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Abstract

The bond portfolio management problem is formulated as a multiperiod stochastic program using interest rate

scenarios. The scenarios are sampled from the binomial lattice from a Black±Derman±Toy model. The paper analyzes

the sensitivity of the solution of the resulting large-scale mathematical program with respect to the model inputs. The

numerical results are for the Italian bond market. Ó 2000 Elsevier Science B.V. All rights reserved.
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1. The problem and the input data

The problem considered here is to preserve the
value of a bond portfolio of a risk averse or risk
neutral institutional investor over time. This is a
problem of allocation and management of re-
sources, not of trading. It may include additional
features, e.g., presence of ®xed or uncertain ex-
ternal in¯ows or out¯ows in the future or a re-
quired balance between assets and liabilities. There
are various options concerning the choice of an
appropriate model, starting with duration-based
immunization models, dedicated bond portfolio
management models (see Dahl et al., 1993), or goal

programming type of immunization models (cf.
Dembo, 1993), up to multistage stochastic pro-
gramming models (see Ziemba and Mulvey, 1998),
which can be used for complex assets/liabilities
management problems (e.g., Cari~no et al., 1994).

Why not to rely on the duration-based immu-
nization models? A good answer is the following
quotation (cf. Kahn, 1991):

Many years ago, bonds were boring. Returns
were small and steady. Fixed income risk
monitoring consisted in watching duration
and avoiding low qualities. But as interest-
rate volatility has increased and the variety
of ®xed income instruments has grown, both
opportunities and dangers have ¯ourished. . .

Yield curves are not ¯at, do not move in a
parallel way, the interest rates are not constant and
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investment in long maturity bonds requires an
active trading strategy. These are the reasons that
have led us to the exploitation of multiperiod
stochastic programs with the main random ele-
ment to be included ± the evolution of the short
interest rate over time which is regarded as the
only factor that drives the prices of default free
government bonds.

Given a sequence of equilibrium future short-
term interest rates rt valid for the time interval
�t; t � 1�; t � 0; . . . ; T ÿ 1 the fair price of the jth
bond at time t just after the coupon was paid
equals the total cash¯ow fjs; s � t � 1; . . . ; T
generated by this bond in subsequent time in-
stances discounted to t

Pjt�r� �
XT

s�t�1

fjs

Ysÿ1

h�t

1� � rh�ÿ1
; �1�

where T is greater than or equal to the time to
maturity.

However, the time points do not coincide with
the dates of coupon payments. Also the sequence
of the future short-term rates rh that determines
the prices (1) is not known precisely, but pre-
scribed ad hoc or modeled in a probabilistic way.
The cash¯ows fjs need not be known with cer-
tainty; this is for instance the case of indexed
bonds, bonds with options or default. Hence, the
formula (1) should be extended for the accrued
interest Ajt and revised to take into account the
e�ect of options and other risks related with the jth
bond. The resulting selling and purchasing prices
do re¯ect also the transaction costs and the bid/ask
spread.

Assume that the only random factor which in-
¯uences the fair prices is the evolution of short-
term interest rates. Their probabilistic nature will
be modeled by a discrete probability distribution,
say P, of T-dimensional vectors r of the short rates
rt; t � 0; . . . ; T ÿ 1, where r0 (the rate valid in the
®rst period) is supposed to be known. The ®nite
realizations of r are indexed as rs; s � 1; . . . ; S
with probabilities ps > 0; s � 1; . . . ; S;

P
s ps � 1.

The recommendations for bond portfolio
management depend on the chosen scenarios of
interest rates, on their probabilities and on nu-
merical values of their components rs

t . Regarding

sensitivity of the results on inclusion of additional,
``out-of-sample'' scenarios and on small changes of
scenarios and their probabilities there are global
methods and results which do not depend on the
way how the scenarios were generated and which
can be adapted to various stochastic programming
models (cf. Dupa�cov�a, 1996, 1998; Dupa�cov�a et
al., 1997a,b, 1998; Dupa�cov�a and Rùmisch, 1998).
We discuss them brie¯y in Section 2. We concen-
trate on the impact of data and of the estimation
procedures for scenarios generated by a Black et
al. (1990) model and for one possible model of
bond portfolio management. Similar problems
appear also for other problem settings, for di�er-
ent models of interest rates and they are not lim-
ited to bond portfolio management. We introduce
a general methodology focused on ®nding and
quanti®cation of the impact of random and sys-
tematic errors, which are present in the scenario
generation procedure, on the results. We illustrate
the ideas numerically for the chosen stochastic
programming model of bond portfolio manage-
ment and for Italian bond market data from 1994
to 1997.

The Italian bond market was the fourth largest
®xed-income market in the world. The government
®xed-income securities represent more than 85% of
this market and they include zero-coupon bonds,
BOTs and CTZs, of maturities up to two years,
coupon bonds without option, BTPs, with di�er-
ent maturities (3, 5, 10 and 30 years) which are
issued two times per month through a marginal
auction without minimal price, ¯oater bonds,
CCTs, there used to be puttable bonds, CTOs, etc.
There are futures and options on some of BTPs
and also bonds with maturities between 3 and 30
years issued by corporations. Italian bond market
data were reported in risk metrics datasets.

The size of the Italian bond market provided a
sound basis for application of various models of
interest rates and for their calibration; its liquidity
can be taken for granted when designing models
which admit rebalancing strategies.
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2. The model and the structure of the program

We formulate the bond portfolio management
problem analogous to that in Golub et al. (1995),
Zenois (1995), Dupa�cov�a and Bertocchi (1996)
and Dupa�cov�a et al. (1997a,b, 1998). In compari-
son with earlier scenario-based stochastic pro-
grams for bond portfolio management (e.g., Hiller
and Eckstein, 1993; Shapiro, 1988), the model
formulation allows for the possibility of intertem-
poral rebalancing of the portfolio. Let

j � 1; . . . ; J be indices of the bonds and Tj the
dates of their maturities; T � maxj Tj.
t � 0; . . . ; T0 the discretization of the planning
horizon;
bj P 0 the initial holdings (in face value) of
bond j;
b0 the initial holding in riskless asset;
f s

jt cash¯ow generated under scenario s from
bond j at time t expressed as a fraction of its
face value.
ns

jt and fs
jt are the selling and purchasing prices

of bond j at time t for scenario s obtained from
the corresponding fair prices (1) adding the ac-
crued interest As

jt and subtracting or adding sce-
nario independent transaction costs and spread;
the initial prices nj0 and fj0 are known con-
stants, i.e., scenario independent;
Lt is an external cash¯ow at time t;
xj=yj are the face values of bond j purchased/
sold at the beginning of the planning period,
i.e., at t � 0;
zj0 is the face value of bond j held in portfolio
after the initial decisions xj; yj have been made.

