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Abstract

When solving a decision problem under uncertainty via stochastic programming it is essential to choose or to build a

suitable stochastic programming model taking into account the nature of the real-life problem, character of input data,

availability of software and computer technology. Besides a brief review of history and achievements of stochastic

programming, selected modeling issues concerning applications of multistage stochastic programs with recourse (the

choice of the horizon, stages, methods for generating scenario trees, etc.) will be discussed. � 2002 Published by

Elsevier Science B.V.
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1. History, achievements and problems to be solved

Forty-five years ago, stochastic programming was set up independently by Beale [2], Dantzig [13],
Charnes and Cooper [10] and others who observed that for many linear programs to be solved, the values of
the presumably known coefficients were not available. They suggested to replace the deterministic view by a
stochastic one assuming that these unknown coefficients or parameters are random and their probability
distribution P is known and independent of the decision variables.
The prototype stochastic program (we focus on in the sequel) aims at the selection of the ‘‘best possible’’

decision which fulfills given ‘‘hard’’ constraints, say x 2 X, accepting that the outcome of this decision is
influenced by the realization of a random event x. The realization of x is not known at the time of decision,
however, to get the decision one uses the knowledge of the probability distribution P of x. The random
outcome of a decision x 2 X is quantified as f0ðx;xÞ. If the set of possible realizations of x is finite, say
fx1; . . . ;xSg, methods of multiobjective programming suggest to choose a solution efficient with respect to
the objective functions f0ð�;xsÞ; s ¼ 1; . . . ; S. Such efficient solutions can be obtained, e.g., by minimiza-
tion (or maximization) of a weighted sum of f0ðx;xsÞ; s ¼ 1; . . . ; S. In our stochastic setting, the weights
equal the known probabilities ps of the atoms or scenarios xs of the probability distribution P and the
problem to be solved is
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min
x2v

XS

s¼1
psf0ðx;xsÞ:

Relaxation of hard constraints by the requirement that the constraints are fulfilled with a prescribed
probability provides stochastic programs with probabilistic or chance constraints.
While simplifications cannot be avoided, multimodeling can help to discover model misspecifications.

Complete knowledge of the underlying probability distribution cannot be expected and, in addition, ap-
proximations are needed to get numerically tractable problems. At the same time, optimal solutions of the
approximate stochastic program should not be used without any further analysis in the place of the sought
solution of the ‘‘true’’ problem.
The results of theoretical analysis and software development for various types of stochastic program-

ming models were influenced and supported by developments in optimization, probability and statistics
and in computer technologies, with the progress recorded step by step in textbooks and monographs
[3,24,37,38,46], in surveys, e.g. [49], in special conference volumes, e.g. [14], published dissertations and in
numerous focused issues of journals, see the preface of [50] for an extensive list of references. In the 1980s,
a special care was devoted to software development and has resulted in the IIASA volume [25], in a
recommended input format [5], in several monographs, e.g. [34,35,41], software packages and test bat-
teries.
The first applications appeared already in the 1950s, e.g., [11,27]. They were based on simple types of

stochastic programming models such as models with individual probabilistic constraints and stochastic
linear programs with simple recourse. Moreover, special assumptions about the probability distribution P
were exploited.
From the modeling point of view, stochastic vehicle routing, stochastic networks and stochastic facility

locations problems have been mostly treated as a natural extension of the stochastic transportation
problem with simple recourse, whereas individual probabilistic constraints have appeared in the context of
the stochastic nutrition model and in water resources management models.
The significant progress in the 1970s [45] facilitated application of joint probabilistic constraints. An

impressive early collection of case studies related to their real-life applications is [47]; it reflects the pre-
vailing interest in applications to water resources problems at that time.
Another important extension, to multistage stochastic programs, has aimed at a more realistic

treatment of the dynamic or sequential structure of real-life decision problems. Several essential con-
tributions in this direction have appeared already in [14,47,51]. Sophisticated approaches to portfolio
management from that time, e.g. [6], have become the cornerstone of the contemporary financial ap-
plications and have contributed also to modeling and software development for multistage stochastic
programs.
At present, the most popular seem to be financial applications of stochastic programming. The list of

further favorable application areas contains for instance planning and allocation of resources (including
water), energy production and transmission, production planning and optimization of technological pro-
cesses, logistics problems (including aircraft allocation and yield management), and telecommunications.
To summarize the achievements

