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Abstract: Contamination technique will be examined as a possible approach to
robustness analysis of results obtained for multistage stochastic linear programs
with respect to changes of their structure or of the input data. We shall focus on
the case when the already selected scenario tree gets extended for additional (stress
or out-of-sample) scenarios and/or additional stages.
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1 Multiperiod and multistage stochastic programs

When formulating multistage stochastic programs it is common to fix first the
horizon and the sequence of times at which decisions will be made. An important
requirement is that the decisions must be nonanticipative, i.e. in any stage of
the decision process they are allowed to depend only on the past observations and
decisions. Discrete approximations of the data process may be available at much
finer timestep than the intervals between these decision points, see e.g. [2, 11]. The
crucial task is then to relate the time instants and stages.

In the general T -stage stochastic program we think of a stochastic data pro-
cess ω = (ω1, . . . , ωT−1) and a decision process x = (x1, . . . xT ). The components
ω1, . . . , ωT−1 of ω and the decisions x2, . . . ,xT are assumed to be random vectors,
not necessarily of the same dimension, defined on some probability space (Z,F , µ),
while x1 is a nonrandom vector-valued variable.

The decision process is nonanticipative which means that decisions taken at any
stage of the process do neither depend on future realizations of stochastic data nor
on future decisions, whereas the past information as well as the knowledge of the
probability distribution of the data process are exploited. This can be expressed as
follows: Let Ft−1 ⊆ F be the σ-field generated by the part ωt−1,• := (ω1, . . . , ωt−1)
of the stochastic data process ω that precedes stage t. The dependence of the t-th
stage decision xt only on the past means that xt is Ft−1-measurable. We denote
xt−1,• = (x1, . . . ,xt−1) the sequence of decisions at stages 1, . . . , t − 1, P the
distribution function of ω, Pt denotes the marginal probability distribution of ωt,
and Pt(·|ωt−1,•), t = 2, . . . , T − 1, its conditional probability distribution.

The first-stage decisions consist of all decisions that have to be selected before
further information is revealed whereas the second-stage decisions are allowed to
adapt to this information, etc. In each of the stages, the decisions are limited by
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constraints that may depend on the previous decisions and observations. Stages
do not necessarily refer to time periods, they correspond to steps in the decision
process.

An example is the nested form of the multistage stochastic linear program
(MSLP) which resembles the backward recursion of stochastic dynamic progra-
mming with an additive overall cost function:

min
x1∈X1

[c>1 x1+EP {ϕ1(x1, ω1)}] with X1 := {x1 |A1x1 = b1, l1 ≤ x1 ≤ u1} , (1)

and ϕt−1(·, ·), t = 2, . . . , T, defined recursively as

ϕt−1(xt−1,•, ωt−1,•) = min
xt

[ct(ωt−1,•)>xt + EPt(·|ωt−1,•){ϕt(xt−1,•,xt, ω
t−1,•, ωt)}]

(2)
subject to constraints

Bt(ωt−1,•) xt−1 + At(ωt−1,•) xt = bt(ωt−1,•), lt(ωt−1,•) ≤ xt ≤ ut(ωt−1•) a.s.

and ϕT is explicitly given, e.g. ϕT ≡ 0.
Matrices At are of a fixed (mt, nt) type and the remaining vectors and matrices

are of consistent dimensions. For the first stage, known values of all elements of
b1, c1,A1, l1,u1 are assumed and the main decision variable is x1 that corresponds
to the first stage. The first-stage problem (1) has the form of the expectation-type
stochastic program with the set of feasible decisions independent of P. Constraints
involving random elements hold almost surely. For simplicity we will assume that
all infima are attained, which is related with the relatively complete recourse, and
that all expectations exist. See recent books [16] or [18] for more general cases.

