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Abstract We deal with risk-averse multistage stochastic programs with coherent risk
measures such as multiperiod extensions of conditional value at risk or polyhedral
risk measures. Their basic properties are discussed and applied to scenario based in-
put data. Using the contamination technique we quantify the influence of changes in
the structure of the scenario based approximation to the optimal value of the prob-
lem. Stochastic Dual Dynamic Programming algorithm is used to provide illustrative
numerical comparisons for different choices of risk measures and changes of input
data for a simple multistage risk-averse stock allocation problem with scenario trees
based on log-normal distribution of the asset returns.
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1 Multistage stochastic program

In a common T stage stochastic program one thinks of a stochastic data process ξ =
(ξ 1,ξ 2, . . . ,ξ T ) and a decision process x = (x1, . . . ,xT ). The components ξ 2, . . . ,ξ T
of ξ and the decisions x2, . . . ,xT are assumed to be random vectors, not necessarily
of the same dimension, defined on some probability space (Ω ,F,P), while ξ 1 is de-
terministic and x1 is a nonrandom vector-valued variable. The sequence of decisions
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and observations is

x1,ξ 2,x2(x1,ξ 2), . . . ,xT (xT−1,ξ 2, . . . ,ξ T ). (1)

The decision process is nonanticipative which means that decisions taken at any
stage of the process neither depend on future realizations of stochastic data nor on
future decisions, whereas the past information as well as the knowledge of the proba-
bility distribution of the data process are exploited. This can be expressed as follows:
Let Ft ⊆ F be the σ -field generated by the projection Πtξ = ξ [t] := (ξ 1, . . . ,ξ t)

of the stochastic data process ξ that includes data up to stage t, F1 = { /0,Ω} is the
trivial σ -field. The dependence of the t-th stage decision xt only on the available in-
formation means that xt is Ft -measurable. Similarly we let Πtx = x[t] := (x1, . . . ,xt)
denote the sequence of decisions at stages 1, . . . , t, P the probability distribution of ξ ,
Pt denotes the marginal probability distribution of ξ t , and Pt

[
·|ξ [t−1]

]
, t = 2, , . . . ,T,

its conditional probability distribution.
The first stage decisions consist of all decisions that have to be selected before

further information is revealed whereas the second stage decisions are allowed to
adapt to this information, etc. In each of the stages, the decisions are limited by con-
straints that may depend only on the previous decisions and observations. Stages do
not necessarily refer to time periods; rather they correspond to steps in the deci-
sion process. The outcome of the decision process (1) is f (x,ξ ) and one wants to
find a nonanticipative feasible decision x(ξ ) or policy that minimizes the expectation
EP [ f (x,ξ )] subject to prescribed constraints; it will be denoted x∗. Nonanticipativ-
ity means that decision xt at stage t depends only on realization of ξ [t] and also on
previous decisions.

An example is the nested form of the multistage stochastic linear program (MSLP)
which resembles the backward recursion of stochastic dynamic programming with an
additive overall cost function:

min
x1∈X1

c>1 x1 +EP [Q2(x1,ξ 2)] with X1 := {x1|A1x1 = b1, x1 ≥ 0} , (2)

and Qt(xt−1,ξ [t]), t = 2, . . . ,T , defined recursively as

Qt(xt−1,ξ [t]) = min
xt

ct(ξ [t−1])
>xt +EPt+1[·|ξ [t]]

[
Qt+1(xt ,ξ [t+1])

]
(3)

subject to constraints xt ∈ Xt(xt−1,ξ [t]), e.g.

At(ξ [t−1])xt = bt(ξ [t−1])−Bt(ξ [t−1])xt−1, xt ≥ 0 a.s.,

and QT+1(·) is explicitly given, e.g. QT+1(·)≡ 0.
Matrices At are of a fixed (mt ,nt) type and the remaining vectors and matrices are

of consistent dimensions. For the first stage, known values of all elements of c1,A1,b1
are assumed and the main decision variable is x1 that corresponds to the first stage.
The first stage problem (2) has the form of the expectation-type stochastic program
with the set of feasible decisions independent of P.
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One can rewrite (2)–(3) briefly as

min
x1

c>1 x1 +E
[

min
x2

c2(ξ [1])
>x2 +E

[
· · ·+E

[
min

xT
cT (ξ [T−1])

>xT

]]]
(4)

with corresponding conditional expectations as in (3) and subject to linear constraints
xt ∈ Xt(xt−1,ξ [t]), t = 1, . . . ,T, on decision variables. Constraints involving random
elements hold almost surely and for simplicity we assume that all infima are at-
tained, which is related to the relatively complete recourse, and that all conditional
expectations exist. In the case of stagewise independence the conditional probabil-
ity distributions boil down to marginal distributions Pt of ξ t . Notice that the basic
nonanticipativity condition is clearly spelled out.

In the risk neutral convex case, one assumes e.g. that f (x,ξ ) is an inf-compact
convex normal integrand whose finite expectation exists and that the set of feasi-
ble decisions X(ξ ) is closed, convex-valued, nonanticipative and uniformly bounded
mapping, i.e. the assumption of relatively complete recourse. The optimal decisions
can be obtained by application of dynamic programming technique, for example, by
telescoping the T stage problem into t stage ones as done in Rockafellar and Wets
[30]. The following proposition follows from Theorem 1 of [30] where it was for-
mulated for extended real integrand f (x,ξ ). (Here we assume explicitly formulated
nonanticipative constraint mappings as well as existence of expectations and of opti-
mal decisions.)

Theorem 1 Consider the T stage stochastic program

minimize EP [ f (x,ξ )] (5)

subject to constraints xt ∈ Xt(x[t−1],ξ [t]), t = 1, . . . ,T.
Put fT (xT ,x[T−1],ξ [T ]) := f (x,ξ ) and for t = 1, . . . ,T − 1 define the t-th stage inte-
grands

ft(xt ,x[t−1],ξ [t]) = EP

[
min
x[τ]
{ fτ(xτ ,x[τ−1],ξ [τ]) : Πtξ [τ] = ξ [t],Πtx[τ] = x[t]}

]
for t ≤ τ ≤ T and consider the t stage problems

minimize EP

[
ft(xt ,x[t−1],ξ [t])

]
(6)

subject to constraints xt ∈ Xt(x[t−1],ξ [t]). Then all programs (6) are solvable and the
following property holds true:

If x∗ is an optimal solution of (5) then its projection Πtx∗ solves (6) and if x∗[t]
solves (6), it can be extended to an optimal solution x∗ of (5) such that Πtx∗ = x∗[t].

