
European Journal of Operational Research xxx (2013) xxx–xxx
Contents lists available at SciVerse ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Robustness of optimal portfolios under risk and stochastic dominance
constraints
0377-2217/$ - see front matter � 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.ejor.2013.06.018

⇑ Corresponding author. Tel.: +420 221 913 280; fax: +420 222 323 316.
E-mail address: dupacova@karlin.mff.cuni.cz (J. Dupačová).
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Solutions of portfolio optimization problems are often influenced by a model misspecification or by errors
due to approximation, estimation and incomplete information. The obtained results, recommendations
for the risk and portfolio manager, should be then carefully analyzed. We shall deal with output analysis
and stress testing with respect to uncertainty or perturbations of input data for static risk constrained
portfolio optimization problems by means of the contamination technique. Dependence of the set of fea-
sible solutions on the probability distribution rules out the straightforward construction of convexity-
based global contamination bounds. Results obtained in our paper [Dupačová, J., & Kopa, M. (2012).
Robustness in stochastic programs with risk constraints. Annals of Operations Research, 200, 55–74.] were
derived for the risk and second order stochastic dominance constraints under suitable smoothness and/or
convexity assumptions that are fulfilled, e.g. for the Markowitz mean–variance model. In this paper we
relax these assumptions having in mind the first order stochastic dominance and probabilistic risk con-
straints. Local bounds for problems of a special structure are obtained. Under suitable conditions on the
structure of the problem and for discrete distributions we shall exploit the contamination technique to
derive a new robust first order stochastic dominance portfolio efficiency test.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

In conclusions of his famous paper (Markowitz, 1952) on
portfolio selection, Markowitz stated that ‘‘what is needed is
essentially a ‘probabilistic’ reformulation of security analysis’’. He
developed a model for portfolio optimization in an uncertain
environment under various simplifications. Let us recall the basic
formulation: The composition of portfolio of N assets is given by
weights of the considered assets, xn;n ¼ 1; . . . ;N;

P
nxn ¼ 1. The

unit investment in the nth asset provides the random return qn

over the considered fixed period. The assumed probability
distribution of the vector q of returns of all assets is characterized
by a known vector of expected returns Eq = l and by a fixed
covariance matrix R = [cov(qi,qj), i, j = 1, . . . , N] whose main
diagonal consists of variances of individual returns. This allows
to quantify the ‘‘yield from the investment’’ as the expectation
EPq>x ¼

P
nxnln ¼ l>x of its total return and the ‘‘risk of the

investment’’ as the variance of its total return, varPq>x ¼P
i;jcovðqi;qjÞxixj ¼ x>Rx. Investors aim at maximal possible yields

and, at the same time, at minimal possible risks – hence, a typical
decision problem with two criteria, ‘‘max’’ {EPq>x,�varPq>x} or
‘‘min’’ {�EPq>x, varPq>x}. The mean–variance efficiency introduced
by Markowitz is fully in line with general concepts of multiobjec-
tive optimization. Accordingly, mean–variance efficient portfolios
can be obtained by solving various optimization problems such
as the risk-adjusted expected return problem

min
x2X
� kl>xþ 1=2x>Rx ð1Þ

where the value of parameter k P 0 reflects investor’s risk aversion.
Another possibility, favored in practice, is to minimize the portfolio
variance subject to a lower bound for the total expected return, i.e.

min
x2X

x>Rx subject to l>x P k ð2Þ

with parameter k, or to maximize the expected return under a con-
straint on the portfolio variance

max
x2X

l>x subject to x>Rx 6 v: ð3Þ

In the classical theory, the set X ¼ x 2 RN :
P

nxn ¼ 1
� �

is without
nonnegativity constraints, which means that short sales are permit-
ted. Under this simplification explicit forms of optimal solutions can
be obtained. In what follows we shall allow in (1)–(3) for general
convex polyhedral sets X .

It was the introduction of risk into the investment decisions
which was the exceptional feature of this model and a real break-
through, and the Markowitz model became a standard tool for
portfolio optimization.
ropean
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The optimal solution x⁄(l,R;k) and the optimal value u(l,R;k)
of (1) depend on the chosen value of k and on parameters l, R. At
the same time, one can hardly assume full knowledge of these in-
put parameters. The impact of errors in expected returns, variances
and covariances on the optimal return u of the obtained portfolio
was investigated, e.g. in a simulation study Chopra and Ziemba
(1993). The results indicate that the errors in expected values are
more influential than those in the second order moments. We refer
to Fabozzi, Huang, and Zhou (2010) for discussions of suitable ap-
proaches dealing with parameters uncertainty for the Markowitz
model, such as robust reformulations and advanced estimation
techniques, and also to Dupačová (2012) for results based on para-
metric programming, stochastic sensitivity analysis and the worst-
case analysis.

We shall deal with static mean-risk models for portfolios of as-
sets with random returns q whose probability distribution P does
not depend on the selected portfolio composition. (Recall the
assumption of a small investor in the Markowitz model.) The yield
from the portfolio x is again the expectation EPq>x, the risk is
understood now as a function R which assigns a real number to
uncertain outcomes q>x of the decision x. The value of function
R should not depend on the realization of the uncertain return q
but it depends on the decision and on the probability distribution
P; accordingly we shall denote itRðx; PÞ. It should posses some nat-
ural properties such as monotonicity, translation equivariance, po-
sitive homogeneity and subadditivity to be called coherent; see
Artzner, Delbaen, Eber, and Heath (1999). The well-known risk
measure Value at Risk (VaR), which is not coherent in general,
and the coherent Conditional Value at Risk (CVaR) are special cases
of R. We refer to the recent survey paper Krokhmal, Zabarankin,
and Uryasev (2011) for other possibilities.

