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Motivation

Decision making problem:

max
λ∈Λ

F (λ,%)

where

λ is a decision vector

Λ is a set of possible decision vectors

% ∈ Ω is a random vector of outcomes

F : Λ× Ω→ R is an objective criterion
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Portfolio optimization problem

max
λ∈Λ

Eu(λ′%)

u is a utility function (non-decreasing function)

λ′% is a final outcome of portfolio (decision vector) λ

maximizing expected utility criterion: F (λ,%) = Eu(λ′%)

choice of utility function - risk attitude

Two questions:

How to find the true utility function that adequatly describes the
risk attitude of a decision maker

How to find the true probability distribution of %
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History

1952 - H. Markowitz - first portfolio optimization formulations:

quadratic parametric program

strong assumptions about the utility function (concavity) and the
probability distribution (normality)

nice results

applied in finance

Nobel Prize in Economics 1990

1952 - till now: portfolio optimization problems have become the most
important issue of the decision making theory under risk
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Portfolio optimization problem

Utility function selection:

consider some favorite type of a utility function (power,
exponential,...) and estimate the parameters

consider a specified set of suitable utility functions - stochastic
dominance approach

Randomness:

assume a particular probability distribution of random vector

estimate the probability distribution from data

consider a set of suitable probability distributions - robustness,
contamination, worst case analysis,...

The goal of my research: to solve the portfolio selection problem when
considering a set of utility functions and a set of probability distributions

The solution of the portfolio optimization problem: efficient portfolios.
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Efficient portfolios

Crucial question of portfolio efficiency (in the sense of optimality):
Is a given portfolio a maximizer of expected utility for at least one
considered utility function?
If yes, portfolio is call efficient.

Crucial question of portfolio efficiency (in the sense of admissibility):
Does there exist a better portfolio (having higher expected utility)
than a given portfolio for all considered utility functions
If no, portfolio called efficient.
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Example

All utility (non-decreasing) functions are considered (K. and Post, 2009):

Under Markowitz model assumption: all efficient portfolios form a line.
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First order stochastic dominance (FSD) - notation

Consider N alternatives and a random vector of their outcomes % with
distribution P. A decision maker may combine alternatives into portfolios
and all portfolio possibilities are given by

Λ = {λ ∈ RN |1′λ = 1, λn ≥ 0, n = 1, 2, . . . ,N}.

Let F%′λ(x) denote the cumulative probability distribution function of
returns of portfolio λ.

Definition

Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the first-order stochastic
dominance (%′λ �FSD %

′τ ) if

F%′λ(x) ≤ F%′τ (x) ∀x ∈ R

with strict inequality for at least one x ∈ R.
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First order stochastic dominance (FSD) - interpretation

Necessary and sufficient conditions: %′λ �FSD %
′τ if

Eu(%′λ) ≥ Eu(%′τ ) for all utility functions and strict inequality
holds for at least some utility function.

F−1
%′λ(y) ≤ F−1

%′τ (y) ∀y ∈ [0, 1] with strict inequality for at least one
y ∈ [0, 1].

VaRα(−%′λ) ≤ VaRα(−%′τ ) ∀α ∈ [0, 1] with strict inequality for
at least one α ∈ [0, 1].
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Portfolio efficiency with respect to FSD

FSD efficiency: admissibility vs. optimality (K. and Post, 2009):

Definition (Admissibility case)

A given portfolio τ ∈ Λ is FSD inefficient if there exists portfolio λ ∈ Λ
such that %′λ �FSD %

′τ . Otherwise, portfolio τ is FSD efficient.

Definition (Optimality case)

Portfolio τ ∈ Λ is FSD efficient if it is the optimal solution of

max
λ∈Λ

Eu(%′λ)

for at least some utility function, i.e., there exists u such that

Eu(%′τ )− Eu(%′λ) ≥ 0 ∀λ ∈ Λ.

Otherwise, τ is FSD non-optimal.