This theorem forms a bridge between multistage stochastic programs solved as a
sequence of rolling horizon stochastic programs with a reduced number of stages and
the stochastic dynamic programming methodology. For convex multistage expecta-
tion based stochastic programs it can be evidently linked with the concept of dynamic
or time consistency property introduced later on, e.g.
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TC1 [6] The sequence of dynamic optimization problems (6) is dynamically
consistent if the optimal strategies obtained when solving the original problem
remain optimal for all subsequent problems.

When the normal integrand f (x,ξ ) is separable with respect to stages, one can
design an alternative dynamic programming recursion such as in (2)–(3) or in Pen-
nanen and Perkkiö [24] for convex multistage stochastic programs; a result akin to
Theorem 1 can be found in [24].

In applications one mostly approximates the true probability distribution P of ξ

by a discrete probability distribution carried by a finite number of atoms (scenarios),
say, ξ

1, . . . ,ξ K . They are organized in a scenario tree and in principle, the optimal
policy can be obtained by solving a large deterministic program. See e.g. the recent
book [36] for details and more general cases. Every node of the tree is a root of
a scenario subtree which does not contain any branches of other subtrees. Hence,
the optimal solutions of a nodal subproblem do not reflect the future information
carried by branches of the full tree that, from the point of view of the relevant nodal
subproblem, cannot happen in the future. This observation is behind a modified time
consistency concept

TC2 [37] At each state of the system, optimality of a decision policy should
not involve states which cannot happen in the future.

Hence, under modest assumptions, optimal solutions of risk neutral scenario-
based multistage stochastic programs possess both of these time consistency prop-
erties, whereas there are still open questions concerning time consistency notions for
risk-averse multistage stochastic programs.

With reference to the book [26] and to Chapter 6 of [36], Section 2 opens briefly
the risk-averse extensions of multistage stochastic programming problems. In Section
3, selected properties of multiperiod risk measures are presented. Various multistage
stochastic linear programs with CVaR-type risk measures are given in Section 4. In
Section 5, an adaptation of Stochastic Dual Dynamic Programming algorithm is pro-
posed for their numerical solution. In this problem framework, the contamination
technique is elaborated in Section 6 to deal with changes of the reference probability
distribution P. This is illustrated in Section 7 by numerical examples dealing with
large-scale multistage portfolio optimization problems.

2 Risk-averse multistage stochastic programs

Maximization of expected gains or minimization of expected losses means to get
decisions that are optimal in average and possible risks are not reflected. This need
not be an acceptable goal. The present tendency is to spell out explicitly the concern
for risk monitoring and control. There are various types of risk and the choice of a
suitable risk definition depends on the context, on the decision maker’s attitude, etc.

To reflect risks in the stochastic programming formulation, it is necessary to quan-
tify it. Both in theoretical considerations and in applications, sensible properties of
risk measures are requested. A risk measure is a functional which assigns a real value
to the random outcome f (x,ξ ). Similarly as the risk neutral expected value criterion,
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risk measures ρ should not depend on individual realizations of ξ but they depend
on decisions and on probability distribution P. Moreover, they should also reflect the
filtration F1 ⊂ ·· · ⊂Ft · · · ⊆F.

Coherence of ρ (monotonicity, translation invariance, positive homogeneity and
subadditivity) cf. [2] is mostly expected. Risk measures Value at Risk (VaR), which
is not coherent in general, and the coherent Conditional Value at Risk (CVaR) are
examples of ρ . Monotonicity with respect to the pointwise partial ordering and sub-
additivity are evident requirements. Convexity allows to keep a relatively friendly
structure of the problem both for computational and theoretical purposes, polyhe-
dral property, cf. CVaR introduced in Rockafellar and Uryasev [29] or polyhedral
risk measures, cf. Eichhorn and Römisch [15], allow to rely on linear programming
techniques for scenario-based MSLP.

Whereas there exist many suggestions of risk measures for static stochastic pro-
grams, verified by numerical experiments and applications, see e.g. [22] and refer-
ences therein, for multistage problems the situation is much more involved. The first
idea is to replace the expectation EP [ f (x,ξ )] by a suitable risk measure ρ and to
keep all constraints including nonanticipativity. Assigning a risk measure ρ to the
final outcome f (x,ξ ) does not take into account the information structure given by
the filtration. It corresponds to monitoring risk only at the horizon which need not
be sufficient. To include risk monitoring in individual stages, one may relate the risk
measure to the partial outcomes f1(x1), ft(xt ,x[t−1],ξ [t]), t = 2, . . . ,T . Different risk
measures ρt can be applied in individual stages. As a result we may construct e.g.
objective function

min
x1

c>1 x1 +ρ2

(
min

x2
c2(ξ [1])

>x2 +ρ3

(
· · ·+ρT

(
min

xT
cT (ξ [T−1])

>xT

)))
(7)

and use it at the place of (4). It is important to agree on acceptable properties of
risk measures e.g. the multiperiod risk measures should be coherent. The full formu-
lation of the risk-averse stochastic program (7) has to include the nonanticipativity
constraints. Depending on the risk-averse problem and on the applied solution tech-
nique, a form of time consistency of optimal solutions is desirable.

Having in mind tractable numerical techniques such as Stochastic Dual Dynamic
Programming (SDDP) [25] applied to Sample Average Approximation (SAA) of the
underlying problem we shall focus on finite discrete probability distributions and
will study mainly multiperiod extensions of conditional value at risk and multiperiod
polyhedral risk measures. The next section comments on basic definitions.

3 Definitions

We will model the risk by representing the loss which could be incurred in stages
1, . . . ,T by random functions Z = (Z1, . . . ,ZT ) that will be defined on a suitable linear
space Z . The following definition, introduced in Artzner et al. [3], extends the notion
of coherent risk measures, introduced in Artzner et al. [2] and widely accepted in
static risk-averse optimization, to the multistage case.
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Definition 1 (Multiperiod risk measures)
A functional ρ on Z = ×T

t=1Lp (Ω ,Ft ,P) with p ∈ [1,∞] is called a multi-period
coherent risk measure if it satisfies the following:

1. Zt ≥ Z̃t a.s., t = 1, . . . ,T =⇒ ρ (Z1, . . . ,ZT )≥ ρ
(
Z̃1, . . . , Z̃T

)
(monotonicity);

2. for each r ∈R: ρ (Z1 + r, . . . ,ZT + r) = ρ (Z1, . . . ,ZT )+r (translation invariance);
3. ρ

(
µZ1 +(1−µ)Z̃1, . . . ,µZT +(1−µ)Z̃T

)
≤

≤ µρ (Z1, . . . ,ZT )+(1−µ)ρ
(
Z̃1, . . . , Z̃T

)
for µ ∈ [0,1] (convexity);

4. for µ ≥ 0 we have ρ (µZ1, . . . ,µZT ) = µρ (Z1, . . . ,ZT ) (positive homogeneity).

