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Abstract. The contamination technique is presented as a numerically tractable
technique for postoptimality analysis and analysis of the robustness of the optimal
value of various scenario based stochastic programs with respect to inclusion of
additional ”out-of-sample” scenarios. Using results based on the initial selection
of scenarios and those based on the alternative out-of-sample scenarios it provides
bounds for the optimal value based on the pooled sample of scenarios of these
groups. The application of the method to models supporting financial decision
making is detailed for bond portfolio management and tracking models. Numerical
experience is presented for a bond portfolio management model using data from
the Italian bond market.
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1 Scenario Based Models

The outcome of financial decisions depends on realization of numerous input values
which are unknown to the decision maker at the time when the decision has to be
taken. Examples include future prices or returns, interest rates, exchange rates,
external cashflows including liabilities, prepayment rates, lapse behavior and future

1To appear in World Wide Asset and Liability Management (W. Ziemba and J. Mulvey, eds.),
Cambridge Univ. Press, 263–285.



inflation. Given a set of forecasted values of these parameters from a scenario, one
accepts a decision which is plausible under the assumed circumstances but which
may be unacceptable for a different scenario. Another approach is to interprete the
input parameters as random and to base the decisions on a stochastic programming
model; we refer to the recent monographs by Kall and Wallace (1994), and Prékopa
(1995) for a general information about stochastic programming and to collections
Konno et al., eds. (1993), Zenios, ed. (1993), Zenios and Ziemba, eds. (1992),
surveys Dupačová (1991), Mulvey (1994) or to numerous papers on applications of
stochastic programming in finance, e.g., Bradley and Crane (1972), Cariño et al.
(1994), Dembo (1991), Dempster and Ireland (1988), Dert (1995), Dupačová and
Bertocchi (1996), Kusy and Ziemba (1986), McKendall et al. (1994), Mulvey and
Vladimirou (1992), Shapiro (1988), and Zenios (1991).

The numerical techniques designed for solving stochastic programming problems
are mostly based on approximation of the distribution of the random parameters
by a discrete scenario, obtained by sampling in the course of numerical solution
or given in advance; cf. Ermoliev and Wets, eds. (1988). We shall consider here
the latter approach; hence, we assume that there is a given discrete distribution P
concentrated in a finite number of points, say, ω1, . . . , ωS with positive probabilities
ps > 0 ∀s,

∑S
s=1 ps = 1, that enter the coefficients and the function values in a

known way. The atoms ω1, . . . , ωS are called scenarios.

The origin of scenarios can be very diverse; they may be from a truly discrete
known distribution, be obtained in the course of a discretization/approximation
scheme or by a limited sample information, or come from attempts to model un-
certainty by means of scenarios obtained by a preliminary analysis of the problem
and with probabilities of their occurence that may reflect an ad hoc belief or a
subjective opinion of an expert.

One is interested in both the robustness of the obtained optimal solution and
the optimal value of the objective function. The procedure should be robust in the
sense that small perturbances of the input, i.e., of the chosen scenarios and of their
probabilities, should alter the outcome only slightly so that the results obtained
remain close to the unperturbed ones, and that somewhat larger perturbations do
not cause a catastrophe. The importance of robust procedures increases with the
complexity of the model and with its dimensionality.

We shall elaborate here the contamination technique which is, inter alia, suitable
for analysis of influence of additional scenarios and for constructing the correspond-
ing error bounds. We refer to Dupačová (1986, 1990) for the theoretical results,
to Dupačová (1995) for an application in the field of scenario based multistage
stochastic linear programs with fixed complete recourse and to Dupačová (1996 b,
1998) for an extension to problems in which the objective function is nonlinear in
distribution P for to cover, e.g., the case of mean-variance criterion or the robust
optimization models by Mulvey et al. (1995).

The models considered in this paper can be put into the form:

Minimize f(x, P ) on the set X ⊂ Rn (1.1)



where

f convex in x and linear in P ;

P is the probability distribution of the random parameters ω ∈ Ω that enter
the problem; in the case of scenario based stochastic programs that we deal with
in our applications, P is a discrete probability distribution and for a given set Ω
of possible scenarios, this distribution is fully determined by the vector p of their
probabilities. Accordingly, the objective function is linear in p.

X a closed, nonempty set that does not depend on P ; and

x ∈ X the main, scenario independent decision variable, typically, the first
stage decision.

Problems with f(x, •) linear in P that are considered in this paper correspond
to minimization of the expected value of a random outcome of the modeled decision
process.

Example 1. Scenario based two-stage stochastic linear programs (SLP) with ran-

dom relatively complete recourse appear in financial models that take into account
random prices in connection with portfolio rebalancing or with conservation of
cashflows, cf. Golub et al. (1993), McKendall et al. (1994), Zenios (1991).