We focus on the admissibility case - easier case.
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Portfolio efficiency test with respect to FSD

Idea: To identify a FSD dominating portfolio.
In order to find a FSD dominating portfolio λ, we solve the following
problem (Dupačová and K., 2014):

ξP(τ ) = max
λ

d(λ, τ )

s.t. HP(λ, τ ) ≤ 0

λ ∈ Λ.

where

d(λ, τ ) is an arbitrary distance between portfolios λ and τ , for
example, d(λ, τ ) = (λ− τ )′(λ− τ ).
HP(λ, τ ) := maxy∈R(F%′λ(y)− F%′τ (y))

where ξP(τ ) is called inefficiency measure. Or equivalently:

ξP(τ ) = max
λ

d(λ, τ )

s.t. F%′λ(y)− F%′τ (y) ≤ 0 ∀y ∈ R
λ ∈ Λ.
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Portfolio efficiency test with respect to FSD

Necessary and sufficient condition (Dupačová and K., 2014):

Theorem

A given portfolio τ is FSD efficient if and only if ξP(τ ) = 0. If ξP(τ ) > 0
then the optimal portfolio λ∗ is FSD efficient and it dominates portfolio
τ by FSD.

But how to compute inefficiency measure ξP(τ )? In general, we need to
solve the optimization problem:

ξP(τ ) = max
λ

d(λ, τ )

s.t. F%′λ(y)− F%′τ (y) ≤ 0 ∀y ∈ R
λ ∈ Λ.

which:

is non-convex

is non-smooth

has infinitely many constraints
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Possible approaches

Approximations of a true distribution:

To assume a specific distribution (normal) and rewrite the problem
in a few constraints - how good is such approximation...

To assume a scenario approach, i.e. P is a discrete probability
distribution (with non-equiprobable scenarios), and rewrite the
problem in finitely many constraints, but non-convex,
non-smooth...difficult to solve the problem even for a small number
of scenarios (Dupačová and K., 2014)

To assume that scenarios are equiprobable, and rewrite the problem
as MIP... solvable for a small number of scenarios (< 100) (K. and
Post, 2009)

What is the quality of the solution under these approximations?
Quality analysis: stress testing
More robust FSD efficiency criteria
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Stress testing

Consider a contamination of the original distribution of returns by
additional scenario s: P(t) = (1− t)P + tδ{s}, t ∈ [0, 1]. Let %(t) be a
random variable with distribution P(t). We now consider:

ξP(t)(τ ) = max
λ

d(λ, τ ) (1)

s.t. HP(t)(λ, τ ) ≤ 0

λ ∈ Λ

where HP(t)(λ, τ ) = maxy∈R(F%(t)′λ(y)− F%(t)′τ (y)).

Can be easily modified for any contaminating probability distribution.
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Directional FSD portfolio efficiency with respect to an
additional scenario

A robust version of FSD efficiency (Dupačová and K., 2014) :

Definition

A given portfolio τ ∈ Λ is directionally FSD inefficient with respect to
additional scenario s if for each t exists λ(t) such that
%(t)′λ(t) �FSD %(t)′τ . Moreover, a given portfolio τ ∈ Λ is directionally
FSD efficient with respect to additional scenario s if there is no (t,λ(t))
such that %(t)′λ(t) �FSD %(t)′τ .

The definition classifies portfolio τ as directionally FSD efficient
(inefficient) with respect to additional scenario s if τ is FSD efficient
(inefficient) when using the original distribution P as well as in any
contaminated case P(t).
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Directional FSD portfolio efficiency with respect to an
additional scenario

Necessary and sufficient conditions (Dupačová and K., 2014) :

Theorem

A given portfolio τ ∈ Λ is directionally FSD efficient with respect to
additional scenario s if and only if

max
t∈[0,1]

ξP(t)(τ ) = 0.

Theorem

A given portfolio τ ∈ Λ is directionally FSD inefficient with respect to
additional scenario s if and only if

min
t∈[0,1]

ξP(t)(τ ) > 0.

