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Abstract
Customary stochastic programs aim at the best feasible decision made
before the realization of the random element is observed. The com-
mon assumption is that the probability distribution does not depend
on decisions — the case of the exogenous uncertainty. This paper fo-
cuses on stochastic programming models for which through decisions,
a decision-dependent, endogenous randomness is put into effect. Prob-
lem structure then becomes important. Examples point out at tractable
cases and solution techniques.
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1 Stochastic programming problems

Customary stochastic programs, see e.g. [3], [5], [9], [14], aim at the best feasible decision x made before the
relevant random element ω ∈ � is unveiled. The cost of choosing x depends on ω as quantified by a real-valued
function f (x, ω). The problem is

minimize F(x; P) := EP f (x, ω) (1)

over a closed nonempty subset X of a finite-dimensional (Euclidean) space. P denotes a known probability
distribution of ω on � which is x-independent — the case of the exogenous uncertainty. In practice, how-
ever, there are important decision problems in which through decisions, a decision-dependent, endogenous
randomness is put into effect; see e.g. [6], [7], [8], [10].

One may try to remove the dependence of P on x by formulating a simpler model: The settlement of
revenues of a pension fund is influenced by the attained fund investments profitability whose probability distri-
bution depends on the investment decisions. To an extent, this problem may be circumventioned by fixing the
valorization of the accumulated wealth of individual participants to a predetermined guaranteed minimal level
and penalizing the deviations; cf. [13]. This, however, is not a general approach.

In this paper we shall deal with stochastic programs of the form

minimize F(x) =

∫
�

f (x, ω)Px (dω) on X (2)

which differ from the standard version (1) in making explicit a possible dependence of probability distributions
on decisions. We shall assume for simplicity that the expectations

∫
� f (x, ω)Px (dω) are finite for all x ∈ X

and an optimal solution exists.
Under specific assumptions, dependence of P on x in (2) can be removed by a suitable transformation of

the decision-dependent probability distribution Px , cf. [16] and the Push-in technique explained in [11], [15]:
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Assume that there exist densities p(x, ω) of probability distributions Px with respect to a common probability
measure Q. Then the objective function in (2) can be rewritten as

F(x) =

∫
f (x, ω)p(x, ω)Q(dω)

Thus we recover the common form F(x) :=
∫
� f̃ (x, ω)Q(dω) with f̃ (x, ω) := f (x, ω)p(x, ω) and with

a decision-independent probability distribution Q. However, it is obtained at the cost of losing convenient
properties of the original random objective function f (x, ω). The properties of the resulting objective function
depend on the structure of the problem, namely, on type of dependence of P on x . For example, assume that

Px (B) = Q(B ⊕ H x) (3)

for every Borel set B ⊂ �, with Q a probability distribution, ⊕ the direct sum and H a given matrix of the
matching dimension. Changing variables in

∫
f (x, ω)Px (dω) transforms the objective function to

∫
f (x, ζ −

H x)Q(dζ ), whose properties depend on properties of f (x, u) viewed as a function of (x, u) jointly.
The acceptance of the decision-dependent model (2) may cause various technical difficulties: For instance,

if f (x, ω) is a convex function of x for each ω, then so is F(x; P), whereas the convexity property of
F(x) := F(x; Px ) may be lost. This in turn puts limitations on the choice of numerically tractable opti-
mization techniques even if evaluation of the objective function at any point x is no more complicated then
for the classical model (1). Depending on the structure, recursive optimization methods and search techniques,
cf. [11], numerical enumeration techniques including branch-and-bound method and disjunctive programming
can be used.

The decisions may partly aim at enhancement of the knowledge of the probability distribution: For instance,
in simple inventory-type stochastic programs the demand observed in the first stage may serve to collect more
precise information about the probability distribution of the future demand. However, a demand higher than a
certain cut-off point, such as the supply available for the first stage, will not be observed. The wish to obtain as
precise information as possible may lead to increasing the order for the first stage. Such decision process can
be then formulated by means of sensors, cf. [1] [2].

Special attention is needed for multistage problems with a decision-dependent probability distribution.
Here not only the first-stage decision, but also the later decisions affect the information about the probability
distribution available to the decision maker as they may influence the marginal and conditional probability
distributions in subsequent stages; [2] displays examples of this kind. Moreover, decisions may influence the
time at which uncertainty gets resolved, i.e., nonanticipativity conditions may be decision dependent; see [6],
[7].