For applications one mostly approximates the true probability distribution P of
ω by a discrete probability distribution carried by a finite number of atoms, say,
ω1, . . . , ωK ; see [10] for a survey of scenario generation techniques. Accordingly, the
supports of marginal and conditional probability distributions Pt, Pt(·|ωt−1,•)∀t are
finite sets. For disjoint sets of indices Kt, t = 2, . . . , T , let us list as ω̃kt

, kt ∈ Kt

all possible realizations of ωt−1,• and denote by the same subscripts the corre-
sponding values of the t-th stage coefficients. The total number of scenarios K
equals the number of elements of KT . Each scenario ωk = {ωk

1 , . . . , ωk
T−1} thus ge-

nerates a sequence of coefficients {ck2 , . . . , ckT
}, {Ak2 , . . . ,AkT

}, {Bk2 , . . . ,BkT
},

{bk2 , . . . , bkT
}, {lk2 , . . . , lkT

}, {uk2 , . . . ,ukT
}. The data are organized in the form of

the scenario tree: Its nodes are determined by all considered realizations ω̃kt
, kt ∈

Kt, t = 2, . . . , T, and by the root indexed as k1 = 1; each realization ω̃kt+1 of
ωt•, t = 1, . . . , T, has a unique ancestor ω̃kt (a realization of ωt−1,•), we denote it
by subscript a(kt+1), and a finite number of descendants — realizations of ωt+1,•.

This allows to rewrite the T -stage stochastic linear program (1)–(2) in the
following arborescent form:

min

[
c>1 x1 +

∑
k2∈K2

pk2c
>
k2

xk2 +
∑

k3∈K3

pk3c
>
k3

xk3 + . . . +
∑

kT∈KT

pkT
c>kT

xkT

]
(3)
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subject to

A1x1 = b1

Bk2x1 + Ak2xk2 = bk2 , k2 ∈ K2

Bk3xa(k3) +Ak3xk3 = bk3 , k3 ∈ K3

. . . . . .
...

BkT
xa(kT ) +AkT

xkT
= bkT

, kT ∈ KT

l1 ≤ x1 ≤ u1, lkt
≤ xkt

≤ ukt
, kt ∈ Kt, t = 2, . . . , T. (4)

The path probabilities pkt
> 0∀kt,

∑
kt∈Kt

pkt
= 1, t = 2, . . . T, of partial sequences

of coefficients are probabilities of realizations of ωt−1,• ∀t. They may be obtained
by stepwise multiplication of the marginal probabilities pk2 by the conditional arc
(transition) probabilities, say, πkτ−1kτ , τ = 3, . . . , t. Probabilities pk of individual
scenarios ωk, k = 1, . . . ,K, are equal to the corresponding path probabilities pkT

.
The nonanticipativity constraints are included in an implicit way. Notice, that

(3)–(4) may correspond also to a T -period two-stage stochastic program based on
the same scenarios: Except for the root, there is only one descendant d(kt) of
each of t-th stage nodes, that is, the transition probabilities πkt,d(kt) = 1 ∀kt ∈
Kt, t = 2, . . . , T − 1. Scenarios are identified by sequences {k2, . . . , kT } such that
kt ∈ KT , kt+1 = d(kt)∀t and the objective function (3) may be simplified to

c>1 x1 +
∑

kT∈KT

pkT
[c>k2

xk2 + c>k3
xk3 + . . . + c>kT

xkT
]. (5)

Problem (5), (4) is called the two-stage relaxation of MSLP (3)–(4).

With explicit inclusion of nonanticipativity constraints, the scenario-based mul-
tiperiod or multistage stochastic programs with linear constraints can be again
written as a large-scale deterministic program: Given scenario ωk denote by c(ωk)
the vector composed of all corresponding coefficients, say, c1, ckt

, t = 2, . . . , T, in
the objective function, by A(ωk) the matrix of all coefficients of system of constra-
ints (4) for scenario ωk, and, similarly, by b(ωk), l(ωk), u(ωk) the vectors composed
of right-hand sides in (4) and bounds of the box constraints for scenario ωk. The
scenario-splitted form of the T -stage stochastic linear program is

min
X∩C

{
K∑

k=1

pkc(ωk)>xk |A(ωk)x(ωk) = b(ωk), l(ωk) ≤ x(ωk) ≤ u(ωk)∀k

}
. (6)