For a known probability distribution P of returns the problems
corresponding to f (1)–(3) are

min
x2X

� kEPq>xþRðx; PÞ; ð4Þ

min
x2X
Rðx; PÞ subject to EPq>x P k; ð5Þ

max
x2X

EPq>x subject to Rðx; PÞ 6 v : ð6Þ

The form (4) with a probability independent set of feasible deci-
sions is convenient for applications of quantitative stability analysis
techniques, whereas risk management regulations ask frequently
for satisfaction of risk constraints with a fixed limit v displayed in
(6). Solving (6) for various values of v one obtains directly the cor-
responding points [l>x⁄(v),v] on the mean-risk efficient frontier.
Numerical tractability of the mean-risk problems depends on the
choice of the risk measure and on the assumed probability distribu-
tion P. Programs (4)–(6) are convex for variance of portfolio returns,
Rðx; PÞ ¼ x>Rx, and for convex risk measures Rð�; PÞ, such as CVaR,
but not for VaR; see Dupačová (2006) and Dupačová and Polívka
(2007). As the probability distribution P is fully known only excep-
tionally, quantitative stability analysis with respect to changes of P
is important. The selected approach should reflect the type of the
risk function Rðx; PÞ and of the input information which, in general,
does not consist only of the first and second moments. See e.g.
Stoyanov, Rachev, and Fabozzi (2013) for analysis of influence of
moments of fat-tailed return distributions on portfolio VaR and
CVaR in a parametric setting. Aiming at numerically tractable ap-
proaches, one may design focused simulation studies and backtest-
ing; also the worst-case analysis or robustification with respect to
all probability distributions belonging to an uncertainty set P is
applicable in various situations, see e.g. Pflug and Wozabal (2007)
and Zhu and Fukushima (2009). In this paper we shall approach
the quantitative stability analysis with respect to changes of P
by stress testing via contamination, see Dupačová (2006) and
Dupačová and Kopa (2012) and Dupačová and Polívka (2007).
Please cite this article in press as: Dupačová, J., & Kopa, M. Robustness of opti
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In our paper Dupačová and Kopa (2012), convexity and smooth-
ness properties of risk functions Rðx; PÞ in (5) and (6) were
exploited to get local contamination bounds for the optimal value.
The results hold true, e.g. for portfolio optimization under the var-
iance or CVaR constraints. Now we shall focus on relaxation of con-
vexity and smoothness assumptions having in mind distributional
robustness analysis and stress testing for risk averse portfolios
with risk quantified by means of probabilistic constraints and for
the first order stochastic dominance constraints. Probabilistic con-
straints appear in definition of VaRa of a portfolio

VaRaðx; PÞ ¼minfa 2 R : Pðgðx;qÞ 6 aÞP ag; ð7Þ

where g(x,q) denotes the loss of portfolio x for return q, and they
were considered in the context of risk modeling already by Telser
(1955) and Kataoka (1963) for a bilinear loss function and Gaussian
distribution of q. In the present paper, such special assumptions are
not imposed. Subsequently, the first order stochastic dominance
constraints will be exploited.

In Section 3, we shall describe the contamination technique and
we shall deal with local contamination bounds under relaxed
assumptions. The results will be applied in Section 4 to efficiency
tests of portfolios under the first order stochastic dominance
constraints.

2. Probabilistic risk constraints

Consider the following abstract formulation of (6) written now
as a minimization problem:

min
x2XðPÞ

G0ðx; PÞ ð8Þ

where P is the probability distribution of a random vector q with
range X � RM . The objective function G0 quantifies the loss of port-
folio and risk constraints enter the definition of the set of feasible
solutions XðPÞ � RN . We denote X�ðPÞ the set of optimal solutions
and u(P) the optimal value of the objective function in (8) and we
shall assume that u(P) is finite. The considered set of feasible solu-
tions is of the form

XðPÞ :¼ fx 2 X : Gjðx; PÞ 6 0; j ¼ 1; . . . ; Jg: ð9Þ

We shall focus on probabilistic risk constraints with

Gjðx; PÞ :¼ Rjðx; PÞ � v j and
Rjðx; PÞ :¼ Pðghðx;qÞP 0;h 2 HjÞ; j ¼ 1; . . . ; J ð10Þ

where gh : RN �X! R and Hj � f1; . . . ;Kg. Individual probabilistic
constraints, e.g. in definition (7) and in Kataoka (1963) and Telser
(1955), correspond to Hj containing one element of {1, . . . , K},
whereas the index set Hj in a joint probabilistic constraint contains
more than one element; such constraints express a reliability
requirement of a whole system. Probability levels vj 2 (0,1) are
fixed, prescribed by regulations or chosen by the decision maker.

The set XðPÞ is typically nonconvex, sometimes even discon-
nected, and functions Gj(�,P) need not be smooth. This is the reason
why probabilistic programs have been recognized as hard optimi-
zation problems that are rather demanding from the computa-
tional point of view. The seminal results on convexity of XðPÞ
were proved by Prékopa, cf. Prékopa (1971), under specific
assumptions concerning both the function g and the probability
distribution P. See Prékopa (2003) and Chapter 5 of Shapiro, Dent-
cheva, and Ruszczyński (2009) for details. A favorable class are, e.g.
linear probabilistic constraints with Gaussian coefficients (van
Ackooij, Henrion, Möller, & Zorgati, 2011) that appear in Kataoka
(1963) and Telser (1955).