They can be written as

minimize c⊤x +
S

∑

s=1

psq
⊤

s ys (1.2)

subject to
Ax = b

T1x + W1y1 = h1

T2x + W2y2 = h2
...

. . .
...

TSx + . . . WSyS = hS

x ≥ 0,ys ≥ 0, s = 1, . . . , S (1.3)

where ωs = [qs,Ts,Ws,hs], s = 1, . . . , S are scenarios or atoms at which the
probability distribution P is concentrated and ps ≥ 0, s = 1, . . . , S are their prob-
abilities,

∑

s ps = 1.

Example 2. Scenario based expected utility models use principle of the max-
imal expected utility, namely

maximize
S

∑

s=1

psu(g(x, ωs)) (1.4)

subject to x ∈ X . The function g is often defined as the optimal value of an
auxilliary optimization problem that is related with a given scenario ωs and a
given initial decision x. This optimal value can be the final wealth achieved by



optimal management of a bond portfolio at the end of the pay-off period (see
Sections 3 and 4) or the difference between the return of the portfolio and the
index, see Worzel et al. (1994), etc. The choice of the utility function is restricted
to concave nondecreasing functions and there are various types of utility functions
which are popular in finance, such as isoelastic utility functions u(W ) = W γ

γ
. The

book Ziemba and Vickson (1975) discussed the pros and cons of typical utility
functions.

Also the two-stage stochastic linear program from Example 1 can be modified
to an expected utility model:

minimize −
S

∑

s=1

psu(c⊤x + q(x, ωs)) (1.5)

on the set X and with

q(x, ωs) = min
ys

{

q⊤

s ys|Wsys = hs − Tsx, ys ≥ 0
}

(1.6)

Example 3. The tracking model, see Dembo (1991), related to (2) can be
formulated as follows: Let vs, s = 1, . . . , S be the optimal values of the individual

scenario problems
minimize c⊤x + q⊤

s ys (1.7)

subject to
Ax = b

Tsx + Wsys = hs

x ≥ 0,ys ≥ 0. (1.8)

Then the basic compromising or tracking model is

minimize
S

∑

s=1

ps

(

‖c⊤x + q⊤

s ys − vs‖ + ‖Tsx + Wsys − hs‖
)

(1.9)

subject to x and ys∀s that fulfil the ”hard” constraints

Ax = b (1.10)

x ≥ 0,ys ≥ 0, s = 1, . . . , S. (1.11)

The first and second stage solutions obtained by solving this problem track
the optimal solutions of the individual scenario problems (1.7)-(1.8) as closely as
possible. The norm in (1.9) can be in principle chosen in an arbitrary way; its
choice influences the solution procedure.

Further examples that can be used to illustrate the general form of the consid-
ered problem (1) and to provide a motivation for our studies are scenario based
multistage stochastic programs, see Dupačová (1995).



In these examples, we are interested in resistance of the obtained optimal de-
cisions and of the optimal value with respect to the used input: for the given
set of scenarios Ω = {ω1, . . . , ωS} we want to study the influence of this choice
of scenarios ωs and of their probabilities as well as the influence of inclusion of
additional scenarios on the optimal value of the objective function (1.2), (1.4) or
(1.9). We exploit classical results of parametric linear and nonlinear programming
together with the contamination technique of robust statistics. This is a tractable
approach in situations when a straightforward application of standard postopti-
mality methods of linear programming is in general hardly manageable: even for a
fixed sample size S, inclusion of an additional scenario means an extension of the
system of equations, for instance those in problem (1.2)-(1.3), for a new block of
second-stage constraints and for additional second-stage variables, etc.

In the next Section, we shall briefly describe the contamination technique and
provide the main result – bounds on the optimal value of the perturbed problem.
This approach will be applied to the bond portfolio management problem which is
an application of the expected utility model from Example 2 and to the tracking
model of Example 3. Numerical results presented in the last Section are based
on an application of the bond portfolio management model to the Italian bond
market.