Set X is defined by deterministic constraints on xt(ωk)∀t, k, C by the nonanticipa-
tivity conditions, and x(ωk) is the corresponding decision vector composed of stage
related subvectors xt(ωk)∀t. For two-stage stochastic programs the nonanticipati-
vity constraints boil down to the requirement that the first-stage decisions must be
scenario independent, i.e. x1(ωk) = x1(ωk′)∀k, k′. Similar constraints guarantee
that the t-th stage decisions based on the same history are equal. Such constraints
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can be expressed as x = Ux where x contains carefully grouped components of all
decision vectors x(ωk) and U is a 0-1 matrix.

The choice of stages, of the branching scheme, of scenarios and their probabilities
influence the optimal first-stage decision and the overall optimal value. To use
multiperiod two-stage model or to assign one stage to each of possible discretization
points are two extreme cases. Requirements of various applications may lead to
different topologies of the decision points: With a fixed time discretization of the
data process ω = (ωt, t = 1, . . . , T − 1) the stages may be allocated to selected
time points, say τ1 < . . . < τS < T. The decisions are made at τs, s = 1, . . . , S,
using the past information ωτs−1,• and the probabilistic specification. Similarly
as the second stage decisions for multiperiod two-stage stochastic programs, all
decisions at time points t between stages τs, τs+1 are made at t = τs using the
past information up to τs. The formulation exploits then a fixed suitable coarser
structure (filtration) {Fs, s = 1, . . . , S}, Fs ⊆ F defined by the data available at
time τs which corresponds to stage s. The whole procedure has been developed
in [2] for a specific application, see also [16] for the corresponding scenario tree
construction.

It has been observed that various theoretical results valid for two-stage sto-
chastic programs do not carry over to the multistage case (e.g. [7, 15, 20]). At
the same time, input generation (i.e. generation of a scenario tree instead of a
fan of scenarios) and the numerical solution of multistage programs is substanti-
ally more complicated. Hence, a natural question is how many stages and what
topology of stages should be used, why to use multistage stochastic programs at all
and how much we loose when simplifying them to their multiperiod two-stage va-
riant by relaxation of nonanticipativity constraints. As the set of feasible decisions
gets enlarged, the optimal value of the two-stage relaxation based on identical data
provides a lower bound of the optimal value of the original multistage problem.

The impact of including additional scenarios and/or stages on the results is a
problem of stress testing or output analysis. There exist several numerical studies
in the context of multistage stochastic programs and their applications, cf. [3, 17].
We shall approach these problems via the contamination technique.

2 Stress testing via contamination

2.1 Contamination technique

Contamination approach was initiated in mathematical statistics as one of the tools
for analysis of robustness of estimators with respect to deviations from the assumed
probability distribution and/or its parameters. It goes back to von Mises and the
concepts are briefly described e.g. in [19]. In stochastic programming, it was
developed in a series of papers up to results applicable for two-stage stochastic
linear programs, e.g. [4, 6], and to the first ideas dealing with the multistage case
[5]. For construction of contamination bounds, it is important that the stochastic
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program is reformulated as

min
x∈X

F (x, P ) :=
∫

Ω

f(x, ω)P (dω) (7)

with X independent of P.
Via contamination, robustness analysis with respect to changes in P gets re-

duced to a much simple analysis with respect to a scalar parameter λ : Assume
that (7) was solved for an already constructed scenario tree corresponding to the
discrete probability distribution P . Denote ϕ(P ) the optimal value and X ∗(P ) the
set of optimal solutions. Possible changes in probability distribution P are modeled
using contaminated distributions Pλ,

Pλ := (1− λ)P + λQ, λ ∈ [0, 1]

with Q another fixed probability distribution. Limiting the analysis to a selected
direction only, the results are directly applicable but they are less general than
quantitative stability results with respect to arbitrary (but small) changes in P
summarized e.g. by Römisch in Chapter 8 of [18].

