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Abstract. During the last years, an increasing interest in geometric programming (GP) can be
observed. Advances in numerical methods allow to solve large GPs and new areas of successful ap-
plications have emerged: besides of technical applications, there are also GPs for optimal production
planning, finance, etc. In real-life applications of GP, some of coefficients and/or exponents need not
be precisely known. Stochastic geometric programming can be used to deal with such situations. In
this paper, we shall indicate which of general stochastic programming techniques and under which
structural and distributional assumptions do not destroy the favorable structure of GPs. Both the
already recognized and new approaches will be presented in connection with formulation of the
optimization problem. The short note below should serve as an introduction to basic concepts and
references.
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1 Geometric programming

Geometric programs introduced by [4] are a special type of nonlinear programming problems in which
the objective function and/or some of constraints are posynomials:

minimize g0(t) subject to gk(t) ≤ 1, k = 1, . . . ,K, t ∈ IRM
++ (1)

with

gk(t) =
∑
i∈Ik

ci

M∏
j=1

t
aij

j =
∑
i∈Ik

ui(t), k = 0, . . . ,K. (2)

We denote Q the total number of monomials ui(t) = ci
∏M
j=1 t

aij

j in the formulation of geometric program
(1), (2) and {Ik, k = 0, . . . ,K} is a decomposition of {1, . . . , Q} into K + 1 disjoint index sets. The
exponents aij are arbitrary real numbers and the coefficients ci are positive. Notice that simple box
inequality constraints can be written as inequalities for monomials.
The special structure of geometric program (1)–(2) allows to derive a numerically tractable dual problem:

max
δ,λ

v(δ, λ) :=
Q∏
i=1

(ci/δi)δi

K∏
k=1

λλk

k (3)

subject to ∑
i∈I0

δi = 1, δi ≥ 0, i = 1, . . . , Q,

Q∑
i=1

aijδi = 0, j = 1, . . . ,M,
∑
i∈Ik

δi = λk, k = 1, . . . ,K.

The optimal solutions t∗ of (1) and δ∗, λ∗ of (3) are related as follows:

δ∗i =
ui(t∗)
g0(t∗)

=
ui(t∗)
v(δ∗, λ∗)

for i ∈ I0

δ∗i = λ∗kui(t
∗) for i ∈ Ik, k = 1, . . . ,K.
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Hence δ∗i
λ∗

k
, i ∈ Ik is the proportional contribution of the i-th monomial to the value of posynomial gk at

the optimal solution t∗. Numerical solution of small size geometric programs based on solution of their
relatively simple duals exploits these duality relations.

The degree of difficulty of a geometric program is defined as ∆ = Q−M∗−1 where M∗ denotes the rank
of the (Q,M) matrix A = (aij). It refers to the dimensionality of the set of feasible solutions of the dual
program. For ∆ = 0, i.e. for the zero degree of difficulty geometric programs, there is a unique solution
of the system

∑
i∈I0 δi = 1,

∑Q
i=1 aijδi = 0, j = 1, . . . ,M. If this solution is nonnegative, then it is the

optimal solution of the dual problem and it is possible to get an explicit representation of the optimal
value function of (3) in terms of coefficients ci. Moreover, its logarithm is a linear function in coefficients
ci.

Geometric programs (GP) can be reformulated as convex programming problems: Using the exponential
substitution zj = log tj ∀j the posynomials (2) are transformed to

hk(z) =
∑
i∈Ik

ci exp{
M∑
j=1

aijzj}, k = 0, . . . ,K. (4)

An additional log transform of functions hk is frequently recommended.
The resulting transformed GP is then the convex program

minimize h0(z) subject to hk(z) ≤ 1, k = 1, . . . ,K, z ∈ IRM . (5)

See e.g. [2, 4, 16, 17] for these and related results.
The early applications of geometric programming were connected mainly with mechanical engineering
but they include also economic and managerial problems, cf. [16], chemical equilibrium and nonlinear
network flow problems. In these areas, more sophisticated applications have been further developed and
extended to inventory control, production system optimization, computational finance etc. The presently
prevailing field of applications seems to be in digital circuit design.
The recently observed growing interest in GP stems from the fact that various practical problems can
be reformulated as geometric programs and there are solution methods which solve even very large-scale
GPs efficiently and reliably. With a basic interior-point method which exploits sparsity of the generic
geometric program (1)–(2) the reported efficiency is close to that of linear programming solvers. We refer
to [3] for an up-to-date survey of various applications and an extensive list of references and to [18] for
an interesting reformulation of an entropy optimization problem emanating from computational finance
to a dual of a tractable GP.

2 Stochastic geometric programming

In applications, some of coefficients ci and/or exponents aij need not be known precisely and their incom-
plete knowledge may be modeled as random. As in general stochastic programming problems one deals
with the distribution problem or focuses on decision problems. The question is which of stochastic pro-
gramming approaches and under which distributional assumptions do not destroy the favorable structure
of the (generalized) geometric programs.

The origins of stochastic geometric programming (SGP) are connected with paper [1], where the exponents
aij are deterministic and the coefficients cj are positive random variables. The main result of the paper
are numerically tractable bounds for the optimal value of (1); see also [13, 20] for their further elaboration
and application.