In practice, complete knowledge of P is rare; still the wish is to
apply such solution of (8) which is reliable and robust even in
situations when the true probability distribution P has been
mal portfolios under risk and stochastic dominance constraints. European
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approximated or when it is known only partly. This gives a motiva-
tion for stability analysis of (8) with respect to perturbations of P.
The probability distribution P plays a role of an abstract parameter
and dependence of the set of feasible solutions on P complicates
the stability considerations substantially. General stability results
were proved by Römisch without any convexity assumptions; cf.
Theorems 5 and 9 in Römisch (2003). They were detailed mainly
for linear probabilistic programs with random right hand sides,
which does not agree with the form of the considered risk con-
straints, and for generalized concave probability distributions,
see, e.g. Römisch (2003) and Römisch and Schultz (1991). The main
stumbling block for their application is the requirement of the met-
ric regularity property, see, e.g. Chapter 2.3 of Bonnans and Shapiro
(2000). For the first order stochastic dominance constraints stabil-
ity and sensitivity analysis is even more involved; cf. Dentcheva,
Henrion, and Ruszczyński (2007).

If q has a finitely discrete distribution

Pðq ¼ qsÞ ¼ ps; s ¼ 1; . . . ; S ð11Þ

with ps > 0, the set X in (9) is compact and functions g(�,qs) are con-
tinuous for all s, then it is possible to rewrite problem (8)–(10) as a
mixed integer program, see, e.g. Ruszczyński (2002). Consider only
one probabilistic constraint, i.e. J = 1, H1 = {1, . . . , K}, and for each
s 2 {1, . . . , S} introduce a binary variable zs such that zs = 0 guaran-
tees that gðx;qsÞ 6 0 8x 2 X , and a K-dimensional vector Ms whose
components are sufficiently large. For a deterministic objective
function G0 the problem (8)–(10) can be written as

minimize G0ðxÞ subject to
gðx;qsÞ �Mszs

6 0; s ¼ 1; . . . ; S ð12ÞX
s

psz
s
6 v1; x 2 X ; zs 2 f0;1g 8s: ð13Þ

For convex functions G0 and gh(�,qs) "h, s this is a large convex
mixed integer program.

Sometimes, the wish may be to observe a stochastic ordering of
outcomes. The concept of stochastic ordering was introduced in
statistics already in the 1940s and is known under the name the
first order stochastic dominance (FSD):

Definition 1. We say that a random variable n dominates a
random variable f with respect to the first order stochastic
dominance (n � FSDf) if

Pðn 6 yÞ 6 Pðf 6 yÞ 8y 2 R:

In financial applications constraints based on the FSD allow us
to incorporate random benchmarks (defined on the same probabil-
ity space) instead of fixed thresholds. The FSD relation can be alter-
natively defined as follows:

(i) n � FSDf if and only if Eu(n) P Eu(f) for all nondecreasing util-
ity functions u provided the expected values above are
finite; see for example Chapter 3.2 in Levy (2006).

(ii) n � FSDf if and only if Fð�1Þ
n ðyÞP Fð�1Þ

f ðyÞ for all y 2 [0,1], or
equivalently, if and only if VaRa(�n) 6 VaRa(�f) for all
a 2 [0,1]; see, e.g. Ogryczak and Ruszczyński (2002).

Unfortunately, in both cases as well as in Definition 1, FSD con-
straints are expressed in general as a continuum of constraints; see
Dentcheva et al. (2007) and Dentcheva and Ruszczyński (2004).

In the subsequent analysis of results under distributional uncer-
tainty we shall follow, similarly as in Dupačová and Kopa (2012), the
relatively simple ideas of output analysis based on the contamina-
tion technique initiated in Dupačová (1986) and Shapiro (1990).
The considered special type of perturbations reduces the stability
analysis of (8)–(10) to that for parametric programs with one-
Please cite this article in press as: Dupačová, J., & Kopa, M. Robustness of opti
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dimensional real parameter. At the same time, it gets on with needs
for what-if-analysis or stress testing. As we shall see, it can be
exploited also to study influence of changes in parameters in para-
metric models such as the Markowitz mean–variance model.

3. Robustness analysis via contamination

The contamination approach was initiated in mathematical sta-
tistics as one of tools for the analysis of robustness of estimators
with respect to deviations from the assumed probability distribu-
tion and/or its parameters. Contamination means to model the per-
turbations of P by its contamination by another fixed probability
distribution Q, i.e. to use Pt :¼ (1 � t)P + tQ, t 2 [0,1]. It was devel-
oped and applied for program (8) with XðPÞ independent of P
and for the expectation type objective G0(x,P), cf. Dupačová
(1996) and Dupačová (2006) and Dupačová, Bertocchi, and Morig-
gia (1998) and Dupačová and Polívka (2007), under assumption
that the optimal value u(t) is finite for all t 2 [0,1] and the set of
optimal solutions of the unperturbed program is compact. It
proved to be a flexible tool which is suitable in various disparate
situations: By contamination of discrete probability distributions
one may model changes in scenario probabilities, scenario values
and the impact of inclusion of additional, stress scenarios – the
choice of a degenerated distribution Q concentrated in q⁄ R X cor-
responds to an additional scenario. See, e.g. Dupačová (1996) and
Dupačová et al. (1998). The basic properties of the optimal value
function are summarized in the following lemma.

Lemma 1. Assume that XðPÞ ¼ X is independent of P, the set of
optimal solutions X�ðPÞ of (8) is nonempty and compact, the
perturbed objective function G0(x, t) :¼ G0(x,Pt) is a linear function of
t and that its optimal value uðtÞ :¼minx2XG0ðx; tÞ is finite for all
0 6 t 6 1. Then u(t) is a lower semicontinuous concave function on
[0,1].