Two special classes of multiperiod risk measures have received a lot of attention,
polyhedral risk measures and conditional risk mappings. Polyhedral risk measures
are defined as the optimal value of a multistage stochastic program in the following
way, see Eichhorn and Römisch [15].

Definition 2 (Multiperiod polyhedral risk measures)
A risk measure ρ on×T

t=1Lp (Ω ,Ft ,P) with p ∈ [1,∞] is called multiperiod polyhe-
dral if there are kt ∈N, ct ∈Rkt , t = 1, . . . ,T , wt,τ ∈Rkt−τ , t = 1, . . . ,T , τ = 0, . . . , t−1,
a polyhedral set M1 ⊂ Rk1 , and polyhedral cones Mt ⊂ Rkt , t = 2, . . . ,T , such that

ρ (Z) = inf E

[
T

∑
t=1

c>t Yt

]
s.t. Yt ∈Lp (Ω ,Ft ,P) ∀t ∈ {1, . . . ,T}

Yt ∈Mt a.s. ∀t ∈ {1, . . . ,T}
t−1

∑
τ=0

w>t,τYt−τ = Zt a.s. ∀t ∈ {1, . . . ,T} .

(8)

When replacing the expectation of the total outcome of a multistage risk neutral SLP
by the multiperiod polyhedral risk measure it is possible to carry out the minimiza-
tion with respect to the original decision variable x and minimization in (8) simulta-
neously, see Proposition 4.1 in [15]. Moreover, the scenario form of (8) and that of
the combined problem is a linear program.

The class of conditional risk mappings resembles the conditional expectations in
(4). It is especially convenient for the construction of nested risk measures to obtain
the time consistency property. Let F ⊂F

′
be σ -fields of subsets of Ω and Z and

Z
′

be linear spaces of real-valued functions f (ω), ω ∈ Ω measurable with respect
to F and F

′
, respectively. Following Ruszcyński and Shapiro [33] we define:

Definition 3 (Conditional risk mappings)
We say that mapping ρ : Z

′ → Z is a conditional risk mapping if the following
properties hold:

1. Convexity. If α ∈ [0,1] and X ,Y ∈Z
′
, then

αρ (X)+(1−α)ρ (Y )� ρ (αX +(1−α)Y ) .

2. Monotonicity. If Y � X , then ρ (Y )� ρ (X) .
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3. Predictable Translation Equivariance. If Y ∈Z and X ∈Z
′
, then

ρ (X +Y ) = ρ (X)+Y.

The inequalities in 1. and 2. are understood component-wise, i.e., Y � X means that
Y (ω)≥ X(ω) for every ω ∈Ω .

For conditional risk mappings defined above we shall use notation ρ (·|F ) . Notice,
that Predictable Translation Equivariance is a natural generalization of translation
invariance from Definition 1. Using it, we can construct composite risk measures as
follows:

Consider conditional risk mappings ρ2, . . . ,ρT and a risk function ρ : Z1×·· ·×
ZT → R given by:

ρ (Z1, . . . ,ZT ) = Z1 +ρ2 (Z2 + · · ·ρT−1 (ZT−1 +ρT (ZT ))) .

Using Predictable Translation Equivariance we get

ρT−1 (ZT−1 +ρT (ZT )) = ρT−1 ◦ρT (ZT−1 +ZT ) .

By continuing this process we end up with a composite risk measure ρ̄ := ρ2◦· · ·◦ρT .
It holds

ρ̄(Z1 + · · ·+ZT ) = ρ (Z1, . . . ,ZT ) .

Using notation of Definition 3 we continue by introducing a concept of dynamic
or time consistent conditional risk mappings [20].

Definition 4 (Time consistent risk mappings)
A conditional risk mapping (ρt (·|Ft))t=1,...,T is called time consistent if for all 1 ≤
t1 ≤ t2 ≤ T and X ,Y ∈Lp (Ω ,F,P):

ρt2 (X |Ft2)≤ ρt2 (Y |Ft2) =⇒ ρt1 (X |Ft1)≤ ρt1 (Y |Ft1) .

There exist various other related consistency concepts for risk measures see e.g.
[31]; when demanded, they may limit substantially the choice of acceptable risk mea-
sures up to the risk-neutral case, see e.g. [40]. In comparison with the time consis-
tency concepts [TC1] and [TC2], which relate to the decisions, the Definition 4 de-
fines time consistency for the risk measure itself. In order to evaluate the properties
[TC1] and [TC2] we have to specify the subsequent optimization models for every
state of the system. Without additional assumptions about the model structure, we
cannot expect that time consistency of a risk measure automatically guarantees time
consistency of the model.

For scenario-based programs the time consistency property [TC1] holds true when-
ever it is possible to reformulate the risk-averse multistage stochastic problem into
the form of a classical risk neutral stochastic program. This is provided by the Theo-
rem 1. It should be noted that such reformulations usually require additional decision
variables and are therefore harder to solve than corresponding risk-neutral versions of
these models. Further discussion on the structure of risk averse multistage stochastic
programs can be found in articles [16], [17] and [18].
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4 Multistage stochastic programs with CVaR-type risk measures

We formulate a multistage stochastic linear program with CVaR risk measure in var-
ious versions. With the first version, nested CVaR, we follow the same manner as
Shapiro [38], largely using his notation. Secondly, we formulate a multistage stochas-
tic program with a multiperiod CVaR risk measure and with a sum of CVaR risk
measures following the notion of [26]. All models have random parameters in stages
t = 2, . . . ,T , e.g. ξ t =

(
ct(ξ [t−1]),At(ξ [t−1]),Bt(ξ [t−1]),bt(ξ [t−1])

)
in (3), which are

governed by a known conditional distribution. All models can be also formulated in a
more general convex form (which is solvable using the SDDP algorithm), but we have
chosen the linear versions for easier presentation of our results. For simplicity of no-
tation we will drop the (ξ [t−1]) arguments and denote the random parameters only by
ξ t = (ct ,At ,Bt ,bt). The parameters of the first stage, ξ 1 = (c1,A1,b1), are assumed
to be known. Our models allow specification of different risk aversion coefficients λt
and confidence levels αt ∈ [0,1] at each stage, t = 1, . . . ,T.

