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Abstract. Mean-variance efficient portfolios are influenced by errors due
to approximation, estimation and incomplete information. Therefore, the ob-
tained results – recommendations for the risk and portfolio manager, should
be carefully analyzed. This note presents results of a simulation study devoted
to the output analysis with respect to perturbed input data – expected yields
and elements of their covariance matrix. The motivation comes from results of
the simulation study [2] whose conclusions about the prevailing importance of
expectations turn out to be substantially influenced by the chosen value of the
model parameter that quantifies the level of the risk aversion of the investor.
Our simulation study complements these results comparing the influence of
perturbed values of expectations, variances and covariances of yields for the
whole range of the risk aversion parameter.
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1 The Markowitz mean-variance model

The Markowitz model is a static, single period model which assumes a frictionless market. It applies
to small rational investors whose investments cannot influence the market prices and who prefer higher
yields to lower ones and smaller risks to larger ones. Let us recall the basic formulation: The composition
of portfolio of I assets is given by weights of the considered assets, xi, i = 1, . . . , I,

�
i xi = 1. The unit

investment in the i-th asset provides the random return ρi over the considered fixed period. The assumed
probability distribution of the vector ρ of returns of all assets is characterized by a vector of expected
returns Eρ = µ and by a fixed covariance matrix Σ = [cov(ρi, ρj), i, j = 1, . . . , I] whose main diagonal
consists of variances of individual returns. This allows to quantify the “yield from the investment” x
as the expectation µ(x) =

�
i xiµi = µ�x of its total return and the “risk of the investment” x as

the variance of its total return, σ2(x) =
�

i,j cov(ρi, ρj)xixj = x�Σx. According to the assumptions, the
investors aim at maximal possible yields and, at the same time, at minimal possible risks – hence, a typical
decision problem with two criteria, “max” {µ(x),−σ2(x)} or “min” {−µ(x),σ2(x)}. The mean-variance
efficiency introduced by Markowitz is fully in line with general concepts of multiobjective optimization.
Accordingly, mean-variance efficient portfolios can be obtained by solving various optimization problems.

In accordance with [2] we use the scalarization technique and we shall present the results for the
parametric quadratic program

max
x∈X

{µ�x− λx�Σx} (1)

where the value of parameter λ ≥ 0 reflects the level of investor’s risk aversion and X = {x ∈ IRI : xi ≥
0 ∀i,

�
i xi = 1}; in general, the approach is valid for an arbitrary nonempty bounded convex polyhedron.

Problem (1) is a convex quadratic program and there exist various solution techniques and theoretical
results concerning its stability in dependence on elements of µ,Σ, and parameter λ. See e.g. Chapter 5.3
of [1] for the general theory and [3, 4, 5, 8] for applications to the Markowitz model. In the sequel, we
shall assume that Σ is a positive definite matrix, briefly Σ ∈ S+.
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For a fixed value λ, the objective function f(x;µ,Σ;λ) is linear in elements of µ,Σ, hence, for each
λ ≥ 0 the optimal value

ϕ(µ,Σ;λ) = max
x∈X

{µ�x− λx�Σx}

is a convex function in µ, Σ, hence continuous on IRI × S+. It means, inter alia, that for consistent
estimates µν ,Σν , of µ,Σ, the optimal value ϕ(µν ,Σν ;λ) is a consistent estimate of the true optimal
value. This assertion can be complemented by the rates of convergence. Using the “delta” method,
cf. [10], section 7.2.2 for a succinct explanation, for asymptotically normal estimates µν ,Σν , asymptotic
normality can be proved, and asymptotic confidence region derived.

Moreover, for each λ > 0 and for all (µ,Σ) ∈ µ×S+, there exists unique optimal solution x∗(µ,Σ;λ),
a continuous vector function of µ,Σ; cf. Theorem 5.3.2 of [1]. However, in general, its asymptotic
distribution is a mixture of normal distributions.

In this note we shall assume that problem (1) was solved for certain reference or nominal values of
elements of µ,Σ and we shall study influence of perturbations in these values on the output by simulation,
regardless of their origin. Of course, the results depend on the value of the model parameter λ; notice
the evident differences for λ = 0, i.e. no influence of perturbations in Σ and possibly multiple optimal
solutions, and λ > 0.

Notice that for multinormal N (µ,Σ) distribution of returns the value of λ may come from an under-
lying problem, e.g. from maximization of expected concave utility of the total return

�
i ρixi, or from

minimization of its VaR or CVaR, cf. [9].

2 Simulation study

In conclusions of [11], there are The Top 10 Points to Remeber in applications of stochastic programming
models to asset, liability and wealth management, including the Markowitz mean-variance model. Let us
quote:

The point# 1: “Means are by far the most important part of the distribution of returns,
especially the direction”...

Indeed, this was also the conclusion of [2] for the Markowitz model (1):

“...errors in means are over ten times as damaging as errors in variances, and over twenty
times as damaging as errors in covariances.”...

