
STOCHASTIC PROGRAMMING: MINIMAX APPROACH

In many applications of stochastic programming there is some uncertainty
about the probability distribution P of the random parameters. The incom-

plete knowledge of the probability distribution can be described by assuming
that P belongs to a specified class P of probability distributions. This in
turn suggests to use the minimax decision rule.

The first results were concerned with stochastic linear programs with
recourse; they can be treated within the following more general framework

minimize F (x; P ) := EP f(x; ω) on the set X ⊂ Rn (1)

with X a given set of decisions, P a probability distribution on (Ω, Σ), Ω ⊂
Rm and P known to belong to a class P . The random outcome of a decision
x ∈ X is quantified by a function f defined on X × Ω, EP denotes the
expectation under P .

These results were formulated in terms of the two-person zero-sum game

(X ,P , F (x; P )). (2)

Iosifescu and Theodorescu [11] suggested to use an optimal mixed strategy
of the first player in the game (2). Žáčková [18] introduced the notion of
minimax solution as an optimal pure strategy of the first player in the game

(2). Under quite general assumptions on P and F , a minimax solution exists
and

inf
x∈X

max
P∈P

F (x; P ) = max
P∈P

inf
x∈X

F (x; P ). (3)

The minimax decision rule can be applied also in cases when the minimax
theorem for the game (2) does not hold true. It means to solve the problem

minimize max
P∈P

F (x; P ) on the set X ⊂ Rn (4)

hence, to apply the best possible decision obtained for the most adverse
considered circumstances. This provides a tool for the worst case analysis

for program (1) and allows for constructing bounds for optimal value of (1)
valid for all P ∈ P.

Applicability of the results depends on the assumed form of the class P
which describes the level of the available information about the probability
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distribution of the random parameters and also on the properties of the
random objective function f(x; ω). Let us list some of the most frequent
choices of P :

• P consists of probability distributions carried by Ω ⊂ Rm which fulfil
certain moment conditions, e. g.,

P = {P : EP gj(ω) = yj, j = 1, . . . , J} (5)

with prescribed values yj ∀j ([3], [6], [8], [17], [18]).

• P contains probability distributions on (Ω, Σ) with fixed marginals
([15]).

• An additional qualitative information, such as unimodality of P , is
taken into account ([6], [8]).

• P consists of probability distributions P carried by a known finite sup-
port of P , i.e., to specify P means to fix the probabilities of the con-
sidered atoms (scenarios) taking into account a prior knowledge about
their partial ordering, etc.; see e. g. [4].

• P is a neighborhood of a hypothetical probability distribution P0 ([3]).

• In principle, P can be also a parametric family of probability distribu-
tions with an incomplete knowledge of parameter values.

For convex, compact P , the expectation F (x; P ) = EP f(x; ω) attains its
maximal (and minimal) value at extremal points of P ; the extremal prob-
ability distributions can be characterized independently of the form of the
random objective f , however, the worst case probability distribution, say,
P ∗ ∈ P independent of f (and thus independent of the decisions x) ap-
pears only exceptionally. If this is possible the objective function in (4)
maxP∈P F (x; P ) = F (x; P ∗) is just an objective function of a standard sto-
chastic program which is relatively easy to solve due to a relatively simple
structure of P ∗. There are also instances when one can succeed to get the
explicit form of maxP∈P F (x; P ) ([6], [12]). They relate to classes of one-
dimensional probability distribution and to special functions f .

The general methodology for solution of the inner optimization problem
maxP∈P F (x; P ) for a fixed decision x has been elaborated in detail for the
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classes of probability distributions defined by moment conditions (5), both in
the form of equations and inequalities: The extremal probability distributions
have finite supports, cf. [14], [17], and the solution of the inner problem

max
P

∫
Ω

f(x; z)dP (6)

subject to
∫
Ω

dP = 1,
∫
Ω

gj(z)dP = yj, j = 1, . . . , J (7)

reduces to solution of a generalized linear program (cf. [2], [3], [7], [9], [17])
provided that Ω is compact and f(x; •), gj,∀j are continuous on Ω. The
procedure provides both the atoms of the sought worst case probability dis-
tribution and their probabilities. In some cases, it is expedient to analyze
the dual program to (6), (7) which reads

min
u

J∑
j=1

ujyj + u0 (8)

subject to u0 +
J∑

j=1

ujgj(z) ≥ f(x; z) ∀z ∈ Ω. (9)

For details and various applications consult [2], [3], [5]–[8], [9], [13], [17].