The ®rst-stage decision variables xj; yj; zj0 are
nonnegative

yj � zj0 � bj � xj 8j �2�

and

y�0 �
X

j

fj0xj � b0 �
X

j

nj0yj; �3�

where the nonnegative variable y�0 denotes the
surplus.

The second-stage decisions on rebalancing the
portfolio, borrowing or reinvestment of the sur-
plus depend on individual scenarios. They have to

ful®ll constraints on conservation of holdings in
each bond at each time period and for each of the
scenarios

zs
jt � ys

jt � zs
j;tÿ1 � xs

jt 8j; s; 16 t6 T0; �4�

where xs
jt; ys

jt; zs
jt denote the face value of bond j

purchased, sold, held in the portfolio at time
t; t � 1; . . . ; T0 under scenario s, and constraints
on rebalancing the portfolio at each time period
16 t6 T0X

j

ns
jty

s
jt �

X
j

f s
jtz

s
j;tÿ1 � 1

ÿ ÿ d1 � rs
tÿ1

�
y�s

tÿ1 � yÿs
t

� Lt �
X

j

fs
jtx

s
jt � 1

ÿ � d2 � rs
tÿ1

�
yÿs

tÿ1

� y�s
t 8s; t �5�

with yÿs
0 � 0; y�s

0 � y�0 ; z�j0 � zj0 8j. The variables
y�s

t ; yÿs
t describe the (unlimited) lending/borrow-

ing possibilities for period t under scenario s and
the spreads d1; d2 are model parameters to be
®xed. Nonzero values of d1 account for the dif-
ference between the returns for bonds and for
cash. Assume that d2 > 0, i.e., there is a positive
cost of borrowing.

The optimization problem is maximization of
the expected utility of the ®nal wealth at time T0X

s

psU�W s
T0
� �6�

subject to constraints (2)±(5) and nonnegativity
constraints on all variables, with

W s
T0
�
X

j

ns
jT0

zs
jT0
� y�s

T0
ÿ ayÿs

T0
8s: �7�

The multiplier aP 1 is ®xed according to the
problem area. For instance, a can be scenario de-
pendent and values as > 1 take into account the
debt service in the future. In case of preservation
of portfolio value (with no liabilities considered) or
for an investment project terminating at time T0,
an arbitrarily large value of a plays the role of a
penalty for borrowing at the end of the accounting
or planning period.

Owing to the possibility of reinvestments and of
unlimited borrowing, the problem has always a
feasible solution. It is a multiperiod two-stage sto-
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chastic programming model with random relatively
complete recourse and with nonlinearities in the
utility function. The existence of optimal solutions
is guaranteed for a large class of utility functions
that are increasing and concave that will be as-
sumed henceforth. Moreover, due to strict in-
equalities nj0 < fj0 8j; ns

jt < fs
jt 8j; t; s and

d1 P 0; d2 > 0, the optimal solutions satisfy

yjxj � 0 8j;
ys

jtx
s
jt � 0 8s; j; 16 t6 T0;

y�s
t yÿs

t � 0 8s; 16 t6 T0:

At optimality there is no unnecessary trading and
borrowing.

We obtain a large-scale deterministic program
with a concave objective function and numerous
linear constraints. The size and the numerical
values of the coe�cients of the program result
from the application and the available data: the
choice of bonds, their characteristics (initial prices
and future cash¯ows) and initial holdings, from
the scheduled stream of liabilities, transaction
costs and spread and from the way how the sce-
narios of future interest rates are generated and
sampled. The main outcome is the optimal value of
the objective function (the maximal expected util-
ity of the ®nal wealth) and the optimal values of
the ®rst-stage variables xj; yj (and y�0 ; zj0) for all j.
In a dynamic setting, this decision is applied and at
the end of the ®rst period, the model is solved
again for the changed input information on hold-
ings and on scenarios of interest rates (see Kusy
and Ziemba, 1986) for a detailed explanation of
this idea.

Assume that the portfolio consists of default
free, liquid bonds with maturities Tj > T0 8j, all
cash¯ows are after tax, the transaction costs and
bid/ask spreads are constant quantities. A careful
tuning of the numerical values of these design
parameters may contribute to a realistic perfor-
mance of the model (cf. Bertocchi et al., 1996a,b or
Dupa�cov�a et al., 1998), and discretization of the
time horizon in¯uences not only the tractability of
the numerical procedure but also the accessibility
and precision of the input data.

The following reformulation of the problem is
useful for stability and post-optimality analysis.
Assume that an initial trading strategy determined
by scenario independent ®rst-stage decision vari-
ables xj; yj; y�0 (and zj0) for all j has been accepted,
then the subsequent scenario-dependent decisions
have to be made in an optimal way regarding the
goal of the model. It means that given the values of
the ®rst-stage variables y�0 and x; y; z0 with
components xj; yj; zj0 8j, the required maximal
contribution of the portfolio management under
the sth scenario to the value of the objective
function is obtained as the value of the utility
function computed for the maximal value of the
wealth W s

T0
attainable for the sth scenario under the

constraints of the model, i.e., the utility of the
optimal value W s

T0
of the linear program

maximize W s
T0

subject to zs
jt � ys

jt � zs
j;tÿ1 � xs

jt 8j; �8�
16 t6 T0;

X
j

ns
jty

s
jt �

X
j

f s
jtz

s
j;tÿ1 � 1

ÿ ÿ d1 � rs
tÿ1

�
y�s

tÿ1 � yÿs
t

� Lt �
X

j

fs
jtx

s
jt � 1

ÿ � d2 � rs
tÿ1

�
yÿs

tÿ1 � y�s
t ;

16 t6 T0; �9�

ns
jt P 0; ys

jt P 0; zs
j;t P 0; yÿs

t P 0;

y�s
t P 0 8j; 16 t6 T0 �10�

with

yÿs
0 � 0; y�s

0 � y�0 ; zs
j0 � zj0 8j

and with

W s
T0
�
X

j

ns
jT0

zs
jT0
� y�s

T0
ÿ ayÿs

T0
: �11�

Denote the corresponding maximal value by
WT0
�rs; x; y; z0; y�0 � and rewrite the program (2)±(7)

as

maximize
XS

s�1

psU WT0
rs; x; y; z0; y�0
ÿ �ÿ � �12�
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subject to nonnegativity constraints and subject to
2 and 3. Scenarios enter now only the objective
function (12).

Assume a positive market value of the initial
portfolio, b0 �

P
j nj0bj > 0 and in the ®rst stage,

no borrowing is allowed. This implies that the set
of the feasible ®rst-stage solutions is nonempty and
bounded. This property holds true also in case that
a restricted borrowing possibility in the ®rst stage is
permitted.

