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Abstract Development of applicable robustness results for stochastic programs
with probabilistic constraints is a demanding task. In this paper we follow the
relatively simple ideas of output analysis based on the contamination technique
and focus on construction of computable global bounds for the optimal value
function. Dependence of the set of feasible solutions on the probability distrib-
ution rules out the straightforward construction of these concavity-based global
bounds for the perturbed optimal value function whereas local results can still
be obtained. Therefore we explore approximations and reformulations of stochas-
tic programs with probabilistic constraints by stochastic programs with suitably
chosen recourse or penalty-type objectives and fixed constraints. Contamination
bounds constructed for these substitute problems may be then implemented within
the output analysis for the original probabilistic program.

Keywords Stochastic programs with probabilistic constraints · output analysis ·
contamination technique

1 Modeling issues

Classical stochastic programming (SP) models aim at hedging against consequences
of possible realizations of random parameters — scenarios — so that the expected
final outcome or position is the best possible.

Modeling part of realistic applications consists of a clear declaration of ran-
dom factors to be taken into account, of distinguishing between hard and soft
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Charles University in Prague, Faculty of Mathematics and Physics, Department of Probability
and Mathematical Statistics,
Tel.: +420-221913280
Fax: +420-222323316
E-mail: dupacova@karlin.mff.cuni.cz



2

constraints and of a choice of a sensible optimality criterion. The starting point
may be formulation of a deterministic problem which would be solved if no ran-
domness is considered, e.g.

min {f(x) : x ∈ X , gk(x) ≤ 0, k = 1, . . . ,m}

with X ⊂ IRn and with real functions f, gk ∀k.
Taking into account the presence of a random factor ω and the fact that a

decision x has to be chosen before ω occurs, a reformulation of the minimization
problem is needed. Two prevailing approaches have been used to this purpose:

• static expected penalty models,

• probabilistic programs.

For penalty type models, X is defined by hard constraints plus some other con-
ditions that guarantee plausible properties of the model, whereas soft constraints,
such as gk(x, ω) ≤ 0, are reflected by penalties included into the random objective
function. For probabilistic programs, probabilistic reliability-type constraints are
introduced.

1.1 Stochastic programming models with penalties

The basic SP model with penalties is of the form

min
x∈X

EP f(x, ω). (1)

It is identified by

– a known probability distribution P of random parameter ω whose support Ω
is a closed subset of IRs; EP denotes the corresponding expectation. In the
sequel, the same character ω will be used both for the random vector and its
realization.

– a given, nonempty, closed set X ⊂ IRn of decisions x which is independent
of P, that is X remains fixed even if several probability distributions P are
considered.

– a preselected random objective f from X × Ω to the extended reals — a loss
or a cost caused by the decision x when scenario ω occurs. As a function
of ω, f is measurable for each fixed x ∈ X and such that its expectation
EP f(x, ω) is well defined. The structure of f may be quite complicated e.g. for
multistage problems. For convex X , a frequent assumption is that f is lower
semicontinuous and convex with respect to x, i.e. f is convex normal integrand.

An example of (1) is the two-stage stochastic linear program with fixed recourse
where X is convex polyhedral and the random objective function f(x, ω) = c⊤x+
q(x, ω) involves the second-stage (recourse) function q defined as

q(x, ω) = min
y

{q⊤y : Wy = b(ω) − T (ω)x, y ∈ IRr
+}. (2)

Vector q ∈ IRr and recourse matrix W (m, r) are fixed, b(ω), T (ω) are of consistent
dimensions with components affine linear in ω.
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1.2 Probabilistic constraints

Instead of (1) one may consider stochastic programs

min
x∈X (P )

F (x, P ) := EP f(x, ω) (3)

in which the set of feasible solutions X (P ) ⊂ IRn depends on the probability
distribution P.

A special type of (3) is probabilistic programming obtained when X (P ) =
X ∩ Xε(P ) with Xε(P ) defined e.g. by the joint probabilistic constraint

Xε(P ) := {x ∈ IRn : P (g(x, ω) ≤ 0) ≥ 1 − ε} (4)

with g : IRn ×Ω → IRm and ε ∈ (0, 1) fixed, chosen by the decision maker. It is a
reliability type constraint which can be written as

H(x, P ) := P ( max
k=1,...,m

gk(x, ω) ≤ 0) ≥ 1 − ε. (5)

We make use of the following convention: If V (ω) is a predicate on ω, we write
P (V (ω)) instead of P ({ω ∈ Ω : V (ω)}).

Individual probability constraints are a special type of probabilistic constraints
which treat conditions gk(x, ω) ≤ 0 separately: Given probability thresholds ε1, . . . , εm

the feasible solutions are x ∈ X that fulfill m individual probabilistic constraints

P (gk(x, ω) ≤ 0) ≥ 1 − εk, k = 1, . . . ,m. (6)

This is a relatively easy structure of problem, namely, if ωk are separated being
the right-hand sides of constraints, i.e. gk(x, ω) = ωk − gk(x)∀k. The constraints
of (6) become

gk(x) ≥ u1−εk(Pk), k = 1, . . . ,m (7)

whose right-hand sides u1−εk(Pk) are quantiles of marginal probability distribu-
tions Pk of ωk. For concave gk(x) ∀k the set of feasible decisions is convex and
for linear objective function and linear gk(x) ∀k the resulting problem is a linear
program.