It leads to minimax....very difficult to solve even in the case when the
probability distribution is approximated by a few equiprobable scenarios.
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Directional FSD portfolio efficiency with respect to an
additional scenario - sufficient condition

Applying contamination bounds Dupačová and K. (2014) proved: If
HP(t)(λ, τ ) is concave in t then ξP(t)(τ ) is quasiconcave in t and
ξP(t)(τ ) ≥ min{ξP(0)(τ ), ξP(1)(τ )}. As a consequence we can derive the
following sufficient condition for directional FSD efficiency with respect
to additional scenario s.

Theorem

If

HP(t)(λ, τ ) is concave in t.

τ is FSD efficient when using original probability distribution P

τ ∈ argmaxλ∈Λs′λ

then τ is directionally FSD efficient with respect to s.
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Directional FSD portfolio inefficiency with respect to an
additional scenario - sufficient condition

Since F%(t)′λ(y) is linear in t for all λ ∈ Λ and y ∈ R we may derive the
following sufficient condition (Dupačová and K., 2014) :

Theorem

If there exists λ ∈ Λ such that %′λ �FSD %
′τ and s′λ ≥ s′τ then τ is

directionally FSD inefficient with respect to s.

The proof makes use an contamination upper bound to show that λ ∈ Λ
satisfying %′λ �FSD %

′τ and s′λ ≥ s′τ FSD dominates τ in any
contaminated case, i.e.

%(t)′λ �FSD %(t)′τ .
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FSD efficiency - neighborhood robustness

Another approach to robustness (Dupačová and K., 2014) : ε-FSD
efficiency test

Let d(P̄,P) be a distance between P and some alternative probability
distribution P̄.

Definition

A given portfolio τ ∈ Λ is ε-FSD inefficient if there exists portfolio λ ∈ Λ
and P̄ such that d(P̄,P) ≤ ε with %̄′λ �FSD %̄

′τ . Otherwise, portfolio τ
is ε-FSD efficient.

The introduced ε-FSD efficiency guarantees stability of the FSD efficiency
classification with respect to small changes (prescribed by parameter ε) in
probability distribution P. A given portfolio τ is ε-FSD efficient if and
only if no portfolio λ FSD dominates τ neither for the original
distribution P nor for arbitrary distribution P̄ from ε-neighborhood of P.
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ε-FSD efficiency test

For testing ε-FSD efficiency of a given portfolio τ we introduce a new
measure of ε-FSD efficiency:

ξε(τ ,R,p) = min
as ,bs ,λ,p̄,q̄

S∑
s=1

(as + bs) (2)

s.t. VaRq̄λ
s

(−%̄′λ)−VaRq̄λ
s

(−%̄′τ ) ≤ as , s = 1, ...,S

VaRq̄τ
s

(−%̄′λ)−VaRq̄τ
s

(−%̄′τ ) ≤ bs , s = 1, ...,S

q̄λs =
s∑

i=1

p̄λi , q̄τs =
s∑

i=1

p̄τi , s = 1, ...,S

S∑
i=1

p̄i = 1, −ε ≤ p̄i − pi ≤ ε, p̄i ≥ 0, i = 1, 2, ...,S

λ ∈ Λ as , bs ≤ 0, s = 1, ...,S

Theorem

Portfolio τ ∈ Λ is ε-FSD efficient if and only if ξε(τ ,R,p) given by (2) is
equal to zero.
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Second order stochastic dominance – definitions

Let Fr′λ(x) denote the cumulative probability distribution function of
returns of portfolio λ. The twice cumulative probability distribution
function of returns of portfolio λ is defined as

F
(2)
r′λ(y) =

∫ y

−∞
Fr′λ(x)dx . (25)

Definition

Portfolio λ ∈ Λ dominates portfolio τ ∈ Λ by the second-order stochastic
dominance (r′λ �SSD r′τ ) if and only if

F
(2)
r′λ(y) ≤ F

(2)
r′τ (y) ∀y ∈ R

with strict inequality for at least one y ∈ R.