The remaining part of this section reviews re-
sults on the stability of the problem (2)±(7) or (2),
(3) and (12), which are independent of the way how
the scenarios of interest rates were generated and
selected.

2.1. Out-of-sample scenarios

Assume that the stochastic program (2)±(7) is
solved for a ®xed set of scenarios rs; s � 1; . . . ; S
and that the in¯uence of including other out-of-
sample scenarios should be considered. Such
problem can be related to the ``what±if'' analysis,
to various stability and sensitivity studies, to in-
corporating investors' views, etc. One could re-
write the program (2)±(7) for the extended set of
scenarios, with additional variables and additional
constraints of the type (4), (5), and (7) and solve it.
Another possibility is to use the form (12), (2) and
(3) whose set of feasible solutions is not in¯uenced
by inclusion of additional scenarios. The addi-
tional scenarios appear only in the objective
function which is an expected value of the utility of
the ®nal wealth under a discrete probability dis-
tribution carried by a ®nite number of scenarios.
Being an expected value, the objective function
(12) is linear in the probability distribution.

Denote by P the initial probability measure
carried by S interest rate scenarios indexed as
s � 1; . . . ; S with probabilities ps > 0 8s;P

s ps � 1. Let u�P � be the optimal value of (12)
and x�P �; y�P �; z0�P �; y�0 �P � be an optimal ®rst-
stage solution. For simplicity, assume that the
optimal ®rst-stage solution is unique.

Inclusion of other out-of-sample scenarios
means to consider another discrete probability
distribution which is carried by the extended set of

scenarios. Such distributions can be modeled as a
convex mixture of two discrete probability distri-
butions: P that is carried by the initial scenarios
indexed by s � 1; . . . ; S with probabilities
ps > 0;

P
s ps � 1 and Q carried by the out-of-

sample scenarios indexed by r � 1; . . . ; S0 with
probabilities pr > 0;

P
r pr � 1. The weights of

the two probability distributions are given by the
contamination parameter k and the contaminated
distribution

Pk � �1ÿ k�P � kQ; 06 k6 1

is carried by the pooled sample of S � S0 scenarios
that occur with probabilities �1ÿ k�p1; . . . ;
�1ÿ k�pS ; kp1; . . . ; kpS0 . For ®xed probability dis-
tributions P and Q, the objective function (12)
which corresponds to the contaminated distribu-
tion Pk is a linear function of k.

Small values of the contamination parameter k
are typical for various stability studies; k � 1=2
corresponds to the analysis of the impact of dou-
bling the sample size, by the choice of k the degree
of con®dence in expert opinions (cf. Koskosides
and Duarte, 1997) can be re¯ected, and so on.

For the ®xed initial distribution P and a ®xed
contaminating distribution Q for which the maxi-
mal value u�Q� of

P
r prU�WT0

�rr; x; y; z0; y�0 �� is
®nite, the optimal value u�Pk� :� u�k� is a ®nite
convex function on �0; 1� and its derivative at
k � 0� equals

u0�0�� �
X

r

prU WT0
rr; x�P �; y�P �;ÿÿ

z0�P �; y�0 �P�
��ÿ u�P �: �13�

Bounds for the optimal value u�Pk� of the problem
based on the pooled set of S � S0 scenarios follow
by convexity arguments:

�1ÿ k�u�P � � k
X

r

prU WT0
rr; x�P �;y�P�; z0�P �;
ÿÿ

y�0 �P �
��
6u�Pk�6 �1ÿ k�u�P � � ku�Q� 806k61:

�14�

The additional numerical e�ort consists in solving
the stochastic program
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maximize
X

r

prU WT0
rr; x; y; z0; y�0
ÿ �ÿ �

subject to (2) and (3) and nonnegativity con-
straints for the distribution Q carried by S0 out-of-
sample scenarios to obtain u�Q� and in evaluation
and averaging the S0 function values
U�WT0

�rr; x�P�; y�P �; z0�P�; y�0 �� for the new sce-
narios at the already obtained optimal ®rst-stage
solution; these are in fact the main numerical in-
dicators which appear in various simulation stud-
ies of the portfolio performance under out-of-
sample scenarios (cf. Kusy and Ziemba, 1986;
McKendall et al., 1994).

The described post-optimality technique aims
at the optimal value function. It is quite general
and applies to a broad class of scenario-based
stochastic programs (cf. Dupa�cov�a, 1996). In the
context of the bond portfolio management prob-
lem, it is independent of the method which was
used to generate or to select the scenarios ± the
atoms of the distributions P and Q. It can be ex-
tended without any problems to scenario-depen-
dent liabilities and cash¯ows which allows to
include the case of callable and puttable bonds and
also mortgage backed securities. It was elaborated
in detail and applied in Dupa�cov�a et al. (1997a,b,
1998) to data from the Italian bond market for
scenarios generated from a Black et al. (1990)
model. The numerical results are encouraging;
they can be used to test the in¯uence of parallel
shifts of interest rate scenarios, to quantify the
change in the optimal value of (12) due to inclu-
sion of additional scenarios, etc. An extension to
multistage problem setting follows from Dupa�cov�a
(1995).

There are also theoretical results based on the
contamination technique that deal with properties
of the optimal ®rst-stage solutions; for a survey
consult Dupa�cov�a (1990). These results, however,
are much more technically involved and are not
yet ready for a numerical implementation.

2.2. Stability results

We now discuss the stability properties of the
stochastic program (2)±(7) with respect to changes

in the numerical values of its coe�cients. These
changes are consequences of changes in numerical
values of the components rs

jt of the selected S
scenarios of interest rates.

It is possible to prove (see Dupa�cov�a and Ber-
tocchi, 1997 or Dupa�cov�a, 1998), that for an ar-
bitrary ®xed scenario rs and for an arbitrary
feasible ®rst-stage decision x; y; z0; y�0 the sce-
nario subproblems (8)±(11) are stable linear pro-
grams in the sense of Robinson (1977) provided
that 0 < ns

jt < fs
jt 8j; t and a > 1; d2 > 0. This

implies that the sets of optimal solutions of the
pairs of the dual scenario subproblems are non-
empty and bounded, the optimal value function
WT0
�rs; x; y; z0; y�0 � is jointly continuous in

rs; x; y; z0; y�0 and for all small (but otherwise
arbitrary) perturbations, the distances of optimal
solutions of the pair of the dual perturbed scenario
subproblems from the sets of optimal solutions of
the unperturbed ones are bounded by a constant
multiple of the size of perturbations. Moreover,
for an arbitrary ®xed scenario rs, the optimal value
of (8)±(11), WT0

�rs; x; y; z0; y�0 � is concave, piecewise
linear in the ®rst-stage decision variables.