Consult, e.g. Theorem 4.3.2 of Bank, Guddat, Klatte, Kummer,
and Tammer (1982). This lemma allows us to construct global
bounds for u(t)

ð1� tÞuð0Þ þ tuð1Þ 6 uðtÞ 6 uð0Þ þ tu0ð0þÞ 8t 2 ½0;1� ð14Þ

valid for all 0 6 t 6 1. The directional derivative

u0ð0þÞ ¼ min
x2X�ðPÞ

G0ðx;QÞ �uðPÞ: ð15Þ

In the presence of risk constraints the set of feasible solutions
depends on P which means that the optimal value function is con-
cave only exceptionally and the lower bound in (14) does not hold
true.

The set of feasible solutions (9) for the contaminated probabil-
ity distribution Pt equals

XðPtÞ ¼ X \ fx : Gjðx; PtÞ 6 0; j ¼ 1; . . . ; Jg: ð16Þ

The probabilistic risk functions Rðx; PÞ in (10) are linear in P, hence,
Gj(x,Pt) = (1 � t)Gj(x,P) + t Gj(x,Q) :¼ Gj(x, t) "j are linear in t. We as-
sume again that the perturbed objective function G0(x, t) is also lin-
ear in t. The perturbed problem (8) is then the linearly perturbed
parametric program

min
x2X
ð1� tÞG0ðx;0Þ þ tG0ðx;1Þ ð17Þ

subject to
ð1� tÞGjðx;0Þ þ tGjðx;1Þ 6 0; j ¼ 1; . . . ; J: ð18Þ

We denote XðtÞ;uðtÞ;X�ðtÞ the set of feasible solutions, the optimal
value and the set of optimal solutions of (17) and (18). For
t ¼ 0;Xð0Þ;uð0Þ;X�ð0Þ denote the set of feasible solutions, the opti-
mal value and the set of optimal solutions of the initial unperturbed
problem.
mal portfolios under risk and stochastic dominance constraints. European
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For parameter dependent sets of feasible solutions the optimal
value function u(t) is concave only under rather strict assumptions
such as Gj(x,t), j = 1, . . . , J jointly concave on X � ½0;1�; cf. Corollary
3.2 of Kyparisis and Fiacco (1987). The form of (14) suggests that
we should concentrate on the existence and form of the directional
derivatives and on assumptions under which the sets XðtÞ remain
fixed at least for small values of the contamination parameter t.

If the linear independence condition and the strict complemen-
tarity condition hold true at the optimal solution x⁄(0) of the
unperturbed convex problem, then for t 6 t0 small enough, the opti-
mal value u(t) is concave and a local upper bound can be con-
structed according to (14). The same statement can be obtained
for nonconvex problems when also the second order sufficient con-
dition is satisfied.

Theorem 1. Let (8)–(10) be a twice differentiable program with
probabilistic constraints, x⁄(P) = x⁄(0) its optimal solution. Assume
that at x⁄(0) linear independence, the strict complementarity and the
second order sufficient conditions are satisfied. Then there exists t0 > 0
such that for all t 2 [0, t0] the optimal value function u(t) is concave
and the local upper contamination bound is given by

uðtÞ 6 uð0Þ þ tu0ð0þÞ 8t 2 ½0; t0�: ð19Þ
We refer to Dupačová and Kopa (2012) for details and basic

references.

There exist various formulas for directional derivative u0(0+)
based on the Lagrange function Lðx;u; tÞ ¼ G0ðx; PtÞ þ

P
jujGjðx; PtÞ

for the contaminated problem. The generic form is

u0ð0þÞ ¼ min
x2X�ð0Þ

max
u2U�ðx;0Þ

@

@t
Lðx; u;0Þ

where U�ðx;0Þ denotes the set of Lagrange multipliers coupled with
the optimal solution x 2 X�ð0Þ of the unperturbed problem. For con-
vex unperturbed programs with unique optimal solution x⁄(0), mul-
tipliers u⁄(0) and for L(x,u, t) linear in t it simplifies to

u0ð0þÞ ¼ Lðx�ð0Þ;u�ð0Þ;1Þ �uð0Þ: ð20Þ

Derivations of relevant formulas proceed in accordance with the as-
sumed properties of problem (17) and (18); consult Section 4.3.2 of
Bonnans and Shapiro (2000).

For the accepted structure of perturbations the lower bound for
the optimal value function of (17) and (18) is based on Theorem 1
of Dupačová and Kopa (2012):

Theorem 2 Dupačová and Kopa (2012). .Assume that in (17) and
(18) X � RN is a nonempty convex set, G0(x) is independent of t, G(x, t)
is a concave function of t 2 [0,1] and u(t) is finite for all t 2 [0,1]. Then
the optimal value function

uðtÞ :¼min
x2X

G0ðxÞ subject to Gðx; tÞ 6 0

is quasi-concave on [0,1] with the lower bound

uðtÞP minfuð1Þ;uð0Þg: ð21Þ
Theorem 2 directly applies if there is only one probabilistic risk

constraint and the objective function G0 does not depend on P.
However, the result can be extended to objective functions
G0(x,P) which are concave in P:

uðtÞ ¼ min
x2XðtÞ

G0ðx; tÞP min
x2XðtÞ

½ð1� tÞG0ðx; 0Þ þ tG0ðx;1Þ�

P ð1� tÞmin uð0Þ;min
Xð1Þ

G0ðx;0Þ
� �

þ t min uð1Þ;min
Xð0Þ

G0ðx;1Þ
� �

; ð22Þ

and also to multiple probabilistic risk constraints.
Please cite this article in press as: Dupačová, J., & Kopa, M. Robustness of opti
Journal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.06
Multiple probabilistic risk constraints in (9) can be reformulated
as G(x,P) :¼maxjGj(x,P) 6 0, but then the function G(x,P) is convex
in P. As the probabilistic risk constraints are linear in P,
G(x, t) :¼maxjGj(x, Pt) is a convex piecewise linear function of t. It
means that there exists ~t > 0 such that G(x, t) is a linear function
of t on ½0;~t� and we get the local lower bound
uðtÞP minfuð0Þ;uð~tÞg valid for t 2 ½0;~t�. Notice that no convexity
assumption with respect to x was required.