Definition

A given portfolio τ ∈ Λ is SSD inefficient if there exists portfolio λ ∈ Λ
such that r′λ �SSD r′τ . Otherwise, portfolio τ is SSD efficient.
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Second order stochastic dominance – interpretation

Other equivalent definitions of SSD relation: r′λ �SSD r′τ if

Eu(r′λ) ≥ Eu(r′τ ) for all concave utility functions and strict
inequality holds for at least some concave utility function.

No non-satiable and risk averse decision maker prefers portfolio τ to
portfolio λ and at least one prefers λ to τ .

F−2
r′λ(y) ≤ F−2

r′τ (y) ∀y ∈ [0, 1] with strict inequality for at least one
y ∈ [0, 1], where F−2

r′λ is a cumulated quantile function.

CVaRα(−r′λ) ≤ CVaRα(−r′τ ) ∀α ∈ [0, 1] with strict inequality
for at least one α ∈ [0, 1], where

CVaRα(−r′λ) = min
v∈R,zt∈R+

v +
1

1− α

S∑
t=1

ptzt (26)

s.t. zt ≥ −xtλ− v , t = 1, 2, ...,S
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Portfolio efficiency testing

Let

ξ(τ ,X ,p) = min
as ,λ

S−1∑
s=0

as (27)

s.t. CVaRqτ
s

(−r′λ) − CVaRqτ
s

(−r′τ ) ≤ as , s = 0, 1, ...,S − 1

as ≤ 0, s = 0, 1, ...,S − 1

λ ∈ Λ.

Theorem

A given portfolio τ is SSD efficient if and only if ξ(τ ,X ,p) = 0. If
ξ(τ ,X ,p) < 0 then the optimal portfolio λ∗ in (27) is SSD efficient and
it dominates portfolio τ by SSD.
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Linear SSD efficiency test

Expressions for CVaR:

CVaRα(−r′λ) = min
v∈R,zt∈R+

v +
1

1− α

S∑
t=1

ptzt (28)

s.t. zt ≥ −xtλ− v , t = 1, 2, ...,S

and the similar expression can be considered for portfolio τ . However, for
portfolio τ , we will rather use the dual formulation:

CVaRα(−r′τ ) = max
κt∈R+

1

1− α

S∑
t=1

κt(−xtτ ) (29)

s.t. κt ≤ pt , t = 1, 2, ...,S
S∑

t=1

κt = 1− α

See Rockafellar & Uryasev (2000, 2002) for more details.
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Robustness in SSD portfolio efficiency testing - notation

Following Dupačová & Kopa (2012), we consider ε-SSD efficiency
approach as a robustification of the classical SSD portfolio efficiency. It
guarantees stability of the SSD efficiency classification with respect to
small changes (prescribed by parameter ε > 0) in probability vector p.
Assume that the probability distribution P̄ of random returns r̄ takes
again values xs , s = 1, 2, ...,S but with other probabilities
p̄ = (p̄1, p̄2, ..., p̄S). We define the distance between P and P̄ as
d(P̄,P) = maxi |p̄i − pi |.

Definition

A given portfolio τ ∈ Λ is ε-SSD inefficient if there exists portfolio λ ∈ Λ
and P̄ such that d(P̄,P) ≤ ε with r̄′λ �SSD r̄′τ . Otherwise, portfolio τ
is ε-SSD efficient.

A portfolio τ is ε-SSD efficient if and only if no portfolio λ SSD
dominates τ neither for the original probabilities p nor for arbitrary
probabilities p̄ from ε-neighborhood of the original vector p.
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Robustness analysis via Contamination

Intorduced for general stochastic programs by Dupačová et. al. (1996,
2000, 2006...) Assume that a problem was solved for original distribution
P. Changes in probability distribution P are modeled using contaminated
distributions