The continuity properties with respect to sce-
narios, their probabilities and with respect to the
®rst-stage decision variables apply also to the ob-
jective function (12) and the expectationsP

s psWT0
�rs; x; y; z0; y�0 � andPS

s�1 psU�WT0
�rs; x; y; z0; y�0 �� are concave with re-

spect to the ®rst-stage decision variables for an
arbitrary nondecreasing concave utility function
U. This means (recall that the set of the feasible
®rst-stage decisions is nonempty and bounded)
that also the optimal value function of the full
problem (12), (2) and (3) is continuous with respect
to the input parameters rs; ps; s � 1; . . . ; S (see
e.g., Bank et al., 1982).

These results imply that small errors in evalua-
tion of scenarios of interest rates, of their proba-
bilities and consequently of prices ns

jt; fs
jt cause only

small changes to the best available scenario-based
market values WT0

�rs; x; y; z0; y�0 � and also to the
optimal value of the overall performance function
(12). However, it is important to quantify at least
the meaning of ``small'' errors in evaluation of
scenarios. One way is via di�erentiability proper-
ties.
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Directional derivatives of the optimal value
functions WT0

�rs; x; y; z0; y�0 � with respect to various
changes of the scenarios can be obtained using
di�erentiability of the coe�cients and the well-
known marginal value formulas (cf. Gol'shtein,
1970). This result can be extended to the direc-
tional di�erentiability of the optimal value function
of the full problem (12), (2) and (3) with respect to
changes in components of scenarios (see
Dupa�cov�a, 1998). Di�erentiability of the optimal
value function cannot be expected and for multi-
dimensional parameters, directional derivatives
are of a limited practical use in quanti®cation of
stability results.

On the other hand, under modest assumptions
it is possible to prove a locally Lipschitzian be-
havior of the optimal value functions
WT0
�rs; x; y; z0; y�0 � and of the optimal value of the

performance function (12) with respect to the
chosen discrete probability distribution (scenarios
and their probabilities). The local Lipschitzian
property extends also to the sets of e-optimal so-
lutions of (12), (2) and (3) (see Dupa�cov�a and
Rùmisch, 1998 for details). The results contribute
not only to the quanti®cation of the above stability
results but are also related to the problem of se-
lection of representative scenarios and to the
quanti®cation of the in¯uence of out-of-sample
scenarios on the e-optimal ®rst-stage solutions.
Their application is a new area of research which
requires to choose a suitable and computable dis-
tance function of alternative discrete probability
distributions and to get su�ciently tight bounds
on the Lipschitz constants.

To summarize. It is possible to quantify the
in¯uence of inclusion of additional scenarios on
the optimal value of the bond portfolio manage-
ment problem. Moreover, it is possible to prove
various stability results for the problem. However,
(contrary to the post-optimality with respect to
additional scenarios) we do not have any general
numerically tractable method to quantify them.
This made us to turn our attention to simulation
studies. To provide well-interpretable results, these
simulation studies have to be tailored to the way
how the scenarios have been generated and se-
lected.

3. Generation of scenarios

Our primary goal is to analyze the sensitivity of
the optimal value of (6) to the selected scenarios of
interest rates. These scenarios can be obtained by
discretization of a true continuous probability
distribution, from a model calibrated by market
data, from historical observations and in principle,
they can be also ®xed ad hoc using expert forecasts
(cf. Koskosides and Duarte, 1997). The best way is
to exploit all sources of available information. The
data from the Italian bond market considered here
give a solid base for possible applications of these
approaches, whereas interest rate scenarios for
thin emerging markets can hardly be based on
historical data or on estimation techniques dis-
cussed below.

The ®rst step is to choose a model of the short
rates and to calibrate it so that it ®ts the market
data reasonably well; this can be formulated as a
requirement to price precisely some of the traded
®nancial documents, e.g., the ®xed coupon gov-
ernment bonds. An example is the Cox et al. (1985)
model applied to the daily data from Italian bond
market for 1984±1990 years in Barone et al. (1991).

Similarly as in Dupa�cov�a and Bertocchi (1996)
we use the Black et al. (1990) model as the basis for
generation of the interest rate scenarios. The basic
assumptions of the Black±Derman±Toy model can
be summarized as follows:
· The short rate is the only factor that drives the

bond prices, it can move up or down with equal
probability over the next time period; the se-
quences of ``up±down'' and ``down±up'' moves
from any ®xed stage at a time point t result in
the same value of interest rate at the time point
t � 2.

· The expected returns on all securities in one pe-
riod are equal, short rates are log-normally dis-
tributed with the volatility of their logarithms
that depends only on time.

· The input is the yield curve and yield volatilities
valid for zero-coupon government bonds at a
given date; this input should be available for
all maturities.

At each time point l, there are l� 1 possible stages
and for the given horizon T there are 2Tÿ1 equi-
probable scenarios of short-term interest rates.
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Each of them can be represented by a random
binary fraction with T ÿ 1 0±1 digits, say

xs � 0 � xs
1x

s
2 . . . xs

Tÿ1

with xs
l � 0 or 1 8l; s. The digit 1 at the lth po-

sition corresponds to the ``up'' move, the digit 0
corresponds to the ``down'' move of the one-peri-
od short-term interest rate in the step l. This the-
oretical binomial lattice has to be calibrated by the
existing term structure to get the base rates rl0 and
the volatility factors or lattice volatilities kl for all
l. The corresponding one-period short-term rates
for scenario s and for the time interval �l; l� 1� are
then

rs
l � rl0kil�s�

l ; il�s� �
Xl

s�1

xs
s: �15�

That is, il�s� equals the number of the up moves
for the given scenario s which occur at time points
1; . . . ; l (see Rebonato, 1996 for discussions about
characteristic properties of this model).

To calibrate the Black±Derman±Toy model
means to use the yield and volatility curve related
to yields to maturity of zero-coupon government
bonds of all maturities corresponding to the cho-
sen time steps of the lattice. Such bonds are rare in
the market and have to be replaced by synthetic
zero-coupon bonds whose yields correspond to
yields of ®xed coupon government bonds that do
not contain any special provision such as call or
put options.

Various numerical and statistical methods have
been used to ®t or estimate the yield curve from the
existing market data on yields of ®xed coupon
government bonds at the given day. We have ap-
plied regression analysis to estimate and test the
analytical form the yield curve. Instead of yields
one could use the corresponding prices of these
bonds as the input (see for instance Barone et al.,
1991; Bliss, 1996), the discussion in Dupa�cov�a et
al. (1996) or the approach recommended in Risk
Metrics (1995). Regarding the assumption of
homoskedasticity commonly present in regression
models we decided to use yields (see the discussion
in Va�s�õ�cek and Fong, 1982).