We shall see that tractability of problems (2) depends essentially on their structure and that there are several
favorable problem classes, e.g.,

• The probability distribution is of a known type and the decisions influence only its parameters, see
Section 2;

• There is a fixed finite set of probability distributions, see Section 3. The dependence on decisions may of-
ten be modeled by Boolean variables and the decisions may be partly related to the choice of a probability
distribution from the given set.

Stability of the optimal solution of problem (2) with respect to changes of the probability distribution will
be discussed in Section 4.

2 Decision-dependent parameters

2.1 Stochastic PERT problem
Several modeling issues on the subject of the stochastic PERT problem are discussed in [9], [14]. The primary
concern is to minimize the expected duration of a project defined as a set of activities which consume time
and resources and have to reflect certain temporal precedence relationships. The project can be described by
an acyclic directed network with nonnegative arc lengths and with two specific nodes “Start” and “End” of the
project.

If the durations of individual activities (lengths of arcs) g := (g1, . . . , gn) are known, the shortest time
in which the project can be completed while observing the prescribed preference relations is equal to the
length l∗(g) of the critical path, the longest path connecting the Start and End nodes, which is a nonnegative



convex function of g. Durations g j of activities j = 1, . . . , n, may be reduced for an additional cost. More
specifically, assume that g j are convex functions of parameters x j := (x j1, . . . , x jn j ), j = 1, . . . , n; then the
project duration — the composite function f (x) := l∗(g j (x j ), j = 1, . . . , n) — is convex in x . As to the
additional cost k(x), assume that it is convex and separable in individual components x j i , i = 1, . . . , n j , j =

1, . . . , n. The problem is to choose the best parameter values with respect to both the project duration and the
additional costs and considering constraints. Thanks to convexity, it is possible to rewrite it in the form with
one aggregated objective function, such as λ1 f (x) + λ2k(x), with parameters λ1, λ2 > 0.

Assume now that durations of individual activities are random, ω := (ω1, . . . , ωn), and that parameters, say
x j , j = 1, . . . , n, of their probability distributions may be changed for a cost. In [12], this problem is discussed
in detail for the class of independent uniform distributions with a fixed spread around changing expected values
x j and for independent triangular distributions determined by the lower/upper bounds a j x j / b j x j and moduses
m j x j , j = 1, . . . , n. These parameters are subject to linear constraints which reflect limits on resources and
on activity durations. The applied cost function is k(x) :=

∑n
j=1 k j x−1

j and the objective function reflects
then two convex criteria: Minimize the expected project completion time when using probability distribution
identified by parameters x j , j = 1, . . . , n, and minimize the costs k(x) for chosen parameter values x j ∀ j . In
[12], sample-path optimization is presented as an efficient solution method.

2.2 Queuing networks

Let ω = (ω(t), 0 ≤ t ≤ T ) be a stochastic process in continuous time controlled by the parameter x =

(x1, x2, . . . , xr )
>, the probability distribution of ω being thus dependent on x, denoted Px . We should minimize

(or maximize) the expectation of a functional f (x, ω) of that process. For instance, ω may describe perfor-
mance of a queuing network where customers pass through r service stations, according to definite rules. The
inter-arrival times as well as service times are exponentially distributed, the formers with some fixed intensities,
the latters with intensities x1, x2, . . . , xr . The setX may be given by budget limitations as {x ≥ 0 : c(x) ≤ K } ,
c(x) the cost of running the system under control parameter x . The functional f may be the number of cus-
tomers whose service was completed during the time interval [0, T ]. For a fixed x which may be chosen or
controlled by the manager we can get the value of f (x, ω) by simulating histories of all customers who entered
the system.

To get the optimal decision, one needs to use a recursive optimization method, such as stochastic approxi-
mation procedures; see [11]. Sometimes, a random process can be simulated which leads to Px in the limit. For
example, [10] applies a stochastic quasigradient algorithm in the context of optimal control of a system with
a decision dependent transition operator and with an unknown steady-state probability law Px , which may be
found by simulation.