2 Contamination Technique - The Basic Ideas

We present a brief summary of the contamination technique (cf. Dupačová (1986,
1991)) for the general form of stochastic programs (1) under assumptions that X
is a given nonempty convex closed set of feasible solutions that does not depend
on the probability distribution P and that the objective function f is convex in
x and linear in P . Let ϕ(P ) denotes the minimal value of the objective function
in (1) and let X (P ) be the set of optimal solutions. We shall embed the problem
(1) into a family of optimization problems parametrized by a scalar parameter λ.
This family comes from contamination of the original probability distribution P
by another fixed probability distribution Q, i. e., from using distributions Pλ of
the form

Pλ = (1 − λ)P + λQ with λ ∈ (0, 1) (2.1)

in the objective function of (1.1) at the place of P . For fixed distributions P,Q
the contaminated distribution Pλ depends only on λ and

f(x, Pλ) := fQ(x, λ) (2.2)

is the corresponding objective function which is a convex - concave function on
Rn × [0, 1]. Let

ϕ(Pλ) = ϕQ(λ) = inf
x∈X

fQ(x, λ) and X (Pλ) = XQ(λ) = arg min
x∈X

fQ(x, λ) (2.3)



be the optimal value function and the set of optimal solutions of the perturbed
stochastic program

minimize f(x, Pλ) := fQ(x, λ) on the set X . (2.4)

There are various statements about persistence, stability and sensitivity for para-
metric programs of the above type:

• Under the additional assumption that the set X (P ) := XQ(0) of optimal
solutions of the original problem (1.1) is nonempty and bounded and that X (Q) =
XQ(1) 6= ∅, the function ϕQ is a finite concave function on [0, 1], continuous at
λ = 0 (cf. Gol’shtein (1972), Theorem 15) and its value at λ = 0 equals the
optimal value of (1.1):

ϕQ(0) = min
x∈X

f(x, P ) = ϕ(P ) (2.5)

• If the objective function fQ is jointly continuous with respect to x and λ,
its derivative exists with respect to λ at λ = 0+ for all x from a neighborhood,
say, X ∗ of X (P ) and if the convergence of the difference quotients 1

λ
[fQ(x, λ) −

fQ(x, 0)] for λ → 0+ is uniform in x on X ∗, we can use a slight modification of
Theorem 17 of Gol’shtein (1972) to get the derivative of the optimal value of the
perturbed program (2.4) at λ = 0+:

ϕ′

Q(0+) =
d

dλ
ϕQ(0+) = min

x∈X (P )

d

dλ
fQ(x, 0+). (2.6)

When f(x, P ) is linear in P ,

fQ(x, λ) = (1 − λ)f(x, P ) + λf(x, Q) (2.7)

is a linear function in λ and for an arbitrary fixed x, the sequence of difference
quotients is a stationary one. Then, (2.6) reduces to

ϕ′

Q(0+) = min
x∈X (P )

[f(x, Q) − f(x, P )] = min
x∈X (P )

f(x, Q) − ϕ(P ). (2.8)

In this special but important case the derivative equals the difference between the
minimal expected cost of an optimal decision based on the initial distribution P if
Q 6= P applies and the minimal expected costs under P .

Using (2.8) and concavity of ϕQ on [0, 1] we can bound the considered per-
turbed optimal value function ϕQ(λ):

(1 − λ)ϕQ(0) + λϕQ(1) ≤ ϕQ(λ) ≤ ϕQ(0) + λϕ′

Q(0+) ∀λ ∈ [0, 1] (2.9)

and get bounds on the relative change of the perturbed optimal value due to
contamination:

ϕQ(1) − ϕQ(0) ≤
1

λ
[ϕQ(λ) − ϕQ(0)] ≤ ϕ′

Q(0+) ∀λ ∈ [0, 1] . (2.10)



These bounds can be rewritten in terms of the two probability distributions P,Q:

(1 − λ)ϕ(P ) + λϕ(Q) ≤ ϕ(Pλ) ≤ ϕ(P ) + λϕ′

Q(0+) ∀λ ∈ [0, 1] . (2.11)

ϕ(Q) − ϕ(P ) ≤
1

λ
[ϕ(Pλ) − ϕ(P )] ≤ ϕ′

Q(0+) ∀λ ∈ [0, 1] . (2.12)

The bounds (2.11) and (2.12) are based on the assumed properties of the ob-
jective function f(x, P ) as a function of the probability distribution P without any

convexity assumptions concerning random coefficients that enter the initial formu-
lation of the analyzed stochastic program, such as (1.2)-(1.3), (1.4), (1.5)-(1.6) or
(1.7)-(1.11).

When (1.1) has a unique optimal solution, say x(P ) for the initial distribution
P , the derivative (2.8) and the bounds (2.11) have the form

ϕ′

Q(0+) = f(x(P ), Q) − ϕ(P ) (2.13)

(1 − λ)ϕ(P ) + λϕ(Q) ≤ ϕ(Pλ) ≤ (1 − λ)ϕ(P ) + λf(x(P ), Q) ∀λ ∈ [0, 1] (2.14)

so the additional numerical effort consists in solution of the stochastic program
based on the alternative distribution Q and in evaluation of the function value
of this program at the already known point x(P ). If there are multiple optimal
solutions the bounds (2.14) computed at an arbitrary optimal solution of the initial
problem are valid bounds, but not necessarily the most tight ones.