P(t) := (1− t)P + tQ, t ∈ [0, 1]

with Q another fixed probability distribution such that optimal value
function ϕ(Q) is finite.
Via contamination, robustness analysis wrt. changes in P gets reduced to
much simpler analysis of parametric program with scalar parameter t.
One can compute lower and upper bound for optimal value function ϕ(t).
We apply this notion in the easiest manner - the alternative distribution
is just one scenario (can be seen as stress test scenario or worst case
scenario)
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Robust portfolio efficiency with respect to the additional
scenario

For a contamination parameter t ∈ [0, 1], we assume that the random
return %̃(t) takes values r1, r2, ..., rS+1 with probabilities
p̃(t) = ((1− t)p1, (1− t)p2, ..., (1− t)pS , t). We denote the extended
scenario matrix by R̃, that is,

R̃ =

(
R

rS+1

)
.

Definition

A given portfolio τ ∈ Λ is directionally SSD inefficient with respect to
rS+1 if it exists t0 > 0 such that for every t ∈ [0, t0] there is a portfolio
λ(t) ∈ Λ satisfying %̃(t)′λ(t) �SSD %̃(t)′τ .

Definition

A given portfolio τ ∈ Λ is directionally SSD efficient with respect to rS+1

if there does not exist t0 > 0 such that for every t ∈ [0, t0] there is a
portfolio λ(t) ∈ Λ satisfying %̃(t)′λ(t) �SSD %̃(t)′τ .

According to these definitions, a given portfolio is classified as
directionally SSD efficient (inefficient) with respect to scenario rS+1 if a
sufficiently small contamination of the original probability distribution of
returns by the additional scenario does not change the SSD efficiency
classification, that is, the SSD efficient (inefficient) portfolio remains
SSD efficient (inefficient).
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Robust portfolio efficiency – con’t

Using contamination bounds derived in Dupačova & Kopa (2012) we can
derive a sufficient condition for directional SSD efficiency and directional
SSD inefficiency.

Theorem

Let τ ∈ Λ be a SSD efficient portfolio for the original distribution P. Let

rS+1τ ≥ rS+1λ for all λ ∈ Λ. (30)

Then τ ∈ Λ is directionally SSD efficient with respect to rS+1.

Theorem

Let τ ∈ Λ be a SSD inefficient portfolio for the original distribution P. If
there exists a portfolio λ ∈ Λ such that

CVaRqτ
s s

(−%′λ) − CVaRqτ (−%′τ ) < 0, s = 0, 1, ..., S − 1(31)

rS+1λ ≥ min((Rτ )[1], rS+1τ ) (32)

then τ is directionally SSD inefficient with respect to rS+1.
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Risk measures

We assume discrete distribution - equiprobable scenarios

variance:

σ2(r′λ) =
1

T

T∑
t=1

(xtλ− 1

T

T∑
s=1

(xsλ))2

Value at Risk:

VaRα(−r′λ) = min
γ,δt

γ

s.t. γ + Mδt ≥ −xtλ, t = 1, ...,T
T∑

t=1

δt = b(1− α)T c

δt ∈ {0, 1}, t = 1, ...,T

Conditional Value at Risk:

CVaRα(−r′λ) = min
v∈R,zt∈R+

v +
1

(1− α)T

T∑
t=1

zt

s.t. zt ≥ −xtλ− v , t = 1, 2, ...,T
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Model formulations I

Mean-variance model (quadratic programming):

minλ∈Λ
1

T

T∑
t=1

(xtλ− 1

T

T∑
s=1

(xsλ))2

s.t.
T∑

t=1

(xtλ) ≥
T∑

t=1

(xtτ )

VaR-FSD model (mixed integer programming)

min
γ,δt

γ

s.t. γ + Mδt ≥ −xtλ, t = 1, ...,T
T∑

t=1

δt = b(1− α)T c

Xλ ≥ PXτ

1′P = 1′, P1 = 1

P, δt ∈ {0, 1}, t = 1, ...,T
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Model formulations II

CVaR-SSD model (linear programming)

min
v∈R,zt ,W∈R+

v +
1

(1− α)T

T∑
t=1

zt

s.t. zt ≥ −xtλ− v , t = 1, 2, ...,T

Xλ ≥WXτ

1′W = 1′, W 1 = 1

Other combinations - 9 models - 9 optimal portfolios.
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Empirical application - data

We take US stock market data from the Kenneth French library. We
consider a standard set of 10 active benchmark stock portfolios as
the base assets. They are formed, and annually rebalanced, based on
individual stocks market capitalization of equity, each representing a
decile of the cross-section of stocks in a given year. The first decile
stocks (the smallest size) are called ”small” and the last decile
stocks are called ”large”.