The objective function in (7) is linear in P, hence

F (x, λ) :=
∫

Ω

f(x, ω)Pλ(dω) = (1− λ)F (x, P ) + λF (x, Q)

is linear in λ. Suppose that the stochastic program (7) has an optimal solution for
all considered distributions Pλ, 0 ≤ λ ≤ 1. Then the optimal value function

ϕ(λ) := min
x∈X

F (x, λ)

is concave on [0, 1] which implies its continuity and existence of directional deriva-
tives in (0, 1). Continuity at the point λ = 0 is a property related with stability
results for the stochastic program in question. In general, one needs a nonempty,
bounded set of optimal solutions X ∗(P ) of the initial stochastic program (7). This
assumption together with stationarity of derivatives dF (x,λ)

dλ = F (x, Q) − F (x, P )
are used to derive the form of the directional derivative

ϕ′(0+) = min
x∈X∗(P )

F (x, Q)− ϕ(0) (8)

which enters the upper bound for the optimal value function ϕ(λ)

ϕ(0) + λϕ′(0+) ≥ ϕ(λ) ≥ (1− λ)ϕ(0) + λϕ(1), λ ∈ [0, 1]; (9)

see [4, 6] and references therein.
If x∗(P ) is the unique optimal solution of (7), ϕ′(0+) = F (x∗(P ), Q) − ϕ(0),

i.e. the local change of the optimal value function caused by a small change of P
in direction Q− P is the same as that of the objective function at x∗(P ). If there
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are multiple optimal solutions, each of them leads to an upper bound ϕ′(0+) ≤
F (x(P ), Q)− ϕ(0), x(P ) ∈ X ∗(P ). Contamination bounds can be then written as

(1− λ)ϕ(P ) + λF (x(P ), Q) ≥ ϕ(Pλ) ≥ (1− λ)ϕ(P ) + λϕ(Q) (10)

valid for an arbitrary x(P ) ∈ X ∗(P ) and λ ∈ [0, 1]. If x(P ) is an ε-optimal solution
of (7) for probability distribution Q then the difference of the upper and lower
bound in (10) is less or equal to λε.

Contamination bounds (9), (10) help to quantify the change in the optimal value
due to the considered perturbations of (7). They were applied in [8] and [1, 9],
to stress test of CVaR and of multiperiod two-stage bond portfolio management
problems, respectively.

2.2 Contamination for multistage stochastic linear programs

Also multistage stochastic programs can be formulated as (7), with X the set of
feasible first-stage decisions, cf. (1). Still, a note of warning is needed: In (7), the
random objective f(·, ·) is a given function whereas the random objective ϕ1(·, ·)
in (1) changes when the topology of stages, i.e. the filtration, get changed. This
indicates that for a fixed topology of stages contamination with respect to additional
scenarios goes its usual way. Indeed, the corresponding contamination bounds were
derived in [5] for MSLP with respect to additional out-of-sample scenarios, which
increase the branching number of selected nodes of the scenario tree but do not
change the topology of stages. The results were applied to multistage problems
with a fixed topology of stages in [1, 13].

Example 2.1 (Out-of-sample scenarios) Consider for simplicity a 3-stage SLP
with random right-hand sides written in the arborescent form; scenarios correspond
here to sequences {bk2 , bk3} :

min [c>1 x1 +
∑

k2∈K2

pk2c
>
2 xk2 +

∑
k3∈K3

pk3c
>
3 xk3 ]

subject to nonnegativity conditions and

A1x1 = b1, B2x1 + A2xk2 = bk2 , k2 ∈ K2, B3xa(k3) + A3xk3 = bk3 , k3 ∈ K3.

Let x∗1(P ), x∗kt
(P )∀t be its optimal solution.