4.1 Nested CVaR model

The nested CVaR model is based on the following composite risk measure [26]:

ρ
n (Z) = CVaRα [·|F1]◦ · · · ◦CVaRα [·|FT−1]

(
T

∑
t=1

Zt

)
.

According to [20] this risk measure is time consistent with respect to the Defi-
nition 4. In order to provide the nested formulation of the model we introduce the
following operator, which forms a weighted sum of conditional expectation and risk
associated with random loss Z:

ρt,ξ [t−1]
[Z] = (1−λt)E

[
Z
∣∣∣ξ [t−1]

]
+λt CVaRαt

[
Z
∣∣∣ξ [t−1]

]
. (9)

We suppose λt ∈ [0,1], with λt = 0 it covers the risk neutral problems, whereas λt = 1
puts emphasis on risk control only. The case of λt = 0 for t < T and λT 6= 0 models
importance of risk only at the final stage.

We can write the corresponding risk-averse linear multistage model with T stages
in the following form:

min
A1x1=b1

x1≥0

c>1 x1 +ρ2,ξ [1]

 min
A2x2=b2−B2x1

x2≥0

c>2 x2 + · · ·+ρT,ξ [T−1]

 min
AT xT=bT−BT xT−1

xT≥0

c>T xT

 .
(10)

We assume model (10) is feasible, has relatively complete recourse, and has a finite
optimal value.

Our model, with the nested risk measure, allows a dynamic programming formu-
lation to be developed, as is described in [38]. Using in (9) the definition of condi-
tional value at risk from [29],

CVaRα [Z] = min
u

(
u+

1
α

E [Z−u]+

)
, (11)
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where [ · ]+ ≡max{· ,0}, we can rewrite (10) as

min
x1,u1

c>1 x1 +λ2u1 +Q2(x1,u1,ξ [1])

s.t. A1x1 = b1

x1 ≥ 0.

(12)

The recourse value Qt(xt−1,ξ [t]) at stage t = 2, . . . ,T is given by:

Qt(xt−1,ξ [t]) = min
xt ,ut

c>t xt +λt+1ut +Qt+1(xt ,ut ,ξ [t])

s.t. Atxt = bt −Btxt−1

xt ≥ 0,

(13)

where
Qt+1(xt ,ut ,ξ [t]) =

= EPt+1[·|ξ [t]]

[
(1−λt+1)Qt+1(xt ,ξ [t+1])+

λt+1

αt+1

[
Qt+1(xt ,ξ [t+1])−ut

]
+

]
.

(14)

We take QT+1(·) ≡ 0 and λT+1 ≡ 0 so that the objective function of model (13)
reduces to c>T xT when t = T ; compare with (2)–(3).

The interpretation of the objective function is not straightforward, but it can be
viewed as the real cost we would be willing to pay at the first stage instead of incur-
ring the sequence of random costs Z1, . . . ,ZT ; cf. [34].

The nested model is formulated in the framework of conditional risk mappings
and this formulation is time consistent with respect to both [TC1] and [TC2], cf.
[37]. However, due to its nesting structure, it cannot be represented as a polyhedral
risk measure.

4.2 Multiperiod CVaR model

The multiperiod CVaR model is based on the following risk measure (see [26]):

ρ
m (Z) =

T

∑
t=2

µtE [CVaRαt [Zt |Ft−1]] . (15)

with ∑
T
t=2 µt = 1, µt ≥ 0∀t. The multiperiod CVaR risk measure is time consistent

with respect to the Definition 4, according to the Theorem 3.3.11 of [20].
Using this risk measure and the mean-risk operator (9) we obtain a multiperiod

CVaR model:

min
x1,...,xT

c>1 x1 +µ2ρ2,ξ [1]

[
c>2 x2

]
+ · · ·+µT E

[
ρT,ξ [T−1]

[
c>T xT

]]
s.t. A1x1 = b1

A2x2 = b2−B2x1

...
AT xT = bT −BT xT−1

xt ≥ 0, xt ∈Lp (Ω ,Ft ,P) , t = 1, . . . ,T.

(16)
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We assume model (16) is feasible, has relatively complete recourse, and has a finite
optimal value. While ρ2,ξ [1]

is deterministic, ρt,ξ [t−1]
, t = 3, . . . ,T are random variables

and expectation is applied to get a sensible model. The difference between this model
and the nested CVaR model (10) is that here we apply expectation instead of the
risk measure nesting. We also give a reformulation which uses the definition (11) of
conditional value at risk:

min
xt ,ut ,qt∀t

c>1 x1 +
T−1

∑
t=1

µt+1E [λt+1ut ]+
T

∑
t=2

µtE
[
(1−λt)c>t xt +

1
αt

λtqt

]
s.t. A1x1 = b1

Atxt = bt −Btxt−1, t = 2, . . . ,T

qt ≥ c>t xt −ut−1, t = 2, . . . ,T
qt ≥ 0, t = 2, . . . ,T
ut ∈Lp (Ω ,Ft ,P) , t = 1, . . . ,T −1
qt ∈Lp (Ω ,Ft ,P) , t = 2, . . . ,T
xt ≥ 0, xt ∈Lp (Ω ,Ft ,P) , t = 1, . . . ,T.

(17)

As is shown in the book [26] the multiperiod risk measure (15) is polyhedral. More-
over, with reference to the dynamic programming equations, multiperiod CVaR model
is time consistent with respect to [TC1] and [TC2]. Other concepts of time consis-
tency with this risk measure are discussed in an example in [3] and also in [20].

Similarly as in the case with nested CVaR model we develop dynamic program-
ming equations. Using the interchangeability principle we have:

min
x1,u1

c>1 x1 +µ2λ2u1 +Q2(x1,u1,ξ [1])

s.t. A1x1 = b1

x1 ≥ 0

(18)

with the recourse value Qt(xt−1,ut−1,ξ [t]) at stage t = 2, . . . ,T given by:

Qt(xt−1,ut−1,ξ [t]) =

= min
xt ,ut ,qt

µt (1−λt)c>t xt +µt+1λt+1ut +µt
1
αt

λtqt +Qt+1(xt ,ut ,ξ [t])

s.t. Atxt = bt −Btxt−1

qt ≥ c>t xt −ut−1

qt ≥ 0
xt ≥ 0,

(19)

where:
Qt+1(xt ,ut ,ξ [t]) = EPt+1[·|ξ [t]]

[
Qt+1(xt ,ut ,ξ [t+1])

]
. (20)

We take QT+1(·)≡ 0 and λT+1 ≡ 0.
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4.3 Sum of CVaR model

The weighted sum of CVaR model is based on the following risk measure (see [15]):

ρ
s (Z) =

T

∑
t=2

µt CVaRαt [Zt ]

with ∑
T
t=2 µt = 1, µt ≥ 0∀t.

