – For all stages

conditional distribution of ωτ

Pτ (·|ωτ−1,•) = Pτ ,

the marginal distribution.

• For all stages, supports of conditional distributions Pt(·|ωt−1,•) are
SINGLETONS

−→

the tree collapses into FAN of individual scenarios

ωk = (ωk
1 , . . . , ωk

T−1)

which occur with probabilities

pk = P(ωk
1 ), k = 1, . . . ,K

−→ MULTIPERIOD TWO-STAGE PROBLEM



From a Fan of Scenarios to Scenario Tree

ASSUME:

∃ a given structure of the scenario tree, i.e.
• horizon
• time discretization
• stages
• branching scheme

∃ sufficiently many scenarios

Various ways to create scenario tree

Ad hoc / expert cutting and pasting

Conditional / importance sampling

Clustering

Moments fitting

Techniques for scenario tree construction by minimization of
distances of probability distributions

Discretization schemes used instead of simulation or sampling



Problem Oriented Requirements

One should respect problem specific requirements and to avoid as
much as possible distortions of available input information. Motivation
comes from various problem areas.

• Goal of this procedure does not reduce to approximation of probability
distribution P but to creating input which provides applicable solutions of
real-life problem.

• Scenarios based solely on past observations may ignore possible time
trends or exogenous knowledge or expectations of the user.

• In financial applications, one prefers that scenario-based estimates of
future asset prices in portfolio optimization model do not allow arbitrage
opportunities; this may put additional requirements on scenario selection.

Explicitly formulated additional requirements concerning properties of
probability distribution may help. They can be made concrete through a
suitable massaging of data to obtain prescribed moments values (given
a fixed tree structure. )

SUGGESTION: build scenario tree so that some of statistical properties,
e.g. some moments, of data process are retained



Why Matching Moments?

∃ THEORY: representation of probability distributions by (infinite)
sequences of moments and approximating them using only a few
moments. Moreover, given m admissible values of moments, there exists
discrete probability distribution with these moments and its support has
at most m + 2 points.

For our purposes it means that for given values of certain moments or
expectations of continuous functions, say,
µk =

∫
Ω

gk(ω)P(dω), k = 1, . . . ,m,

∃ modest number of scenarios ωs , s = 1, . . . ,S , and their probabilities
ps , s = 1, . . . ,S ,

∑
s ps = 1 so that the moment values are retained, i.e.,∑

s

psgk(ω
s) = µk , k = 1, . . . ,m. (6)

To get scenarios and their probabilities means to find a solution ωs and
ps ≥ 0, s = 1, . . . ,S , of system (6) extended for additional constraint∑

s ps = 1. This is a highly nonlinear numerical problem.

System of equations (6) can be further extended for other constraints on
selection of scenarios to represent certain strata, to cover extremal cases



Fitting Moment Values

For simplicity assume that ω = (ω1, ω2) is two-dimensional random
vector with prescribed first three moments µk(1), µk(2), k = 1, 2, 3 of
marginal probability distributions and with covariance ρ of their joint
probability distribution. To cover an important extremal case, we require
that for at least one scenario, ωs

1 ≥ l1, ω
s
2 ≥ l2 holds true.

We want to get discrete two-dimensional probability distribution carried
by S atoms ωs = (ωs

1, ω
s
2), s = 1, . . . ,S , which matches the true one.

Hence, we search values of pairs (ωs
1, ω

s
2) and scalars ps such that

S∑
s=1

ps(ωs
1)

k = µk(1) for k = 1, 2, 3

S∑
s=1

ps(ωs
2)

k = µk(2) for k = 1, 2, 3

S∑
s=1

ps(ωs
1 − µ1(1))(ωs

2 − µ1(2)) = ρ

ω1
1 ≥ l1, ω

1
2 ≥ l2, ps ≥ 0, s = 1, . . . ,S ,

∑
s

ps = 1.

For S large enough and for consistent moments’ values, this nonlinear
system has a solution.