Having tried di�erent parametric nonlinear
models as well as nonparametric ones, as reported
in Dupa�cov�a et al. (1996) and Dupa�cov�a et al.
(1997a,b), we chose to use a simple form of the
yield curve applied by Bradley and Crane (1972)

g�t; h; b; c� � htbect: �16�
We applied its linearized form to the logarithms of
yields. For the market information consisting of
yields ui; i � 1; . . . ; n of various ®xed coupon
government bonds (without option) characterized
by their maturities ti, the postulated model is

lg ui � lg h� b lg ti � cti � ei; i � 1; . . . ; n; �17�
where the random errors ei; i � 1; . . . ; n are inde-
pendent, normal N�0; r2�.

The linearized model passed the nonparametric
goodness-of-®t test of Eubank and Hart (1992)
(see Dupa�cov�a et al., 1997a,b). There is a good
reason to accept the hypothesis of approximately
normal errors in (17) which is in line with the as-
sumed log-normal process of short rates approxi-
mated by the Black±Derman±Toy binomial lattice.

The least-squares estimates lg ĥ; b̂; ĉ of pa-
rameters lg h; b; c are approximately normal,
with the mean values equal to the true parameter
values and the covariance matrix

r2Rÿ1; R � GTG;

where r2 is estimated by

s2 � 1

nÿ 3
min
lg h;b;c

Xn

i�1

�lg ui ÿ lg hÿ b lg ti ÿ cti�2:

�18�
To estimate the yields of zero-coupon bonds of all
required maturities which are not directly observ-
able, ~t 6� ti, we replace the unobservable logarithm
of yield by the corresponding value on the already
estimated log-yield curve. Such estimates are sub-
ject to additional error.

Assume that the logarithm of the yield ~u � u�~t�
for maturity ~t

lg ~u � lg h� � b� lg~t � c�~t � ~e
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with ~e normal, independent of ei; i � 1;
. . . ; n; E~e � 0; var ~e � r2 and with the true pa-
rameter values denoted by asterisks. Then lg ~u is
approximately normal

lg ~uÿ lg ĥÿ b̂ lg~t ÿ ĉ~t �N 0; r2�1
�

� Q2�~t��
�
;

�19�
where

Q2�t� � �1; lg t; t�Rÿ1�1; lg t; t�T: �20�
The corresponding approximate 100�1ÿ a�%
con®dence interval for the logarithm of yield lg ~u
for a ®xed maturity ~t 6� ti; i � 1; . . . ; n is

lg g�~t; ĥ; b̂; ĉ� � s 1
�
� Q2�~t�

�1=2

tnÿp�1ÿ a=2�

and tnÿp�1ÿ a=2� is the corresponding quantile of
the t distribution with nÿ p degrees of freedom.

The techniques for obtaining volatilities of
yields or log-yields are less obvious. Most of the
authors work with an ad hoc ®xed constant vola-
tility, say V �t� � V (see e.g., the discussion in Hull
and White, 1990). For a constant volatility, how-
ever, the model does not display the desirable
mean reversion (see Rebonato, 1996).

The volatility curve can be estimated from the
historical data (see e.g., Kahn, 1991). Risk metrics
datasets provide historical volatilities for 14 major
bond markets, including the Italian one; these
volatilities are computed daily for several main
maturities ranging from 1, 2, 3, 4, 5, 7, 9, 10, 15, 20
and 30 years. The proposal is to estimate the
missing yields by linear interpolation and to use
the volatilities and correlations of the reported
yields to compute the approximate values of yield
volatilities for these nonincluded maturities. There
are not enough data for ®tting the volatility curve
by a regression model.

Another source of information is implied vola-
tilities computed from quoted bond option prices
(e.g., Kuberek, 1992). At a given day, this provides
a set of annualized volatilities related to several
di�erent maturities. The next step is to get a vol-
atility curve from these ``observed'' data. Evi-
dently, the discussion concerning an appropriate
parametric or nonparametric estimation procedure

appears once more, including the plausible para-
metric form of the curve and the problem of a
small number of available data. A suggestion is to
regress the implied bond volatility on the lagged
one obtained one period before (cf. Litterman et
al., 1991).

In contrast to the volatility curves obtained
independently on the yield curve model one could
get approximate standard deviations of lg u�t� from
the chosen parametric model of the yield curve
provided that the errors in the applied regression
model are normally distributed (cf. Dupa�cov�a et
al., 1997a,b). For the linearized Bradley and Crane
model (17) one can use directly the standard de-
viation which comes from (19).

For calibration of the binomial lattice in agree-
ment with the (estimated) today's market term
structure, both backward and forward inductions
and approximate ®ttings have been tested (see e.g.,
Jamshidian, 1991; Kang and Zenios, 1992;
Bjerksund and Stensland, 1996; Rebonato, 1996).
The numerical results are reported in Aba�y et al.,
1998.

All these steps lead to the ®tted binomial lattice
which provides di�erent 2Tÿ1 scenarios of interest
rates. A smaller, manageable number of scenarios
have to be selected or sampled from this large set
(see Nielsen, 1997) for a procedure based on ideas
of importance sampling and Zenios and Shtilman
(1993) for a nonrandom sampling technique based
on a uniform approximation of the expected utility
of ®nal wealth computed with respect to the uni-
form distribution over the full set of the 2Tÿ1 sce-
narios of the lattice by an expected value over a
subset of these scenarios.

A simpli®ed version of the deterministic sam-
pling strategy by Zenios and Shtilman (1993) can
be described as follows. We ®x L; 1 < L < T and
assign the index s; s � 1; . . . ; 2L to each possible
binary fraction of length L. The sample point xs

from �0; 1� is determined by one of these binary
fractions and by an arbitrary continuation up to
binary fraction of length T ÿ 1.

We build S scenarios rs, which are identi®ed by
scenario independent base rates rt0; t � 1; . . . ;
T ÿ 1, volatilities kt; t � 1; . . . ; T ÿ 1 and by the
scenario dependent position on the lattice given by
the exponent it�s� equal to the number of up moves
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needed to reach the position on the lattice within t
periods, see (15). We evaluate the prices ns

jt; fs
jt and

cash¯ows f s
jt along each of these scenarios and

solve the problem (2)±(7). The main output is the
optimal value ± the maximal attainable expected
utility of ®nal wealth at time T0 and an optimal
®rst-stage solution, say x�; y�; z�0; y��0 .