Similarly, one can approximate the optimal value ϕ(Pλ) using the solution x(Q)
and the optimal value ϕ(Q) of minx∈X f(x, Q) (provided that the set of optimal
solutions X (Q) = XQ(1) is nonempty and bounded):

(1 − λ)ϕ(P ) + λϕ(Q) ≤ ϕ(Pλ) ≤ λϕ(Q) + (1 − λ)f(x(Q), P ) ∀λ ∈ [0, 1] (2.15)

so that

(1 − λ)ϕ(P ) + λϕ(Q) ≤ ϕ(Pλ) ≤

min {(1 − λ)ϕ(P ) + λf(x(P ), Q), λϕ(Q) + (1 − λ)f(x(Q), P )} ,

∀λ ∈ [0, 1] . (2.16)

The contamination technique is very flexible and it is a suitable tool for postop-
timality analysis in various disparate situations. The choice of a degenerated dis-
tribution Q = δ(ω∗) := Q∗ concentrated at ω∗ /∈ Ω corresponds to an additional
scenario and (2.11), (2.12) or (2.14) provide an information about the influence of

including the additional scenario ω∗ on the optimal outcome. Similarly, a degener-
ated distribution Q∗ = δ(ω∗) with ω∗ ∈ Ω models the case of increasing probability

of scenario ω∗ and so on. The derivatives of the optimal value of the program
perturbed by a degenerated contaminating distributions are related to the influ-

ence curve and they can be used to construct further characteristics of robustness
acknowledged in robust statistics, cf. Hampel (1974).



Contamination by a distribution Q on Ω that gives the same expectation EQω =
EP ω is helpful in studying resistance with respect to changes of the sample in
situations where the corresponding input information - the known fixed expectation
of the random parameters ω - is to be preserved; see Dupačová (1996 b).

3 Application To Financial Decision Models

3.1 The bond portfolio management problem.

The objective of the portfolio management model is to maximize the expected
utility of the wealth at the end of a given planning period subject to securing
the prescribed or uncertain future payments. An active trading strategy, which
allows for rebalancing the portfolio, is permitted under constraints on conservation
of holdings for each asset at each time period and on conservation of cashflows.
The main factor which determines the prices, cashflows and other coefficients of
the model is the evolution of the short term future interest rates. The possible
sequences of interest rates can be determined ad hoc or using a probabilistic model
of the term structure, e.g., Black et al. (1990). We assume that these scenarios of
interest rates have been already selected, indexed by superscripts s, s = 1, . . . , S,
and their probabilities fixed as ps > 0, s = 1, . . . , S,

∑

s ps = 1.

We follow the notation introduced in Golub et al. (1993), see also Dupačová
and Bertocchi (1996):

j = 1, . . . , J are indices of the considered bonds and Tj the dates of their
maturities; the considered horizon for evaluation of prices is T ≥ maxj Tj;

t = 0, . . . , T0 is the considered discretization of the planning horizon;

bj denote the initial holdings (in face value) of bond j;

b0 is the initial holding in the riskless asset;

rs
t is the short term interest rate valid in the time interval (t, t + 1] under

scenario s;

f s
jt is the cashflow generated from bond j at time t under scenario s expressed

as a fraction of the face value;

ξs
jt and ζs

jt are the selling and purchasing prices of bond j at time t for scenario
s obtained from the corresponding fair prices

P s
jt = Pjt(r

s) =
T

∑

τ=t+1

f s
jτ

τ−1
∏

h=t

(1 + rs
h)

−1 (3.1)

by subtracting or adding fixed transaction costs and spread; the initial prices ξj0

and ζj0 are known, i. e., scenario independent;



Lt is liability due at time t;

xj/yj are face values of bond j purchased / sold at the beginning of the planning
period, i.e., at t = 0, nonnegative first-stage decision variables;

zj0 is the face value of bond j held in portfolio after the initial decisions xj, yj

have been made and the auxiliary nonnegative variable y+
0 denotes the initial sur-

plus.

The second-stage decision variables on rebalancing, borrowing and reinvest-
ment, xs

jt, y
s
jt, z

s
jt, y

−s
t , y+s

t as well as the wealth W s
T0

at the end of the planning
horizon depend on scenarios of interest rates.