• There are standardized types of stochastic programming models (e.g., two-stage and multistage stochastic
programs with recourse, models with individual and joint probabilistic constraints, integer stochastic
programs) with links to statistics and probability, to parametric and multiobjective programming, to sto-
chastic dynamic programming and stochastic control with relevant software systems available or in pro-
gress.

• There exist successful large-scale real-life applications. It became clear that their success is conditioned by
a close collaboration with the users and that one can benefit from team work. Areas of further prospec-
tive applications have been delineated.
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• Also the tradition of the triennial International Conferences on Stochastic Programming and numerous
workshops, existence of focused groups, such as the Committee of Stochastic Programming (COSP) es-
tablished in 1981 within the Mathematical Programming Society, or the WG 7.7 of IFIP, the periodically
updated stochastic programming bibliography [48] and the stochastic programming electronic preprint
series (SPEPS) belong among the evident achievements of the field.

The present boom of large-scale real-life applications has brought new challenging questions. An im-
portant task is an adequate reflection of the dynamic aspects, including further development of tractable
numerical approaches. Additional problems are related with the fact that the probability distribution P is
rarely known completely and/or that it has to be approximated for reasons of numerical tractability so that
one mostly solves an approximate stochastic program instead of the underlying true decision problem. The
task is to generate the required input, i.e., to approximate P bearing in mind the required type of the
problem; see e.g. [23]. Moreover, without additional analysis, the obtained output (the optimal value and
optimal solutions of the approximate stochastic program) should not be used to replace the sought solution
of the true problem; see [20,21] for discussion of suitable output analysis methods. These methods have to be
tailored to the structure of the problem and they should also reflect the source, character and precision of
the input data.
As in current software systems, the methods of output analysis address at present mainly the two-stage

(multiperiod) stochastic programs. The reason is that the structure of multistage problems is much more
involved and one cannot rely on intuitive straightforward generalizations. At the same time validation
experiments, e.g. [52], provide an evidence that even three-stage stochastic programs may outperform
significantly the existing static models. Hence, an extensive all-round research in multistage stochastic
programming is an important complex task of the day.

2. Multistage stochastic programs

In the general T-stage stochastic program we think of a stochastic data process

x ¼ ðx1; . . . ;xT�1Þ or x ¼ ðx1; . . . ;xT Þ
whose realizations are (multidimensional) data trajectories and of a vector decision process

x ¼ ðx1; . . . ; xT Þ;
a measurable function of x. The sequence of decisions and observations is

x1;x1; x2ðx1;x1Þ;x2; . . . ;xT ðx1;x1; . . . ;xT�1Þ: ð1Þ
Realizations of xT , i.e., those behind the horizon, do not affect the decision process, they may contribute to
the overall costs. The decision process may be affected by the probability distribution of xT . The decision
process is nonanticipative in the sense that a sequence of decisions is built along each of the considered data
trajectories in such a way that decisions based on the same part of trajectory, on the same history, are
identical. It means that decisions taken at any stage of the process do not depend on future realizations of
random parameters or on future decisions, whereas it is the past information and the knowledge of the
probabilistic specification ðX;F; P Þ of the process x which are exploited. The dependence of the decisions
solely on the history and on the probability specification can be mathematically expressed as follows:
denoteFt�1 	 F the r-field generated by the observations of xt�1;� :¼ ðx1; . . . ;xt�1Þ; i.e., of the part of the
stochastic data process that precedes stage t. The dependence of the tth stage decision xt only on these past
observations means that xt isFt�1-adapted or, in other words, that xt is measurable with respect toFt�1: In
each of the stages, the decision is limited by constraints that may depend on the previous decisions and
observations.
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The first-stage decisions consist of all decisions that have to be selected before further information is
revealed whereas the second-stage decisions are allowed to adapt to this information, etc. Stages do not
necessarily refer to time periods, they correspond to steps in the decision process.
With reference to the survey paper [18] and references therein, we shall present here only two formu-