3 Decision-dependent scenario trees

Assume now that there is a finite number of possible probability distributions and that each of them has been
approximated by a discrete distribution carried by a finite number of atoms — scenarios. For multistage sto-
chastic programs, each of these discrete probability distributions is used to create a scenario tree which takes
into account the related topology of stages and path probabilities are attached to the scenarios; cf. [5]. The
resulting scenario trees and the path probabilities are indexed by a finite number of indices d . In principle,
one may apply a full enumeration with respect to d, or a version of the branch-and-bound method, cf. [8], or
disjunctive programming techniques, cf. [6], [7].

3.1 Probing for information

This simple example illustrating the case of decision-dependent probabilities has been motivated by Chapter
21 in [17]:

A large oil exploration company holds a lease that must be either sold out immediately for a know market
price, or after one year for a price which depends on an exogenous factor — uncertainty in future oil prices, or
sold after some exploration, e.g. after an experimental drilling. There are three possible outcomes of drilling
— discovery of a dry or wet well or a gusher. The crucial issue is to determine their probabilities. In principle,
the decision maker may use probabilities based on past experience. However, the cost of drilling is high and
it would be useful to eliminate drilling if the well is dry. The suggestion is to precede drilling by another,
substantially cheaper exploration method — seismic analysis. Based on its outcome probabilities of the three
possible scenarios can be revised.



With the finite and small action space this problem can be modeled using decision trees and no special
optimization technique is needed.

3.2 Sizes problem [8]
A production line must meet the demand for a certain number of products ordered according to their attributes
(e.g., sizes) a1 ≺ . . . ≺ ar . If the demand for a given product cannot be satisfied, after an additional treatment
(e.g., cutting) it is possible to exploit a higher category product for additional substitution costs. Production
costs consist of fixed set-up costs for every category that will be actually produced, of random per unit costs
of the initial production and of random substitution costs whenever it applies. The additional substitution costs
depend on the first-stage decision which determines the initial production levels x1, . . . , xr .

The decision about producing category j or not is modeled by a Boolean variable d j . Hence, there is a
collection indexed by vectors d ∈ D = {0, 1}

r of a finite number of stochastic programs

min
x

EPd f (x, ω) subject to x ∈ K(d), (4)

whereK(d) denotes coupling constraints on x given d (for example, d j = 0 implies x j = 0, or
∑

j x j d j equals
the total demand). The random vector ω consists of components related with the production costs on the both
initial production and additional treatment levels. Its joint probability distribution Pd depends on the decision
d which determines the structure of production.

The producer tries to select the best production scheme, i.e., to decide according to the best stochastic
program

min
d∈D

{ min
x∈K(d)

EPd f (x, ω)}. (5)

The choice of d (and of x as well) is the first-stage decision, the second-stage decisions concerning the addi-
tional treatment enter the random production costs f (x, ω). Random demand, an exogenous uncertainty, can
also be incorporated.

3.3 Project selection
Consider the possibility of investment into I projects of uncertain potential which may be initiated at time
instants t = 1, . . . , T . When a project starts, it cannot be interrupted or closed before the considered investment
horizon T . There exist several versions of each of these projects, at most one of them can be used. The
probability distribution of the uncertain characteristics θi of project i is discrete, carried by scenarios θ s

i , s ∈ Si
with probabilities ps

i ; the scenario and its time evolution gets revealed only after the investment is started. The
problem is to decide when and to which project (or project version) to invest and at what level of investment
subject to various cost, capacity or technological constraints so that the expected net present value of the total
investment over the whole horizon is maximal.

Exploration of new oil fields, cf. [6], belongs into this class of problems. It involves decisions about build-
ing work platforms at certain places, pipelines networks, production platforms, etc. Oil fields are characterized
by their initial capacities γi and deliverabilities δi . They are the endogenous source of uncertainty because
their realizations θ s

i = (γ s
i , δs

i ) can be observed only after the project i was accepted and started. The time
evolution of capacity and deliverability over time is described by a linear reservoir model. This means that
all uncertain parameters and the related coefficients are known after their initial values were observed at the
starting time, say ti , of field i exploration. Let the versions v ∈ Vi of project i differ only by different time
points ti = 0, 1, . . . T − 1, at which the exploration of the field i starts.