There are three basic types of additional scenarios:
a. One new scenario ω∗ := {b∗2, b

∗
3} is included, contaminating probability distribu-

tion Q = δ{ω∗} is degenerated. To get the directional derivative we have to compute
the value

F (x∗(P ), δ{ω∗}) = c>1 x∗1(P ) + min
[
c>2 x2 + c>3 x3

]
with minimization over nonnegative x2,x3 such that

B2x
∗
1(P ) + A2x2 = b∗2, B3x2 + A3x3 = b∗3.
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This type of contamination means that all original scenarios are kept but with path
probabilities reduced by factor 1− λ, new scenario ω∗ enters with probability λ.

b. In the 3rd stage, an additional realization b∗3 of b3 is considered. Hence, only the
conditional probability distribution P2(b3|ba(k∗)) in the 3rd stage gets contaminated
which is determined by the considered ancestor a(k∗) of the new terminal node.
The scenario tree is extended just for one new branch that emanates from ba(k∗),
its arc probability equals λ, arc probabilities of all original branches emanating from
the same node ba(k∗) at the 2nd stage level are multiplied by 1 − λ and the remai-
ning probabilities do not change. For the corresponding degenerated contaminating
distribution Q,

F (x∗(P ), Q) = c>1 x∗1(P ) + c>2 x∗a(k∗)
(P ) + min c>3 x3

with minimization over x3 ≥ 0 that fulfils condition B3x
∗
a(k∗)

(P ) + A3x3 = b∗3.

c. A new realization b∗3 in the 3rd stage is included independently of the past history,
i.e. for all realizations bk2 of b2. It corresponds to contamination of all conditional
distributions P2(b3|b2 = bk2) by δ{b∗3}. Arc probabilities of all original branches of
the 3rd stage are multiplied by 1 − λ and each bundle of branches emanating from
the same ancestor at the 2nd stage level is enlarged for one branch corresponding
to b∗3 with arc probability λ. Hence, in the 3rd stage the problem gets extended for
#K2 systems of equations and subvectors of variables. With the new descendant
scenarios and variables indexed by d(k2), k2 ∈ K2 we get

F (x∗(P ), Q) = c>1 x∗1(P ) +
∑

k2∈K2

pk2

[
c>2 x∗k2

(P ) + min c>3 xd(k2)

]
with minimizations over xd(k2) ≥ 0 that fulfil equations B3x

∗
k2

(P )+A3xd(k2) = b∗3.

Similarly, the directional derivatives (8) and the contamination bounds (9) can
be derived for general scenario-based MSLP provided that both the original pro-
blem and the alternative one are related to the same scheme of decision points for
distributions P, Q; degenerated distributions Q applied in the above example are a
special case. On the other hand, an application to MSLP with a varying topology
of stages is not straightforward. Let’s introduce first a motivating example.

Example 2.2 Consider a stochastic dedicated bond portfolio selection problem mo-
deled as two-stage multiperiod stochastic linear program, see e.g. [12, 21]. There
are many scenarios of interest rates which enter the coefficients. The problem is
solved over T time periods for a given portfolio of bonds and for probability distribu-
tion P carried by the fan of selected scenarios, say ωk = (ωk

t , t = 1, . . . , T −1), k =
1, . . . ,K, with probabilities pk. The first-stage decision x1 must be scenario in-
dependent whereas the second-stage decisions xk

t depend on scenarios ωk and are
constructed at once for all subsequent periods t = 2, . . . , T.

The alternative probability distribution Q carried by scenarios ωh, h = 1, . . . ,H,
with probabilities qh corresponds to a possible call option at t = t1 > 2 for certain
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bond, under some of scenarios. It provides an optimal 1st stage decision if the call
option is exercised. The interest rate scenarios are identical with those for P but
the related cash flows of the bond with call option differ — the full nominal value
plus coupon and premium get paid at t1 and zero cash flows follow in subsequent
periods. Of course, the investment decisions for Q will be different.

Contaminated probability distribution Pλ takes into account both possibilities
and the contamination parameter λ reflects the belief that the call option will be
exercised. To get a 3-stage SLP one keeps the time horizon T and the time discre-
tization and includes an additional decision point at t1. This means, inter alia, that
the system of linear constraints written for the pooled set of scenarios corresponding
to Pλ must be extended for the nonanticipativity condition: Decisions xk

t at t < t1
cannot count upon the outcome of the option at time t1.