As an example consider f(x; •) a convex function on a bounded convex
polyhedron Ω ⊂ Rm, say, Ω = conv{ω(1), . . . , ω(K)} and

P = {P : EP ωj = yj, j = 1, . . . ,m} (10)

with y a given interior point of Ω. The constraints of (9)

u0 +
m∑

j=1

ujzj ≥ f(x; z)

hold true for all z ∈ Ω if and only if they are fulfilled for the extremal points
ω(1), . . . , ω(K). Duality properties imply that only suitable subsets of the
set of extremal points of Ω need to be considered in construction the finite
supports of the worst case distributions. The generalized linear program (6),
(7) reduces to the linear program

max
p

K∑
k=1

pkf(x; ω(k)) (11)
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subject to
K∑

k=1

pkω
(k)
j = yj, j = 1, . . . ,m,

K∑
k=1

pk = 1, pk ≥ 0 ∀k. (12)

Convexity of f with respect to ω is essential for the above result. General-
ization to piecewise convex functions f(x, •) (cf. [5]) is possible, on the other
hand the worst case probability distribution from the class (10) for f concave

in ω is the degenerated distribution concentrated at the prescribed expected
value EP ω. This degenerated distribution provides the best (i.e., the mini-
mal possible) expectation for convex functions f(x, •) under P belonging to
the class P ; compare with the Jensen inequality.

If the set of feasible solutions of (12) is a singleton the worst case distrib-
ution P ∗ does not depend on f and we obtain bounds for the optimal values
of the stochastic programs (1) under an arbitrary probability distribution P

from the class (10) and an arbitrary function f which is convex in ω:

min
x∈X

f(x, EP ω) ≤ min
x∈X

EP f(x, ω) ≤ min
x∈X

EP ∗f(x, ω)∀P ∈ P (13)

provided that the minima exist. Such bounds are numerically tractable, are
tight and provide an information about sensitivity of the optimal value of sto-
chastic program (1) on the choice of a probability distribution P belonging
to the considered class P . The well known instance is the class of probability
distributions carried by a closed interval [a, b] on the real line with a pre-
scribed value y ∈ (a, b) of the expectation EP ω. The worst case distribution
is carried by the end-points of the given interval [a, b] and the only solution
of the system

p1a + p2b = y, p1 + p2 = 1, p1, p2 ≥ 0

is p1 = b−y

b−a
and p2 = 1 − p1. The result agrees with the well-known

Edmundson-Madansky inequality and the minimax approach guarantees that
this bound is tight within the considered class of probability distributions and
for convex functions f(x, •).

There is a host of papers devoted to designing various bounds for the
objective function F (x, P ) of stochastic programs (1) under various assump-
tions about the class P and the function f(x, •); for a review of the related
results see [2], [3], [6], [13], [17] and references ibid. These bounds proved to
be useful also in designing algorithms and this is at present the main field of
successful applications of the minimax approach.
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On the other hand, to get the minimax decisions is rather demanding as
it requires solution of the full minimax problem (4). Except for the simple
special cases, such as a unique feasible discrete distribution that fulfils (7)
or the optimal value of the objective function (8) obtained in an explicit
form, one has to rely on special numerical procedures such as the stochastic
quasigradient methods designed for this purpose in [9], [10]. The numerical
difficulties are behind the fact that, in spite of a sound motivation, real life
applications of the minimax approach have been rare and have consisted of
the simple special cases (e. g., [1], [4], [6], [8], [15], [16]).
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