Similarly as in Dupačová and Kopa (2012), trivial upper bounds
for u(t) are available without any differentiability assumption if
no constraint is active at x⁄(0) or if for all constraints active at
x⁄(0), i.e. Gj(x⁄(0),0) = 0,j 2 J0, inequalities Gj(x⁄(0),1) 60,j 2 J0 hold
true. Then for t small enough, x⁄(0) is a feasible solution of (18),
hence G0(x⁄(0),t) P u(t) for t small enough. Using linearity of G0

with respect to t,

uðtÞ 6 uð0Þ þ tðG0ðx�ð0Þ;1Þ �uð0ÞÞ;

compare with (14) and (15).
An upper bound for u(t) can be also constructed whenever

there is at disposal a feasible solution x 2 XðPtÞ. This may occur
due to the structure of the solved problem, e.g. for the FSD portfolio
efficiency tests (see Section 4.2) where there is a particular
x 2 XðPtÞ 8t. Feasibility of x⁄(1) for the unperturbed problem is an-
other possibility. Even though the existence of such feasible direc-
tion can be proved under various assumptions, it is not easy in
general to construct it. A direct search for x̂ 2 X which satisfies
constraints

Gjðx;0Þ 6 0 8j and Gjðx;1Þ 6 08j

is manageable, namely, when Q ¼ dq� is a degenerated probability
distribution. Using it means to augment X by deterministic con-
straints gh(x,q⁄) 6 0, h 2 Hj, j = 1, . . . , J. Moreover, for problems with
one joint probabilistic constraint one may solve

min
x2X

G1ðx;1Þ subject to G1ðx;0Þ 6 0:
3.1. Application to Markowitz mean–variance efficient portfolios

Assume that the covariance matrix R in (1) is a positive definite
matrix, the set X a nonempty convex polyhedron with nondegen-
erated vertices, k P 0 a chosen parameter. Under these assump-
tions, there is a unique optimal solution x⁄(l,R;k) of (1).

To stress the parameter values in the Markowitz model we shall
exploit the contamination technique with the local upper bound
obtained according to Theorem 1. The application of its basic form
to (1) is straightforward, with a selected parameter perturbation
lt ¼ ð1� tÞlþ tl̂;Rt ¼ ð1� tÞRþ tbR to be tested for 0 6 t 6 1.
The basic approach extends also to (2) or (3) when a known ex-
pected return l or a fixed covariance matrix R are assumed.

To stress separately correlations one can exploit the suggestion
of Kupiec (2002): The covariance matrix can be written as R = DCD
with the diagonal matrix D of ‘‘volatilities’’ (standard deviations of
the marginal distributions) and the correlation matrix C.

Changes in the covariances may be then modeled by ‘‘stressing’’
the correlation matrix C by a positive semidefinite stress correlation
matrix bC
CðcÞ ¼ ð1� cÞC þ cbC ð23Þ

with parameter c 2 [0,1]. This type of perturbation of the initial
quadratic program allows us again to apply the related parametric
stability results to the perturbed problem (2)

min
x2X

x>DCðcÞDx; c 2 ½0;1� ð24Þ

with the constraint l>x P k incorporated into the definition of X .
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Under the above assumptions, the optimal value u(c) of (24) is
concave and continuous in c 2 [0,1]. The directional derivative is of
the form (15)

u0ð0þÞ ¼ x�ð0Þ>DbCDx�ð0Þ �uð0Þ

and contamination bounds (14) have the form

ð1� cÞx�ð0Þ>DCDx�ð0Þ þ cx�ð1Þ>DĈDx�ð1Þ 6 min
x2X

x>DCðcÞDx

6 ð1� cÞx�ð0Þ>DCDx�ð0Þ þ cx�ð0Þ>DbCDx�ð0Þ:

They quantify the effect of the considered change in the input data
on the optimal value u(c) of portfolio. See Dupačová and Polívka
(2007) for additional results. In a similar way, one can quantify
the influence of stressing parameters l, C or l, R in (1).

Example 1. For a numerical illustration consider a standard set of
ten active benchmark stock portfolios that are formed, and
annually rebalanced, based on individual stocks’ market capitali-
zation of equity, each representing a decile of the cross-section of
stocks in a given year. Furthermore, we use the one-month US
Treasury bill as a riskless asset. Historical data on monthly value-
weighted returns (month-end to month-end) from May 2005 to
August 2008 obtained from Kenneth French’ data library serve as
the original discrete distribution P taking all S = 40 scenarios with
the same probabilities. The alternative distribution Q is given by 40
equiprobable scenarios from the crises period (September 2008–
December 2011). We will apply the contamination bounds (22)
and (19) to Markowitz problem (3) rewritten in the minimizing
form:

min
x2X
� l>x subject to x>Rx 6 v ð25Þ

where short sales are not allowed, that is,
X ¼ x 2 RN :

P
nxn ¼ 1; xn P 0;n ¼ 1;2; . . . ;N

� �
. Parameters l and

R are estimated from the data for May 2005–August 2008 and
v = 0.001. Let us contamine l and the covariance matrix R (instead
of the correlation matrix C considered in the theoretical part of this
section) by l̂ and bR estimated from the crisis period data. The glo-
bal lower bound (22) can be easily calculated solving the four opti-
mization problems. The construction of upper bound (19) exploits
(20) and it is generally valid only for sufficiently small t; however,
in this Markowitz model the upper bound holds true for all
t 2 [0,1], see Fig. 1.