Such results are no more valid for joint probability constraints. Even for ran-
dom right-hand sides only, special requirements on the probability distribution P
are needed; cf. log-concave or quasiconcave probability distributions [29]. These
seminal results on convexity properties of the set Xε(P ) and of the related func-
tion H(x, P ) are due to Prékopa; see e.g. [27], [28]. They have been reported
and further extended in various monographs and collections devoted to stochastic
programming, e.g. [1], [31].

Formally, the independence of the set of feasible solutions of P can be achieved
by means of the extended real indicator functions. Problem (3) can be e.g. written
as

min
x

[

F (x, P ) + indX (P )(x)
]

(8)

with X (P ) ⊂ X ⊆ IRn, X a fixed closed set independent of P, and the indicator
function indX (P )(x) := 0 for x ∈ X (P ) and +∞ otherwise. However, the resulting
extended real objective function in (8) is then very likely to lose the convenient
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properties of the original objective function F (x, P ) in (3). Semicontinuity prop-
erties of the corresponding indicator functions, see e.g. [19], can be obtained under
various sets of assumptions about the function g and/or its components gk and
about the probability distribution P. These play an important role in qualita-
tive and quantitative stability analysis with respect to changes of the probability
measure; see [30].

Klein Haneveld [24] suggested to replace probability constraints (4) and (6) by
Integrated Chance Constraints, ICC

EP (max
k

[gk(x, ω)]+) ≤ β and EP ([gk(x, ω)]+) ≤ βk ∀k, (9)

respectively, with fixed nonnegative values β, βk. Mathematical properties of ICC
are much nicer and from the modeling point of view, it is convenient that integrated
chance constraints quantify the size of infeasibilities.

The two prevailing types of static stochastic programs — with penalties and
with probabilistic constraints — are not competitive but rather complementary.
Contrary to penalty models, probabilistic programs capture the reliability require-
ments or risk restrictions even in cases which do not allow for reasonably accurate
evaluation of penalties, e.g. [14]. A suggestion of [28] is to apply probabilistic con-
straints (4), (5) or (6) and at the same time, to extend the objective function
for an expected penalty term which is active whenever the original constraints
gk(x, ω) ≤ 0 are not fulfilled:

Prékopa [28] “...we are convinced that the best way of operating a stochastic
system is to operate it with a prescribed (high) reliability and at the same
time use penalties to punish discrepancies.”

Another suggestion of [28] was to assign a probabilistic constraint on the
second-stage variables y in the two-stage stochastic program as a way how to
restrict a possible unfeasibility of the second-stage constraints in incomplete re-
course problems. Integrated chance constraints (9) of [24] aim at a similar goal.

Such extensions may be useful when modeling real problems. An example of
a “mixed” model and its properties was recently presented in [3]; see Example 3.
In addition, ideas of multiobjective programming can be used if the choice of the
penalty function is not clear and multiple penalty functions are therefore consid-
ered.

For various reasons, probability distribution P may not be precisely specified
and for applications of models (1) or (3) it is important to know how sensitive are
the obtained results on changes in P. There exist various results in this direction,
see e.g. [30] and references therein. The first issue of interest is then the sensitivity
of the obtained optimal solutions with respect to perturbances of the probability
distribution which may be quantified, inter alia, by bounds on the “error” in the
perturbed optimal value. In this paper we shall follow the relatively simple ideas of
output analysis based on the contamination technique and focus on construction
of computable global lower and upper bounds for the optimal value function. The
brief presentation of the contamination technique in Section 2 reveals that, due
to the dependence of the set of feasible solutions on the probability distribution,
the straightforward construction of global contamination bounds for probabilistic
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programs is hardly possible. Therefore reformulations of probabilistic programs
to expected penalty-type problems are offered in Section 3. Such approach can
be helpful in numerical solution of probabilistic programs, see e.g. [4], [34]. More-
over, as illustrated in Section 4, it opens a possibility to construct approximate
contamination bounds for the probabilistic programs in question.

2 Contamination technique

For derivation of contamination bounds one mostly assumes that the stochastic
program is reformulated as

min
x∈X

F (x, P ) := EP f(x, ω) =

∫

Ω

f(x, ω)P (dω) (10)

where P is a fixed fully specified probability distribution of the random parameter
ω ∈ Ω ⊂ IRs, X ⊂ IRn is nonempty, closed, independent of P and f : IRn×IRs → IR
such that the expectation EP is well defined.

Denote ϕ(P ) the optimal value and X ∗(P ) the set of optimal solutions of (10).
Possible changes or perturbations of probability distribution P are modeled using
contaminated distributions Pλ,

Pλ := (1 − λ)P + λQ, λ ∈ [0, 1] (11)

with Q another fixed probability distribution. Limiting thus the analysis to a se-
lected direction Q − P only, the results are directly applicable but they are less
general than quantitative stability results with respect to arbitrary (but small)
changes in P summarized e.g. in [30]. On the other hand, contaminated proba-
bility distributions may also capture substantial changes in P : for example with
P, Q carried by different beds of scenarios the contaminated distribution is car-
ried by the pooled sample and resistance of results obtained for P with respect to
additional scenarios – atoms of Q – can be analyzed; see e.g. [11], [13], [15].