lations frequently used for the multistage stochastic linear programs with recourse.
In the first formulation, the nested structure of the problems related to individual stages resembles the

backward recursion common in stochastic dynamic programming:

minimize c>1 x1 þ Ex1 u1ðx1;x1Þf g
subject to A1x1 ¼ b1;

l16 x16 u1;

ð2Þ

where the functions ut�1; t ¼ 2; . . . ; T ; are defined recursively as

ut�1ðxt�1;xt�1Þ ¼ inf
xt

ctðxt�1Þ>xt

�
þ Ext jxt�1 utðxt;xtÞf g

�
subject to Btðxt�1Þxt�1 þ Atðxt�1Þxt ¼ btðxt�1Þ; a:s:;

l tðxt�1Þ6xt 6 utðxt�1Þ

ð3Þ

and uT  0 or it is an explicitly given function of x1; . . . ; xT ;x1; . . . ;xT if contribution of xT is taken into
account. Constraints involving random parameters hold almost surely.
For simplicity, we denote by xt�1 the random vector that generates the vectors of coefficients bt; ct; l t; ut

and matrices At;Bt in the tth stage decision problem (3), t ¼ 2; . . . ; T . We assume that At are ðmt; ntÞ ma-
trices and that the remaining vectors and matrices are of consistent dimensions. The Markov structure of
constraints and of the objective in (3) is not essential. We suppose, however, that the corresponding ex-
pectations E are well defined. For the first stage, known values of all elements of b1; c1;A1; l1; u1 are as-
sumed. The main decision variable is x1 that corresponds to the first stage. It is relatively easy to prove that,
under the mentioned assumptions, the first-stage problem (2) is a convex program.
In spite of the formal similarity with the stochastic dynamic programming problems, this form does not

enter the numerical procedures for solving stochastic programs. The main interest lies in the first-stage
decisions. Even if it is often possible to characterize the decision rules, it is not necessary to design a full
backward recursion as in dynamic programming and, due to large dimensionality of stochastic pro-
gramming problems, such procedure would be hardly tractable. The dynamic decision process is ap-
proximated by optimal solutions obtained by repeated solution of similar stochastic programs which are
rolled forward in time, i.e., by solving the problem repeatedly starting always with the new state of the
system attained by application of the obtained optimal first-stage decision and using updated and/or
shifted data trajectories.
For purposes of applications one mostly approximates the true probability distribution P of x by a

discrete probability distribution concentrated on a finite number of atoms x1; . . . ;xS . Accordingly, the
supports of conditional probability distributions of xt conditioned by past realizations of x1; . . .xt�1 and
the supports of marginal probability distributions of the components xt 8t are finite sets. The associated
conditional probabilities are called the arc probabilities. A special common arrangement of the data
process is the scenario tree which is based on the requirement that there is a one-to-one correspondence
between the history xt�1;� ¼ ðx1; . . . ;xt�1Þ and one of the nodes (states of the system) at the stage t. The
corresponding ‘‘arborescent’’ form of the T-stage scenario-based stochastic linear program with recourse
reads:

minimize c>1 x1 þ
XK2
k2¼2

pk2c
>
k2
xk2 þ

XK3
k3¼K2þ1

pk3c
>
k3
xk3 þ � � � þ

XKT

kT¼KT�1þ1
pkT c

>
kT
xkT ð4Þ
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subject to A1x1 ¼ b1;

Bk2x1 þ Ak2xk2 ¼ bk2 ; k2 ¼ 2; . . . ;K2;

Bk3xaðk3Þ þAk3xk3 ¼ bk3 ; k3 ¼ K2 þ 1; . . . ;K3;

. .
. . .