Goal Programming Technique

For small number of scenarios or for inconsistent moment values
existence of solution is not guaranteed. Almost feasible solution can be
found by goal programming technique:
scenarios ωs and probabilities ps can be obtained for instance by solving
weighted least squares minimization problem
minimize

3∑
k=1

αk

(
S∑

s=1

ps(ωs
1)

k − µk(1)

)2

+
3∑

k=1

βk

(
S∑

s=1

ps(ωs
2)

k − µk(2)

)2

+γ

(
S∑

s=1

ps(ωs
1 − µ1(1))(ωs

2 − µ1(2))− ρ

)2

subject to
ω1

1 ≥ l1, ω
1
2 ≥ l2

ps ≥ 0, s = 1, . . . ,S ,
∑

s

ps = 1.

From the optimization point of view, it is non-convex problem and may
have many local minima.
∃ SOFTWARE



Discussion

Advantage of this formulation is that the optimal value is zero if the data
is consistent and S is large enough, but that its optimal solution is also a
good representation of data in the case of inconsistency. Parameters α, β
and γ can be used to reflect importance and quality of data.

Inconsistency can appear if the information about moments comes from
different sources, if implicit specifications are inconsistent with explicit
ones, etc. Consider for instance a problem which covers two periods. Let
us specify the variance of ω1 and the variance of the sum ω1 + ω2. This
is reasonable as many users have difficulties to provide conditional
statements about second period variances unless these are equal for all
periods. But specifying these two variances, we have said something
about the correlation over time. If we now explicitly specify correlations
over time, we are likely up with two inconsistent specifications of the
same entity.

There is a numerical evidence in favor of performance of stochastic
programs based on scenario trees with moment values fitted at each node
over those based only on a few randomly sampled realizations.



Structure of Portfolio Optimization Models I.

Assume now that uncertainty is described by discrete probability
distribution of random parameters carried by finite number of scenarios
with prescribed probabilities and that this discrete probability distribution
is an acceptable substitute of the true underlying probability distribution.

Denote coefficients and decision variables related with scenario ωs simply
by superscript s.

Fundamental investment decision: selection of asset categories and
wealth allocation over time. Level of aggregation depends on investor’s
circumstances.

Planning horizon at which the outcome gets evaluated is endpoint T0 of
interval [0,T0] which is further discretized, covered by nonoverlapping
time intervals indexed by t = 1, . . . , τ.

Initial portfolio is constructed at time 0, i.e., at the beginning of the 1st
period, and is subsequently rebalanced at the beginning of subsequent
periods, i.e., for t = 2, . . . , τ, to cover the target ratio or to contribute to
maximization of the final performance at T0.



Structure of Portfolio Optimization Models II.

In our general setting of the T -stage stochastic programs, τ = T . In
some cases, additional time instants can be included at which some of
economic variables are calculated; after T0, no further active decisions
are allowed.

Stages do not necessarily correspond to time periods.

Main interest lies in 1st-stage decisions — all decisions that have to be
selected before information is revealed, just on the basis of the already
known probability distribution P, i.e., on the basis of the already
designed scenario tree.

2nd-stage decisions are allowed to adapt to additional information
available at the end of 1st-stage period, etc.



Decision Variables and Constraints I.

Primary decision variable hs
i (t) represents the holding in asset category i

at the beginning of time period t under scenario s after the rebalancing
decisions took place; initial holding is hi (0). It can be included into
model as

◦ amount of money invested in i at the beginning of time period t or
expressed in dollars of the initial purchase price,

◦ in face values, in number of securities or in lots, etc.

Accordingly, in the first case, the value of holdings at the end of period t
may be affected by market returns; the wealth accumulated at the end of
the t-th period before the next rebalancing takes place is then

w s
i (t) := (1 + r s

i (t))hs
i (t)∀i , t, s.

Purchases and sales of assets are represented by variables bs
i (t), s

s
i (t)

with transaction costs defined via time-independent coefficients αi and
assuming mostly symmetry in transaction costs; it means that purchasing
one unit of i at the beginning of period t requires 1 + αi units of cash
and selling one unit of i results in 1− αi units of cash.



Decision Variables and Constraints II.

The flow balance constraint for each asset category (except for cash, the
asset indexed by i = 0), scenario and time period is

hs
i (t) = (1 + r s

i (t − 1))hs
i (t − 1) + bs

i (t)− ss
i (t). (7)

It restricts cash flows to be consistent.