It can be shown that sum of CVaR is not a time consistent risk measure with
respect to the Definition 4, see [3,32]. The sum of CVaR model does not include
nesting of the recourse values. It can be deduced from the scalarization technique of
the multiobjective optimization. Using (9) it reads

min
x1,...,xT

c>1 x1 +µ2ρ2,ξ [1]

[
c>2 x2

]
+ · · ·+µT ρT,ξ [1]

[
c>T xT

]
s.t. A1x1 = b1

A2x2 = b2−B2x1

...
AT xT = bT −BT xT−1

xt ≥ 0, xt ∈Lp (Ω ,Ft ,P) , t = 1, . . . ,T.

(21)

We assume again that model (21) is feasible, has relatively complete recourse, and
has a finite optimal value. Please note that no nesting of the CVaR values is present
and that we always condition the operator ρ with the first stage information ξ [1], i.e.
ρt,ξ [1]

is deterministic ∀t = 2, . . . ,T .
Using the mean-risk operator (9) and auxilliary variables qt to express the non-

linear term in (11) we can rewrite the model as the following multistage stochastic
linear program:

min
xt ,ut ,qt∀t

c>1 x1 +
T−1

∑
t=1

µt+1λt+1ut +
T

∑
t=2

µtE
[
(1−λt)c>t xt +

1
αt

λtqt

]
s.t. A1x1 = b1

Atxt = bt −Btxt−1, t = 2, . . . ,T

qt ≥ c>t xt −ut−1, t = 2, . . . ,T
qt ≥ 0, t = 2, . . . ,T
ut ∈Lp (Ω ,F1,P) , t = 1, . . . ,T −1
qt ∈Lp (Ω ,Ft ,P) , t = 2, . . . ,T
xt ≥ 0, xt ∈Lp (Ω ,Ft ,P) , t = 1, . . . ,T.

(22)

It can be seen, that the risk measure ρs (Z) used in this linear program satisfies re-
quirements of Definition 2 and is therefore polyhedral. Moreover, the corresponding
optimization model is time consistent under the Definition [TC1]. On the other side,
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all variables ut are decided in the first stage and the model is therefore not time con-
sistent according to the Definition [TC2].

We again develop dynamic programming equations using the interchangeability
principle:

min
x1,u1,...uT−1

c>1 x1 +
T−1

∑
t=1

µt+1λt+1ut +Q2(x1,u1, . . . ,uT−1,ξ [1])

s.t. A1x1 = b1

x1 ≥ 0

(23)

with recourse value Qt(xt−1,ut−1, . . . ,uT−1,ξ [t]) at stage t = 2, . . . ,T , given by:

Qt(xt−1,ut−1, . . . ,uT−1,ξ [t]) =

= min
xt ,qt

µt (1−λt)c>t xt +µt
1
αt

λtqt +Qt+1(xt ,ut , . . . ,uT−1,ξ [t])

s.t. Atxt = bt −Btxt−1

qt ≥ c>t xt −ut−1

qt ≥ 0
xt ≥ 0,

(24)

where:

Qt+1(xt ,ut , . . . ,uT−1,ξ [t]) = EPt+1[·|ξ [t]]

[
Qt+1(xt ,ut , . . . ,uT−1,ξ [t+1])

]
. (25)

We take QT+1(·)≡ 0 and λT+1 ≡ 0.
Other multiperiod polyhedral risk measures and their comparison can be found in

[15]. The final decision regarding which of the multiperiod risk measures to choose
depends on the solved problem.

5 Stochastic dual dynamic programming

We use stochastic dual dynamic programming to solve, or rather approximately solve,
models presented in the previous section. SDDP does not operate directly on these
models. Instead, we first form a sample average approximation (SAA) of the model,
and SDDP approximately solves that SAA. Thus in our context SDDP forms estima-
tors by sampling within an empirical scenario tree. In the remainder of this article we
restrict attention to solving that SAA via SDDP. See Shapiro [35] for a discussion of
asymptotics of SAA for multistage problems, Philpott and Guan [28] for convergence
properties of SDDP, and Chiralaksanakul and Morton [7] for procedures to assess the
quality of an SDDP-based policy.

To apply the SDDP algorithm we have to assume ξ t , t = 2, . . . ,T , to be stagewise
independent. We further assume that for each stage t = 2, . . . ,T there is a known
(possibly continuous) distribution Pt of ξ t and that we have a procedure to sample
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i.i.d. observations from this distribution. Using this procedure we obtain empirical
distributions P̂t , t = 2, . . . ,T . The scenarios generated by this procedure all have the
same probabilities, but this is not required by the SDDP algorithm, which also applies
to the case where the scenario probabilities differ.

We let Ω̂t denote the stage t sample space, where |Ω̂t |= Nt . We use jt ∈ Ω̂t to de-
note a stage t sample point, which we call a stage t scenario. We define the mapping
a( jt) : Ω̂t → Ω̂t−1, which specifies the unique stage t−1 ancestor for the stage t sce-
nario jt . Similarly, we use ∆( jt) : Ω̂t → 2Ω̂t+1 to denote the set of descendant nodes
for jt , where |∆( jt)| = Dt+1. The empirical scenario tree therefore has stage t real-
izations denoted ξ

jt
t , jt ∈ Ω̂t . At the last stage, we have ξ

jT
T , jT ∈ Ω̂T , and each stage

T scenario corresponds to a full path of observations through each stage of the sce-
nario tree. That is, given jT , we recursively have jt−1 = a( jt) for t = T,T − 1, . . . ,2.
For this reason and for notational simplicity, when possible, we suppress the stage T
subscript and denote jT ∈ Ω̂T by j ∈ Ω̂ .