To detail the idea from Example 2.2, think of including an additional stage
(not additional time discretization point!) at t = t1. This means to reflect in the
arborescent form of MSLP (3)–(4) for contaminated probability distribution Pλ

the additional nonanticipativity conditions: For t < t1, all coefficients and decision
variables for P and Q are equal. The corresponding subsystem of constraints in
(4) will be called common constraints. For t ≥ t1 constraints for scenarios ωk are
kept, called P -system, and another Q-system of constraints for scenarios ωh will
be attached. The ancestors a(ht1) and the corresponding decision variables xa(ht1 )

in the Q-system come from the common constraints. Thus using the pooled set
of scenarios from P and Q we get a fixed system of linear constraints and the
contaminated stochastic program is a linear parametric program with parameter λ
only in the objective function:
F (x, λ) :=

c>1 x1 +
t1−1∑
t=2

∑
kt∈Kt

pktc
>
kt

xkt + (1− λ)
T∑

t=t1

∑
kt∈Kt

pktc
>
kt

xkt + λ

T∑
t=t1

∑
ht∈Ht

qhtc
>
ht

xht

(11)
is minimized with respect to (4) and the Q-system

Bht
xa(ht) + Aht

xht
= bht

, lht
≤ xht

≤ uht
, ht ∈ Ht, t ≥ t1. (12)

The optimal value of (11), (4), (12) is denoted ϕ(λ) and X ∗(λ) is the set of optimal
solutions. The symbols ϕ(P ),X ∗(P ), ϕ(Q),X ∗(Q) are kept for optimal values and
sets of optimal solutions of the two MSLP obtained for P and Q separately; notice
that ϕ(0) = ϕ(P ) and ϕ(1) = ϕ(Q).

Proposition 2.3 Assume that the sets X ∗(λ) are nonempty for all λ ∈ [0, 1] and
X ∗(0) is bounded. Then the optimal value function ϕ(λ) is concave on [0, 1] and
contamination bounds (9) follow with ϕ′(0+) = minx∈X∗(0) F (x, 1)− ϕ(0).

The proof is an adaptation of results on existence and form of directional derivatives
of the optimal value function of perturbed linear programs, cf. Chapter 3.5 of [14],
to the parametric linear program (4), (11), (12).
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To get an upper bound for the derivative means to evaluate F (x(0), 1) for an
optimal solution x(0) of the contaminated problem (11), (4), (12) with λ = 0. These
optimal solutions consist of x(P ) — an optimal solution of (3)–(4), complemented
by an arbitrary feasible solution of the related Q-system (12). Taking an optimal
feasible solution x∗ht

, t ≥ t1 of (12) we get

ϕ′(0+) ≤
T∑

t=t1

[ ∑
ht∈Ht

qht
c>ht

x∗ht
−

∑
kt∈Kt

pkt
c>kt

xkt
(P )

]
.

2.3 Comments

A similar theorem holds true for other instances of scenario-based MSLP, for more
complex changes of their structure and it can be also extended to scenario-based
nonlinear problems.

Notice that working with the scenario-splitted form (6) would mean to accept
changes of the system x = Ux if the topology of stages varies which is a substantial
change of the resulting deterministic program.

References
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[4] J. Dupačová. Stability in stochastic programming with recourse – contamina-
ted distributions. Math. Programing Study, 27:133–144, 1986.
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[7] J. Dupačová. Reflections on output analysis for multistage stochastic linear
programs. In: K. Marti, Y. Ermoliev and G. Pflug (eds.) Dynamic Stochastic
Optimization, LNEMS 532, Springer Verlag, Berlin, 2004, pp. 3–20.
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[10] J. Dupačová, G. Consigli and S. W. Wallace. Scenarios for multistage stochas-
tic programs. Annals of Oper. Res., 100:25–53, 2000.
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