The simulation study of [2] was based on monthly returns in 1.1.1980 – 1.12.1989 of 10 randomly
selected stocks from the Dow Jones Industrial Average Index for fixed λ = 0.02. The influence of changes
in the nominal parameters θ0 containing selected elements of µ0,Σ0 obtained from historical data on the
optimal, mean-variance portfolio was quantified using values of the Cash Equivalent Loss (CEL). For
Markowitz model (1) CEL is equal to the relative error ratio

CELθ̄ :=
���
ϕ(θ0;λ)− ϕ(θ̄;λ)

ϕ(θ0;λ)

���,

where θ̄ denotes the perturbed values of selected parameters; cf. [2]. Perturbations of components θ0i of
θ0 were generated randomly according to

θ̄i = θ0i(1 + kεi) (2)

where εi are iid N(0, 1) random variables and the error magnitude is fixed by k = 0.05, 0.10, 0.15, 0.20.
The average values of CEL obtained by [2] for 100 data perturbations according to (2), separately for
perturbed means µ̄, variances ¯Σvar and covariances ¯Σcov, are contained in the first column of Table 1.
The next columns of the table contain our extensions of these results for higher values of parameter λ.

Figure 1 plots the average CEL values (in %) as a function of λ for k = 0.1 Perturbations of means
are the prevailing factor for for λ close to 0, but there is an evident change in ranking the importance
of perturbations which appears approximately starting with λ = 0.1. For λ ≥ 0.5 the average values of
CEL remain approximately constant.
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λ=0.02 λ=0.2 λ=1 λ=2

k=0.05

CELµ̄ 5.41 ·10−3 8.50 ·10−4 2.21 ·10−5 5.43 ·10−6

CELΣ̄var
6.75 ·10−4 3.75 ·10−3 2.22 ·10−3 2.11 ·10−3

CELΣ̄cov
2.02 ·10−4 1.73 ·10−3 9.74 ·10−4 9.26 ·10−4

k=0.10

CELµ 2.37 ·10−2 3.35 ·10−3 8.53 ·10−5 2.10 ·10−5

CELΣ̄var
2.57 ·10−3 1.86 ·10−2 1.13 ·10−2 1.07 ·10−2

CELΣ̄cov
9.70 ·10−4 8.53 ·10−3 4.92 ·10−3 4.64 ·10−3

k=0.15

CELµ 5.25 ·10−2 7.54 ·10−3 1.89 ·10−4 4.62 ·10−4

CELΣ̄var
5.55 ·10−3 4.70 ·10−2 2.84 ·10−2 2.70 ·10−2

CELΣ̄cov
2.70 ·10−3 2.16 ·10−2 1.27 ·10−2 1.21 ·10−2

.

k=0.20

CELµ̄ 8.46 ·10−2 1.35 ·10−2 3.34 ·10−4 8.09 ·10−5

CELΣ̄var
9.71 ·10−3 8.74 ·10−2 5.72 ·10−2 5.51 ·10−2

CELΣ̄cov
4.21 ·10−3 2.71 ·10−2 1.67 ·10−2 1.60 ·10−2

Table 1 Average values of CEL for error model (2) using data from [2].
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Figure 1 Dependence of CEL on risk aversion for error model (2) with k = 0.1.
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Motivated by [6], we repeated the simulation experiment for a different construction of perturbations:

θ̄i = θ0i + kεi∆i (3)

where εi are again iid random variables with N(0, 1) distribution and ∆i reflects the spread of the
corresponding parameter values in the sample. The results are similar, see Table 2 and Figure 2. For
details see [7].

λ=0,02 λ=0,2 λ=1 λ=2

k=0,05

CELµ̄ 5.13 ·10−3 6.55 ·10−4 1.52 ·10−5 3.28 ·10−6

CELΣ̄var
6.56 ·10−5 5.74 ·10−4 3.99 ·10−4 3.86 ·10−4

CELΣ̄cov
2.42 ·10−4 2.23 ·10−3 1.21 ·10−3 1.14 ·10−3

k=0,10

CELµ̄ 1.91 ·10−2 2.60 ·10−3 6.40 ·10−5 1.41 ·10−5

CELΣ̄var
2.64 ·10−4 2.32 ·10−3 1.64 ·10−3 1.59 ·10−3

CELΣ̄cov
1.08 ·10−3 1.02 ·10−2 5.29 ·10−3 4.94 ·10−3

k=0,15

CELµ̄ 4.03 ·10−2 5.84 ·10−3 1.46 ·10−4 3.32 ·10−5

CELΣ̄var
5.96 ·10−4 5.59 ·10−3 3.96 ·10−3 3.84 ·10−3

CELΣ̄cov
2.75 ·10−3 2.02 ·10−2 1.18 ·10−2 1.12 ·10−2

k=0,20

CELµ̄ 6.73 ·10−2 1.03 ·10−2 2.61 ·10−4 6.04 ·10−5

CELΣ̄var
1.08 ·10−3 1.12 ·10−2 8.03 ·10−3 7.80 ·10−3

CELΣ̄cov
4.79 ·10−3 2.99 ·10−2 1.84 ·10−2 1.74 ·10−2

Table 2 Average values of CEL for error model (3).

3 Conclusions

Our main conclusions can be summarized in the following two points:

• Small perturbations may cause visible relative errors in the optimal variance adjusted expected
return of the portfolio.

• The main source of errors need not be the expected return, the performance depends on the model
parameter λ which quantifies the level of the risk aversion of the investor.

Similar results based on simulation studies can be obtained also for maximization or minimization of
other mean-risk objectives, e.g. for the mean-CVaR objective, cf. [6].
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Figure 2 Dependence of CEL on risk aversion for error model (3) with k = 0.1.
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