4. What±if analysis: the perturbed input

Assume that the models applied on the input
side of the bond portfolio management problem
have been ®xed according to our past experience.
In the context of the Black±Derman±Toy model of
interest rates it means that the successfully tested
linearized form of the Bradley and Crane (1972)
yield curve (16) has been accepted to get the term
structure. As one possibility, Zenios and Shtilman
(1993) nonrandom sampling procedure has been
used to get a modest number of scenarios out of
the ®tted binomial lattice. Even in this case there
are numerous sources of errors that in¯uence the
input of the large-scale mathematical program (2)±
(7):
· The market data of the given day are used to ®t

the yield curve, i.e., to estimate the coe�cients
in the chosen nonlinear regression model and
to estimate the yields or prices of zero-coupon
government bonds of all required maturities
t � 1; . . . ; T . In addition, a plausible hypothesis
about volatility of these yields (i.e., about stan-
dard deviations of log-yields) is needed. The es-
timated prices or yields of zero-coupon
government bonds of all maturities together
with their volatilities are called the initial term
structure. Evidently, both statistical and numer-
ical errors enter the initial term structure.

· The Newton±Raphson method is used to ®t the
base rates and lattice volatilities of the Black±
Derman±Toy model in accordance with the
term structure. It requires the solution of a sys-
tem of 2T nonlinear equations which can be
done in several ways. Additional errors which
stem from the chosen numerical procedure seem
to be of minor importance than errors due to es-
timation of the yield curve and, namely, due to
more or less ad hoc assessment of the volatility

curve (see Aba�y et al., 1998) for numerical ev-
idence.

· There is a certain indeterminacy as to the choice
of representative scenarios. In case of the Zenios
and Shtilman nonrandom sampling strategy,
this includes the choice of the number S � 2L

of scenarios and also the choice of the L� 1
and further components of the binary fractions
which identify the selected scenarios.
The ®nal task is a solution of the large mathe-

matical program (2)±(7) whose coe�cients are
burdened by errors of various kinds. The question
is the sensitivity of the optimal ®rst-stage decision
(the ®rst-period trading strategy) and of the opti-
mal value of the objective function on the above-
mentioned errors.

The form of the ®tted interest rates allows us to
separate the in¯uence of the input data and of
methods used for the lattice calibration from the
impact of the chosen sampling procedure. Hence,
we can concentrate now solely on an analysis of
errors in the estimated term structure and their ef-
fect on the results. We recall only that the con-
tamination technique explained brie¯y in Section
2.1 is a suitable method for bounding errors due to
inclusion of additional scenarios and/or due to
changes of parameter L in the Zenios and Shtil-
man (1993) sampling procedure.

4.1. Simulation studies

The results summarized in the context of esti-
mating the yield curve by parametric regression
(cf. (16)±(20)), provide a basis for simulation of
log-yields at individual points t which are needed
for ®tting the binomial lattice provided that the
volatility curve is not subject to any perturbations:

(i) At each point t of the discretization of the
time horizon generate the random error e by
sampling from the normal distribution
N�0; r2�1� Q2�t���; the corresponding simulat-
ed log-yield at the given time instant t is
lg u � lg g�t; ĥ; b̂; ĉ� � e. Let e be the vector of
the independent normally distributed compo-
nents e obtained in the described way.
(ii) For each vector of log-yields obtained ac-
cording to (i) get the vector of simulated yields
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u, ®t the lattice and evaluate the interest rates rs
t ,

prices P s
jt; ns

jt; fs
jt and cash¯ows f s

jt.
By a repeated solution of the scenario-based

programs (2)±(7) for various sets of coe�cients
obtained by the simulation procedure (i) and (ii)
one gets repeated ``observations'' of the optimal
value and of the optimal initial trading strategy
which allows to construct empirical distribution of
the maximal expected utility of the ®nal wealth, a
useful information for subsequent, sample-based
statistical inference, and to classify the considered
bonds. See Section 5 for selected numerical results.

Using (i) and (ii), it is also possible to design a
simpler procedure which aims only at properties of
scenario subproblems.

The bond portfolio model is solved with prices
and interest rates which come from the binomial
lattice ®tted in agreement with the estimated log-
yield curve (17) and with a ®xed volatility curve.
The ®rst-stage optimal solution is kept ®xed in the
subsequent steps and used together with simulated
coe�cients computed according to (i) and (ii) as an
input for solution scenario subproblems (8)±(11).
Repeated simulation runs according to (i) and (ii)

and solution of the scenario subproblems provide
empirical distributions of the optimal values of
scenario subproblems.

Finally, it is possible to adapt the approaches
suggested by Mak et al. (1997) to test the quality of
the optimal ®rst-stage solution based on the esti-
mated yield curve through designing asymptotic
con®dence bounds on the optimal value. This
simulation experiment proved to be rather de-
manding even in a parallel environment and its
description is beyond the scope of this paper. We
refer to Bertocchi et al. (1998) for the ®rst nu-
merical experience, related to the considered ap-
plication within the Italian bond market.

The speci®c form of the linearized Bradley and
Crane yield curve (17) is not essential for simula-
tion experiments delineated above. They can be
applied whenever there is a sound basis for as-
suming random errors in the model input; the ex-
amples are other regression models and/or other
assumed distribution of errors and also random
sampling procedures for selection of scenarios.

Fig. 1. Volatility curves and implied volatilities.
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4.2. Alternative volatility curves

At the present state of knowledge, the simula-
tion technique delineated above is not suitable for
sensitivity with respect to the volatility data. The
results of di�erent approaches provide quite dis-
parate volatility curves; compare the volatility
curves plotted in Fig. 1 which come from the lin-
earized and nonlinear Bradley±Crane model used
to estimate the yield curve for data of 17 April
1997 with values of implied volatilities related to
the same day.

At the same time, the numerical evidence (cf.
Aba�y et al., 1998), shows that the assumed values
of the log-yield volatilities in¯uence essentially the
rates along the ®tted binomial lattice, see Table 1
for results based on market data of 24 June 1996
and on constant volatilities and Table 2 and Fig. 2
for lattice parameters that have been computed for
the volatility curve obtained from (19) and from
exponential smoothing of the implied volatilities
for 17 April 1997. Moreover, the mapping from
the log-yield volatility curve values to the lattice
parameters is approximately linear; see the last
column of Table 2 which corresponds to the vol-

atility curve equal to the average of the two initial
volatility curves.

All computations were done in double precision
with 15 signi®cant decimal digits, the step of time
discretization was ®xed to six months. The nu-
merical results reported in Tables 1 and 2 show
that there is a great sensitivity of the base rates and
lattice volatilities to the input volatility of log-
yields. It emphasizes both the need for deep studies
of volatility aspects and the necessity to analyze
the progression of errors in input volatilities
through the ®tting procedure up to the ®nal re-
sults.