. ..
.

BkT xaðkT Þ þAkT xkT ¼ bkT ; kT ¼ KT�1 þ 1; . . . ;KT :

ð5Þ

lkt 6 xkt 6 ukt ; kt ¼ Kt�1 þ 1; . . . ;Kt; t ¼ 1; . . . ; T :

We denote here by aðktÞ the immediate ancestor of kt; so that (with K1 ¼ 1) aðk2Þ ¼ 1; k2 ¼ 2; . . . ;K2. The
problem is based on the used scenarios, i.e., on the S ¼ KT � KT�1 sequences of possible realizations
ðckt ;Akt ;Bkt ; bkt ; lkt ; ukt Þ of coefficients in the objective function (4), in recourse matrices, transition matrices
and right-hand sides in the constraints for all stages, and on path probabilities pkt > 0 8kt,PKt

kt¼Kt�1þ1 pkt ¼ 1; t ¼ 2; . . . ; T ; of partial sequences of these coefficients that identify the discrete distri-
bution P. The path probabilities are obtained by multiplication of the (conditional) arc probabilities of the
corresponding sequences of realizations. The probabilities ps of the individual scenarios xs are equal to path
probabilities pKt ; kt ¼ KT�1 þ 1; . . . ;KT .
The nonanticipativity constraints are included in an implicit form. Decomposition of (4) and (5) along

scenarios is possible but it requires that the nonanticipativity constraints are spelled out in an explicit way.
The size of the linear program (4) and (5) can be very large and usefulness of special numerical tech-

niques is obvious. Still, in real-life applications, it is the modeling part of the problem and a meaningful
generation of scenarios which have become the most demanding task.
Besides the formulation of goals and constraints and identification of the driving random process x,

building a scenario-based multistage stochastic program requires specification of the horizon, stages and
generation of the input in the form of scenario tree.

2.1. An illustrative example

The flower-girl problem introduced in [7] is a simple multistage stochastic program. The flower girl sells
roses at c and has to buy them at p before she starts selling. Flowers left over at the end of the day can be
stored and sold the next day, when she starts selling the old roses. The roses cannot be carried over more
than one additional day at the end of which they are thrown away. The demand is random, xt denotes the
demand on the tth day. The flower girl wants to maximize her expected profit.
The horizon is related to the number of days for which the flower girl continues selling roses without any

break (and also to the fact that our formulation treats only one-period carryover). Assume first that the
flower girl sells roses only during the weekend, orders the amount x1 on Friday evening, observes the
demand x1 on Saturday, stores the unsold roses (without any additional cost) and, possibly, buys x2ðx1Þ
new roses. Denote s1ðx1Þ the stock left for the subsequent day and z2ðx1;x2Þ the amount of unsold roses at
the end of the second day.
All decision variables are nonnegative and subject to constraints

x1 � s1ðx1Þ6x1;

x2ðx1Þ þ s1ðx1Þ � z2ðx1;x2Þ6x2:

If the demand x1;x2 is known in advance, the objective function is

ðc� pÞðx1 þ x2ðx1ÞÞ � cz2ðx1;x2Þ
and one of the optimal solutions is to buy x1 ¼ x1 and x2 ¼ x2 roses which gives the maximal profit of
ðc� pÞðx1 þ x2Þ. Consider now a scenario-based version of this three-stage problem. The scenario tree
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consists of K branches corresponding to the considered realizations xk
1; k ¼ 1; . . . ;K; of the demand on the

first day, their probabilities are pk; k ¼ 1; . . . ;K. Possible realizations of demand xkr
2 for the second day

may be conditional on xk
1. We denote Dðxk

1Þ the set of descendants of xk
1, and pkr their (conditional)

probabilities. The problem is

maximize ðc� pÞx1 þ
XK
k¼1

pk ðc
"

� pÞx2ðxk
1Þ � c

X
r2Dðxk

1
Þ

pkrz2ðxk
1;x

kr
2 Þ

#

subject to: x1 � s1ðxk
1Þ6xk

1; k ¼ 1; . . . ;K;

x2ðxk
1Þ þ s1ðxk

1Þ � z2ðxk
1;x

kr
2 Þ6xkr

2 ; r 2 Dðxk
1Þ; k ¼ 1; . . . ;K;

and nonnegativity constraints. The total number S of scenarios ðxk
1;x

kr
2 Þ equals the number of all de-

scendants of xk
1; k ¼ 1; . . . ;K.