Furthermore, we include CRISP proxy of the market portfolio as the
benchmark and US Treasury bill as a riskless asset.

We use data on annual excess returns from 1977 to 2006 (30
observations).

Out-of-sample analysis: 2007-2011
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Empirical application - results

Portfolio compositions:

Variance VaR CVaR 

Portfolio 

Mean

return FSD SSD 

Mean

return FSD SSD 

Mean

return FSD SSD 

Riskless 0.27 0.03 0.27 0.30 0.00 0.25 0.28 0.04 0.27 

Small 0.00 0.00 0.00 0.32 0.00 0.33 0.06 0.14 0.06 

2nd decile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

3rd decile 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

4th decile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

5th decile 0.00 0.02 0.00 0.24 0.00 0.20 0.00 0.00 0.00 

6th decile 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 

7th decile 0.73 0.42 0.73 0.00 0.67 0.07 0.66 0.71 0.67 

8th decile 0.00 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

9th decile 0.00 0.02 0.00 0.14 0.01 0.15 0.00 0.00 0.00 

Large 0.00 0.15 0.00 0.00 0.12 0.00 0.00 0.07 0.00 

Market 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.00 
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Empirical application - results

Portfolio performance:

In-sample descriptive statistics 

Variance VaR CVaR 

Mean 

return FSD SSD 

Mean 

return FSD SSD 

Mean 

return FSD SSD 

mean 7.16 8.67 7.17 7.16 8.90 7.67 7.16 9.39 7.26 

st. deviation 11.04 13.98 11.04 12.82 14.61 13.50 11.16 14.96 11.30 

min -12.87 -19.07 -12.87 -18.26 -19.38 -18.88 -12.00 -16.85 -12.16 

max 31.87 38.46 31.87 44.50 38.86 46.88 34.16 47.10 34.61 

skewness 0.07 -0.08 0.07 0.46 -0.08 0.45 0.16 0.20 0.16 

kurtosis -0.47 -0.42 -0.47 1.32 -0.62 1.28 -0.16 0.09 -0.16 

Out-of-sample descriptive statistics 

Variance VaR CVaR 

Mean 

return FSD SSD 

Mean 

return FSD SSD 

Mean 

return FSD SSD 

mean 3.16 3.94 3.16 2.04 3.52 2.17 2.88 3.54 2.92 

st. deviation 23.22 29.03 23.23 22.83 29.63 24.55 23.15 30.16 23.45 

min -30.99 -39.22 -31.00 -29.27 -41.15 -31.70 -30.76 -40.15 -31.15 

max 30.40 36.66 30.41 29.02 37.49 31.27 30.24 39.06 30.63 

skewness -0.55 -0.64 -0.55 -0.24 -0.71 -0.26 -0.48 -0.47 -0.48 

kurtosis 0.42 0.39 0.42 -0.73 0.81 -0.62 0.24 0.15 0.24 
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Financial applications - empirical studies

K. and Post (2009), Post and K. (2013), Post, Fang and K. (2015) applied 
the theory of portfolio efficiency testing (for various types of stochastic 
dominance criterion) to US market portfolio efficiency testing. While US 
market portfolio is generally considered to be efficient they found:

US market portfolio is FSD inefficient in both meanings (optimality
& admissibility)

US market portfolio is inefficient also when considering other types
of stochastic dominance (SSD, NSD, DARA SD, IRRA SD)

A dominating portfolio was identified

Consequences on the US market behavior were analyzed
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Conclusions