Via contamination, robustness analysis with respect to changes in probability
distribution P gets reduced to a much simpler analysis with respect to a scalar
parameter λ : The objective function in (10) is linear in P, hence the perturbed
objective

F (x, λ) :=

∫

Ω

f(x, ω)Pλ(dω) = (1 − λ)F (x, P ) + λF (x,Q)

is linear in λ. Suppose for simplicity that stochastic program (10) has an optimal
solution for all considered distributions Pλ, 0 ≤ λ ≤ 1 of the form (11). Then the
optimal value function

ϕPQ(λ) := min
x∈X

F (x, Pλ)

is concave on [0, 1] which implies its continuity and existence of directional deriv-
atives on (0, 1). Its continuity and existence of the directional derivative at the
point λ = 0 is a property related with stability results for the stochastic program
in question. In general, one needs a nonempty, bounded set of optimal solutions
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X ∗(P ) of the initial stochastic program (10). This assumption together with sta-

tionarity of derivatives dF (x,λ)
dλ = F (x,Q) − F (x, P ) is used to derive the form of

the directional derivative

ϕ′
PQ(0+) = min

x∈X∗(P )
F (x,Q) − ϕ(P ) (12)

which enters the upper bound for the optimal value function ϕPQ(λ) = ϕ(Pλ) :

ϕ(P ) + λϕ′
PQ(0+) ≥ ϕPQ(λ) ≥ (1 − λ)ϕ(P ) + λϕ(Q), λ ∈ [0, 1]; (13)

for details see [8], [11] and references therein. Formula (12) follows e.g. by applica-
tion of Theorem I. in Chapter III. of [6] provided that X is compact and the both
objectives F (x, P ), F (x,Q) are continuous in x.

If x∗(P ) is the unique optimal solution of (10), ϕ′
PQ(0+) = F (x∗(P ), Q)−ϕ(0),

i.e. the local change of the optimal value function caused by a small change of
P in direction Q − P is the same as that of the objective function at x∗(P ).
If there are multiple optimal solutions, each of them leads to an upper bound
ϕ′

PQ(0+) ≤ F (x(P ), Q) − ϕ(P ), x(P ) ∈ X ∗(P ). Relaxed contamination bounds
can be then written as

(1 − λ)ϕ(P ) + λF (x(P ), Q) ≥ ϕPQ(λ) ≥ (1 − λ)ϕ(P ) + λϕ(Q) (14)

valid for an arbitrary optimal solution x(P ) ∈ X ∗(P ) and for all λ ∈ [0, 1].

To construct contamination bounds (13) or (14) one exploits concavity property
of the optimal value function ϕPQ(λ) and the existence and the problem specific
form of the directional derivative ϕ′

PQ(0+). For problems with F (x, P ) concave
in P and X independent of P concavity of the optimal value function ϕ(λ) is
preserved. Under additional assumptions, e.g. convexity of the stochastic program
(10), one may then apply general results by [2], [6], [17] and others to get the
existence and the form of the directional derivative

ϕ′
PQ(0+) = min

x∈X∗(P )

d

dλ
F (x, Pλ)

∣

∣

∣

λ=0+
(15)

which enters contamination bounds (13); see [11], [12].
Also convexity with respect to x can be relaxed, e.g. Theorem 8 of [10] and the

general result in Theorem 4.26 of [2]. It means that contamination bounds can be
derived also for mixed integer SLP with recourse [7].

In the present paper we shall discuss the role of contamination bounds in
output analysis for stochastic programs with probabilistic constraints and related
SP problem formulations. As the set of feasible solutions depends on P, the optimal
value function ϕPQ(λ) is not concave in general so that a direct application of the
contamination technique will be successful only exceptionally.

EXAMPLE 1
As the first example consider the stochastic linear program with individual

probabilistic constraints and random right-hand sides ωk

min
x∈X

{c⊤x : P (ωk − Tkx ≤ 0) ≥ 1 − εk, k = 1, . . . ,m}.
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(We assume for simplicity that X = IRn.) It reduces to a linear program whose
right-hand sides are the corresponding quantiles u1−εk(Pk) of the marginal prob-
ability distributions Pk :

ϕ(P ) := min{c⊤x : Tkx ≥ u1−εk(Pk), k = 1, . . . ,m}. (16)

Assume that the optimal value ϕ(P ) of (16) is finite. Using duality theory for
linear programming, it can be expressed as

ϕ(P ) = max
z

{
∑

k

zku1−εk(Pk) : T⊤z = c, z ∈ IRm
+ } (17)

where T is the (m,n) matrix composed of rows Tk, k = 1, . . . ,m. This is a problem
whose set of feasible solutions is fixed and only the objective function depends, in
a nonlinear way, on probability distribution P ; hence, it seems to be in the form
suitable for construction of contamination bounds for optimal value ϕPQ(λ) :=
ϕ(Pλ). Denote z∗(P ) an optimal solution of (17).