The generalization to ðT þ 1Þ-stage problem is obvious:

maximize ðc� pÞx1 þ E ðc
(

� pÞ
XT
t¼2

xtðxt�1;�Þ � c
XT
t¼1

ztðxt�1;�;xtÞ
)

subject to: x1 þ s0 � s1ðx1Þ � z1ðx1Þ6x1;

xtðxt�1;�Þ þ st�1ðxt�1;�Þ � stðxt;�Þ � ztðxt�1;�;xtÞ6xt; t ¼ 2; . . . ; T ;

st�1ðxt�1;�Þ � ztðxt�1;�;xtÞ6xt; t ¼ 1; . . . ; T ;

with sT ðxÞ  0 and nonnegativity of all variables. In case the initial supply s0 ¼ 0, one gets z1ðx1Þ  0. The
number of stages equals one plus the number of days for which the flower girl sells roses without any break.
The scenario-based formulation of the T-stage problem can be written in the arborescent form or in the
scenario splitted form with explicit nonanticipativity constraints.
Imagine now that the flower girl wants to earn as much as possible during the two months of her high

school vacations; such a 63-stage problem may be solvable thanks to its simple form. Still some other
possibilities should be examined. Her problem may be rolled forward in time with a substantially shorter
horizon, say, with T ¼ 8 which covers a whole week. This means that the flower girl decides as if she plans
to maximize her profit over each one-week period and solves the problem every day with a known (possibly
nonzero) initial supply of roses and with a new scenario tree spanning over the next eight days. Another
possibility is the aggregation of stages. With a long horizon and random parameters only on the right-hand
side of the constraints, one may apply the idea of [32] designed for problems with an infinite horizon: one
chooses a tractable horizon T and adds one stage which takes into account the remaining stages tP T .
In a majority of papers, the horizon and stages are declared as given. In practice, various situations can

be distinguished:
• Both the horizon and stages are determined ad hoc, often for purposes of testing numerical approaches
and/or software both with or without rolling horizon simulations.

• Both the horizon and stages are determined, e.g., by the nature of the real-life technological process [44];
another example is the flower-girl problem.

• The horizon is tied to a fixed date, e.g., to the end of the fiscal or hydrological year, to a date related with
the annual Board of Directors’ meeting, or to the end date of a screening study. Stages are sometimes
dictated by the nature of the solved problem, e.g., by the dates of maturity of bonds [29] or expiration
dates of options or by periodic (quarterly, annual, etc.) management review meetings. In other cases, they
are obtained by application of heuristic rules and/or experience, taking into account limitations due to
numerical tractability. We refer to the discussion in [43] for financial applications, to [36,42] for sched-
uling hydroelectric generation, to [31] for harvest optimization with horizon of 120 years and to [4] for an
investment planning study over a horizon of more than 100 years. Rolling forward after the T-stage
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problem has been solved leads to a subsequent ðT � 1Þ-stage stochastic program with a reduced number
of stages or possibly to another T-stage problem with a different topology of stages, cf. [36].

• The horizon is connected with a time interval of a fixed (possibly even infinite) length, given for instance
by the periodicity of the underlying random process, and the number of stages is chosen as a function of
the available computing facilities. Rolling forward means here the repeated solution of a T-stage problem
with the same structure of stages, with the initial state of the system determined by the applied first-stage
decision and by the observed value of x1, and using the process x shifted forward in time.