The model is
maximize

∑

s

psu(W s
T0

) (3.2)

subject to the first-stage constraints on conservation of holdings

yj + zj0 = bj + xj ∀j (3.3)

and on cashflow
y+

0 +
∑

j

ζj0xj = b0 +
∑

j

ξj0yj (3.4)

subject to the second-stage constraints on conservation and holdings for individual
interest rate scenarios

zs
jt + ys

jt = zs
j,t−1 + xs

jt ∀j, s, 1 ≤ t ≤ T0 (3.5)

and on cashflow (including rebalancing the portfolio) at each time period 1 ≤ t ≤
T0

∑

j

ξs
jty

s
jt +

∑

j

f s
jtz

s
j,t−1 + (1 − δ1 + rs

t−1)y
+s
t−1 + y−s

t =

Lt +
∑

j

ζs
jtx

s
jt + (1 + δ2 + rs

t−1)y
−s
t−1 + y+s

t ∀s, t (3.6)

under nonnegativity of all variables, with y−s
0 = 0∀s, y+s

0 = y+
0 ∀s and with

W s
T0

=
∑

j

ξs
jT0

zs
jT0

+ y+s
T0

− αy−s
T0

∀s. (3.7)

The multiplier α in (3.7) should be fixed. For instance, a pension plan assumes
repeated application of the model with rolling horizon and values α > 1 take into
account the debt service in the future.

Thanks to the assumed possibility of reinvestments and of unlimited borrow-
ing, the problem has always a feasible solution. The existence of optimal solutions
is guaranteed for a large class of utility functions that are increasing and concave

which will be assumed henceforth. From the point of view of stochastic program-
ming, it is a scenario based multiperiod two-stage model with random relatively



complete recourse and with additional nonlinearities due to the choice of the util-
ity function.

The main output of the model is the optimal value of the objective function (the
maximal expected utility of the final wealth) and the optimal values of the first-
stage variables xj, yj, y

+
0 (and zj0) for all j. They depend on the initial portfolio

of bonds, on the model parameters (α, δ1, δ2, transaction costs), on the chosen
utility function, on the scheduled stream of liabilities, on the applied model of
interest rates and the market data used to fit the model, and on the way how a
modest number of scenarios has been selected out of a whole population. If this
input is known and an initial trading strategy determined by scenario independent
first-stage decision variables xj, yj, y

+
0 (and zj0) for all j has been accepted, then

the subsequent scenario dependent decisions have to be made in an optimal way
regarding the goal of the model. It means that given the values of the first-stage
variables y+

0 and x,y, z with components xj, yj, zj0∀j, the maximal contribution
of the portfolio management under the sth scenario to the value of the objective
function is obtained as the value of the utility function computed for the maximal
value of the wealth W s

T0
attainable for the sth scenario under the constraints of

the model, i.e., the utility of the optimal value W s∗
T0

of the linear program

maximize W s
T0

subject to

zs
jt + ys

jt = zs
j,t−1 + xs

jt ∀j, 1 ≤ t ≤ T0

∑

j

ξs
jty

s
jt +

∑

j

f s
jtz

s
j,t−1 + (1 − δ1 + rs

t−1)y
+s
t−1 + y−s

t =

Lt +
∑

j

ζs
jtx

s
jt + (1 + δ2 + rs

t−1)y
−s
t−1 + y+s

t , t = 1, . . . , T0, (3.8)

under nonnegativity of all variables, with y−s
0 = 0, y+s

0 = y+
0 , zs

j0 = zj0∀j and with

W s
T0

=
∑

j

ξs
jT0

zs
jT0

+ y+s
T0

− αy−s
T0

. (3.9)

Denote the corresponding maximal value u(W s∗
T0

) of the utility function by

U s(x,y, z, y+
0 ). Using this notation we can rewrite the program (3.2)-(3.7) as

maximize
S

∑

s=1

psU
s(x,y, z, y+

0 ) (3.10)

subject to nonnegativity constraints and subject to (3.3)- (3.4). Except for max-
imization at the place of minimization, this is already the form which fits the
general framework (1.1). The objective function (3.10) is concave in the first-stage
decision variables and linear in the initial probability measure P carried by S fixed
scenarios indexed as s = 1, . . . , S. Denote by ϕ(P ) the optimal value of (3.10) and



by x(P ),y(P ), z(P ), y+
0 (P ) the optimal first-stage decision. For simplicity, assume

that this optimal first-stage solution is unique.