For one-dimensional probability distribution P and under assumptions about
existence and continuity of its positive density p on a neighborhood of the quan-
tile uα(P ) we get derivatives of quantiles uα(Pλ) of contaminated probability
distribution Pλ at λ = 0+, cf. [32]: Let Γ denote the distribution function of the
contaminating probability distribution Q. Then

d

dλ
uα((1 − λ)P + λQ)

∣

∣

∣

λ=0+

=
α− Γ (uα(P ))

p(uα(P ))
. (18)

Hence, if the contaminated objective function
∑

k zku1−εk((1 − λ)Pk + λQk) of
(17) is convex in λ, we get (maximization type) contamination bounds with

ϕ′
PQ(0+) =

∑

k

z∗k(P )
1 − εk − Γk(u1−εk(Pk))

pk(u1−εk(Pk))

where Γk denote marginal distribution functions of probability distribution Q.

The main obstacle is that convexity with respect to λ of quantiles uα(Pλ)
cannot be guaranteed (cf. [23]). It means that

∑

k zku1−εk((1 − λ)Pk + λQk),
the objective function of the contaminated dual (maximization) linear program,
need not be convex in λ either. To overcome the difficulties, let us follow the
suggestion of [9]. Assume that the optimal solution x∗(P ) of (16) is unique and
nondegenerated, the marginal densities pk are for all k continuous and positive at
the points Tkx

∗(P ) and the marginal distribution functions of the contaminating
probability distribution Q have continuous derivatives on the neighborhoods of
the points Tkx

∗(P ). Using (18), approximate the right-hand sides of (16) linearly

u1−εk((1 − λ)Pk + λQk) ≈ u1−εk(Pk) + λ
du1−εk((1 − λ)Pk + λQk)

dλ

∣

∣

∣

∣

λ=0+

.

Approximate the optimal solution x∗(Pλ) of the contaminated program

min
x∈X

{c⊤x : Tkx ≥ u1−εk((1 − λ)Pk + λQk), k = 1, . . . ,m} (19)
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by an optimal solution x̂(Pλ) of parametric linear program

min
x∈X

{

c⊤x : Tkx ≥ u1−εk(Pk) + λ
1 − εk − Γk(u1−εk(Pk))

pk(u1−εk(Pk))
, k = 1, . . . ,m

}

(20)

whose properties are well known; namely, the optimal value function ϕ̂(λ) of (20)
is convex piecewise linear in λ and ϕ̂(0) = ϕ(P ). This allows us to construct the
convexity based contamination bounds for (20). Moreover, if the noncontaminated
problem (with λ = 0) has a unique nondegenerated optimal solution, there is a
λ0 > 0 such that ϕ̂(λ) is linear on [0, λ0] and the optimal basis B of the linear
program dual to (20) stays fixed. Namely, x̂(P ) = (B⊤)−1 [u1−εi(Pi)]i∈I for I
denoting the set of active constraints of (16). In virtue of our assumptions, there
is λ0 > 0 such that for 0 ≤ λ ≤ λ0, the set of active constraints remains fixed, B
is optimal basis of (20) and the optimal solution is

x̂(Pλ) = x∗(P ) + λ(B⊤)−1

[

1 − εk − Γk(u1−εk(Pk))

pk(u1−εk(Pk))

]

k∈I

= x∗(P ) + λdx∗(P ;Q− P ).

For 0 ≤ λ ≤ λ0 the optimal value equals

ϕ̂(λ) = ϕ(P ) + λc⊤(B⊤)−1

[

1 − εk − Γk(u1−εk(Pk))

pk(u1−εk(Pk))

]

k∈I

where the second term determines the slope of the lower contamination bound.
The upper contamination bound for ϕ̂(λ) follows by convexity:

ϕ̂(λ) ≤ (1 − λ)ϕ(P ) + λϕ̂(1).

This approximation was applied in [9] to real data for a water resources planning
problem and similar ideas were used also for contamination of empirical VaR; cf.
[15]. Notice that the obtained bounds are based on a local approximation (20) of
the contaminated problem (19).

In the last Section we shall explore construction of approximate global contami-
nation bounds based on ideas of multiobjective programming and on a relationship
between optimal solutions of stochastic programs with probabilistic constraints
and optimal solutions of stochastic programs with suitably chosen recourse or
penalty type objectives and fixed constraints.

3 Probabilistic programs and their recourse reformulations

Stochastic linear programs with convex polyhedral set X , with nonrandom matrix
T composed of rows Tk, k = 1, . . . ,m, and with individual probabilistic constraints
on random right-hand sides ωk can be qualified as an easy case. They reduce to
linear programs whose right-hand sides are the corresponding quantiles u1−εk(Pk)
of the marginal probability distributions Pk, cf. (16). Moreover, under additional
assumptions, local contamination bounds can be constructed, see Example 1.

In general, even individual linear probabilistic programs (6) with gk(x, ω) :=
bk(ω)−Tk(ω)x and right-hand sides bk(ω) and rows Tk(ω) affine linear in ω, need
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not be easy to solve. Besides of application of Monte Carlo sampling methods
(cf. [25], [26], [33]) the existing algorithms for probabilistic programs have been
developed for special structures of the model and/or probability distributions, cf.
[20], [21], [29]. Hence, approximations by easier problems are of interest.