Decision variables div, i = 1, . . . , I, v = 0, . . . , T − 1 equal 1 if version v of project i is chosen (i.e., if
project i starts at ti = v) and 0 otherwise. These 0 − 1 variables have to fulfil conditions∑

v

div ≤ 1 ∀i.

Operational variables for version v of project i at time t and for scenario s are continuous, denoted as yts
iv, s ∈

Si , v ∈ Vi , i = 1, . . . , I. Assume for simplicity that they are subject to a system of linear inequalities

q t
≤

∑
i

∑
v∈Vi

f ts
iv yts

ivdiv ≤ Qt , t = 0, . . . , T − 1, s ∈ Si , i = 1, . . . , I

with coefficients f ts
iv known for t ≥ v and capacity constraints

Ldiv ≤ yts
iv ≤ cs

i div, t = 0, . . . , T − 1, s ∈ Si , i = 1, . . . , I



∑
t

yts
ivdiv ≤ γ s

i , s ∈ Si , i = 1, . . . , I.

Nonanticipativity conditions for each field separately are influenced by the selected version of the i-th
project and reflect the simple fact that for project i the decisions div and for div = 1 also yts

iv for t ≤ v are equal
for all scenarios s ∈ Si . The reason is that individual scenarios θ s

i cannot be distinguished before the project i
starts and the form of the nonanticipativity conditions is thus influenced by decisions div.

With discounted unit costs r ts
iv corresponding to version v of project i at period t and for scenario s ∈ Si ,

the objective function is ∑
t

∑
i

{

∑
v∈Vi

∑
s∈Si

ps
i r ts

iv yts
ivdiv}.

4 Stability of optimal solutions
Consider first the decision-independent case (1). The influence of changes in the probability distribution P can
be modeled using the contamination approach, see e.g. [4], i.e., using contaminated distributions

Pλ = (1 − λ)P + λP̃, (6)

with λ ∈ [0, 1] and with P̃ another probability distribution under consideration. We suppose that for all
considered distributions, stochastic program (1) has an optimal solution.

The objective function F(x; λ) := EPλ f (x, ω) is linear in λ and its derivative with respect to λ equals
E P̃ f (x, ω) − EP f (x, ω).

Define the optimal value function
ϕ(λ) := min

x∈X
F(x; λ).

If x̂ is the unique minimizer of (1), then under mild conditions (e.g. [4]) the one-sided derivative exists and

ϕ′(0+) = E P̃ f (x̂, ω) − EP f (x̂, ω), (7)

i.e., the local change of the optimal value function caused by a small change of P in the direction P̃ − P is
asymptotically the same as that of the objective function at x̂ . Moreover, ϕ(λ) is a concave function of λ on
[0, 1], hence the bounds

(1 − λ)ϕ(0) + λϕ(1) ≤ ϕ(λ) ≤ ϕ(0) + λϕ′(0+)

are valid for all λ ∈ [0, 1].
Consider now the decision-dependent case (2). Let x̂ be the true or approximated minimizer of F(x) =

F(x, Px ) on X . If the probability distributions (Px , x ∈ X ) are contaminated by (P̃x , x ∈ X ) as in (6), then
the derivative of F(x̂, Px̂ ) in the direction P̃x̂ − Px̂ measures again sensitivity of the objective function at x̂
against small changes of Px̂ in that direction. However, the assertion (7) about the optimal value function ϕ(λ)
is no longer true in general. It is true in some special cases, e.g., in the case (3), where

Px (•) = Q(• ⊕ H x), P̃x (•) = Q̃(• ⊕ H x), x ∈ X .

Hence, sensitivity analysis for the decision-dependent case (2) would require development of new quantitative
stability results.

The directional derivative can be exploited algorithmically: Assume for example that a search technique for
solving problem (2) was stopped at a point x̂ which is the true or approximate minimizer of F(x) = F(x, Px )
on the set X . In the context of example 3.2 it means that x̂ solves a problem akin to (4) with the probability
distribution Pd . To analyze the effect of perturbations of the applied vector d and, possibly, to change d to get
an improvement, one can exploit directional derivatives F(x̂, Pd̃)−F(x̂, Pd) of the objective function F(x, Pd)

at x̂ in the direction of Pd̃ − Pd for d̃ ∈ D; cf. [8].
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