We emphasize using the same set of Dt observations at stage t to form the de-
scendant nodes of all Nt−1 scenarios at stage t − 1. This ensures the resulting em-
pirical scenario tree is stagewise independent. The SDDP algorithm does not apply,
for example, to a scenario tree in which we instead use a separate, independent set
of i.i.d. observations ξ

1
t , . . . ,ξ

Dt
t for each of the stage t−1 scenarios, because the re-

sulting empirical scenario tree would not be stagewise independent. Note that fully
general forms of dependency lead to inherent computational intractability as even
the memory requirements to store a general sampled scenario tree grow exponen-
tially in the number of stages. Tractable dependency structures are typically rooted
in some form of independent increments between stages; e.g., autoregressive models,
moving-average models, and dynamic linear models.

Under the stage independence assumption, the expected future cost function sim-
plifies in the following way. In the nested CVaR model function Qt+1(xt ,ut ,ξ [t]) from
equation (13) now takes the form Qt+1(xt ,ut). The dynamic programming equations
are given by:

min
x1,u1

c>1 x1 +λ2u1 +Q2(x1,u1)

s.t. A1x1 = b1

x1 ≥ 0

(26)

with the recourse value Qt(xt−1,ξ t) at stage t = 2, . . .T given by:

Qt(xt−1,ξ t) = min
xt ,ut

c>t xt +λt+1ut +Qt+1(xt ,ut)

s.t. Atxt = bt −Btxt−1

xt ≥ 0,

(27)

where

Qt+1(xt ,ut) = E
[
(1−λt+1)Qt+1(xt ,ξ t+1)+

λt+1

αt+1

[
Qt+1(xt ,ξ t+1)−ut

]
+

]
. (28)
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Similar development applies to the function Qt+1(xt ,ut ,ξ [t]) from equation (19) and
the function Qt+1(xt ,ut , . . . ,uT−1,ξ [t]) from equation (24) which will be written as
Qt+1(xt ,ut , . . . ,uT−1) in the stage independent case.

We give a brief description of the SDDP algorithm in order to give sufficient con-
text for presenting our results. For further related details on SDDP, see [21], [25] and
[38]. SDDP applies to the dynamic programming equations developed in Section 4.
During a typical iteration of the SDDP algorithm, cuts have been accumulated at each
stage. These represent a piecewise linear outer approximation of the expected future
cost function, Qt+1(xt ,ut) or Qt+1(xt ,ut , . . . ,uT−1). On a forward pass we sample a
number of linear paths through the tree. As we solve a sequence of master programs
(which we specify below) along these forward paths, the cuts that have been accumu-
lated so far are used to form decisions at each stage. Solutions found along a forward
path in this way form a policy, which does not anticipate the future. In fact, the solu-
tions can be found at a node on a sample path via the stage t master program, even
before we sample the random parameters at stage t+1. The sample mean of the costs
incurred along all the forward sampled paths through the tree forms an estimator of
the expected cost of the current policy, which is determined by the master programs.

In the backward pass of the algorithm, we add cuts to the collection defining the
current approximation of the expected future cost function at each stage. We do this
by solving subproblems at the descendant nodes of each node in the linear paths from
the forward pass, except in the final stage, T . The cuts collected at any node in stage
t apply to all the nodes in that stage, and hence we maintain a single set of cuts for
each stage. We let Ct denote the number of cuts accumulated so far in stage t. This
reduction is possible because of our stagewise independence assumption.

The following model (29) is based on a nested formulation (13) and acts as a
master program for its stage t +1 descendant scenarios and acts as a subproblem for
its stage t−1 ancestor. We will refer to it as sub( jt) for scenario jt .

Q̂t = min
xt ,ut ,θt

c>t xt +λt+1ut +θt (29a)

s.t. Atxt = bt −Btxt−1 : π t (29b)

θt ≥ Q̂ j
t+1 +

(
g j

t+1

)> [
(xt , ut)−

(
x j

t , u j
t

)]
, j = 1, . . . ,Ct (29c)

xt ≥ 0. (29d)

Decision variable θt in the objective function (29a), coupled with cut constraints
in (29c), forms the outer linearization of the recourse function Qt+1(xt ,ut) from
model (27) and equation (28). This outer linearization is represented by the aver-
age values of the recourse function, Q̂ j

t+1, and its subgradients g j
t+1. The structural

and nonnegativity constraints in (29b) and (29d) simply repeat the same constraints
from model (27). In the final stage T , we omit the cut constraints and the θT term.

As we indicate in constraint (29b), we use π t to denote the dual vector associated
with the structural constraints. As detailed in the articles [21] and [38], this dual
vector is used to develop the cuts in the backward pass of the SDDP algorithm. For
simplicity in stating the SDDP algorithm below, we assume we have known lower
bounds Lt on the recourse functions. The presentation applies to the nested CVaR
model (27), the remaining models are solved in a similar fashion.
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Algorithm 1 Stochastic dual dynamic programming algorithm

1. Let iteration k = 1 and append lower bounding cuts θt ≥ Lt , t = 1, . . . ,T −1.
2. Solve the stage 1 master program (t = 1) and obtain xk

1,u
k
1,θ

k
1 .

Let zk = c>1 xk
1 +λ2uk

1 +θ k
1 .

3. Forward pass: sample i.i.d. paths from Ω̂ and index them by Sk.

For all j ∈ Sk {
For t = 2, . . . ,T {

Form and solve sub( jt) to obtain
(

x jt
t

)k
and

(
u jt

t

)k
;

}
}

Form the upper bound estimator zk based on the equation (31) in [21].
4. If a stopping criterion, given zk and zk, is satisfied then stop and output first stage

solution x1 = xk
1 and lower bound z = zk, otherwise continue to step 5.

5. Backward pass:

For t = T −1, . . . ,1 {
For all j ∈ Sk {

For all descendant nodes jt+1 ∈ ∆( jt) {
Form and solve sub( jt+1) to obtain Q̂

jt+1
t+1 and π

jt+1
t+1 ;

Calculate subgradient (see [21], [38]);
}
Obtain Q̂t+1 and gt+1 by averaging the optimal values and subgradients;
Append the resulting cut to the collection (29c) for stage t (see [21], [38]) ;

}
}

6. Let k = k+1 and goto step 2 with extended sets of cuts.

See Bayraksan and Morton [4] for stopping rules that can be employed in step 4
and Philpott et al. [27] for an alternative upper bound evaluation procedure.

6 Contamination for multistage risk-averse problems

The contamination technique for stochastic programs was developed in a series of
papers as one of the tools for analysis of robustness of the optimal value with respect
to deviations from the assumed probability distribution P and/or its parameters. The
results were applied mainly to scenario-based two stage stochastic linear programs,
see e.g. [9,11] for static and two- stage stochastic programs with risk-averse objective
functions, [12] for CVaR and VaR risk criteria and [13] for polyhedral risk measures.