Stochastic dominance is an useful tool in portfolio optimization
because it allows to consider a set of utility functions
The tests for portfolio efficiency with respect to stochastic
dominance criteria are very complicated mathematical programming
problems, very sensitive to underlying probability distribution.
Therefore, all kinds of robustness, worst case or stress testing
analysis are very useful.
The tests are computationally manageable only under some
assumptions, the complexity is very high.
Portfolio efficiency with respect to stochastic dominance criteria is a
relatively new field of research (from 2003 - Post (2003),
Kuosmanen (2004)...) however, strongly motivated by the classical
portfolio optimization problems
Efficiency in the sense of admissibility is also related to work of
Dentcheva, Fabian, Henrion, Ruszczynski, Schultz,... (2003 - now)
A lot of open (difficult) problems for future research in mathematics,
computer science, finance...
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N-th order stochastic dominance

Let UN be the set of N times differentiable utility functions such that:
(−1)ku(k) ≤ 0 for all k = 1, 2, ...,N.

Definition

Portfolio λ dominates portfolio τ with respect to N-th order stochastic
dominance (λ �NSD τ ) if Eu(r′λ) ≥ Eu(r′τ ) for all utility functions
u ∈ UN with strict inequality for at least one such utility function.

The general definition of NSD efficiency for N ≥ 2 can be seen as an
extension of SSD efficiency and, following Post and K. (2013), we
formulate it in the “NSD optimality” form. We allow for non-equal
probabilities of scenarios (p1, ..., pT ).

Definition

A given portfolio τ is NSD efficient (N ≥ 2), if there exists at least one
utility function u ∈ UN such that Eu(r′τ )− Eu(r′λ) ≥ 0 for all λ ∈ Λ
with strict inequality for at least one λ ∈ Λ.
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Necessary and sufficient condition for NSD efficiency

Using KKT condition in problem maxλ∈Λ

∑T
t=1 ptu (xtλ), Post and K.

(2013) derived the following NSD efficiency test:
Assume that scenarios are ordered in the ascending order according to
returns of portfolio τ , i.e. xtτ ≤ xt+1τ , t = 1, 2, ...,T − 1. Let

θ∗(τ ) = min
βn,γk ,θ

θ (4)

s.t.
T∑

t=1

(xtτ − x t
j )pt(

N−2∑
n=1

nβn

(
xtτ − xTτ

)n−1
+

(N − 1)
T∑

k=t

γk

(
xtτ − xkτ

)N−2
) + θ ≥ 0, j = 1, · · · ,M

(−1)nβn ≤ 0, n = 1, . . . ,N − 2

(−1)N−1γk ≤ 0, k = 1, 2, . . . ,T
T∑

t=1

(
N−2∑
n=1

nβn(xtτ − xTτ )n−1 + (N − 1)
T∑

k=t

γk(xtτ − xkτ )
N−2

)pt = 1.

A portfolio τ is NSD efficient ⇔ θ∗(τ ) given by (4) is equal to zero.
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Ordering of returns

To be able to use the necessary and sufficient condition for NSD
efficiency one needs to order the returns of any portfolio. We may do it,
for example, using so-called permutations matrix P = {pi,k}Ti,k=1, that is,
a 0-1 matrix that satisfies:

T∑
i=1

pi,k =
T∑

k=1

pi,k = 1, pi,k ∈ {0, 1}, i , k = 1, ,T .

Then for any portfolio returns xtτ , t = 1, 2,T , a permutation matrix P
exists such that:

(Xτ )[t] =
T∑

k=1

pt,kx
kτ

that is, PXτ is a vector of ordered returns of portfolio τ from the
smallest one.
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Final model - risk minimization under NSD efficiency

min
τ∈Λ

σ2(rτ ) =
1

T

T∑
t=1

(
xtτ − 1

T

T∑
s=1

xsτ

)2

s.t.