Construction of confidence bounds for the optimal value of a geometric program, deriving its moments or
probability distribution is a task belonging under distribution problem of stochastic geometric program-
ming. It was developed first for zero degree of difficulty geometric programs in connection with lognormal
distribution of coefficients ci and fixed exponents aij . Then the logarithm of the optimal value function
in (3) is an affine linear function in log ci, hence, for a lognormal distribution of ci, one gets lognormal
distribution of the optimal value. For extensions of these results to other probability distributions and to
problems with degree of difficulty ∆ > 0 see e.g. [8, 19].

Individual probabilistic constraints have been applied under assumption of deterministic exponents and
normally distributed, mostly uncorrelated coefficients ci; see e.g. [11, 17]. It means that the constraints
of (1) ∑

i∈Ik

ci

M∏
j=1

t
aij

j ≤ 1, k = 1, . . . ,K
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are replaced by

P{
∑
i∈Ik

ci

M∏
j=1

t
aij

j ≤ 1} ≥ 1− εk, k = 1, . . . ,K,

with prescribed tolerances εk. For independent normally distributed coefficients ci ∼ N(Eci, σ2
i )∀i these

constraints are equivalent to

∑
i∈Ik

Eci

M∏
j=1

t
aij

j + Φ−1(1− εk)

√√√√∑
i∈Ik

σ2
i

M∏
j=1

t
2aij

j ≤ 1, k = 1, . . . ,K,

where Φ−1(1 − εk) is quantile of the standard normal distribution N(0, 1). Each constraint is then split
into two constraints that involve posynomials in tj∀j and a common additional slack variable.
Of course, the assumption of normally distributed costs ci is not in agreement with the required positivity
of coefficients in (1). For general probability distributions of coefficients ci [10] suggests to approximate
the probabilistic constraints by one-sided Chebyshev inequality. A similar approximation is used also in
[14] for optimization of stochastic activity networks with random durations characterized by mean values
and standard deviations of the posynomial form.

In various engineering and economic applications of GP random character of exponents can be observed as
well. Consider for example production functions of the Cobb-Douglas type used to describe requirements
or to formulate the objective function. In the simplest situation, the constraint on production is

Cta1
1 t

a2
2 ≥ k (6)

where t1, t2 are inputs. The common assumption that the coefficient C and exponents a1, a2 are given
constants is not quite realistic. Hence, one gets interested in sensitivity of results on small changes of these
“constants”; the classical sensitivity analysis, cf. [15, 16] is the first step. It is not enough, however, when
the coefficients and exponents of posynomials are random, being e.g. differentiable functions of statistical
estimates of true parameter values. In comparison with randomness present only in the coefficients ci, a
substantially higher level of difficulty arises. In general, one can design simulation experiments to get an
idea about the probability distribution of the optimal value, to evaluate approximate confidence bounds
and moments of the optimal value, etc. However, such experiments are computationally expensive and
do not provide sufficient information about the optimal solutions or their logarithms. In the sequel, we
shall review some other techniques.

A possibility which applies to SGP with random parameter, say β, only in the objective function and to
a discrete distribution of these parameters is to use a tracking model related with the goal programming;
cf. [6].

For random costs and exponents in the objective function and in constraints of (1), a penalization or
two-stage approach was suggested in [12]. First of all, using an additional constraint and an additional
variable t0, geometric program (1) can be rewritten to have a nonrandom linear objective function:

min{t0 : t−1
0 g0(t, β) ≤ 1, gk(t, β) ≤ 1, k = 1, . . . ,K, t0 > 0, t ∈ IRM

++}. (7)

The constraints of (7) can be further split to

ui(t, β)θ−1
ik ≤ 1, i = 1, . . . , Q, k = 0, . . . ,K (8)

with θik > 0,
∑
i∈Ik

θik = 1 interpreted as the proportional contribution of i-th monomial to the value of
k-th posynomial.
The first stage decisions are t0 > 0, t ∈ IRM

++ and θik > 0, i ∈ Ik ∀k, and
∑
i∈Ik

θik = 1∀k are the first
stage constraints. After observing realizations of random coefficients and exponents, possible violation of
constraints (8) can be corrected for an additional cost. Logarithmic penalty function is suggested and the
case of multivariate discrete or normal distribution of parameters ci, aij is discussed.

For GP of the form (7) one may consider a robust reformulation

min{t0 : t−1
0 g0(t,u) ≤ 1, gk(t,u) ≤ 1, k = 1, . . . ,K, t0 > 0, t ∈ T , u ∈ U}

where U denotes a prespecified uncertainty set. Various possibilities how to approach such semiinfinite
problems are discussed e.g. in [9].
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In [6, 7] a technique for construction of confidence bounds for optimal value and optimal solution of SGP
has been proposed. It is based on sensitivity results for deterministic geometric programming [15] and
on stochastic sensitivity analysis [5]. The motivation comes from metal cutting problems where the tool
life affects substantially the total machining costs. Due to nonhomogeneity of the machined and cutting
material variability of the tool life occurs even at fixed machining conditions. It can be influenced by a
careful choice of cutting conditions in accordance with the postulated technical relation: The tool life is a
monomial in cutting speed, feed and depth whose parameters can be obtained as statistical estimates of
the true values. Derivatives of the minimal total cost with respect to the parameters, regression analysis
and Delta theorem lead to an approximate confidence interval for the minimal machining costs, the tool
life, etc.
This technique can be evidently applied to decision problems involving estimated production, demand or
utility functions of the posynomial form such as the Cobb-Douglas production function in (6); see [16]
for instances of deterministic versions of such problems. Among others, the lower and upper bounds on
the system’s cost obtained in this way are an important information for the purpose of economic decision
making.
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