The idea proposed already in [22] is to construct another problem with a fixed
set X of feasible solutions related to the probabilistic program

min{EP f(x, ω) : x ∈ X ∩ Xε(P )}, (21)

with Xε(P ) defined by (4): One assigns penaltiesN [gk(x, ω)]+ with positive penalty
coefficients and solves

min
x∈X

[

EP f(x, ω) +N

m
∑

k=1

EP [gk(x, ω)]+

]

(22)

instead of (21).

ILLUSTRATIVE NUMERICAL EXAMPLE
Consider the example of probabilistic program with one linear joint probabilis-

tic constraint taken from [28]:

min 3x1 + 2x2

subject to (23)

x1 + 4x2 ≥ 4, 5x1 + x2 ≥ 5, x1 ≥ 0, x2 ≥ 0,

P (x1 + x2 − 3 ≥ ω1, 2x1 + x2 − 4 ≥ ω2) ≥ 1 − ε.

The random components (ω1, ω2) have bivariate normal distribution with E[ω1] =
E[ω2] = 0, E[ω2

1 ] = E[ω2
2 ] = 1, and E[ω1ω2] = 0.2. The corresponding simple

recourse model may be formulated as follows.

min 3x1 + 2x2 +N · E
[

(ω1 − x1 − x2 + 3)+ + (ω2 − 2x1 − x2 + 4)+
]

subject to (24)

x1 + 4x2 ≥ 4, 5x1 + x2 ≥ 5, x1 ≥ 0, x2 ≥ 0.

We used SLP-IOR, see [21], and the solver PROCON for solving the problem (23)
with joint probabilistic constraint for decreasing levels ε; the solver SRAPPROX
was used for simple recourse models (24) with increasing N .

When comparing results from tables 1 and 2, we observe that optimal solu-
tions and optimal values of (23) and (24) behave similarly with increasing N and
decreasing ε, respectively. A question is if there is a quantitative relation between
the outputs of the two models in dependence on the choice of parameters N and
ε.

The two problems (21) and (22) are not equivalent. However, by intuition one
may expect that for a given ε > 0 there exists N large enough such that the
obtained optimal solution, say xN (P ), of (22) satisfies the probabilistic constraint
(4). Then the corresponding value of EP f(xN (P ), ω) may serve as an upper bound
for the optimal value of (21). This conjecture is supported by the analysis of
optimality conditions for the simple recourse problem with random right-hand
sides; they provide a link between the simple-recourse penalty coefficients and the
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Table 1 Optimal values and solutions for simple recourse model.

N First-stage Recourse Optimal solution
objective value objective value x̂

N
1 x̂

N
2

1 4.1053 2.9596 0.8421 0.7895
10 9.5596 0.9285 1.0000 3.2798

100 11.6185 0.5887 1.0000 4.3092
1000 12.9373 0.2680 1.0000 4.9686

10000 13.4786 0.0494 1.0000 5.2393
100000 13.5703 0.0052 1.0000 5.2851

1000000 13.5800 0.0004 1.0000 5.2900

Table 2 Optimal values and solutions for probabilistic program.

ε Objective Optimal solution
value x̂

ε
1 x̂

ε
2

0, 2 9.4438 1.0000 3.2219
0, 1 10.2349 1.0000 3.6174
0, 05 10.8899 1.0000 3.9450
0, 01 12.1382 1.0000 4.5691
0, 001 13.5754 1.0000 5.2877

values of the probability thresholds for the corresponding problem with individual
probabilistic constraints and random right-hand sides, cf. Section 3.2 of [1]. A
more complicated form of penalty may be designed as the optimal value of the
recourse function q(x, ω) of the second-stage linear program miny{q

⊤y : Wy ≥
b(ω) − T (ω)x, y ≥ 0} with some q ∈ IRm

+ and a fixed recourse matrix W ; problem
(22) corresponds to qk = N ∀k and the simple recourse matrix W = I.

For a numerical evidence see also [14] where a piecewise linear nonseparable
penalty function N [maxj(xj − ωj)]

+ was applied and the results compared with
those obtained for a joint probabilistic constraint of the type P{xj ≤ ωj , j =
1, . . . , n} ≥ 1 − ε. The recent numerical experiments of [4] show that the penalty-
based reformulations are able to generate feasible solutions of the original proba-
bilistic program with a high reliability.

Also convexity preserving penalty functions, say ϑ : IRm → IR+ which are
continuous, nondecreasing in their components and are equal to 0 on IRm

− and
positive otherwise seem to be a suitable choice. This idea stems from the con-
nection between (21) and (22) that can be recognized within the framework of
convex multiobjective stochastic programming. For example optimal solutions of
(21) with Xε(P ) given by (5) can be viewed as efficient solutions of the bi-criterial
optimization problem

“min”x∈X [F (x, P ),−H(x, P )]

which are obtained by the ǫ-constrained approach. Hence, for convex X and for
F (·, P ) = EP f(·, ω) convex and H(·, P ) := P (ω : g(·, ω) ≤ 0) concave there exists
N ≥ 0 such that these efficient solutions can be found as optimal solutions of the
parametric program

min
x∈X

[F (x, P ) −N ·H(x, P )].
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Similarly, such relationship can be established for stochastic programs of the
form

min
x∈X

{EP f(x, ω) : EPhk(x, ω) ≤ ǫk, k = 1, . . . ,m} (25)

with hk(x, ω) suitable transforms of gk(x, ω) and with a distribution dependent
set of feasible solutions. Evidently, problems with probabilistic constraints and
those with integrated chance constraints are special instances of (25). Again, for
fixed thresholds ǫk, k = 1, . . . ,m, the optimal solutions of (25) may be viewed as
efficient solutions of the multiobjective problem

“min”x∈X {EP f(x, ω), EPhk(x, ω), k = 1, . . . ,m} (26)

obtained by the ǫ-constrained approach.