1

T

T∑
t=1

xtτ ≥ m

y t =
T∑

k=1

pt,kx
kτ , t = 1, 2, ...,T

T∑
i=1

pi,k =
T∑

k=1

pi,k = 1, pi,k ∈ {0, 1}, i , k = 1, ,T

y t+1 ≥ y t , t = 1, 2, ...,T − 1
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Final model con’t

∑T
t=1(y t −

∑T
k=1 pt,kxk

j )pt

(∑N−2
n=1 nβn

(
y t − yT

)n−1
+

(N − 1)
∑T

k=t γk

(
y t − yk

)N−2
)
≥ 0, j = 1, · · · ,M

(-1)nβn ≤ 0, n = 1, . . . ,N − 2

(-1)N−1γk ≤ 0, k = 1, 2, . . . ,T∑T
t=1

(∑N−2
n=1 nβn(y t − yT )n−1 + (N − 1)

∑T
k=t γk(y t − yk)

N−2
)

pt = 1.
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Alternative models

One can easily use another measure of risk instead of variance, for
example for equiprobable scenarios:

semivariance:

σ2(r′τ ) =
1

T

T∑
t=1

(
(xtτ − 1

T

T∑
s=1

(xsτ ))−

)2

Value at Risk:

VaRα(−r′τ ) = min
γ,δt

γ

s.t. γ + Mδt ≥ −xtτ , t = 1, ...,T
T∑

t=1

δt = b(1− α)T c , δt ∈ {0, 1}, t = 1, ...,T

Conditional Value at Risk:

CVaRα(−r′τ ) = min
v∈R,zt∈R+

v +
1

(1− α)T

T∑
t=1

zt

s.t. zt ≥ −xtτ − v , t = 1, 2, ...,T

Miloš Kopa Optimal mean - risk portfolios under NSD efficiency constraints



Empirical study - data

US stock market data from the Kenneth French library.

We consider a standard set of 10 active benchmark stock portfolios
as the base assets. They are formed, and annually rebalanced, based
on individual stocks market capitalization of equity, each
representing a decile of the cross-section of stocks in a given year.
The first decile stocks (the smallest size) are called ”small” and the
last decile stocks are called ”large”.

We include US Treasury bill as a riskless asset.

We use data on annual excess returns (in %) from 1982 to 2011 (30
observations).

Hence we have n=11 base assets and T=30 scenarios.
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Empirical study - descriptive statistics

mean st. deviation min max skewness c. kurtosis 

Small 8.43 26.66 -44.67 90.27 0.65 1.88 

2nd decile 8.06 22.44 -37.92 60.56 0.04 -0.07 

3rd decile 8.58 19.56 -34.80 49.95 -0.20 -0.21 

4th decile 7.83 18.64 -30.75 47.68 -0.17 -0.15 

5th decile 8.97 19.50 -36.86 45.49 -0.19 0.00 

6th decile 8.75 17.01 -29.90 40.97 -0.20 -0.15 

7th decile 9.32 18.44 -42.48 43.68 -0.49 0.95 

8th decile 8.69 17.77 -40.89 39.67 -0.57 0.92 

9th decile 8.62 17.12 -43.38 37.90 -0.82 1.67 

Large 7.18 16.57 -36.56 32.47 -0.74 0.48 

Table 1: Base assets 1982-2011 descriptive statistics 
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Empirical study - results

Fig. 1: Mean-VaR efficiency frontiers with additional SSD efficiency
constraints (dashed line) and without SSD efficincy constraints (solid
line)
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Conclusions

We formulated a new type of optimization problems which
“combines” two most common approaches to portfolio efficiency

The new problem can be seen as a generalization of mean-risk
models

The new idea is to add constraints which reduce the feasibility set to
the NSD efficient portfolios

One can use several different risk measures and orders of stochastic
dominance, including DARA SD (Post, Fang & K. 2014)

The disadvantage: computational complexity

Another disadvantage: the optimal portfolio is very sensitive to
changes in probability distribution of returns → some stability
analysis is needed, for example stress testing using contamination
techniques as proposed in Dupačová & K. (2012, 2014)
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