Inclusion of other out-of-sample scenarios means to consider a convex mixture
of two probability distributions: P that is carried by the initial scenarios indexed
by s = 1, . . . , S with probabilities ps > 0,

∑

s ps = 1 and Q carried by the out-of-
sample scenarios indexed by σ = 1, . . . , S ′ with probabilities πσ > 0,

∑

σ πσ = 1.
Let λ denote the parameter that gives the contaminated distribution

Pλ = (1 − λ)P + λQ, 0 ≤ λ ≤ 1 (3.11)

carried by the pooled sample of S + S ′ scenarios that occur with probabilities
(1 − λ)p1, . . . , (1 − λ)pS, λπ1, . . . , λπS′ . For the fixed initial distribution P and
a fixed contaminating distribution Q for which the maximal value ϕ(Q) of the
objective function

∑

σ πσU
σ(x,y, z, y+

0 ) is finite, the optimal value ϕ(Pλ) := ϕ(λ)
is a finite convex function on [0,1] and its derivative at λ = 0+ equals

ϕ′(0+) =
∑

σ

πσU
σ(x(P ),y(P ), z(P ), y+

0 (P )) − ϕ(P ) (3.12)

cf. (2.13); this should be substituted into the formula (2.11) multiplied by −1 to
obtain the bounds for the optimal value ϕ(Pλ) for the problem based on the pooled
set of S + S ′ scenarios:

(1−λ)ϕ(P )+λ
∑

σ

πσU
σ(x(P ),y(P ), z(P ), y+

0 (P )) ≤ ϕ(Pλ) ≤ (1−λ)ϕ(P )+λϕ(Q)

(3.13)
for all 0 ≤ λ ≤ 1. The lower and upper bound coincide if the optimal first-stage
solution x(P ),y(P ), z(P ), y+

0 (P ) of the initial program (3.2)-(3.7) is optimal also
for the corresponding program based on distribution Q carried by the additional
S ′ scenarios indexed by σ = 1, . . . , S ′.

If, for instance, P is carried by S equally probable scenarios (sampled form a
given population) and Q is carried by other S ′ equally probable scenarios sampled
from the same population, it is natural to fix λ so that the pooled sample consists
of S + S ′ equally probable scenarios, again

λ = S ′(S + S ′)−1. (3.14)

Hence, the bounds for the optimal value based on the pooled sample of size S +S ′:

S(S + S ′)−1ϕ(P ) + S ′(S + S ′)−1
∑

σ

πσU
σ(x(P ),y(P ), z(P ), y+

0 (P )) ≤

ϕ(Pλ) ≤ S(S + S ′)−1ϕ(P ) + S ′(S + S ′)−1ϕ(Q). (3.15)

The additional numerical effort consists in solving the stochastic program

maximize
∑

σ

πσU
σ(x,y, z, y+

0 ) (3.16)



subject to (3.3)-(3.4) and to nonnegativity constraints for the distribution Q carried
by S ′ out-of-sample scenarios to obtain ϕ(Q) and in evaluation and averaging
the S ′ function values Uσ(x(P ),y(P ), z(P ), y+

0 (P )) for the new scenarios at the
already obtained optimal first-stage solution; these are in fact the main numerical
indicators which appear in various simulation studies of the portfolio performance
under out-of-sample scenarios, cf. McKendall et al. (1994). For relatively large
values of λ (or S ′), it pays to use the more complicated lower bound according to
(2.16); see Figure 1. The important special case of small λ is S ′ = 1, i. e., the
inclusion of one additional scenario.

The bounds can be also used to derive simple rules on the influence of additional
scenarios on the optimal value. For instance:

• If the derivative

ϕ′(0+) =
∑

σ

πσU
σ(x(P ),y(P ), z(P ), y+

0 (P )) − ϕ(P ) > 0 (3.17)

then the optimal value ϕ(Pλ) increases for all 0 < λ < 1.

• If ϕ(Q) < ϕ(P ), the optimal value ϕ(Pλ) decreases at λ = 0+.

The postoptimality technique described here is independent of the method
which was used to generate or to select the scenarios – the atoms of the distri-
butions P and Q. It can be used without any problems for scenario dependent
liabilities and cashflows what allows, for instance, to include the case of callable
and puttable bonds and mortgage backed securities (cf. Golub et al. (1993) for
the corresponding model formulation).

3.2 The tracking model

Assume that the individual scenario problems (1.7) have been solved for all con-
sidered scenarios, i. e., for all sets of coefficients values ωs = [qs,Ws,Ts,hs] , s =
1, . . . , S so that the values vs∀s needed for the tracking objective function (1.9)
are known. The tracking model (1.9) is

minimize
S

∑

s=1

psg(x,ys; ωs) (3.18)

subject to
x ∈ X := {x|Ax = b,x ≥ 0} (3.19)

and ys ≥ 0∀s, with

g(x,ys; ωs) = ‖c⊤x + q⊤

s ys − vs‖ + ‖Tsx + Wsys − hs‖. (3.20)

Let the alternative distribution Q be carried by scenarios ωS+1, . . . , ωS+S′ with
probabilities πS+s > 0, s = 1, . . . , S ′,

∑

s πS+s = 1. Inclusion of additional scenarios
brings along new variables yS+s. As we need to work with a fixed set of feasible



solutions, one more reformulation is needed before application of the contamination
technique discussed in Section 2.