For example, [6] uses three one-year periods for the three-year planning horizon of the bank and rolling
forward means that each year the bank is planning as if it wants to optimize its outcome at the end of the
next three years. For production planning problems, [26] suggests a horizon of 12–18 months divided into
three stages. Energy generation models, such as [33], are usually built for one-week horizon subdivided into
2–12 stages. Short term hydropower system control may use a horizon of 3 hours subdivided more or less
arbitrarily into stages [35], whereas the ‘‘long’’ term planning can be related to a weekend. In the last case,
rolling forward will have the same meaning as for the fixed horizon problems. Infinite horizon models are
approximated by those with a finite horizon; see [32] whose suggestion – to aggregate the future in a
stationary stage – was applied for example in [8].
There exist further specific features of the solved problems. For instance, the problem can be solved just

once (to retire the debt by a given deadline as much as possible in [15]) or the problem and its solution
persist in the future, with new horizons, taking always into account just the final state of the system at the
previous termination date, i.e., at the previous horizon. To guarantee the possibility of such continuation,
the models are usually extended for additional constraints and/or terms in the objective function to reduce
the end effects, with or without reference to an additional, auxiliary stage.
For a chosen horizon, the crucial step is to relate the time instants and stages; this is a common problem

both in applications of multistage stochastic programming models and in stochastic dynamic programming
with discrete time. Some recommendations are common for financial applications [8,43]: Accept unequal
lengths of time periods between subsequent stages, starting with a short first period. Together with repeated
rolling of the model over time, this may replace well the full dynamics of the decision process even for
problems with a few stages. Another, general suggestion [32] is to break the problem with a long (possibly
infinite) horizon into three phases: To use the scenario tree structure for 16 t6 T , to design just one de-
scendant from each node for T þ 16 t6 s (i.e., the horse-tail structure) and to aggregate the rest of the
process into one additional stationary stage. Moreover, in reality, the position of stages can be uncertain,
random or scenario dependent – an interesting open problem. The main limitations of the number of stages
are due to numerical tractability.
The basic information on modeling horizon and stages in selected financial applications is contained in

Table 1; in the last column, the acronym R1 is used for rolling forward with a fixed horizon, R2 with a
shorter horizon, YFF for end effect treatment according to [32].
There are only a few papers which compare the optimal first-stage decisions in dependence on the

number of stages, e.g., [16,31,40].
Starting with a given initial structure of the problem, one generates the input accordingly. This includes

designing the branching scheme of the scenario tree, cf. [23] and references therein. Evidently, one has to
accept compromises between the size of the resulting problem and the desired precision of the results. A
detailed analysis of the origin and of the initial structure of the solved problem may be exploited to ag-
gregate the stages, may help to prune the tree or to extend it for other out-of-sample scenarios or branches.
It is even possible to test the influence of including additional stages, e.g., using the contamination ap-
proach; see for instance [19,20,22] and further papers in [53].
To avoid the necessity of generating a scenario tree, one may try to aggregate stages and to reduce the

solved problem into a two-stage model [40], or to design a battery of sequences of dynamic decisions and

J. Dupa�ccov�aa / European Journal of Operational Research 140 (2002) 281–290 287



test them along data trajectories. Also the space of feasible solutions may be reduced by prescribing specific
rule-based policies; a typical example is the fixed-mix policy in portfolio management, cf. [28,30,39].

3. Conclusions

There are many excellent recent papers on successful real-life applications of stochastic programming; it
is impossible to list them all. We have referred to [53] for a selection of financial problems and there are
ongoing projects of special collections devoted to nonfinancial applications. Nevertheless, these applica-
tions are rather demanding and there are still many open questions. Those discussed in this paper dealt with
selected issues related with building multistage stochastic programming models with recourse. Evidently,
before formulating further guidelines for specific application areas, more experience on the impact of the
chosen horizon and/or of its discretization into stages on the results has to be collected using simulations,
comparisons and output validation. Stochastic programs with probabilistic constraints or integer stochastic
programs were not discussed here; their applications bring along further model and problem specific tasks.
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