The situation changes substantially when Value at Risk (7) is
used in (25) instead of x>Rx.
Example 2. Let us consider the same assets and distributions of
returns as in Example 1 but use a different risk measure-Value at
Risk (7). Again, we formulate a minimizing expected loss problem:
Fig. 1. Comparison of the minimal mean loss with its lower bound and upper
bound for the contaminated data.
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min
x2X
� l>x subject to VaRað�q>xÞ 6 v ð26Þ

for v = 0.02. Using the ‘‘big M’’ idea (12) and (13) it turns to the fol-
lowing mixed integer program:

min
x2X
� l>x ð27Þ

subject to � qs>x�Mszs
6 v ; s ¼ 1; . . . ; SX

s

psz
s
6 1� a; zs 2 f0;1g; s ¼ 1; . . . ; S

where ps = 0.025 and the coefficients Ms are sufficiently large num-
bers for all s. The contaminated distribution of q is carried now by
the 80 scenarios, hence (27) gets extended for additional scenarios.
First we choose a = 0.97 and Fig. 2 shows that the minimal mean
loss is not continuous and it coincides with lower bound (22) for
t 6 0.028. Moreover, x⁄(t) = x⁄(0) is the optimal solution for
t 6 0.028 what allows us to construct a trivial local upper bound
�l>t x�ð0Þ. It coincides with the minimal mean loss for t 6 0.028,
however, it is no more valid for t > 0.028.

Finally, we consider a = 0.95; now, one of cumulative probabil-
ities is equal to a. Contrary to the previous case, the minimal mean
loss is not right continuous in 0, see Fig. 3. This is due to the fact
that the strict complementarity condition in the unperturbed
problem is not fulfilled and x⁄(0) is not a feasible solution for any
contaminated problem. Therefore, in this case, the local upper
bound (19) is not applicable.
4. Contamination in FSD portfolio efficiency testing

In this section, we shall study robustness of portfolio efficiency
tests with respect to the first order stochastic dominance relation.
Consider N assets and a random vector of their returns .. A deci-
sion maker may combine assets into portfolios and all portfolio
possibilities are given by

X ¼ x 2 RN :
X

n

xn ¼ 1; xn P 0; n ¼ 1;2; . . . ;N

( )
:

Let F.>xðyÞ denote the cumulative probability distribution function
of returns of portfolio x. In the context of FSD portfolio efficiency,
following Kopa and Post (2009); Kuosmanen (2004) and contrary
to Definition 1, we define the first order stochastic dominance rela-
tion between portfolios in the strict form.

Definition 2. Portfolio x 2 X dominates portfolio s 2 X by the first
order stochastic dominance (.>x 	 FSD.>s) if and only if

F.>xðyÞ 6 F.>sðyÞ 8y 2 R

with strict inequality for at least one y 2 R.
Fig. 2. Comparison of the minimal mean loss with its lower bound and local upper
bound for the contaminated data with t 6 0.1.

mal portfolios under risk and stochastic dominance constraints. European
.018

http://dx.doi.org/10.1016/j.ejor.2013.06.018


Fig. 3. Comparison of the minimal mean loss value with its lower bound for the
contaminated data with t 6 0.2.
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Alternatively, .>x 	 FSD.>s iff

H.ðx; sÞ :¼max
y2R
ðF.>xðyÞ � F.>sðyÞÞ 6 0 ð28Þ

h.ðx; sÞ :¼min
y2R
ðF.>xðyÞ � F.>sðyÞÞ < 0: ð29Þ
Definition 3. A given portfolio s 2 X is FSD inefficient if there
exists portfolio x 2 X such that .>x 	 FSD.>s. Otherwise, portfolio s
is FSD efficient.

This definition classifies portfolio s 2 X as FSD efficient if and
only if no other portfolio is better (in the sense of the FSD rela-
tion) for all non-satiated decision makers. Following Kuosmanen
(2004), Definition 3 formulates FSD efficiency in the sense of
’’FSD admissibility’’. Another definition of FSD efficiency, called
‘‘FSD optimality’’, was introduced in Kopa and Post (2009).
Alternatively, one may also employ a notion of almost stochastic
dominance, cf. Levy (2009) and Lizyayev and Ruszczyński
(2012). In this paper we focus on efficiency approach based on
Definition 3.

In order to find a FSD dominating portfolio x, using (28) and
(29), we may solve the following problem:

n.ðsÞ ¼ min
x

h.ðx; sÞ ð30Þ

s:t: H.ðx; sÞ 6 0
x 2 X :
Theorem 3. A given portfolio s is FSD efficient if and only if n.(s) = 0.
If n.(s) < 0 then the optimal portfolio x⁄ of (30) dominates portfolio s
by FSD.
Proof. If n.(s) = 0 then no FSD dominating portfolio exists. On the
other hand, if n.(s) < 0 than the optimal solution x⁄ of (30) FSD
dominates s. h
4.1. Portfolio efficiency test-discrete distribution of returns

Since all existing portfolio efficiency tests have been derived for
a discrete probability distribution P of returns we assume that .
takes S values rs ¼ rs

1; r
s
2; . . . ; rs

N

� �
, called scenarios, with probabili-

ties p1, p2, . . . , pS. Contrary to the former tests, cf. Kopa and Post
(2009) and Kuosmanen (2004), we do not assume equiprobable sce-
narios. Again, the scenarios are collected in the matrix

0 1
Please cite this article in pres
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R ¼

r1

r2

..