The flow balance equation for cash for each time period and all scenarios
is for instance

hs
0(t) = hs

0(t − 1)(1 + r s
0 (t − 1)) + cs(t) +

∑
i

ss
i (t)(1− αi )

−
∑

i

bs
i (t)(1 + αi ) +

∑
i

f s
i (t)hs

i (t)

−y s−(t − 1)(1 + δs(t − 1))− Ls(t) + y s−(t) (8)

with f s
i (t) — cash flow generated by holding one unit of asset i during

period t (coupons, dividends, etc.) under scenario s and Ls(t) paydown
of commited liabilities in period t under scenario s. We denote y s−(t)
borrowing in period t under scenario s at borrowing rate δs(t) and
cs(t) = cs+(t)− cs−(t) decision variables concerning the structure of
external cash flows in period t under scenario s.



Decision Variables and Constraints III.

For holdings, purchases and sales expressed in numbers or in face values,
cash balance equation contains purchasing and selling prices,
ξs
i (t) > ζs

i (t):

hs
0(t) = hs

0(t − 1)(1 + r s
0 (t − 1)) + cs(t) +

∑
i

ζs
i (t)s

s
i (t)

−
∑

i

ξs
i (t)b

s
i (t) +

∑
i

f s
i (t)hs

i (t)

−y s−(t − 1)(1 + δs(t − 1))− Ls(t) + y s−(t) (9)

and flow balance constraints for assets assume a simpler form

hs
i (t) = hs

i (t − 1) + bs
i (t)− ss

i (t) (10)

as no wealth accumulation is considered.

Decision variables hs
i (t), b

s
i (t), s

s
i (t), y

s−(t) are nonnegative and it is
easy to include further constraints which force diversification, limit
investments in risky or illiquid asset classes, limit borrowings, loan
principal payments and turnovers, reflect legal and institutional
constraints, or fixed-mix policy hs

i (t) = qi

∑I
j=0 hs

j (t)∀i , qi fixed.



Objective Function

Random liabilities Ls(t) belong to model input, various decisions
concerning other liabilities can be included in the external cash flows and
one can separate decisions on accepting various types of deposits, on
emission further debt instruments, decisions on specific goal payments,
on long term debt retirement, etc. Cash balance equation has to take
into account cost of debt service.

Objective function is mostly related to the wealth at the end of
planning horizon T0;

This for each scenario consists of amount of total wealth
∑I

i=0 w s
i (T0)

reduced for the present value of liabilities and loans outstanding at the
horizon.

Risk can be reflected by choice of suitable utility function or risk measure
and incorporated into objective function or into constraints. Perspective
alternative is to examine utility functions of several outcomes at specific
time instants covered by the model. Also criteria nonlinear in probability
distributions can be applied; the Markowitz model is an example.



Solving Portfolio Optimization Problems I.

To initiate the model, one uses scenarios r s
i (t), δs(t), f s

i (t), Ls(t) of
returns, interest rates and liabilities for all t and starts with known,
scenario independent initial holdings hs

i (0) ≡ hi (0) of cash and all
considered assets and with y s−(0) ≡ 0∀s.

If no ties in scenarios are considered they can be visualized as a fan of
individual scenarios which start from the common known values
ri (0), δ(0), fi (0), L(0) valid for t = 0. All decisions
hs

i (t), b
s
i (t), s

s
i (t), y

s−(t), cs(t)∀i , s and t ≥ 1 can be computed at once.
In this case, only one additional requirement must be met: the initial
decision hs

i (1), bs
i (1), ss

i (1), y s−(1), cs(1) must be scenario independent.
This is a simple form of the nonanticipativity constraints and the
resulting problem is a multiperiod two-stage stochastic program.



Solving Portfolio Optimization Problems II.

For multistage stochastic programs, input is mostly in the form of
scenario tree and nonanticipativity constraints on decisions enter
implicitly by using a decision tree which follows the structure of the
already designed scenario tree, or in explicit way by forcing decisions
based on the same history (i.e., on identical part ωt,• of several
scenarios) to be equal.

With explicit inclusion of nonanticipativity constraints, scenario-based
multiperiod and multistage stochastic programs with linear constraints
can be written in a form of large-scale deterministic program

min
X∩C

{
∑

s

psus(xs) |Asxs = bs , s = 1, . . . ,S}

where X is a set described by simple constraints, e.g., by nonnegativity
conditions, C is defined by the nonanticipativity constraints and us is the
performance measure in case of scenario ωs .



Solving Portfolio Optimization Problems III.