If X is nonempty, convex, compact and the functions EP f(x, ω), EPhk(x, ω),
k = 1, . . . ,m, are convex in x on IRn then there exists a nonnegative parameter
vector t ∈ IRm, t 6= 0 such that the efficient points can be obtained by solving a
scalar convex optimization problem

min
x∈X

[EP f(x, ω) +

m
∑

k=1

tkEPhk(x, ω)]. (27)

This scalarization is a special form of scalarization by a penalty function ϑ :
IRm → IR which must be continuous and nondecreasing in its arguments to provide
efficient solutions of (26). (For relevant results on multiobjective optimization see
e.g. [18].)

Problem (27) corresponds to (22) with hk(x, ω) = [gk(x, ω)]+. In general,
hk(x, ω) can be a suitable penalty function applied to gk(x, ω) ≤ 0 and tk =
N, k = 1, . . . ,m.

A rigorous proof of the relationship between optimal values and solutions of
(21) and those of (22) for the penalty function N

∑m
k=1[gk(x, ω)]+ is due to Er-

moliev et al. [16]. It is valid under modest assumptions on the nonlinear functions
gk, on continuity of the probability distribution P and on the structure of problem
(21).

The approach by [16] can be further extended to a whole class of penalty
functions ϑ. For functions ϑ : IRm → IR+ which are continuous nondecreasing in
their components, equal to 0 on IRm

− and positive otherwise, it holds that

P
(

gk(x, ω) ≤ 0, 1 ≤ k ≤ m
)

≥ 1 − ε ⇐⇒ P
(

ϑ(g(x, ω)) > 0
)

≤ ε.

The considered penalty function problem can be formulated as follows

ϕN (P ) = min
x∈X

[

EP f(x, ξ) +N · EPϑ(g(x, ω))
]

(28)

with N a positive parameter. We denote xN (P ) an optimal solution of (28) and
xε(P ) an optimal solution of (21) with a level ε ∈ (0, 1).
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Theorem 1 For a fixed probability distribution P consider the two problems (21)
and (28) and assume:

X 6= ∅ compact, F (x, P ) = EP f(x, ω) a continuous function of x,
ϑ : IRm → IR+ a continuous function, nondecreasing in its components, which

is equal to 0 on IRm
− and positive otherwise,

(i) gk(·, ω)∀k are almost surely continuous;
(ii) there exists a nonnegative random variable C(ω) with EPC

1+κ(ω) < ∞ for
some κ > 0, such that |ϑ(g(x, ω))| ≤ C(ω);

(iii) EPϑ(g(x
′

, ω)) = 0, for some x
′

∈ X ;
(iv) P (gk(x, ω) = 0) = 0 ∀k, for all x ∈ X .

Denote γ = κ/2(1 + κ), and for arbitrary N > 0 and ε ∈ (0, 1) put

ε(N) = P
(

ϑ(g(xN (P ), ω)) > 0
)

,

α(N) = N · EPϑ(g(xN (P ), ω)),

β(ε) = ε−γEPϑ(g(xε(P ), ω)).

THEN for any prescribed ε ∈ (0, 1) there always exists N large enough so
that minimization (28) generates optimal solutions xN (P ) which also satisfy the
probabilistic constraints (4) with the given ε.

Moreover, bounds on the optimal value ψε(P ) of (21) based on the optimal
value ϕN (P ) of (28) and vice versa can be constructed:

ϕ1/εγ(N)(P ) − β(ε(N)) ≤ ψε(N)(P ) ≤ ϕN (P ) − α(N),

ψε(N)(P ) + α(N) ≤ ϕN (P ) ≤ ψ1/N1/γ (P ) + β(1/N1/γ),
(29)

with

lim
N→+∞

α(N) = lim
N→+∞

ε(N) = lim
ε→0+

β(ε) = 0.

For the proof see [5].

It means that under assumptions of the Theorem, the two problems (21), (28)
are asymptotically equivalent which is a useful theoretical result. However, the
theorem does not make any statement on the convergence of optimal solutions but
it relates optimal values for certain values of the levels and the penalty parameter.

Remark 1 The assumption (iii) can be very strong because it requires existence of
a permanently feasible point for which the constraints are fulfilled for almost all
realizations of the random vector ω. The problem is that the overall feasible set
may shrink with increasing levels to the empty set, hence, the approach may fail
for probability measures with an unbounded support.