.

rS

BBBB@
CCCCA:
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For any portfolio x 2 X , let (�Rx)[k] be the kth smallest element
of (�Rx), i.e. (�R x)[1]

6 (�Rx)[2]
6 
 
 
 6 (�Rx)[S] and let I(x) be a

permutation of the index set {1, 2, . . . , S} such that for all i(x) 2 I(x):
�ri(x)x = (�Rx)[i]. Accordingly, we can order the corresponding
probabilities and we denote px

i ¼ piðxÞ. Hence, px
i ¼ Pð�.x ¼

ð�RxÞ½i�Þ. Moreover, we consider cumulative probabilities:
qx

s ¼
Ps

i¼1px
i and define qx

0 ¼ 0. The same notation is applied for
the tested portfolio s = (s1, s2, . . . , sN)>.

As in Ogryczak and Ruszczyński (2002), we express the FSD
relation using Value at Risk (VaR) that is defined for
a 2 qx

s�1; q
x
s

� �
; s ¼ 1; . . . ; S as:

VaRað�.>xÞ ¼ ð�RxÞ½s�: ð31Þ
Lemma 2. Let x; s 2 X . Then .>x 	 FSD.>s if and only if

VaRað�.>xÞ 6 VaRað�.>sÞ for all a 2 ð0;1� ð32Þ

with a strict inequality for at least one a.
Since we limit our attention to a discrete probability distribu-

tion of returns, the inequality between VaRs need not be verified
in all a 2 ð0;1�, but only in at most S particular points.

Theorem 4. A portfolio x dominates portfolio s with respect to FSD
(.>x 	 FSD.>s) if and only if VaRqs

s
ð�.>xÞ 6 VaRqs

s
ð�.>sÞ for all

s = 1, 2, . . . , S with a strict inequality for at least one qs
s .
Proof. Functions VaRa(�.>x) and VaRa(�.>s) are piece-wise con-
stant in a with jumps in a ¼ qx

s , respectively in
a ¼ qs

s ; s ¼ 1;2; . . . ; S, see (31). Therefore Lemma 2 directly implies
the theorem. h

Inspired by Dupačová and Kopa (2012) we consider the follow-
ing measure:

nðs;R;pÞ ¼min
bs ;x

XS

s¼1

bs ð33Þ

s:t: VaRqs
s
ð�.>xÞ � VaRqs

s
ð�.>sÞ 6 bs; s ¼ 1; . . . ; S

bs 6 0; s ¼ 1; . . . ; S

x 2 X :

The objective function of (33) represents the sum of differences
between VaRs of a portfolio x and VaRs of the tested portfolio
s. The differences are considered in points qs

s ; s ¼ 1; . . . ; S.
According to Theorem 4, the other points need not be taken into
account. All differences must be non-positive and at least one
negative to guarantee that portfolio x dominates portfolio s.
Moreover, minimizing these differences, we find portfolio x⁄ that
cannot be dominated by any other one. On the other hand, if no
dominating portfolio exists, that is, portfolio s is FSD efficient,
then n(s, R, p) = 0 because the only feasible solutions of (33)
are s and portfolios �x satisfying R�x ¼ Rs. Summarizing, Theorems
3 and 4 imply the following necessary and sufficient FSD portfolio
efficiency test:

Theorem 5. A given portfolio s is FSD efficient if and only if
n(s,R,p) = 0. If n(s,R,p) < 0 then the optimal portfolio x⁄ in (33) is
FSD efficient and it dominates portfolio s by FSD.
4.2. Directional FSD portfolio efficiency with respect to an additional
scenario

Consider a contamination of the original distribution of returns
by an additional scenario ~r ¼ ð~r1; . . . ;~rNÞ : .ðtÞ ¼ ð1� tÞ.þ td~r ;

t 2 ½0;1�. Similarly to (30) we examine the problem
mal portfolios under risk and stochastic dominance constraints. European
.018

http://dx.doi.org/10.1016/j.ejor.2013.06.018
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n.ðtÞðsÞ ¼min
x

h.ðtÞðx; sÞ ð34Þ

s:t: H.ðtÞðx; sÞ 6 0

x 2 X

where

H.ðtÞðx; sÞ ¼max
y2R
ðF.ðtÞ>xðyÞ � F.ðtÞ>sðyÞÞ

h.ðtÞðx; sÞ ¼min
y2R
ðF.ðtÞ>xðyÞ � F.ðtÞ>sðyÞÞ:
Definition 4. A given portfolio s 2 X is directionally FSD ineffi-
cient with respect to an additional scenario ~r if for each t there
exists x(t) such that .(t)> x(t) 	 FSD.(t)>s. Moreover, a given
portfolio s 2 X is directionally FSD efficient with respect to an
additional scenario ~r if .(t)> x 	 FSD.(t)>s does not hold for any
x 2 X and any t 2 [0,1].

The definition classifies portfolio s as directionally FSD efficient
(inefficient) with respect to additional scenario ~r if s is FSD efficient
(inefficient) when using the original distribution P as well as in any
contaminated case Pt. FSD efficiency of portfolio s for distribution Q
is equivalent to ~rx 6 ~rs 8x 2 X .

Using (34), portfolio s 2 X is directionally FSD efficient with re-
spect to additional scenario ~r if and only if

min
t2½0;1�

n.ðtÞðsÞ ¼ 0:

If H.(t)(x,s) is concave in t then n.(t)(s) is quasiconcave in t and the
lower bound is:

n.ðtÞðsÞPð1� tÞminfn.ð0ÞðsÞ; min
x2X ;H.ð1Þðx;sÞ60

h.ð0Þðx; sÞg

þ t minfn.ð1ÞðsÞ; min
x2X ;H.ð0Þðx;sÞ60

h.ð1Þðx; sÞg; ð35Þ

see (22). As a consequence we can derive the following sufficient
condition for directional FSD efficiency with respect to additional
scenario ~r.