Assume that the sampling strategy and the ap-
plied values of yields are kept ®xed and two al-
ternative volatility curves are taken into account.
Let V1; V2 be the two corresponding vectors of
their function values computed for all points t of
the considered discretization of the time horizon T.
Each of these vectors provides S scenarios of in-
terest rates, say, rs�V1�; rs�V2�; s � 1; . . . ; S; the
two scenario bets are di�erent. The stochastic
program (2)±(7) can be solved for each volatility
curve separately; denote the optimal values
u�V1�; u�V2� and the optimal ®rst-stage solution

Table 1

Lattice parameters for various constant volatilities

Time Volatility� 0.15 Volatility� 0.16 Volatility� 0.20

rl0 kl rl0 kl rl0 kl

0 0.036643 1.000000 0.036643 1.000000 0.036643 1.000000

1 0.031953 1.236311 0.031705 1.253919 0.030718 1.326896

2 0.028652 1.233381 0.028216 1.250765 0.026512 1.322819

3 0.025822 1.232824 0.025237 1.250190 0.022994 1.322232

4 0.023327 1.232797 0.022625 1.250205 0.019986 1.322514

5 0.021101 1.233010 0.020310 1.250493 0.017388 1.323258

6 0.019101 1.233384 0.018244 1.250972 0.015131 1.324361

7 0.017297 1.233894 0.016392 1.251616 0.013161 1.325797

8 0.015663 1.234531 0.014726 1.252418 0.011436 1.327568

9 0.014181 1.235296 0.013224 1.253377 0.009922 1.329687

10 0.012833 1.236190 0.011867 1.254498 0.008592 1.332174

11 0.011605 1.237218 0.010639 1.255788 0.007420 1.335053

12 0.010485 1.238386 0.009527 1.257256 0.006388 1.338355

13 0.009463 1.239701 0.008518 1.258910 0.005479 1.342115

14 0.008528 1.241171 0.007603 1.260764 0.004678 1.346375

15 0.007674 1.242804 0.006772 1.262829 0.003974 1.351179

16 0.006893 1.244612 0.006017 1.265119 0.003355 1.356584

17 0.006178 1.246604 0.005331 1.267650 0.002812 1.362651

18 0.005524 1.248793 0.004709 1.270440 0.002338 1.369454

19 0.004925 1.251192 0.004145 1.273509 0.001926 1.377078
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for the initial choice of the volatility curve as
x��V1�; y��V1�; z�0�V1�; y��0 �V1�. The in¯uence of
the passage from the already applied volatility
curve V1 to the alternative volatility curve V2 can
be studied by the contamination technique; we refer
to Section 2.1 and to earlier theoretical papers
(e.g., Dupa�cov�a, 1996), and ®nancial applications
(see Dupa�cov�a et al., 1997a,b, 1998) for a detailed
explanation of the method. The directional deriv-
ative of the optimal value function computed for
scenarios rs�V1�; s � 1; . . . ; S in the direction of
rs�V2� ÿ rs�V1� equals

u0�0�� �
X

s

psU WT0
rs�V2�; x��V1�; y��V1�;
ÿÿ

z�0�V1�; y��0 �V1�
��ÿ u�V1�; �21�

if the optimal solutions are unique; in the opposite
case (21) is a lower bound for the directional de-
rivative.

The change of input in a speci®ed direction can
be also interpreted as a passage to stochastic
program (2)±(7) based on a convex mixture of
scenarios coming from the two scenario beds with
coe�cients 1ÿ k and k, or equivalently, as a pas-

sage to stochastic program (2), (3) and (12) based
on the pooled sample of 2S scenarios
rs�V1�; rs�V2�; s � 1; . . . ; S with probabilities
�1ÿ k�ps; kps; k 2 �0; 1�. The objective function
(12) depends linearly on the parameter k, its op-
timal value u�k� is convex in k and di�erentiable at
k � 0�. Hence the bounds

�1ÿ k�u�V1� � ku�V2�P u�k�
P u�V1� � ku0�0�� 8k 2 �0; 1�;

which quantify the sensitivity of the optimal value
on changes in the initial volatility curve. For sen-
sitivity purposes, one chooses small values of k
whereas post-optimality with respect to scenarios
rs�V2�; s � 1; . . . ; S based on another volatility
curve might correspond to k � 0:5.

4.3. Re®nement of scenarios

Given a scenario s, the fair prices P s
jt depend on

random and nonrandom errors of the input ob-
tained from market data and on other errors due
to implementation and essence of the applied nu-

Table 2

Lattice parameters for various volatility curves

Time Volatility of lg y Implied volatility Averaged volatility

rl0 kl rl0 kl rl0 kl

0 0.028754 1.000000 0.028754 1.000000 0.028754 1.000000

1 0.024023 1.365638 0.024387 1.330074 0.024205 1.347740

2 0.020588 1.353971 0.021176 1.320724 0.020880 1.337243

3 0.017732 1.349114 0.018532 1.314332 0.018129 1.331608

4 0.015313 1.346372 0.016318 1.308736 0.015809 1.327408

5 0.013245 1.344693 0.014444 1.303537 0.013833 1.323963

6 0.011465 1.343746 0.012845 1.298726 0.012138 1.321016

7 0.009927 1.343344 0.011471 1.294151 0.010675 1.318466

8 0.008593 1.343440 0.010283 1.289817 0.009405 1.316285

9 0.007433 1.343959 0.009252 1.285704 0.008300 1.314389

10 0.006421 1.344915 0.008351 1.281795 0.007331 1.312808

11 0.005538 1.346266 0.007561 1.278077 0.006481 1.311510

12 0.004766 1.348054 0.006864 1.274538 0.005733 1.310441

13 0.003498 1.350286 0.006249 1.271168 0.005071 1.309706

14 0.002980 1.352931 0.005702 1.267956 0.004486 1.309162

15 0.002527 1.356094 0.005215 1.264894 0.003965 1.308937

16 0.002132 1.359770 0.004779 1.261972 0.003502 1.308984

17 0.001786 1.363915 0.004389 1.259183 0.003097 1.309206

18 0.001487 1.368718 0.004038 1.256519 0.002722 1.309810

19 0.004931 1.374090 0.003721 1.253973 0.002395 1.310579
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merical methods. We deal with the errors in the
input, hence, we assume that P s

jt � P s
jt�e;V� depend

on the random errors e in log-yields and on the
volatilities. By solving the model for one choice of
these parameters we omit other possibilities. To
hedge against a more rich set of possible evolu-
tions of the interest rates we can design scenarios
of the input parameters e coming from normal
distribution and V belonging for each t to an in-
terval by a suitable discretization. There are many
sophisticated ways to do it; we use a discretization
that has Q scenarios �eq;Vq�; q � 1; . . . ;Q of in-
puts for ®tting the binomial lattice. Hence there
are Q couples of base rates and lattice volatilities.
In conjunction with suitably assigned weights or
probabilities pq > 0;

P
q pq � 1 of these scenarios

and with the presumably ®xed sampling procedure
we have thus arrived at QS scenarios rqs of the
considered evolution of interest rates with com-
ponents rqs

t � rq
t0kq;it�s�

t (compare with (15)) for
t � 1; . . . ; T ÿ 1 and with probabilities pqps. For
each of them, scenario subproblem of the type (8)±

(11) provides the maximal value
WT0
�rqs; x; y; z0; y�0 � and the full program (2)±(7)

reads

maximize
XQ

q�1

XS

s�1

pqpsU�WT0
�rqs; x; y; z0; y�0 ��

subject to nonnegativity constraints and subject to
(2) and (3).