Consider the pooled sample of scenarios ω1, . . . , ωS, ωS+1, . . . , ωS+S′ ; the initial
distribution P assigns them probabilities ps, s = 1, . . . , S and 0 for the remaining
ones, the distribution Q assigns zero probabilities to the initial scenarios and prob-
abilities πS+s, s = 1, . . . , S ′, to the new ones. The perturbed problem carried by
the pooled sample is

minimize (1 − λ)
S

∑

s=1

psg(x,ys; ωs) + λ
S′

∑

s=1

πS+sg(x,yS+s; ωS+s) (3.21)

subject to nonnegativity of all variables ys, s = 1, . . . , S +S ′ and subject to (3.19).
The derivative of its optimal value at λ = 0+ can be computed according to (2.8)
as

ϕ′

Q(0+) = min
x∗,y∗

s
∀s

S′

∑

s=1

πS+sg(x∗,y∗

S+s; ωS+s) − ϕ(P ). (3.22)

The minimization in (3.22) is carried over all optimal solutions of the augmented
initial program (3.18)

minimize
S

∑

s=1

psg(x,ys; ωs) +
S′

∑

s=1

0 ∗ g(x,yS+s; ωS+s) (3.23)

subject to nonnegativity constraints on all variables and subject to (3.19). Due
to the special form of (3.22), the minimization concerns the optimal x-part of the
solution and arbitrary nonnegative variables yS+s, s = 1, . . . , S ′.

Assume that the optimal x-part of the solution of the initial problem (3.18)-
(3.19) is unique, say, x(P ). Then the derivative is obtained by solving S ′ mini-
mization problems with objective functions

g(x,yS+s; ωS+s) = ‖c⊤x(P )+q⊤

S+syS+s−vS+s‖+‖TS+sx(P )+WS+syS+s−hS+s‖
(3.24)

subject to yS+s ≥ 0 and by taking an average of the obtained optimal values with
weights πS+s.

In the context of the postoptimality analysis for the tracking models it would
be important to get some results concerning the optimal first-stage solutions x.
Indeed there exist theoretical results connected with contamination technique (see
Dupačová (1986)) and also pathfollowing methods which can be implemented for
parametric programs depending on a scalar parameter, as is λ in our case. However,
up to now we are not ready to report any numerical experience in this direction.



4 Numerical Results

This Section provides numerical results based on the contamination technique de-
scribed by formulas (3.13) and (3.15) for the bond portfolio management problem.
We analyze the change in the optimal final wealth due to the following typical
cases:

• parallel shifts in interest rates scenarios;

• doubling number of scenarios in the sampling strategy;

• doubling number of scenarios when scenarios are randomly generated.

To simulate the behavior of an investment portfolio of fixed income securities
on the Italian bond market we use the model described by (3.2)-(3.7) with the
linear utility function and within the time horizon of one year (T0 = 12).

The initial portfolio and the term structure are related to September 1, 1994.
We consider the same portfolio that was used in Bertocchi et al. (1996) for the
sensitivity analysis of portfolio with respect to sampling strategies. It includes
typical governmental bonds, paying semi-annual coupons and covering two year
forward till 29 years maturities (the so called BTPs) as well as puttable bonds
(CTOs), paying semi-annual coupons with the maturity of 8 years and a possible
exercise of the option in the 4th year or with the maturity of 6 years and an exercise
at the 3rd year; see Table 1.

TABLE 1

Bonds Qt coupon redemp. payment dates exercise maturity
BTP36658 10 3.9375 100.1875 01/04 01/10 01/10/96
BTP36631 20 5.03125 99.5313 01/03 01/09 01/03/98
BTP12687 15 5.25 99.2312 01/01 01/07 01/01/2002
BTP36693 10 3.71875 99.3875 01/08 01/02 01/10/2004
BTP36665 5 3.9375 99.2188 01/05 01/11 01/11/2023
CTO13212 20 5.25 100.0000 20/01 20/07 20/01/95 20/01/98
CTO36608 20 5.25 99.9500 19/05 19/11 19/05/95 19/05/98

Note that the coupon yields and the redemption prices are after tax.

To estimate the term structure of interest rates we used the regression model of
Bradley and Crane (1972) applied to the yields obtained by the market quotation
of the BTPs on the relevant day; see Figure 2 for the term structure of interest
rates. We refer to Dupačová et al. (1996) for a detailed discussion.

In this application, liabilities are not considered, liquidity can be obtained from
the interbank market at a rate greater than that one at which surplus can be always
reinvested; hence in (3.7) α = 1. The additive transaction costs are fixed at ±0.01,
δ2 = 0.025 and δ1 is 0 or .001.