A large class of solvers (CPLEX, MSLiP-OSL, OSL-SP, etc.) are currently
available for solution of multistage problems with linear constraints and
convex nonlinear objectives. Nonlinear or integer constraints can be
included but for the cost of an increased numerical complexity. On the
other hand, if the resulting problem can be transformed into a large linear
program, there are at disposal special decision support systems, e.g.,
SLP-IOR, which are able to manage efficiently large scale scenario-based
stochastic linear programs for portfolio optimization including those
maximizing expectations of piece-wise linear concave utility functions.



Yasuda Kasai’s Problem

1990 – Reason for developing new method according to Kunihiko
Sasamoto, director and deputy president of Yasuda Kasai

The liability structure of the property and casualty insurance
business has become very complex, and the insurance industry
has various restrictions in terms of asset management. We
concluded that existing models, such as Markowitz
mean-variance, would not function well and that we need to
develop a new asset/liability management model.

Requirements of RYK model:

Adequately represent the book and market value goals
Incorporate regulations
Reflect multiple, conflicting goals (maximize long-run value of
company and high-quality service to costumers)
Capture multiperiod nature of goals and constraints
Reflect uncertainty of investment process, financial markets,
liabilities (claims)
Solve quickly using given computer technology
Be believable and understandable by managers



RYK Requirements

ASSET-LIABILITY MANAGEMENT (ALM) PROBLEM with

New types of liabilities (savings-oriented policies)

Complex constraints mostly by Ministry of Finance

Multiperiod risks and objectives – maximize both the long-run total
return and current yields

PREVIOUS APPROACH

Mean-Variance Markowitz model applied repeatedly in time, expectations
and variance matrix computed from scenarios

Cannot capture many NEW FEATURES, such as

- General asset classes and restrictons

- Inclusion of liability balances and cashflows



Main Formulation Blocks

Horizon T and decision stages, period length need not be uniform

Liabilities

Asset classes, including illiquid loan assets

Asset accumulation

Shortfalls — Income yield earned in a year should exceed interest
credited, otherwise recourse action (penalty)

Objective function — maximize expected return at the horizon minus
expected penalty for shortfalls at each of considered time point

Scenarios

Trade off between detail and complexity is needed, e.g. choice of

- manageable No.of asset classes, possibly different asset classes in
different periods

- number and allocation of stages within the chosen horizon

- number of scenarios to represent uncertainty in interest rates, returns,
prices, etc.

INSERT Scheme of stages and scenario tree



Main Formulation Blocks

Liabilities Liability growth flows

Lt+1 = (1 + gt+1)Lt + Ft+1 − Pt+1 − It+1

Lt liability balance
Ft+1 deposit inflow
gt+1 credited growth
Pt+1, It+1 principal resp. interest payout
Generated off-line by aggregating over all policies
Asset accumulation
Denote
Xjt market value in asset j at t
At total fund market value at t, i.e.

At −
∑

j

Xjt = 0 (11)

%jt+1 asset j return from end of t to end of t + 1
(its part %I

jt+1 denotes the income return)

At+1 =
∑

j

(1 + %jt+1)Xjt + Ft+1 − Pt+1 − It+1 (12)



Model Skeleton

Maximize E [AT −
∑T

t=1 ctwt ]

subject to budget and asset accummulation constraints (11), (12) with
income shortfall definitions∑

j

%I
jt+1Xjt + wt+1 ≥ gt+1Lt

and nonnegativity of all variables Xjt ,wt

for all t = 0, . . . ,T − 1

The income shortfall in period t corresponds to positive value wt and is
penalized by (possibly discounted cost of borrowing) ct in the objective
function.

Other constraints, other types of shortfalls can be included



Requirements on Implementation

Software was to be delivered to the client

Client staff would create inputs and run the model repeatedly each
quarter

Specified hardware platform

Applied since 1991 — New potfolio produced higher income with no loss
in total return



Success Story

Compared with previous technique — Markowitz model with comparable
input data

Tested over single period and over multiple periods

Poor results for multiple periods

IMPULS TO SP APPLICATIONS IN VARIOUS ALM PROBLEMS

THE MAIN AREA IS ALM FOR PENSION FUNDS

The common feature: Models are problem and country specific, take into
account details and requirements of users.

Reflection of RISK is one of the major issues in modeling ALM.