The main stumbling block of this procedure is
to obtain an adequate and numerically manage-
able scenario representation of the underlying
stochastic program.

5. Selected numerical results

This section provides selected numerical results
related with the simulation experiment (i) and (ii)
described in Section 4.1.

To simulate the behavior of a value preserving
portfolio of ®xed income securities on the Italian

Fig. 2. Lattice volatilities.
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bond market we use the model described by (2)±(7)
with the linear utility function and within the time
horizon of one year (T0 � 12).

The sample of bonds and all the information
come from a local bank. Similarly as in Bertocchi
et al. (1996b) and Dupa�cov�a et al. (1997a,b, 1998),
the portfolio is composed of cash (500 mil. Liras)
and of typical government bonds, paying semi-
annual coupons and covering two year forward till
29 year maturities (the so-called BTPs) as well as
puttable bonds (CTOs), paying semi-annual cou-
pons with the maturity of 8 years and a possible
exercise of the option in the fourth year or with the
maturity of 6 years and an exercise at the third
year (see Table 3). The quantities (Qt) of bonds
included in the initial portfolio are expressed in
lots of million items so that the nominal value of
the portfolio is 10,500 mil. Liras. The portfolio
and the initial term structure are related to 1
September 1994, the coupon yields and the re-
demption prices are after tax. The market value of
the portfolio was 10,466 mil. Liras.

To estimate the term structure of interest rates
we used the linearized model (17) of Bradley and
Crane (1972) applied to the yields obtained by the
market quotation of the BTPs on the relevant day.
Volatilities of log-yields were set equal to the
standard deviations of the normal distribution in
(19) (see Dupa�cov�a et al., 1997a,b) for a detailed
discussion.

In this application, liabilities are not consid-
ered, liquidity can be obtained from the interbank
market at a rate greater than that one at which
surplus can be always reinvested. The additive
transaction costs are ®xed at �0.01, d1 � 0:0005
and d2 � 0:0016.

Various beds of scenarios were considered. All
of them were based on the data from the Italian
bond market and were sampled from the ®tted
Black±Derman±Toy binomial lattice. Among
others, they included scenario beds selected ac-
cording to the simpli®ed version of the nonrandom
sampling strategy by Zenios and Shtilman (1993)
with L � 3, 4, 5, 6, as described in Dupa�cov�a and
Bertocchi (1996), Bertocchi et al. (1996a,b) and
Bertocchi et al. (1998).

The parameters of the binomial lattice were
computed using the forward Bjerksund and
Stensland (1996) procedure with a monthly dis-
cretization along 5 years. After 5 years the interest
rates have been kept ®xed. This produces scenarios
that can be coded by 260 binary fractions uni-
formly distributed in �0; 1�.

One characteristic which is common to all ex-
periments is that all perturbations to the initial
yield curve are maintained in a small range. More
precisely, the error vector e is constructed to sat-
isfy the property that its components belong to a
normal distribution with zero mean and standard
deviation equal to h10ÿ2r�1� Q2�t��1=2

, where h is
in the range �0; 1�. This was necessary to guarantee
that the numerical method used to ®t the Black±
Derman±Toy lattice gave reasonable interest rates
when applied to the perturbed yield curves. This
observation quanti®es partly the meaning of
``small perturbations'' of the data.

We shall report only one of the many simula-
tion experiments related with the ®rst part of the
simulation study suggested in Section 4.1. The
number of simulations of vectors e has been ®xed
to 100 and a particular bed of eight scenarios was
used to represent the random evolution of interest

Table 3

Initial portfolio composition

Bonds Qt Coupon Payment dates Exercise Redemp. Maturity

BTP36658 10 3.9375 1 April and 1 October 100.187 1 October 1996

BTP36631 20 5.0312 1 March and 1 September 99.531 1 March 1998

BTP12687 15 5.2500 1 January and 1 July 99.231 1 January 02

BTP36693 10 3.7187 1 August and 1 February 99.387 1 August 04

BTP36665 5 3.9375 1 May and 1 November 99.218 1 November 23

CTO13212 20 5.2500 20 January and 20 July 20 January 1995 100.000 20 January 1998

CTO36608 20 5.2500 19 May and 19 Novem-

ber

19 May 1995 99.950 19 May 1998
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rates. The choice of scenarios aimed at a repre-
sentative coverage of the lattice up to the planning
horizon T0 and then to proceed with alternating
up±down movements. For results of the complete
simulation study and for extensions (see Bertocchi
et al., 1998). The obtained unperturbed optimal
value of the stochastic program was 11,499, the
optimal ®rst-stage solution kept BTP12687 and
sold all other bonds to use the obtained cash plus
the initial one for purchasing the long bond
BTP36665. This is a consequence of a comparably
low initial market price of this long bond.

The simulation experiment provides a survey
on how the considered bonds are distributed with
respect to the strategies of selling, holding and
buying for slightly perturbed yield curves (see Fig.
3). Similarly as for the unperturbed input, the long
bond is dominant for the most of the perturbed
cases.

The average value of the optimal values
uk; k � 1; . . . ; 100, for the perturbed data was
13,041 with the standard deviation of 2479, me-
dian 11,591, minimal value 11,462 and maximal
value 22,850. The average of expected values of the
Buy and Hold strategy, computed again for the
same 100 simulations of the particular choice of

eight scenarios, was 11,389 with the standard de-
viation of 265, median 11,389, minimal value
10,867 and maximal value 12,230. Comparing the
two descriptive statistics results, it is clear that the
empirical distribution of the stochastic program-
ming optimal values is shifted to the higher func-
tion values, and is nonsymmetrical and provides
possibilities of rather large values. More details
can be found in Bertocchi et al. (1998).
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