The scenarios are based on data from Italian bond market generated according
to the Black - Derman - Toy model and selected according to the simplified version
of the nonrandom sampling strategy by Zenios and Shtilman (1993) as described
in Dupačová and Bertocchi (1996) and in Bertocchi et al. (1996).

The binomial model produces scenarios that can be coded by 2T (T = 350 for
our data) binary fractions uniformly distributed in [0, 1] and the sampling strategy
chooses the number of periods L for which all possibilities (choices of zeros and
ones on the first L positions) are fully covered. The remaining digits necessary to
complete the full length paths were selected according to Table 2

TABLE 2

case l = 1, ..., L L + 1 l = L + 2, ..., T0 T0 + 1
B1 s = 1, ..., 23 ωs

L+1 = 0 ωs
l = 0 ωs

T0+1 = 1
B2 s = 1, ..., 23 ωs

L+1 = 0 ωs
l = 0 ωs

T0+1 = 0
B3 s = 1, ..., 23 ωs

L+1 = 0 ωs
l = 1 ωs

T0+1 = 1
B4 s = 1, ..., 23 ωs

L+1 = 1 ωs
l = 1 ωs

T0+1 = 1
C4 s = 1, ..., 24 ωs

L+1 = 1 ωs
l = 1 ωs

T0+1 = 1

and for l > T0 + 1, the components ωs
l alternate up and down (1 or 0) starting

with the indicated value of ωs
T0+1.

We consider two new cases D1 and D2, composed of 8 different paths chosen
randomly from the uniform distribution on [0, 1] and we add case B2st, with the
rates based on the case B2 perturbed by the additive shift of -0.000355 (which
corresponds to the shift of 5% of the current B2 rates).

The numerical results reported in the Figures are organized according to the
scheme in Table 3.

TABLE 3

distribution P distribution Q Figure
B2st B2 3
B2 B2st 3
B3 B4 4
B4 B3 4
D1 D2 5
D2 D1 5

They consist of the optimal values and optimal initial strategies for the two alter-
native cases based on distributions P and Q, and they contain the average val-
ues

∑

σ πσU
σ(x(P ),y(P ), z(P ), y+

0 (P )) or
∑

s psU
s(x(Q),y(Q), z(Q), y+

0 (Q)) under
headings ”means of contam. solutions”, the values of the directional derivatives
and of the lower and upper bounds computed according to (3.13) for distinct values
of λ and a graphical representations of these bounds.



The results in Figures 3 show that the choice of δ1 6= 0 for which the return on
cash investment is less than that in bonds influences the optimal initial strategy for
scenario bed B2, making more valuable the investment in CTO36608 than in cash.
For scenarios in B2st the optimal initial strategy does not change. The bounds for
δ1 = 0 are similar to those for δ1 6= 0.

Choice of the couple of scenario beds B2 and B2st allows comparison of the
situations when a certain bed of scenarios, for example B2st, is changed so that
all rates are increased of a fixed quantity, like in B2. The left lower bound and the
upper bound in Figures 3 for contamination of B2st by B2 are very precise and
show that the optimal final wealth is untouched by a small parallel shift in interest
rates. Similar tests of resistance of the optimal value with respect to a shift of
interest rates or prices have appeared in several applications, see e.g. McKendall
et al. (1994), but without giving the global bounds (2.15) or (2.16) for the optimal
value of the perturbed problem.

The results on contamination between B3 and B4, see Figure 4, illustrate an-
other possible application of the bounds, namely, for supporting decisions concern-
ing the required number of scenarios (i. e., concerning the value of L in Table 2).
For λ = 0.5, the example in Figure 4 gives the interval [11350.93, 11351.54] for the
optimal value of C4 based on 24 scenarios – a union of scenarios from the beds B3
and B4. (Indeed, the true optimal value for C4 is 11350.97.) It means that using
the double number of scenarios does not increase essentially the precision of the
obtained approximate of the optimal value for the full hypothetical problem which
would be based on all 2350 possible scenarios of interest rates generated accord-
ing to the Black - Derman - Toy model. However, the optimal initial investment
strategies are quite different.

Finally, Figure 5 illustrates an application of the bounds to the case of the
pooled sample based on randomly chosen scenarios, such as in experiments D1
and D2. Again, the bounds for the optimal value based on the pooled sample
carried by 16 scenarios, as obtained with λ = 0.5 from the results of the two
small problems for beds D1 and D2 of 8 randomly chosen scenarios, are very tight:
[11334, 11334.74]. Exploitation of the more complicated bound of the type of
(2.16) helped to increase the lower bound 11331.82 obtained according to (3.13)
or (3.15); a similar observation holds true also for Figure 4.
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