The first ideas dealing with contamination for multistage stochastic linear pro-
grams were presented in [10] and their application to study the influence of changes
in the structure of multistage problems with polyhedral risk measures can be found
in [14].
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For construction of global contamination bounds, it is important that the stochas-
tic program gets reformulated as

min
x∈X

F(x,P) := min
x∈X

∫
Ω

f (x,ξ )P(dξ ) (30)

with X independent of P, such as (12). Notice that the reformulations of the three
considered models with CVaR-type risk measures comply with this requirement.

Possible changes in probability distribution P are modeled using contaminated
distributions Pk,

Pk := (1− k)P+ kQ, k ∈ [0,1],

with Q another fixed probability distribution. Via contamination, robustness analysis
with respect to changes in P gets reduced to a much simpler analysis with respect to
a scalar parameter k.

Assume that (30) was solved for a probability distribution P and denote ϕ(P) the
optimal value and X∗(P) the set of optimal (first stage) solutions.

The objective function in (30) is linear in P, hence

F(x,k) :=
∫

Ω

f (x,ξ )Pk(dξ ) = (1− k)F(x,P)+ kF(x,Q)

is linear in k. Suppose that the stochastic program (30) has an optimal solution for all
considered distributions Pk, 0≤ k ≤ 1. Then the optimal value function

ϕ(k) := min
x∈X

F(x,k)

is concave on [0,1] which implies its continuity and existence of directional deriva-
tives in (0,1). Continuity at the point k = 0 is a property related with stability results
for the stochastic program in question. In general, one needs a nonempty, bounded
set of optimal solutions X∗(P) of the initial stochastic program (30). This assumption
together with stationarity of derivatives ∂F(x,k)

∂k = F(x,Q)−F(x,P) is used to derive
the form of the directional derivative

ϕ
′(0+) = min

x∈X∗(P)
F(x,Q)−ϕ(0) (31)

which enters the upper bound for the concave optimal value function ϕ(k)

ϕ(0)+ kϕ
′(0+)≥ ϕ(k)≥ (1− k)ϕ(0)+ kϕ(1), k ∈ [0,1]; (32)

see [9,11,12] and references therein. Contamination bounds (32) can be relaxed to

(1− k)ϕ(P)+ kF(x,Q)≥ ϕ(Pk)≥ (1− k)ϕ(P)+ kϕ(Q) (33)

valid for an arbitrary x ∈ X∗(P) and k ∈ [0,1].
The development so far applies to general distributions P and Q. To be able to

solve the problem in practice, we usually form a Sample Average Approximation
version of the problem and obtain a finite discrete distribution P̂. In order to have the
contaminated problem solvable, the same property is required for the distribution Q̂.
To apply the SDDP algorithm we have to assume that stage independence holds true
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for both the original distribution P̂ and the contaminating distribution Q̂. That way
the contaminated distribution P̂k shares the same property.

When the problem is too large to be solved precisely, we obtain only approximate
suboptimal solutions. In that case, an SDDP algorithm provides a lower bound ϕ on
the optimal objective function value, see Step 2 of the Algorithm 1. Since we always
have ϕ < ϕ , the contamination lower bound follows easily:

ϕ(P̂k)≥ (1− k)ϕ(P̂)+ kϕ(Q̂). (34)

With the approximate (suboptimal) solution x̃∗ of the problem with original dis-
tribution P̂ we proceed in the following fashion. Since x̃∗ is feasible, but in general
suboptimal for the contaminated problem with P̂k, we have:

ϕ(P̂k)≤ F(x̃∗,k) = F(x̃∗, P̂)+ k
∂F(x̃∗, P̂k)

∂k
= F(x̃∗, P̂)+ k

(
F(x̃∗,Q̂)−F(x̃∗, P̂)

)
.

(35)
Therefore, following is a valid upper bound for the contaminated problem:

ϕ(P̂k)≤ (1− k)F(x̃∗, P̂)+ kF(x̃∗,Q̂). (36)

Since the upper bound (36) is provided by the approximate solution x̃∗ we replace
the deterministic quantity F(x̃∗, P̂) by its statistical estimator ϕ(P̂). This estimator
is provided by the SDDP algorithm, see Step 3 of the Algorithm 1. By Proposition
3 from [21] we have that ϕ(P̂)→ ϕ

∗(P̂),w.p.1, as the number of scenarios used to
compute ϕ grows to infinity and that ϕ

∗(P̂)≥ F(x̃∗, P̂).
The value F(x̃∗,Q̂) cannot be computed directly as well. Instead, we form an

upper bound estimator under the distribution Q̂ in a similar fashion as the SDDP
algorithm does (see again Step 3 in Algorithm 1), but this time we use decisions
x̃∗ as given. In a practical large-scale application, the decisions x̃∗ cannot be stored
in a memory. We solve the original problem and store the cuts that are collected
when the algorithm ends. Then, we proceed with the upper bound estimator under
the distribution Q̂ and sample the scenarios. For these sampled scenarios, we use the
stored cuts to obtain decisions x̃∗ and apply these under the new distribution Q̂. With
this approach, we are again getting a statistical upper bound, say F̄(x̃∗,Q̂), for the
value of F(x̃∗,Q̂). Plugging this value into our formula (36) we reach the final upper
contamination bound:

(1− k)ϕ(P̂)+ kF̄(x̃∗,Q̂). (37)

This bound is based on the set of scenarios used to compute the upper bounds and
therefore it is not deterministic. We have an asymptotic validity of this bound pro-
vided by the results of Proposition 3 of [21]:

(1− k)ϕ(P̂)+ kF̄(x̃∗,Q̂)→ ϕ
∗
F ,w.p.1.; ϕ(P̂k)≤ ϕ

∗
F , (38)

as the sizes of samples to compute both upper bounds grow to infinity.
The contamination bounds we have just developed depend on the specification or

choice of Q and Q̂, respectively. When the contaminating distribution Q is not fully
specified, a natural idea is to use the worst distribution of the considered alternatives.
For simple uncertainty sets and under the assumption of stage independence such
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worst-case or robust contamination bounds can be applied. See e.g. Shapiro [39] for
an example of a manageable choice of uncertainty set of one dimensional probability
distributions specified by a known support and expectation; or for two-stage problems
see also Bertsimas et al. [5].