Remark 2 The assumption (iv) ensures that the probability function

H(x, P ) = P
(

g(x, ω) ≤ 0
)

is continuous in the decision vector, which can be easy seen if we realize that the
only point of discontinuity of the function is gk(x, ω) = 0 for any k and x.
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Notice, however, that when we want to evaluate one of the bounds in (29),
we must be prepared to face some problems. We solve the penalty function prob-
lem (28) taking a sufficiently large N > 0 to get its optimal solution xN (P ) and
optimal value ϕN (P ). Then we are able to compute α(N), ε(N), hence the up-
per bound for the optimal value ψε(N)(P ) of the probabilistic program (4) with
probability level ε(N). But we are not able to compute β(ε(N)) without having
the solution xε(N)(P ) which we do not want to find or even may not able to find.
We can only solve the penalty function problem with N = 1/εγ(N) getting its
optimal solution x1/εγ(N)(P ) and optimal value ϕ1/εγ(N)(P ) which is only a part
of the lower bound for the optimal value ψε(N)(P ). A question for future research
is how to choose the parameter N so that the probability level ε is ensured. A
recent numerical study in this direction can be found in [34] in the context of a
beam design optimization.

The bounds (29) and the terms α(N), ε(N) and β(ε) depend also on the choice
of the penalty function ϑ. Two special penalty functions are readily available:
ϑ1(u) =

∑m
k=1[uk]+ applied in [16] and ϑ2(u) = max1≤k≤m[uk]+ applied in [14].

The obtained problems with penalties and with a fixed set of feasible solutions
are much simpler to solve and analyze then the probabilistic programs; namely,
contamination technique can be used for output analysis of the penalty function
problems (28). Exploration of this possibility and of its meaning for output analysis
of the original probabilistic program is the subject of the next Section.

4 Approximate contamination bounds

As discussed in Section 2, to construct global bounds for the optimal value of
stochastic programs under contamination of the probability distribution, i.e. with
respect to the contamination parameter λ, we need that the optimal value function
ϕPQ(λ) is concave to get (13). With the set of feasible solutions dependent on P,
concavity of the optimal value function ϕPQ(λ) cannot be guaranteed. Our sug-
gestion is to approximate probabilistic programs by penalty-type problems which
possess a fixed set of feasible first-stage solutions. This in turn opens the possibility
to construct approximate contamination bounds.

EXAMPLE 2.
For the general probabilistic program (21), let us view the problem

ϕ(P ; t) = min
x∈X

[

EP f(x, ω) +

m
∑

k=1

tkEP [gk(x, ω)]+

]

(30)

with convex compact X 6= ∅, convex functions f(·, ω), gk(·, ω), k = 1, . . . ,m and
a fixed nonnegative parameter vector t ∈ IRm as an acceptable substitute for the
probabilistic program (21)

min{EP f(x, ω) : x ∈ X ∩ Xε(P )}

with Xε(P ) defined by (4). Using the additivity of the penalty term in (30) we can
rewrite (30) as

min
x∈X

Θ(x, P ; t) := EP θ(x, ω; t)
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with the random objective

θ(x, ω; t) = f(x, ω) +

m
∑

k=1

tk[gk(x, ω)]+

which is convex in x. The set of feasible solutions X does not depend on P and
for fixed vectors t, the contamination bounds for the optimal value ϕ(Pλ; t) of
(30) for contaminated probability distribution (11) follow the usual pattern (14).
They may serve as an indicator of robustness of the optimal value of (21) and may
support decisions about the choice of weights tk.

EXAMPLE 3.
In the model of [3], the second-stage variables y are supposed to satisfy with a

prescribed probability 1 − δ certain constraints driven by another random factor,
η, whose probability distribution S is independent of P. The problem is

min
x∈X

F (x, P, S) := EP f(x, ω, S) = c⊤x+

∫

Ω

R(x, ω, S)P (dω) (31)

where

R(x, ω, S) = min
y

{q⊤y : Wy = h(ω)− T (ω)x, y ∈ IRr
+, S(Ay ≤ η) ≥ 1− δ}, (32)

S denotes the probability distribution of s-dimensional random vector η andA(s, r)
is a deterministic matrix composed of rows Aj , j = 1, . . . , s. With respect to P ,
(31) is an expectation type of stochastic program, with a fixed set X of feasible
first-stage decisions and with an incomplete recourse; hence, there is a good chance
to construct contamination bounds on the optimal value ϕ(Pλ, S) of (31) for a fixed
probability distribution S and for the contaminated probability distribution Pλ.