Theorem 6. Let H.(t)(x,s) be concave in t. If

1. s is FSD efficient with respect to the original distribution of
returns

2. there is no portfolio x – s having the same original distribution
of returns as s

3. ~rs > ~rx for all x – s

then s is directionally FSD efficient with respect to the additional
scenario ~r.
Proof. Since s is FSD efficient for the original distribution
of q, Theorem 3 implies n.(0)(s) = 0. Combining it with
Assumption 2,

min
x2X ;H.ð0Þðx;sÞ60

h.ð1Þðx; sÞ ¼ 0

because s is the only feasible solution of the problem. Similarly,
Assumption 3 implies the uniqueness of s when using the alterna-
tive distribution Q ¼ d~r , hence

n.ð1ÞðsÞ ¼ 0 and min
x2X ;H.ð1Þðx;sÞ60

h.ð0Þðx; sÞ ¼ 0:

Since n.(t)(s) cannot be strictly positive, applying lower bound (35),
we get n.(t)(s) = 0 for all t 2 [0,1] and the rest of the proof directly
follows from Theorem 3 applied for all contaminated problems
and from Definition 4. h
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Similarly, portfolio s 2 X is directionally FSD inefficient with re-
spect to additional scenario ~r if and only if

max
t2½0;1�

n.ðtÞðsÞ < 0:

To compute maxt2[0,1]n.(t)(s) one needs to solve a minimax
problem what may be computationally very demanding or
even impossible. Therefore the following sufficient condition
can be very useful in empirical testing. It applies the trivial
global upper bound for (34) under assumption that some
portfolio x is a feasible solution for all contaminated problems
(34).

Theorem 7. If there exists x 2 X such that .>x 	 FSD .>s and ~rx P ~rs
then s is directionally FSD inefficient with respect to ~r.
Proof. Since F.ðtÞ>xðyÞ is linear in t for all x 2 X ;
ðF.ðtÞ>xðyÞ � F.ðtÞ>sðyÞÞ is linear in t and H.(t)(x,s) is convex in t, that

is, H.ðtÞðx; sÞ 6 ð1� tÞH.ðx; sÞ þ tH~rðx; sÞ for all t 2 [0,1]. Since

.>x 	 FSD.>s and ~rx P ~rs we have H.(x,s) 6 0 and H~rðx; sÞ 6 0,

and therefore, H.(t)(x,s) 6 0. Hence .(t)>x 	 FSD.(t)>s for all

t 2 [0,1] and s is directionally FSD inefficient with respect to ~r what

completes the proof. h

Note that the required portfolio x can be easily found as a solu-
tion of (30) with the additional constraint: ~rx P ~rs:

4.3. Portfolio efficiency with respect to �-FSD relation

Assume that the probability distribution P of random returns �.
takes again values rs, s = 1, 2, . . . , S but with other probabilities
�p ¼ ð�p1; �p2; . . . ; �pSÞ. We define the distance between P and P as
dðP; PÞ ¼ maxij�pi � pij.

Definition 5. A given portfolio s 2 X is �-FSD inefficient if there
exists portfolio x 2 X and P such that dðP; PÞ 6 � with �.>x	FSD �.>s.
Otherwise, portfolio s is �-FSD efficient.

The introduced �-FSD efficiency is a robustification of the
former FSD portfolio efficiency. It guarantees stability of the FSD
efficiency classification with respect to small changes (prescribed
by parameter �) in probability vector p. A given portfolio s is
�-FSD efficient if and only if no portfolio x FSD dominates s neither
for the original probabilities p nor for arbitrary probabilities �p from
the �-neighborhood of the original vector p. For testing �-FSD
efficiency of a given portfolio s we modify (33) to a new measure
of �-FSD efficiency:

n�ðs;R;pÞ ¼ min
bs ;x;�p;�q

XS

s¼1

bs ð36Þ

s:t: VaR�qs
s
ð�.>xÞ � VaR�qs

s
ð�.>sÞ 6 bs; s ¼ 1; . . . ; S

�qs
s ¼

Xs

i¼1

�ps
i ; s ¼ 1; . . . ; S

XS

i¼1

�pi ¼ 1

� � 6 �pi � pi 6 �; i ¼ 1;2; . . . ; S
�pi P 0; i ¼ 1;2; . . . ; S
bs 6 0; s ¼ 1; . . . ; S

x 2 X :
Theorem 8. Portfolio s 2 X is �-FSD efficient if and only if n�(s,R,p)
given by (36) is equal to zero.
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Proof. The proof directly follows from Theorem 5 because (36) is
obtained from (33) by an additional minimization over �p from �-
neighborhood of the original probability vector p. h
5. Conclusions

To analyze the influence of perturbed input data in portfolio
optimization problems with risk constraints, the contamination
technique was applied under relaxed assumptions. When con-
structing contamination bounds for the optimal value the form of
the constraints plays an important role. For the Markowitz model,
e.g. the set of feasible solutions of perturbed problems (2) or (3) de-
pends on contamination parameter t. Still, convexity (and smooth-
ness) of these problems allows us to construct both the lower
contamination bound and a local upper contamination bound. In
the case of general probabilistic risk constraints local lower bounds
can be constructed under modest assumptions, however derivation
of local upper bounds is rather involved. Several instances of such
bounds are presented.

For discrete distributions with non-equiprobable atoms, the ob-
tained results are exploited to develop new robust FSD efficiency
tests of a given portfolio with respect to an additional scenario or
with respect to changes in scenario probabilities. Similarly as the
already implemented simpler tests without robustness and with
equal scenario probabilities in Kuosmanen (2004), our robust FSD
efficiency tests are numerically demanding but they do not in-
crease the computational complexity over the applicable mixed-
integer programming procedures of Kuosmanen (2004).
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Journal of Operational Research (2013), http://dx.doi.org/10.1016/j.ejor.2013.06
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