7 Numerical illustrations

We begin with a simple asset allocation model without transaction costs and empha-
size that our primary purpose is to illustrate the performance of contamination bounds
as opposed to building a high-fidelity model for practical use. At stage t the decisions
xt denote the allocations, and pt denotes gross return per stage; i.e., the ratio of the
price at stage t to that in stage t−1. These represent the only random parameters in
the model. Without transaction costs, nested CVaR model (13) specializes to:

Qt(xt−1,ξ t) = min
xt ,ut
−1>xt +λt+1ut +Qt+1(xt ,ut) (39a)

s.t. 1>xt = p>t xt−1 (39b)
xt ≥ 0, (39c)

except that in the first stage: (i) the right-hand side of (39b) is instead 1 and (ii) be-
cause−1>x1 is then identically -1, we drop this constant from the objective function.

We also consider the case with transaction costs, which are proportional to the
value of the assets sold or bought. We must modify the rebalancing equation between
stage t−1 and stage t to include the transaction costs of ft1>|xt−xt−1|, where the | · |
function applies component-wise. Linearizing we obtain the following special case
of model (13):

Qt(xt−1,ξ t) = min
xt ,zt ,ut

−1>xt +λt+1ut +Qt+1(xt ,ut)

s.t. 1>xt + ft1>zt = p>t xt−1

zt − xt ≥−xt−1

zt + xt ≥ xt−1

xt ≥ 0.

We used monthly price data of the most important assets traded on the Prague
Stock Exchange, January 2009 to February 2012. Summary of the month-to-month
price ratios can be found in the Table 1. We have fitted a multidimensional correlated
log-normal distribution to the price ratios to obtain the original distribution P. The
contaminating distribution Q was then constructed from P by increasing the variance
by 20%. Scenario trees were constructed by sampling P̂ and Q̂ from these distribu-
tions, using the polar method [19] for normal distribution sampling. The L’Ecuyer
random generator [23] was used to generate the required uniform random variables.
The computation was implemented in our own C++ software, using CPLEX [8] to
solve the required linear programs and Armadillo [1] library for matrix computations.
The CVaR levels αt were was always set to 5%.
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asset mean std. deviation
AAA 1.0290 0.1235
CETV 0.9984 0.2469
ČEZ 0.9990 0.0647
ERSTE GROUP BANK 1.0172 0.1673
KOMERČNÍ BANKA 1.0110 0.1157
ORCO 1.0085 0.2200
PEGAS NONWOVENS 1.0221 0.0863
PHILIP MORRIS ČR 1.0213 0.0719
TELEFÓNICA C.R. 0.9993 0.0595
UNIPETROL 1.0079 0.0843
VIENNA INSURANCE GROUP 1.0074 0.1100

Table 1 Data summary

We evaluated the model with risk coefficients λt = 0.1. Both cases, with transac-
tion costs of 0.3% and without transaction costs, were considered. We have computed
the contamination bounds for problems with 3 and 5 stages. In the Table 2 we show
the setup for the scenario trees used in our algorithm.

stages descendants per node total scenarios
3 1,000 1,000,000
5 1,000 1012

Table 2 Testing problems setup

The three-stage problems can be solved to optimality using our SDDP algorithm,
meaning that there is no gap between the lower bound and the upper bound, which
is formed by computing the population mean rather than sampling. Figures 1 and
2 present the obtained lower and upper contamination bounds based on inequalities
(34) and (36).
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Fig. 1 Three-stage problem contamination bounds with no transaction costs
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Fig. 2 Three-stage problem contamination bounds with transaction costs 0.3%

For the case of five-stage problems we are unable to compute the solutions ex-
actly and we provide the contamination bounds based on the lower and upper bounds
from the SDDP algorithm. The lower bound based on the inequality (34) remains de-
terministic, but the terms present in inequality (37) are estimated for 10 times and we
provide their mean as well as the empirical statistical upper bounds with confidence
level of 95%. The results are presented in Figures 3 and 4.
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Fig. 3 Five-stage problem contamination bounds with no transaction costs

The first stage decisions found for all considered setups are listed in the Table 3.
The presented results show that for smaller problems we are able to obtain tight

contamination bounds, in our testing setup with 3 stages we have the spread of 0.09%
in the case without transaction costs and 0.17% spread in the case with transaction
costs, both cases considering k = 50% contamination. For large-scale problems, we
can rely on the statistically valid bound or on the mean of sampled estimates. For
our five-stage setup, we obtained the spread of 1.13% and 1.03% in the analogous
cases when using empirical statistical upper bounds. Even though we consider these
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Fig. 4 Five-stage problem contamination bounds with transaction costs 0.3%

stages trans. costs distr. AAA PEGAS PHILIP M.
3 0% P̂ 0.1978 0.6214 0.1808
3 0% Q̂ 0.3394 0.2834 0.3773
3 0.3% P̂ 0.2065 0.5294 0.2642
3 0.3% Q̂ 0.4204 0.1391 0.4405
5 0% P̂ 0.4096 0.1868 0.4036
5 0% Q̂ 0.3399 0.4143 0.2458
5 0.3% P̂ 0.3652 0.2113 0.4235
5 0.3% Q̂ 0.2547 0.4011 0.3442

Table 3 First stage decisions for 3 and 5 stages with the original and contaminating distributions

bounds pretty tight, we can also rely on the mean estimators, which are usually used
in the SDDP algorithms. That gives us spread of 0.38% and 0.19%, respectively. The
straightforward interpretation of our results would then state that the results of our
model can be considered stable with respect to growing variance of the underlying
random distribution which drives the asset price evolution.

8 Conclusion

We have shown three different models based on the CVaR risk measure for model-
ing risk in the multistage stochastic programs and discussed their basic properties
and differences. Under the assumption of stagewise independence we present and
apply Stochastic Dual Dynamic Programming algorithm to the model with nested
CVaR risk measure. For purposes of output analysis the contamination technique is
extended to cover the large-scale cases where we are not able to solve the problem
precisely, but we can obtain approximate solutions through SDDP. Numerical results
with the asset allocation problem provide sufficiently tight bounds that can be used
in practical applications to test stability.

Further research should include extended numerical experiments, including all
three presented models and problems with more stages. Other risk measures and
probability distributions than those presented in the article could be also considered.
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More general structures without the stage independence assumption would provide
another topic for further application of our ideas. In such case, SDDP algorithm does
not apply and some other way to compute the contamination bounds for large-scale
problems has to be developed.
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