Assume that T is nonrandom with a full row rank, S is fixed and such that
the set YS := {y ∈ IRr

+ : S(Ay ≤ η) ≥ 1 − δ} is convex and bounded. Let the set
X ∗(P, S) of optimal solutions of (31) be nonempty and bounded. Under further
assumptions which guarantee finiteness and convexity of the second stage value
function R(·, ω, S) for a fixed probability distribution S (hence finiteness and con-
vexity of the random objective value function f(·, ω, S)), assumptions on existence
of its expectation with respect to P and Q and assumptions on joint continuity
of F (·, ·, S) in the decision vector x and the probability measure P , cf. [3], the
directional derivative of the optimal value function ϕ(·, S) at P in the direction
Q− P exists and is of the form (12), i.e.

min
x∈X∗(P,S)

F (x,Q, S) − ϕ(P, S). (33)

To model perturbations with respect to S and to construct the corresponding
contamination bounds is more demanding. A possibility is to keep a fixed prob-
ability distribution P and to replace the probabilistic constraint in (32) by an
expected (with respect to S) penalty term added to q⊤y, as done e.g. in (22), for
N > 0 sufficiently large:
R(x, ω, S) ≈

min
y

{q⊤y+N

s
∑

j=1

ES [Ajy−ηj ]
+ : Wy = h(ω)−T (ω)x, y ≥ 0} := R̃(x, ω, S). (34)
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As we have shown in Theorem 1, such approximation works well under particular
assumptions, e.g. for compact set of feasible solutions and under existence of a
permanently feasible solution. We obtain then the approximate problem

min
x∈X

F̃ (x, P, S) := EP f̃(x, ω, S) = c⊤x+

∫

Ω

R̃(x, ω, S)P (dω), (35)

where the objective function is linear in P and concave in S, X is independent
of P, S. This allows us to construct contamination bounds for (35) with respect
to the contaminated probability distribution S. In this case, however, existence
of the directional derivative of the optimal value function must be examined in
detail. The first step can be to get the directional derivative of R̃(x, ω, S) at S in
the direction U − S according to (12):

R̃′
SU (x, ω, S) = min

y∈Y∗(x,ω,S)
[q⊤y +N

s
∑

j=1

EU [Ajy − ηj ]
+] − R̃(x, ω, S) (36)

where Y∗(x, ω, S) is the set of optimal solutions of the approximate second-stage
problem (34) for fixed x, ω.

If it is possible to interchange the expectation with respect to P and the direc-
tional derivative, we can obtain the directional derivative of the objective function
F̃ (x, P, S) of (35) which is concave in S. This allows us to use Theorem 4.26 of [2]
to obtain the directional derivative of the optimal value function ϕ̂(P, S) of (35)
at S for fixed P in the direction U − S :

min
x∈X∗(P,S)

∫

Ω

R̃′
SU (x, ω, S)P (dω), (37)

where R̃′
SU (x, ω, S) is the directional derivative (36) of the approximated recourse

function R̃(x, ω, S).

The last example illustrates the merits of the suggested use of contamination
bounds constructed for the penalty-type reformulation in output analysis for the
original probabilistic program, here for the stress testing with respect to an ex-
tremal scenario.

EXAMPLE 4.
In the jointly constrained probabilistic program

minx1 + x2

subject to (38)

P (ω1x1 + x2 ≥ 7, ω2x1 + x2 ≥ 4) ≥ 1 − ε,

x1 ≥ 0, x2 ≥ 0.

the random components (ω1, ω2) are independent and have uniform distributions
on the intervals [1, 4] and [1/3, 1]. The explicit solution can be obtained, cf. [26].
The problem can be solved by the sample approximation method, cf. [25], [26],
[33]. We verified that the sample based penalty-type reformulation provides good
solutions of the original probabilistic problem. This enables us to exploit the ap-
proximate contamination bounds analysis of the initial problem (38).
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The corresponding model with the penalty objective may be formulated as
follows:

min x1 + x2 +N · E
[

(7 − ω1x1 − x2)
+ + (4 − ω2x1 − x2)

+
]

subject to (39)

x1 ≥ 0, x2 ≥ 0.

We chose the level ε = 0.01. By numerical experiments we found that the sample
size which is necessary to obtain a good approximation of the probabilistic program
(PS) is 500. We also found that by setting the penalty parameter N to 140, the
penalty term becomes very small so that the optimal values of the both sample
based problems (38) and (39) are almost the same, hence the penalty reformulation
(PR) can serve as a good approximation of the probabilistic program (PP).

To stress the sample distribution we choose the extremal scenario (ω̃1, ω̃2) =
(4, 1). The contamination bounds are shown in Figure 1, where also optimal values
of the sample-based problems PP and PR are plotted.
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Fig. 1 Contamination bounds.

Notice, that contamination may influence the choice ofN for which the penalty-
type approximation is precise enough. In our example the required precision is
evidently not acheived if λ > 0.4.
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5 Conclusions

Reformulation of probabilistic programs by incorporating a suitably chosen penalty
function into the objective helps to arrive at problems with a fixed set of feasible
solutions whose optimal solutions are linked with the optimal solutions of the
original probabilistic program. The recommended form of the penalty function
agrees with the basic ideas of multiobjective programming and suitable properties
of the approximation approach follow by generalization of results by [16].

Provided that the approximation error is low the next idea is to exploit the con-
tamination bounds constructed for the penalty-type reformulation to test stability
of the optimal value function of the original probabilistic program with respect
to perturbations of the probability distribution P or its resistance with respect to
additional out-of-sample scenarios. As the set of feasible solutions of probabilistic
programs depends on the probability distribution, the possibility of obtaining con-
tamination bounds for probabilistic programs directly is limited to problems of a
very special form and/or under special distributional and structural assumptions.
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34. Žampachová, E. (2010), Approximations in Stochastic Optimization and Their Applica-

tions, PhD Thesis, Brno University of Technology.


